1
|
Magagnoli J, Ambati M, Cummings TH, Nguyen J, Thomas CC, Ambati VL, Sutton SS, Gelfand BD, Ambati J. Association of nucleoside reverse transcriptase inhibitor use with reduced risk of Alzheimer's disease risk. Alzheimers Dement 2025; 21:e70180. [PMID: 40342195 PMCID: PMC12059996 DOI: 10.1002/alz.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Inflammasome activation is implicated in Alzheimer's disease (AD). We previously demonstrated that nucleoside reverse transcriptase inhibitors (NRTIs), drugs approved to treat human immunodeficiency virus (HIV) and hepatitis B, also inhibit inflammasome activation. METHODS We evaluated the association between NRTI exposure and subsequent development of AD in the United States Veterans Health Administration over a 24-year period and in the MarketScan database over a 14-year period using propensity score-matched multivariate Cox hazards regression and Kaplan-Meier analyses. RESULTS We report that in humans, NRTI exposure was associated with a significantly lower incidence of AD in two of the largest health insurance databases in the United States. In contrast, exposure to non-NRTIs, protease inhibitors (PIs), and integrase strand transfer inhibitors (INSTIs) was not associated with reducing AD incidence. DISCUSSION These findings support the concept that inflammasome inhibition could benefit AD and provide a rationale for prospective clinical testing of inflammasome inhibitors such as NRTIs in AD. HIGHLIGHTS Exposure to NRTIs, a class of anti-retroviral drugs that also block inflammasome activation, was associated with a reduction in the risk of developing AD. The reduction in risk was observed in two large, diverse health insurance databases after correcting for numerous comorbidities known to be associated with AD. Other anti-HIV therapies such as non-NRTIs, protease inhibitors, and integrase strand transferase inhibitors were not associated with a reduction in the risk of developing AD. Our work provides a rationale for randomized clinical trials of inflammasome inhibitors in AD.
Collapse
Affiliation(s)
- Joseph Magagnoli
- Dorn Research InstituteColumbia VA Health Care SystemColumbiaSouth CarolinaUSA
- Department of Clinical Pharmacy and Outcomes SciencesCollege of PharmacyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | | | - Tammy H. Cummings
- Dorn Research InstituteColumbia VA Health Care SystemColumbiaSouth CarolinaUSA
- Department of Clinical Pharmacy and Outcomes SciencesCollege of PharmacyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Joseph Nguyen
- Center for Advanced Vision ScienceUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of OphthalmologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Claire C. Thomas
- Center for Advanced Vision ScienceUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of OphthalmologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Vidya L. Ambati
- Center for Advanced Vision ScienceUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of OphthalmologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - S. Scott Sutton
- Dorn Research InstituteColumbia VA Health Care SystemColumbiaSouth CarolinaUSA
- Department of Clinical Pharmacy and Outcomes SciencesCollege of PharmacyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Bradley D. Gelfand
- Center for Advanced Vision ScienceUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of OphthalmologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of Biomedical EngineeringUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of PathologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Jayakrishna Ambati
- Center for Advanced Vision ScienceUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of OphthalmologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of PathologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of MicrobiologyImmunology, and Cancer BiologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
2
|
Ishak CA, Marhon SA, Tchrakian N, Hodgson A, Loo Yau H, Gonzaga IM, Peralta M, Lungu IM, Gomez S, Liang SB, Shen SY, Chen R, Chen J, Chatterjee B, Wanniarachchi KN, Lee J, Zehrbach N, Hosseini A, Mehdipour P, Sun S, Solovyov A, Ettayebi I, Francis KE, He A, Wu T, Feng S, da Silva Medina T, Campos de Almeida F, Bayani J, Li J, MacDonald S, Wang Y, Garcia SS, Arthofer E, Diab N, Srivastava A, Austin PT, Sabatini PJB, Greenbaum BD, O'Brien CA, Shepherd TG, Tsao MS, Chiappinelli KB, Oza AM, Clarke BA, Rottapel R, Lheureux S, De Carvalho DD. Chronic Viral Mimicry Induction following p53 Loss Promotes Immune Evasion. Cancer Discov 2025; 15:793-817. [PMID: 39776167 DOI: 10.1158/2159-8290.cd-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE Our landmark discovery of viral mimicry characterized repetitive elements as immunogenic stimuli that cull cancer cells. If expressed repetitive elements cull cancer cells, why does every human cancer express repetitive elements? Our report offers an exciting advancement toward understanding this paradox and how to exploit this mechanism for cancer interception. See related commentary by Murayama and Cañadas, p. 670.
Collapse
Affiliation(s)
- Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Naïri Tchrakian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Anjelica Hodgson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Helen Loo Yau
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Isabela M Gonzaga
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Melanie Peralta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ilinca M Lungu
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Stephanie Gomez
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Sheng-Ben Liang
- Princess Margaret Cancer Biobank, University Health Network, Toronto, Canada
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jocelyn Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Biji Chatterjee
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kevin N Wanniarachchi
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junwoo Lee
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas Zehrbach
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amir Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Siyu Sun
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Solovyov
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ilias Ettayebi
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kyle E Francis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aobo He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Taiyi Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Shengrui Feng
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | - Jane Bayani
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Jason Li
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Spencer MacDonald
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Yadong Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sarah S Garcia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Elisa Arthofer
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Noor Diab
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Aneil Srivastava
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Paul Tran Austin
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Peter J B Sabatini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Benjamin D Greenbaum
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Trevor G Shepherd
- Department of Obstetrics and Gynaecology, Western University, London, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Blaise A Clarke
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Stephanie Lheureux
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Ying X, Chen Q, Yang Y, Wu Z, Zeng W, Miao C, Huang Q, Ai K. Nanomedicines harnessing cGAS-STING pathway: sparking immune revitalization to transform 'cold' tumors into 'hot' tumors. Mol Cancer 2024; 23:277. [PMID: 39710707 DOI: 10.1186/s12943-024-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy. In this review, we provide an in-depth exploration of the molecular mechanisms that govern cGAS-STING signaling and its potential to dynamically modulate the anti-tumor immune cycle. We subsequently introduced several investigational cGAS-STING-dependent anti-tumor agents and summarized their clinical trial progress. Additionally, we provided a comprehensive review of the unique advantages of cGAS-STING-targeted nanomedicines, highlighting the transformative potential of nanotechnology in this field. Furthermore, we comprehensively reviewed and comparatively analyzed the latest breakthroughs cGAS-STING-targeting nanomedicine, focusing on strategies that induce cytosolic DNA generation via exogenous DNA delivery, chemotherapy, radiotherapy, or dynamic therapies, as well as the nanodelivery of STING agonists. Lastly, we discuss the future prospects and challenges in cGAS-STING-targeting nanomedicine development, offering new insights to bridge the gap between mechanistic research and drug development, thereby opening new pathways in cancer treatment.
Collapse
Affiliation(s)
- Xiaohong Ying
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ziyu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Wan Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chenxi Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Xiangya Hospital, Ministry of Education, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Liu W, Pan Y, Zhang Y, Dong C, Huang L, Lian J. Intracellularly synthesized ssDNA for continuous genome engineering. Trends Biotechnol 2024:S0167-7799(24)00293-2. [PMID: 39537537 DOI: 10.1016/j.tibtech.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Despite the prevalence of genome editing tools, there are still some limitations in dynamic and continuous genome editing. In vivo single-stranded DNA (ssDNA)-mediated genome mutation has emerged as a valuable and promising approach for continuous genome editing. In this review, we summarize the various types of intracellular ssDNA production systems and notable achievements in genome engineering in both prokaryotic and eukaryotic cells. We also review progress in the development of applications based on retron-based systems, which have demonstrated significant potential in molecular recording, multiplex genome editing, high-throughput functional variant screening, and gene-specific continuous in vivo evolution. Furthermore, we discuss the major challenges of ssDNA-mediated continuous genome editing and its prospects for future applications.
Collapse
Affiliation(s)
- Wenqian Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; BGI Research, Hangzhou 310030, China
| | - Yingjia Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Yu Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; BGI Research, Hangzhou 310030, China
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
5
|
Makin RD, Apicella I, Dholkawala R, Fukuda S, Hirahara S, Hirano Y, Kim Y, Nagasaka A, Nagasaka Y, Narendran S, Pereira F, Varshney A, Wang SB, Ambati J, Gelfand BD. Inflammasome activation aggravates choroidal neovascularization. Angiogenesis 2024; 27:919-929. [PMID: 39316206 PMCID: PMC11563918 DOI: 10.1007/s10456-024-09949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Inflammasome activation is implicated in diseases of aberrant angiogenesis such as age-related macular degeneration (AMD), though its precise role in choroidal neovascularization (CNV), a characteristic pathology of advanced AMD, is ill-defined. Reports on inhibition of inflammasome constituents on CNV are variable and the precise role of inflammasome in mediating pathological angiogenesis is unclear. Historically, subretinal injection of inflammasome agonists alone has been used to investigate retinal pigmented epithelium (RPE) degeneration, while the laser photocoagulation model has been used to study pathological angiogenesis in a model of CNV. Here, we report that the simultaneous introduction of any of several disease-relevant inflammasome agonists (Alu or B2 RNA, Alu cDNA, or oligomerized amyloid β (1-40)) exacerbates laser-induced CNV. These activities were diminished or abrogated by genetic or pharmacological targeting of inflammasome signaling constituents including P2rx7, Nlrp3, caspase-1, caspase-11, and Myd88, as well as in myeloid-specific caspase-1 knockout mice. Alu RNA treatment induced inflammasome activation in macrophages within the CNV lesion, and increased accumulation of macrophages in an inflammasome-dependent manner. Finally, IL-1β neutralization prevented inflammasome agonist-induced chemotaxis, macrophage trafficking, and angiogenesis. Collectively, these observations support a model wherein inflammasome stimulation promotes and exacerbates CNV and may be a therapeutic target for diseases of angiogenesis such as neovascular AMD.
Collapse
Affiliation(s)
- Ryan D Makin
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Roshni Dholkawala
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Shinichi Fukuda
- Department of Ophthalmology, University of Tsukuba, Tsukuba, 305-8575, Ibaraki, Japan
| | - Shuichiro Hirahara
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshio Hirano
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Younghee Kim
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Ayami Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | | | - Felipe Pereira
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Akhil Varshney
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Shao-Bin Wang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
- Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA, 22903, USA.
| |
Collapse
|
6
|
Maxwell PH, Mahmood M, Villanueva M, Devine K, Avery N. Lifespan Extension by Retrotransposons under Conditions of Mild Stress Requires Genes Involved in tRNA Modifications and Nucleotide Metabolism. Int J Mol Sci 2024; 25:10593. [PMID: 39408922 PMCID: PMC11477299 DOI: 10.3390/ijms251910593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Retrotransposons are mobile DNA elements that are more active with increasing age and exacerbate aging phenotypes in multiple species. We previously reported an unexpected extension of chronological lifespan in the yeast, Saccharomyces paradoxus, due to the presence of Ty1 retrotransposons when cells were aged under conditions of mild stress. In this study, we tested a subset of genes identified by RNA-seq to be differentially expressed in S. paradoxus strains with a high-copy number of Ty1 retrotransposons compared with a strain with no retrotransposons and additional candidate genes for their contribution to lifespan extension when cells were exposed to a moderate dose of hydroxyurea (HU). Deletion of ADE8, NCS2, or TRM9 prevented lifespan extension, while deletion of CDD1, HAC1, or IRE1 partially prevented lifespan extension. Genes overexpressed in high-copy Ty1 strains did not typically have Ty1 insertions in their promoter regions. We found that silencing genomic copies of Ty1 prevented lifespan extension, while expression of Ty1 from a high-copy plasmid extended lifespan in medium with HU or synthetic medium. These results indicate that cells adapt to expression of retrotransposons by changing gene expression in a manner that can better prepare them to remain healthy under mild stress.
Collapse
|
7
|
Mangiavacchi A, Morelli G, Reppe S, Saera-Vila A, Liu P, Eggerschwiler B, Zhang H, Bensaddek D, Casanova EA, Medina Gomez C, Prijatelj V, Della Valle F, Atinbayeva N, Izpisua Belmonte JC, Rivadeneira F, Cinelli P, Gautvik KM, Orlando V. LINE-1 RNA triggers matrix formation in bone cells via a PKR-mediated inflammatory response. EMBO J 2024; 43:3587-3603. [PMID: 38951609 PMCID: PMC11377738 DOI: 10.1038/s44318-024-00143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.
Collapse
Affiliation(s)
- Arianna Mangiavacchi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| | - Gabriele Morelli
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Sjur Reppe
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
- Oslo University Hospital, Department of Plastic and Reconstructive Surgery, Oslo, Norway
| | | | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Benjamin Eggerschwiler
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Elisa A Casanova
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | | - Vid Prijatelj
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
- Altos Labs, San Diego, CA, USA
| | - Nazerke Atinbayeva
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Paolo Cinelli
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
Magagnoli J, Sutton SS, Ambati J. Facilitating Drug Repurposing-Using Databases for Drug Discovery in AMD. JAMA Ophthalmol 2024; 142:759-760. [PMID: 38990521 DOI: 10.1001/jamaophthalmol.2024.2516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Affiliation(s)
- Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - S Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville
- Department of Pathology, University of Virginia, Charlottesville
| |
Collapse
|
9
|
Ambati J, Gelfand BD. Response to 'Early Onset Drusen and RPE Dysfunction in a Patient with NLRP3-AID'. Ocul Immunol Inflamm 2024; 32:778. [PMID: 37043599 PMCID: PMC10567984 DOI: 10.1080/09273948.2023.2191710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/11/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bradley D. Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
10
|
Magagnoli J, Sutton SS, Ambati J. Acetylcholinesterase Inhibitors, AMD, and Alzheimer Disease-Reply. JAMA Ophthalmol 2024; 142:684-685. [PMID: 38722622 DOI: 10.1001/jamaophthalmol.2024.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Affiliation(s)
- Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - S Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville
- Department of Pathology, University of Virginia School of Medicine, Charlottesville
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
11
|
Moadab F, Sohrabi S, Wang X, Najjar R, Wolters JC, Jiang H, Miao W, Romero D, Zaller DM, Tran M, Bays A, Taylor MS, Kapeller R, LaCava J, Mustelin T. Subcellular location of L1 retrotransposon-encoded ORF1p, reverse transcription products, and DNA sensors in lupus granulocytes. Mob DNA 2024; 15:14. [PMID: 38937837 PMCID: PMC11212426 DOI: 10.1186/s13100-024-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with an unpredictable course of recurrent exacerbations alternating with more stable disease. SLE is characterized by broad immune activation and autoantibodies against double-stranded DNA and numerous proteins that exist in cells as aggregates with nucleic acids, such as Ro60, MOV10, and the L1 retrotransposon-encoded ORF1p. RESULTS Here we report that these 3 proteins are co-expressed and co-localized in a subset of SLE granulocytes and are concentrated in cytosolic dots that also contain DNA: RNA heteroduplexes and the DNA sensor ZBP1, but not cGAS. The DNA: RNA heteroduplexes vanished from the neutrophils when they were treated with a selective inhibitor of the L1 reverse transcriptase. We also report that ORF1p granules escape neutrophils during the extrusion of neutrophil extracellular traps (NETs) and, to a lesser degree, from neutrophils dying by pyroptosis, but not apoptosis. CONCLUSIONS These results bring new insights into the composition of ORF1p granules in SLE neutrophils and may explain, in part, why proteins in these granules become targeted by autoantibodies in this disease.
Collapse
Affiliation(s)
- Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sepideh Sohrabi
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Justina C Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | | | | | | | - Megan Tran
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA.
- University of Washington, 750 Republican Street, Room E507, Seattle, WA, 98109, USA.
| |
Collapse
|
12
|
Jabs DA, Schneider MF, Pak JW, Beck-Engeser G, Chan F, Ambayec GC, Hunt PW. Association of Intermediate-Stage Age-Related Macular Degeneration with Plasma Inflammatory Biomarkers in Persons with AIDS. OPHTHALMOLOGY SCIENCE 2024; 4:100437. [PMID: 38304607 PMCID: PMC10831313 DOI: 10.1016/j.xops.2023.100437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 02/03/2024]
Abstract
Purpose To evaluate associations of plasma levels of inflammatory biomarkers with age-related macular degeneration (AMD) and cataract in persons with AIDS. Design Nested case-control study (analysis 1) and nested cohort study (analysis 2). Participants Analysis 1: persons with AIDS and incident intermediate-stage AMD (n = 26) and controls without AMD matched for age, race/ethnicity, and gender (n = 49) from The Longitudinal Study of Ocular Complications of AIDS. Analysis 2: 475 persons from LSOCA with baseline plasma biomarker levels followed prospectively for cataract. Methods In both analyses, cryopreserved plasma specimens obtained at baseline were assayed for monocyte chemoattractant protein (MCP)-1 (CC motif chemokine ligand [CCL] 2), macrophage inflammatory protein (MIP)-1β (CCL4), soluble tumor necrosis factor receptor (sTNFR) 2, interleukin (IL)-18, and fractalkine (CX3 motif chemokine ligand 1 [CX3CL1]). Main Outcome Measures Analysis 1: mean difference (cases - controls) in plasma biomarker levels. Analysis 2: incident cataract. Results After adjusting for plasma human immunodeficiency virus RNA level, CD4+ T-cell count, and smoking, elevated baseline plasma levels of sTNFR2 and IL-18 (mean differences [cases - controls] 0.11 log10[pg/mL]; 95% confidence interval [CI], 0.01-0.20; P = 0.024 and 0.13 log10[pg/mL]; 95% CI, 0.01-0.24; P = 0.037, respectively) each were associated with incident AMD. In a competing risk (with mortality) analysis, elevated baseline standardized log10 plasma levels of MCP-1, sTNFR2, IL-18, and fractalkine each were associated with a decreased cataract risk. Conclusions When combined with previous data suggesting that AMD is associated with elevated plasma levels of C-reactive protein, soluble CD14, and possibly IL-6, the association of elevated plasma levels of sTNFR2 and IL-18 with incident AMD, but not with incident cataract, suggests that innate immune system activation, and possibly NLRP3 inflammasome activation, may play a role in the pathogenesis of AMD in this population. Financial Disclosures The authors have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Douglas A. Jabs
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Wilmer Eye Institute, the Department of Ophthalmology, the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael F. Schneider
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jeong Won Pak
- Department of Ophthalmology and Visual Sciences, the University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Gabriele Beck-Engeser
- Department of Medicine, the University of California, San Francisco, School of Medicine, San Francisco, California
| | - Fay Chan
- Department of Medicine, the University of California, San Francisco, School of Medicine, San Francisco, California
| | - Gabrielle C. Ambayec
- Department of Medicine, the University of California, San Francisco, School of Medicine, San Francisco, California
| | - Peter W. Hunt
- Department of Medicine, the University of California, San Francisco, School of Medicine, San Francisco, California
| |
Collapse
|
13
|
Zehrbach NM, Oh N, Ishak CA. Insights into LINE-1 reverse transcription guide therapy development. Trends Cancer 2024; 10:286-288. [PMID: 38499453 DOI: 10.1016/j.trecan.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Subsets of long interspersed nuclear element 1 (LINE-1) retrotransposons can 'retrotranspose' throughout the human genome at a cost to host cell fitness, as observed in some cancers. Pharmacological inhibition of LINE-1 retrotransposition requires a comprehensive understanding of the LINE-1 ORF2p reverse transcriptase. Two recent publications, by Thawani et al. and Baldwin et al., report structures of LINE-1 ORF2p and address long-standing mechanistic gaps regarding LINE-1 retrotransposition. Both studies will be critical to design new specific inhibitors of the LINE-1 ORF2p reverse transcriptase.
Collapse
Affiliation(s)
- Nicholas M Zehrbach
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nakyung Oh
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles A Ishak
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Baldwin ET, van Eeuwen T, Hoyos D, Zalevsky A, Tchesnokov EP, Sánchez R, Miller BD, Di Stefano LH, Ruiz FX, Hancock M, Işik E, Mendez-Dorantes C, Walpole T, Nichols C, Wan P, Riento K, Halls-Kass R, Augustin M, Lammens A, Jestel A, Upla P, Xibinaku K, Congreve S, Hennink M, Rogala KB, Schneider AM, Fairman JE, Christensen SM, Desrosiers B, Bisacchi GS, Saunders OL, Hafeez N, Miao W, Kapeller R, Zaller DM, Sali A, Weichenrieder O, Burns KH, Götte M, Rout MP, Arnold E, Greenbaum BD, Romero DL, LaCava J, Taylor MS. Structures, functions and adaptations of the human LINE-1 ORF2 protein. Nature 2024; 626:194-206. [PMID: 38096902 PMCID: PMC10830420 DOI: 10.1038/s41586-023-06947-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.
Collapse
Affiliation(s)
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Bryant D Miller
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Matthew Hancock
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Esin Işik
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Carlos Mendez-Dorantes
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Thomas Walpole
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Charles Nichols
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Paul Wan
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Kirsi Riento
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Rowan Halls-Kass
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | | | - Alfred Lammens
- Proteros Biostructures GmbH, Martinsried, Planegg, Germany
| | - Anja Jestel
- Proteros Biostructures GmbH, Martinsried, Planegg, Germany
| | - Paula Upla
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Kera Xibinaku
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | | - Kacper B Rogala
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna M Schneider
- Structural Biology of Selfish RNA, Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Oliver Weichenrieder
- Structural Biology of Selfish RNA, Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Kathleen H Burns
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands.
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Luqman-Fatah A, Nishimori K, Amano S, Fumoto Y, Miyoshi T. Retrotransposon life cycle and its impacts on cellular responses. RNA Biol 2024; 21:11-27. [PMID: 39396200 PMCID: PMC11485995 DOI: 10.1080/15476286.2024.2409607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kei Nishimori
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shota Amano
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yukiko Fumoto
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
17
|
Brochard T, McIntyre RL, Houtkooper RH, Seluanov A, Gorbunova V, Janssens GE. Repurposing nucleoside reverse transcriptase inhibitors (NRTIs) to slow aging. Ageing Res Rev 2023; 92:102132. [PMID: 37984625 DOI: 10.1016/j.arr.2023.102132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Repurposing drugs already approved in the clinic to be used off-label as geroprotectors, compounds that combat mechanisms of aging, are a promising way to rapidly reduce age-related disease incidence in society. Several recent studies have found that a class of drugs-nucleoside reverse transcriptase inhibitors (NRTIs)-originally developed as treatments for cancers and human immunodeficiency virus (HIV) infection, could be repurposed to slow the aging process. Interestingly, these studies propose complementary mechanisms that target multiple hallmarks of aging. At the molecular level, NRTIs repress LINE-1 elements, reducing DNA damage, benefiting the hallmark of aging of 'Genomic Instability'. At the organellar level, NRTIs inhibit mitochondrial translation, activate ATF-4, suppress cytosolic translation, and extend lifespan in worms in a manner related to the 'Loss of Proteostasis' hallmark of aging. Meanwhile, at the cellular level, NRTIs inhibit the P2X7-mediated activation of the inflammasome, reducing inflammation and improving the hallmark of aging of 'Altered Intercellular Communication'. Future development of NRTIs for human aging health will need to balance out toxic side effects with the beneficial effects, which may occur in part through hormesis.
Collapse
Affiliation(s)
- Thomas Brochard
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Zhou L, Ho BM, Chan HYE, Tong Y, Du L, He JN, Ng DSC, Tham CC, Pang CP, Chu WK. Emerging Roles of cGAS-STING Signaling in Mediating Ocular Inflammation. J Innate Immun 2023; 15:739-750. [PMID: 37778330 PMCID: PMC10616671 DOI: 10.1159/000533897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS), a sensor of cytosolic DNA, recognizes cytoplasmic nucleic acids to activate the innate immune responses via generation of the second messenger cGAMP and subsequent activation of the stimulator of interferon genes (STINGs). The cGAS-STING signaling has multiple immunologic and physiological functions in all human vital organs. It mediates protective innate immune defense against DNA-containing pathogen infection, confers intrinsic antitumor immunity via detecting tumor-derived DNA, and gives rise to autoimmune and inflammatory diseases upon aberrant activation by cytosolic leakage of self-genomic and mitochondrial DNA. Disruptions in these functions are associated with the pathophysiology of various immunologic and neurodegenerative diseases. Recent evidence indicates important roles of the cGAS-STING signaling in mediating inflammatory responses in ocular inflammatory and inflammation-associated diseases, such as keratitis, diabetic retinopathy, age-related macular degeneration, and uveitis. In this review, we summarize the recently emerging evidence of cGAS-STING signaling in mediating ocular inflammatory responses and affecting pathogenesis of these complex eye diseases. We attempt to provide insightful perspectives on future directions of investigating cGAS-STING signaling in ocular inflammation. Understanding how cGAS-STING signaling is modulated to mediate ocular inflammatory responses would allow future development of novel therapeutic strategies to treat ocular inflammation and autoimmunity.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Bo Man Ho
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Hoi Ying Emily Chan
- Medicine Programme Global Physician-Leadership Stream, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yan Tong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Lin Du
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Danny Siu-Chun Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Clement C. Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
19
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
20
|
Lesage P, Maxwell PH. A prion-like domain in Gag capsid protein drives retrotransposon particle assembly and mobility. Proc Natl Acad Sci U S A 2023; 120:e2311419120. [PMID: 37590432 PMCID: PMC10466094 DOI: 10.1073/pnas.2311419120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Affiliation(s)
- Pascale Lesage
- Université Paris Cité, Institut de Recherche Saint Louis, Inserm, U944, CNRS, UMR7212, Paris75010, France
| | | |
Collapse
|
21
|
Magagnoli J, Pereira F, Narendran S, Huang P, Cummings T, Hardin JW, Nguyen J, Sutton SS, Ambati J. Anti-HIV Drugs Reduce Risk of Prediabetes and Progression to Type 2 Diabetes in HIV-Infected Patients. MEDCOMM - FUTURE MEDICINE 2023; 2:e37. [PMID: 37692282 PMCID: PMC10489210 DOI: 10.1002/mef2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/17/2023] [Indexed: 09/12/2023]
Abstract
The aim of this study was to investigate whether the use of nucleoside reverse transcriptase inhibitors (NRTIs) impacts the incidence of prediabetes or type 2 diabetes mellitus (T2DM) or the progression from prediabetes to T2DM in people living with HIV (PLWH). We conducted a retrospective cohort study using the U.S. Veterans Health Administration database among adult patients with an HIV diagnosis from the year 2000 until 2021 to determine the incidence of prediabetes and further progression to T2DM among NRTI exposed and unexposed patients. A multistate model was used to evaluate progression from normoglycemia to prediabetes and then to T2DM, and covariate adjustment with the Cox proportional hazards model was used to estimate the hazard ratios. Among 32,240 veterans diagnosed with HIV, prediabetes and T2DM were observed among 20.2% and 20.7% of patients, respectively. Among those diagnosed with prediabetes, 31.8% progressed to T2DM. Patients exposed to NRTIs at any time (86.6%), had a reduced risk of prediabetes [HR 0.50 (0.47-0.53 95% CI)] and among prediabetics, a lower risk of progression to T2DM [HR 0.73 (0.63-0.85 95% CI)] when compared to patients who never used NRTIs. In summary, NRTIs may reduce the risk of developing prediabetes and the progression from prediabetes to T2DM in PLWH.
Collapse
Affiliation(s)
- Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Aravind Eye Hospital System, Madurai 625020, India
| | - Peirong Huang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Tammy Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - James W. Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Joseph Nguyen
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - S. Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
22
|
Abstract
Our defenses against infection rely on the ability of the immune system to distinguish invading pathogens from self. This task is exceptionally challenging, if not seemingly impossible, in the case of retroviruses that have integrated almost seamlessly into the host. This review examines the limits of innate and adaptive immune responses elicited by endogenous retroviruses and other retroelements, the targets of immune recognition, and the consequences for host health and disease. Contrary to theoretical expectation, endogenous retroelements retain substantial immunogenicity, which manifests most profoundly when their epigenetic repression is compromised, contributing to autoinflammatory and autoimmune disease and age-related inflammation. Nevertheless, recent evidence suggests that regulated immune reactivity to endogenous retroelements is integral to immune system development and function, underpinning cancer immunosurveillance, resistance to infection, and responses to the microbiota. Elucidation of the interaction points with endogenous retroelements will therefore deepen our understanding of immune system function and contribution to disease.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom;
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Yushkova E, Moskalev A. Transposable elements and their role in aging. Ageing Res Rev 2023; 86:101881. [PMID: 36773759 DOI: 10.1016/j.arr.2023.101881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Transposable elements (TEs) are an important part of eukaryotic genomes. The role of somatic transposition in aging, carcinogenesis, and other age-related diseases has been determined. This review discusses the fundamental properties of TEs and their complex interactions with cellular processes, which are crucial for understanding the diverse effects of their activity on the genetics and epigenetics of the organism. The interactions of TEs with recombination, replication, repair, and chromosomal regulation; the ability of TEs to maintain a balance between their own activity and repression, the involvement of TEs in the creation of new or alternative genes, the expression of coding/non-coding RNA, and the role in DNA damage and modification of regulatory networks are reviewed. The contribution of the derepressed TEs to age-dependent effects in individual cells/tissues in different organisms was assessed. Conflicting information about TE activity under stress as well as theories of aging mechanisms related to TEs is discussed. On the one hand, transposition activity in response to stressors can lead to organisms acquiring adaptive innovations of great importance for evolution at the population level. On the other hand, the TE expression can cause decreased longevity and stress tolerance at the individual level. The specific features of TE effects on aging processes in germline and soma and the ways of their regulation in cells are highlighted. Recent results considering somatic mutations in normal human and animal tissues are indicated, with the emphasis on their possible functional consequences. In the context of aging, the correlation between somatic TE activation and age-related changes in the number of proteins required for heterochromatin maintenance and longevity regulation was analyzed. One of the original features of this review is a discussion of not only effects based on the TEs insertions and the associated consequences for the germline cell dynamics and somatic genome, but also the differences between transposon- and retrotransposon-mediated structural genome changes and possible phenotypic characteristics associated with aging and various age-related pathologies. Based on the analysis of published data, a hypothesis about the influence of the species-specific features of number, composition, and distribution of TEs on aging dynamics of different animal genomes was formulated.
Collapse
Affiliation(s)
- Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation; Laboratory of Genetics and Epigenetics of Aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow 129226, Russian Federation; Longaevus Technologies, London, UK.
| |
Collapse
|
24
|
Hu B, Ma JX, Duerfeldt AS. The cGAS-STING pathway in diabetic retinopathy and age-related macular degeneration. Future Med Chem 2023; 15:717-729. [PMID: 37166075 PMCID: PMC10194038 DOI: 10.4155/fmc-2022-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/28/2023] [Indexed: 05/12/2023] Open
Abstract
Diabetic retinopathy and age-related macular degeneration are common retinal diseases with shared pathophysiology, including oxidative stress-induced inflammation. Cellular mechanisms responsible for converting oxidative stress into retinal damage are ill-defined but have begun to clarify. One common outcome of retinal oxidative stress is mitochondrial damage and subsequent release of mitochondrial DNA into the cytosol. This leads to activation of the cGAS-STING pathway, resulting in interferon release and disease-amplifying inflammation. This review summarizes the evolving link between aberrant cGAS-STING signaling and inflammation in common retinal diseases and provides prospective for targeting this system in diabetic retinopathy and age-related macular degeneration. Further defining the roles of this system in the retina is expected to reveal new disease pathology and novel therapeutic approaches.
Collapse
Affiliation(s)
- Bo Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
25
|
Zhang L, Bisht P, Flamier A, Barrasa MI, Friesen M, Richards A, Hughes SH, Jaenisch R. LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected Cells. Viruses 2023; 15:629. [PMID: 36992338 PMCID: PMC10057545 DOI: 10.3390/v15030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole-genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences, but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10-20-fold more sensitive per tested cell, TagMap can interrogate 1000-2000-fold more cells and, therefore, can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected cells, in contrast to transfected cells, may be facilitated because virus infection, in contrast to viral RNA transfection, results in significantly higher viral RNA levels and stimulates LINE1 expression by causing cellular stress.
Collapse
Affiliation(s)
- Liguo Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Punam Bisht
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Anthony Flamier
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
26
|
Zhang L, Bisht P, Flamier A, Barrasa MI, Richards A, Hughes SH, Jaenisch R. LINE1-mediated reverse transcription and genomic integration of SARS-CoV-2 mRNA detected in virus-infected but not in viral mRNA-transfected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527906. [PMID: 37293025 PMCID: PMC10245962 DOI: 10.1101/2023.02.10.527906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1,000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches for the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10 - 20-fold more sensitive per tested cell, TagMap can interrogate 1,000 - 2,000-fold more cells and therefore can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected in contrast to transfected cells may be facilitated because virus infection in contrast to viral RNA transfection results in significantly higher viral RNA levels and stimulates LINE1-expression which causes cellular stress.
Collapse
|
27
|
Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age-related inflammation. Nat Rev Immunol 2023; 23:75-89. [PMID: 35831609 PMCID: PMC10106081 DOI: 10.1038/s41577-022-00751-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS-STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
28
|
Inflammatory response to retrotransposons drives tumor drug resistance that can be prevented by reverse transcriptase inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2213146119. [PMID: 36449545 PMCID: PMC9894111 DOI: 10.1073/pnas.2213146119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Activation of endogenous retrotransposons frequently occurs in cancer cells and contributes to tumor genomic instability. To test whether inhibition of retrotranspositions has an anticancer effect, we used treatment with the nucleoside reverse transcriptase inhibitor (NRTI) stavudine (STV) in mouse cancer models, MMTV-HER2/Neu and Th-MYCN, that spontaneously develop breast cancer and neuroblastoma, respectively. In both cases, STV in drinking water did not affect tumor incidence nor demonstrate direct antitumor effects. However, STV dramatically extended progression-free survival in both models following an initial complete response to chemotherapy. To approach the mechanism underlying this phenomenon, we analyzed the effect of NRTI on the selection of treatment-resistant variants in tumor cells in culture. Cultivation of mouse breast carcinoma 4T1 in the presence of STV dramatically reduced the frequency of cells capable of surviving treatment with anticancer drugs. Global transcriptome analysis demonstrated that the acquisition of drug resistance by 4T1 cells was accompanied by an increase in the constitutive activity of interferon type I and NF-κB pathways and an elevated expression of LINE-1 elements, which are known to induce inflammatory responses via their products of reverse transcription. Treatment with NRTI reduced NF-κB activity and reverted drug resistance. Furthermore, the inducible expression of LINE-1 stimulated inflammatory response and increased the frequency of drug-resistant variants in a tumor cell population. These results indicate a mechanism by which retrotransposon desilencing can stimulate tumor cell survival during treatment and suggest reverse transcriptase inhibition as a potential therapeutic approach for targeting the development of drug-resistant cancers.
Collapse
|
29
|
Research on Werner Syndrome: Trends from Past to Present and Future Prospects. Genes (Basel) 2022; 13:genes13101802. [PMID: 36292687 PMCID: PMC9601476 DOI: 10.3390/genes13101802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
A rare and autosomal recessive premature aging disorder, Werner syndrome (WS) is characterized by the early onset of aging-associated diseases, including shortening stature, alopecia, bilateral cataracts, skin ulcers, diabetes, osteoporosis, arteriosclerosis, and chromosomal instability, as well as cancer predisposition. WRN, the gene responsible for WS, encodes DNA helicase with a 3′ to 5′ exonuclease activity, and numerous studies have revealed that WRN helicase is involved in the maintenance of chromosome stability through actions in DNA, e.g., DNA replication, repair, recombination, and epigenetic regulation via interaction with DNA repair factors, telomere-binding proteins, histone modification enzymes, and other DNA metabolic factors. However, although these efforts have elucidated the cellular functions of the helicase in cell lines, they have not been linked to the treatment of the disease. Life expectancy has improved for WS patients over the past three decades, and it is hoped that a fundamental treatment for the disease will be developed. Disease-specific induced pluripotent stem (iPS) cells have been established, and these are expected to be used in drug discovery and regenerative medicine for WS patients. In this article, we review trends in research to date and present some perspectives on WS research with regard to the application of pluripotent stem cells. Furthermore, the elucidation of disease mechanisms and drug discovery utilizing the vast amount of scientific data accumulated to date will be discussed.
Collapse
|
30
|
Huang P, Narendran S, Pereira F, Fukuda S, Nagasaka Y, Apicella I, Yerramothu P, Marion KM, Cai X, Sadda SR, Gelfand BD, Ambati J. Subretinal injection in mice to study retinal physiology and disease. Nat Protoc 2022; 17:1468-1485. [PMID: 35418688 PMCID: PMC11146522 DOI: 10.1038/s41596-022-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Subretinal injection (SRI) is a widely used technique in retinal research and can be used to deliver nucleic acids, small molecules, macromolecules, viruses, cells or biomaterials such as nanobeads. Here we describe how to undertake SRI of mice. This protocol was adapted from a technique initially described for larger animals. Although SRI is a common procedure in eye research laboratories, there is no published guidance on the best practices for determining what constitutes a 'successful' SRI. Optimal injections are required for reproducibility of the procedure and, when carried out suboptimally, can lead to erroneous conclusions. To address this issue, we propose a standardized protocol for SRI with 'procedure success' defined by follow-up examination of the retina and the retinal pigmented epithelium rather than solely via intraoperative endpoints. This protocol takes 7-14 d to complete, depending on the reagent delivered. We have found, by instituting a standardized training program, that trained ophthalmologists achieve reliable proficiency in this technique after ~350 practice injections. This technique can be used to gain insights into retinal physiology and disease pathogenesis and to test the efficacy of experimental compounds in the retina or retinal pigmented epithelium.
Collapse
Affiliation(s)
- Peirong Huang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Aravind Eye Care System, Madurai, India
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Japan
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Xiaoyu Cai
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Nutraceuticals/Drugs Promoting Mitophagy and Mitochondrial Biogenesis May Combat the Mitochondrial Dysfunction Driving Progression of Dry Age-Related Macular Degeneration. Nutrients 2022; 14:nu14091985. [PMID: 35565950 PMCID: PMC9104458 DOI: 10.3390/nu14091985] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
In patients with age-related macular degeneration (AMD), the crucial retinal pigment epithelial (RPE) cells are characterized by mitochondria that are structurally and functionally defective. Moreover, deficient expression of the mRNA-editing enzyme Dicer is noted specifically in these cells. This Dicer deficit up-regulates expression of Alu RNA, which in turn damages mitochondria—inducing the loss of membrane potential, boosting oxidant generation, and causing mitochondrial DNA to translocate to the cytoplasmic region. The cytoplasmic mtDNA, in conjunction with induced oxidative stress, triggers a non-canonical pathway of NLRP3 inflammasome activation, leading to the production of interleukin-18 that acts in an autocrine manner to induce apoptotic death of RPE cells, thereby driving progression of dry AMD. It is proposed that measures which jointly up-regulate mitophagy and mitochondrial biogenesis (MB), by replacing damaged mitochondria with “healthy” new ones, may lessen the adverse impact of Alu RNA on RPE cells, enabling the prevention or control of dry AMD. An analysis of the molecular biology underlying mitophagy/MB and inflammasome activation suggests that nutraceuticals or drugs that can activate Sirt1, AMPK, Nrf2, and PPARα may be useful in this regard. These include ferulic acid, melatonin urolithin A and glucosamine (Sirt1), metformin and berberine (AMPK), lipoic acid and broccoli sprout extract (Nrf2), and fibrate drugs and astaxanthin (PPARα). Hence, nutraceutical regimens providing physiologically meaningful doses of several or all of the: ferulic acid, melatonin, glucosamine, berberine, lipoic acid, and astaxanthin, may have potential for control of dry AMD.
Collapse
|
32
|
Kermi C, Lau L, Asadi Shahmirzadi A, Classon M. Disrupting Mechanisms that Regulate Genomic Repeat Elements to Combat Cancer and Drug Resistance. Front Cell Dev Biol 2022; 10:826461. [PMID: 35602594 PMCID: PMC9114874 DOI: 10.3389/fcell.2022.826461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in understanding cancer pathogenesis and the development of many effective therapeutic agents, resistance to drug treatment remains a widespread challenge that substantially limits curative outcomes. The historical focus on genetic evolution under drug “pressure” as a key driver of resistance has uncovered numerous mechanisms of therapeutic value, especially with respect to acquired resistance. However, recent discoveries have also revealed a potential role for an ancient evolutionary balance between endogenous “viral” elements in the human genome and diverse factors involved in their restriction in tumor evolution and drug resistance. It has long been appreciated that the stability of genomic repeats such as telomeres and centromeres affect tumor fitness, but recent findings suggest that de-regulation of other repetitive genome elements, including retrotransposons, might also be exploited as cancer therapy. This review aims to present an overview of these recent findings.
Collapse
|
33
|
Ni H, Kwan-wai Chan B, Cheng Q, Chen K, Xie M, Wang H, Wai-chi Chan E, Chen S. A novel clinical therapy to combat infections caused by Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae. J Infect 2022; 85:174-211. [DOI: 10.1016/j.jinf.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
|
34
|
Li G, Wang Y, De Clercq E. Approved HIV reverse transcriptase inhibitors in the past decade. Acta Pharm Sin B 2022; 12:1567-1590. [PMID: 35847492 PMCID: PMC9279714 DOI: 10.1016/j.apsb.2021.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
HIV reverse transcriptase (RT) inhibitors are the important components of highly active antiretroviral therapies (HAARTs) for anti-HIV treatment and pre-exposure prophylaxis in clinical practice. Many RT inhibitors and their combination regimens have been approved in the past ten years, but a review on their drug discovery, pharmacology, and clinical efficacy is lacking. Here, we provide a comprehensive review of RT inhibitors (tenofovir alafenamide, rilpivirine, doravirine, dapivirine, azvudine and elsulfavirine) approved in the past decade, regarding their drug discovery, pharmacology, and clinical efficacy in randomized controlled trials. Novel RT inhibitors such as islatravir, MK-8504, MK-8507, MK8583, IQP-0528, and MIV-150 will be also highlighted. Future development may focus on the new generation of novel antiretroviral inhibitors with higher bioavailability, longer elimination half-life, more favorable side-effect profiles, fewer drug-drug interactions, and higher activities against circulating drug-resistant strains.
Collapse
Key Words
- 3TC, (−)-2′,3′-dideoxy-3′-thiacytidine (common name, lamivudine)
- ABC, abacavir
- ATV, atazanavir
- AZT, 3′-azido-3′-deoxy-thymidine (common name, zidovudine)
- BIC, bictegravir
- CAB, cabotegravir
- CC50, the 50% cytotoxic concentration
- COBI, cobicistat
- Clinical efficacy
- DOR, doravirine
- DPV, dapivirine
- DRV, darunavir
- DTG, dolutegravir
- EACS, European AIDS Clinical Society
- EC50, half maximal effective concentration
- EFV, efavirenz
- ESV, elsulfavirine
- EVG, elvitegravir
- F, bioavailability
- FDA, US Food and Drug Administration
- FTC, (−)-2′,3′-dideoxy-5-fluoro-3′-thiacytidine (common name, emtricitabine)
- HAART
- HAART, highly active antiretroviral therapy
- HIV treatment
- HIV, human immunodeficiency virus
- IAS-USA, International Antiviral Society-USA
- IC50, half maximal inhibitory concentration
- MSM, men who have sex with men
- NNRTI
- NNRTI, non-nucleoside reverse transcriptase inhibitor
- NRTI
- NRTI, nucleoside/nucleotide reverse transcriptase inhibitor
- RPV, rilpivirine
- TAF, tenofovir alafenamide
- TDF, tenofovir disoproxil fumarate
- t1/2, elimination half-life
Collapse
Affiliation(s)
- Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yali Wang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven B-3000, Belgium
| |
Collapse
|
35
|
Huang P, Narendran S, Pereira F, Fukuda S, Nagasaka Y, Apicella I, Yerramothu P, Marion KM, Cai X, Sadda SR, Gelfand BD, Ambati J. The Learning Curve of Murine Subretinal Injection Among Clinically Trained Ophthalmic Surgeons. Transl Vis Sci Technol 2022; 11:13. [PMID: 35275207 PMCID: PMC8934552 DOI: 10.1167/tvst.11.3.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/16/2022] [Indexed: 01/02/2023] Open
Abstract
Purpose Subretinal injection (SRI) in mice is widely used in retinal research, yet the learning curve (LC) of this surgically challenging technique is unknown. Methods To evaluate the LC for SRI in a murine model, we analyzed training data from three clinically trained ophthalmic surgeons from 2018 to 2020. Successful SRI was defined as either the absence of retinal pigment epithelium (RPE) degeneration after phosphate buffered saline injection or the presence of RPE degeneration after Alu RNA injection. Multivariable survival-time regression models were used to evaluate the association between surgeon experience and success rate, with adjustment for injection agents, and to calculate an approximate case number to achieve a 95% success rate. Cumulative sum (CUSUM) analyses were performed and plotted individually to monitor each surgeon's simultaneous performance. Results Despite prior microsurgery experience, the combined average success rate of the first 50 cases in mice was only 27%. The predicted SRI success rate did not reach a plateau above 95% until approximately 364 prior cases. Using the 364 training cases as a cutoff point, the predicted probability of success for cases 1 to 364 was 65.38%, and for cases 365 to 455 it was 99.32% (P < 0.0001). CUSUM analysis showed an initial upward slope and then remained within the decision intervals with an acceptable success rate set at 95% in the late stage. Conclusions This study demonstrates the complexity and substantial LC for successful SRI in mice with high confidence. A systematic training system could improve the reliability and reproducibility of SRI-related experiments and improve the interpretation of experimental results using this technique. Translational Relevance Our prediction model and monitor system allow objective quantification of technical proficiency in the field of subretinal drug delivery and gene therapy for the first time, to the best of our knowledge.
Collapse
Affiliation(s)
- Peirong Huang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Aravind Eye Care System, Madurai, India
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Xiaoyu Cai
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Srinivas R. Sadda
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, CA, USA
| | - Bradley D. Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
36
|
Ruiz FX, Hoang A, Dilmore CR, DeStefano JJ, Arnold E. Structural basis of HIV inhibition by L-nucleosides: opportunities for drug development and repurposing. Drug Discov Today 2022; 27:1832-1846. [PMID: 35218925 DOI: 10.1016/j.drudis.2022.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Infection with HIV can cripple the immune system and lead to AIDS. Hepatitis B virus (HBV) is a hepadnavirus that causes human liver diseases. Both pathogens are major public health problems affecting millions of people worldwide. The polymerases from both viruses are the most common drug target for viral inhibition, sharing common architecture at their active sites. The L-nucleoside drugs emtricitabine and lamivudine are widely used HIV reverse transcriptase (RT) and HBV polymerase (Pol) inhibitors. Nevertheless, structural details of their binding to RT(Pol)/nucleic acid remained unknown until recently. Here, we discuss the implications of these structures, alongside related complexes with L-dNTPs, for the development of novel L-nucleos(t)ide drugs, and prospects for repurposing them.
Collapse
Affiliation(s)
- Francesc X Ruiz
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Anthony Hoang
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher R Dilmore
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
37
|
Jabs DA, Van Natta ML, Schneider MF, Pak JW, Trang G, Jones NG, Milush J, Hunt PW. Association of elevated plasma inflammatory biomarker levels with age-related macular degeneration but not cataract in persons with AIDS. AIDS 2022; 36:177-184. [PMID: 34934018 PMCID: PMC9153135 DOI: 10.1097/qad.0000000000003104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the relationship between plasma biomarkers of systemic inflammation and incident age-related macular degeneration (AMD) in persons with the AIDS. DESIGN Case-control study. METHODS Participants with incident intermediate-stage AMD (N = 26) in the Longitudinal Study of the Ocular Complications of AIDS (LSOCA) and controls (N = 60) without AMD. Cryopreserved baseline plasma specimens were assayed for biomarkers of inflammation, including high-sensitivity C-reactive protein (CRP), interleukin (IL)-6, interferon-γ inducible protein (IP)-10, soluble CD14 (sCD14), soluble CD163 (sCD163), and intestinal fatty acid-binding protein (I-FABP). RESULTS After adjustment for age, sex, and race/ethnicity, baseline mean ± standard deviation (SD) log10(mg/ml) plasma levels of CRP (0.52 ± 0.60 vs. 0.20 ± 0.43; P = 0.01) and mean ± SD log10(pg/ml) plasma levels of sCD14 (6.31 ± 0.11 vs. 6.23 ± 0.14; P = 0.008) were significantly higher among cases (incident AMD) than among controls (no AMD). There was a suggestion that mean ± SD baseline log10(pg/ml) plasma IL-6 levels (0.24 ± 0.33 vs. 0.11 ± 0.29; P = 0.10) might be higher among cases than controls. In a separate analysis of 548 participants in LSOCA, elevated baseline levels of plasma inflammatory biomarkers were associated with a greater risk of mortality but not with an increased risk of incident cataract. CONCLUSION These data suggest that systemic inflammatory biomarkers are associated with incident AMD but not incident cataract in persons with AIDS, and that systemic inflammation may play a role in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Douglas A Jabs
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health
- The Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark L Van Natta
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health
| | - Michael F Schneider
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health
| | - Jeong Won Pak
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Garrett Trang
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Norman G Jones
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Peter W Hunt
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| |
Collapse
|
38
|
Casale AM, Liguori F, Ansaloni F, Cappucci U, Finaurini S, Spirito G, Persichetti F, Sanges R, Gustincich S, Piacentini L. Transposable element activation promotes neurodegeneration in a Drosophila model of Huntington's disease. iScience 2022; 25:103702. [PMID: 35036881 PMCID: PMC8752904 DOI: 10.1016/j.isci.2021.103702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder with progressive motor dysfunction and cognitive decline. The disease is caused by a CAG repeat expansion in the IT15 gene, which elongates a polyglutamine stretch of the HD protein, Huntingtin. No therapeutic treatments are available, and new pharmacological targets are needed. Retrotransposons are transposable elements (TEs) that represent 40% and 30% of the human and Drosophila genomes and replicate through an RNA intermediate. Mounting evidence suggests that mammalian TEs are active during neurogenesis and may be involved in diseases of the nervous system. Here we show that TE expression and mobilization are increased in a Drosophila melanogaster HD model. By inhibiting TE mobilization with Reverse Transcriptase inhibitors, polyQ-dependent eye neurodegeneration and genome instability in larval brains are rescued and fly lifespan is increased. These results suggest that TE activation may be involved in polyQ-induced neurotoxicity and a potential pharmacological target.
Collapse
Affiliation(s)
- Assunta Maria Casale
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesco Liguori
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Federico Ansaloni
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ugo Cappucci
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sara Finaurini
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giovanni Spirito
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Remo Sanges
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Lucia Piacentini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
39
|
Miller KN, Victorelli SG, Salmonowicz H, Dasgupta N, Liu T, Passos JF, Adams PD. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 2021; 184:5506-5526. [PMID: 34715021 PMCID: PMC8627867 DOI: 10.1016/j.cell.2021.09.034] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.
Collapse
Affiliation(s)
- Karl N Miller
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stella G Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Hanna Salmonowicz
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA; Institute for Cell and Molecular Biosciences & Newcastle University Institute for Ageing, Newcastle upon Tyne NE4 5PL, UK; International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Nirmalya Dasgupta
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tianhui Liu
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | - Peter D Adams
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Identification of fluoxetine as a direct NLRP3 inhibitor to treat atrophic macular degeneration. Proc Natl Acad Sci U S A 2021; 118:2102975118. [PMID: 34620711 DOI: 10.1073/pnas.2102975118] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The atrophic form of age-related macular degeneration (dry AMD) affects nearly 200 million people worldwide. There is no Food and Drug Administration (FDA)-approved therapy for this disease, which is the leading cause of irreversible blindness among people over 50 y of age. Vision loss in dry AMD results from degeneration of the retinal pigmented epithelium (RPE). RPE cell death is driven in part by accumulation of Alu RNAs, which are noncoding transcripts of a human retrotransposon. Alu RNA induces RPE degeneration by activating the NLRP3-ASC inflammasome. We report that fluoxetine, an FDA-approved drug for treating clinical depression, binds NLRP3 in silico, in vitro, and in vivo and inhibits activation of the NLRP3-ASC inflammasome and inflammatory cytokine release in RPE cells and macrophages, two critical cell types in dry AMD. We also demonstrate that fluoxetine, unlike several other antidepressant drugs, reduces Alu RNA-induced RPE degeneration in mice. Finally, by analyzing two health insurance databases comprising more than 100 million Americans, we report a reduced hazard of developing dry AMD among patients with depression who were treated with fluoxetine. Collectively, these studies identify fluoxetine as a potential drug-repurposing candidate for dry AMD.
Collapse
|
41
|
Ravel-Godreuil C, Znaidi R, Bonnifet T, Joshi RL, Fuchs J. Transposable elements as new players in neurodegenerative diseases. FEBS Lett 2021; 595:2733-2755. [PMID: 34626428 DOI: 10.1002/1873-3468.14205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases (NDs), including the most prevalent Alzheimer's disease and Parkinson disease, share common pathological features. Despite decades of gene-centric approaches, the molecular mechanisms underlying these diseases remain widely elusive. In recent years, transposable elements (TEs), long considered 'junk' DNA, have gained growing interest as pathogenic players in NDs. Age is the major risk factor for most NDs, and several repressive mechanisms of TEs, such as heterochromatinization, fail with age. Indeed, heterochromatin relaxation leading to TE derepression has been reported in various models of neurodegeneration and NDs. There is also evidence that certain pathogenic proteins involved in NDs (e.g., tau, TDP-43) may control the expression of TEs. The deleterious consequences of TE activation are not well known but they could include DNA damage and genomic instability, altered host gene expression, and/or neuroinflammation, which are common hallmarks of neurodegeneration and aging. TEs might thus represent an overlooked pathogenic culprit for both brain aging and neurodegeneration. Certain pathological effects of TEs might be prevented by inhibiting their activity, pointing to TEs as novel targets for neuroprotection.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rania Znaidi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Tom Bonnifet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rajiv L Joshi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
42
|
Fukuda S, Narendran S, Varshney A, Nagasaka Y, Wang SB, Ambati K, Apicella I, Pereira F, Fowler BJ, Yasuma T, Hirahara S, Yasuma R, Huang P, Yerramothu P, Makin RD, Wang M, Baker KL, Marion KM, Huang X, Baghdasaryan E, Ambati M, Ambati VL, Banerjee D, Bonilha VL, Tolstonog GV, Held U, Ogura Y, Terasaki H, Oshika T, Bhattarai D, Kim KB, Feldman SH, Aguirre JI, Hinton DR, Kerur N, Sadda SR, Schumann GG, Gelfand BD, Ambati J. Alu complementary DNA is enriched in atrophic macular degeneration and triggers retinal pigmented epithelium toxicity via cytosolic innate immunity. SCIENCE ADVANCES 2021; 7:eabj3658. [PMID: 34586848 PMCID: PMC8480932 DOI: 10.1126/sciadv.abj3658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/05/2021] [Indexed: 05/08/2023]
Abstract
Long interspersed nuclear element-1 (L1)–mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA–induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA–induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.
Collapse
Affiliation(s)
- Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Aravind Eye Hospital System, Madurai, India
| | - Akhil Varshney
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shao-bin Wang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kameshwari Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Benjamin J. Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Tetsuhiro Yasuma
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Reo Yasuma
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Peirong Huang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ryan D. Makin
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mo Wang
- Doheny Eye Institute, Los Angeles, CA, USA
| | | | | | | | - Elmira Baghdasaryan
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Meenakshi Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Digital Image Evaluation, Charlottesville, VA, USA
| | - Vidya L. Ambati
- Center for Digital Image Evaluation, Charlottesville, VA, USA
| | - Daipayan Banerjee
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Genrich V. Tolstonog
- Department of Otolaryngology–Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ulrike Held
- Department of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Yuichiro Ogura
- Department of Ophthalmology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Sanford H. Feldman
- Center for Comparative Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - J. Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - David R. Hinton
- Departments of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Srinivas R. Sadda
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Gerald G. Schumann
- Department of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Bradley D. Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
43
|
Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat Immunol 2021; 22:1219-1230. [PMID: 34556881 PMCID: PMC8488014 DOI: 10.1038/s41590-021-01027-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Blind mole rats (BMRs) are small rodents, characterized by exceptionally long lifespan (> 21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). BMR cells and tissues express very low levels of DNA methyltransferase 1 (DNMT1). Upon cell hyperplasia, the BMR genome DNA loses methylation, resulting in activation of RTEs. Up-regulated RTEs form cytoplasmic RNA/DNA hybrids, which activate cGAS-STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and human. We propose that RTEs were coopted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of innate immune response. RTEs activation is a double-edged sword, serving as a tumor suppressor but in late life contributing to aging via induction of sterile inflammation.
Collapse
|
44
|
Dao D, Xie B, Nadeem U, Xiao J, Movahedan A, D’Souza M, Leone V, Hariprasad SM, Chang EB, Sulakhe D, Skondra D. High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota. Cells 2021; 10:cells10082119. [PMID: 34440888 PMCID: PMC8392173 DOI: 10.3390/cells10082119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The relationship between retinal disease, diet, and the gut microbiome has shown increasing importance over recent years. In particular, high-fat diets (HFDs) are associated with development and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy. However, the complex, overlapping interactions between diet, gut microbiome, and retinal homeostasis are poorly understood. Using high-throughput RNA-sequencing (RNA-seq) of whole retinas, we compare the retinal transcriptome from germ-free (GF) mice on a regular diet (ND) and HFD to investigate transcriptomic changes without influence of gut microbiome. After correction of raw data, 53 differentially expressed genes (DEGs) were identified, of which 19 were upregulated and 34 were downregulated in GF-HFD mice. Key genes involved in retinal inflammation, angiogenesis, and RPE function were identified. Enrichment analysis revealed that the top 3 biological processes affected were regulation of blood vessel diameter, inflammatory response, and negative regulation of endopeptidase. Molecular functions altered include endopeptidase inhibitor activity, protease binding, and cysteine-type endopeptidase inhibitor activity. Human and mouse pathway analysis revealed that the complement and coagulation cascades are significantly affected by HFD. This study demonstrates novel data that diet can directly modulate the retinal transcriptome independently of the gut microbiome.
Collapse
Affiliation(s)
- David Dao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Bingqing Xie
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (B.X.); (M.D.)
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Jason Xiao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Asad Movahedan
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06437, USA;
| | - Mark D’Souza
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (B.X.); (M.D.)
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, WI 53706, USA;
- Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA;
| | - Seenu M. Hariprasad
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Eugene B. Chang
- Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA;
| | - Dinanath Sulakhe
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
- Correspondence:
| |
Collapse
|
45
|
Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age-associated diseases. Nature 2021; 596:43-53. [PMID: 34349292 PMCID: PMC8600649 DOI: 10.1038/s41586-021-03542-y] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as 'junk DNA' and 'molecular parasites'. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Paolo Mita
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - David Fenyö
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn 11201, NY, USA
| | - Sara B. Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jill A. Kreiling
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Anna P. Petrashen
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Trenton A. Woodham
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jackson R. Taylor
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Stephen L. Helfand
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - John M. Sedivy
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.,Corresponding author
| |
Collapse
|
46
|
Gazquez-Gutierrez A, Witteveldt J, R Heras S, Macias S. Sensing of transposable elements by the antiviral innate immune system. RNA (NEW YORK, N.Y.) 2021; 27:rna.078721.121. [PMID: 33888553 PMCID: PMC8208052 DOI: 10.1261/rna.078721.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/17/2021] [Indexed: 05/15/2023]
Abstract
Around half of the genome in mammals is composed of transposable elements (TEs) such as DNA transposons and retrotransposons. Several mechanisms have evolved to prevent their activity and the detrimental impact of their insertional mutagenesis. Despite these potentially negative effects, TEs are essential drivers of evolution, and in certain settings, beneficial to their hosts. For instance, TEs have rewired the antiviral gene regulatory network and are required for early embryonic development. However, due to structural similarities between TE-derived and viral nucleic acids, cells can misidentify TEs as invading viruses and trigger the major antiviral innate immune pathway, the type I interferon (IFN) response. This review will focus on the different settings in which the role of TE-mediated IFN activation has been documented, including cancer and senescence. Importantly, TEs may also play a causative role in the development of complex autoimmune diseases characterised by constitutive type I IFN activation. All these observations suggest the presence of strong but opposing forces driving the coevolution of TEs and antiviral defence. A better biological understanding of the TE replicative cycle as well as of the antiviral nucleic acid sensing mechanisms will provide insights into how these two biological processes interact and will help to design better strategies to treat human diseases characterised by aberrant TE expression and/or type I IFN activation.
Collapse
Affiliation(s)
| | - Jeroen Witteveldt
- University of Edinburgh - Institute of Immunology and Infection Research
| | - Sara R Heras
- GENYO. Centre for Genomics and Oncological Research, Pfizer University of Granada
| | - Sara Macias
- Institute of Immunology and Infection Research
| |
Collapse
|