1
|
Koodamvetty A, Thangavel S. Advancing Precision Medicine: Recent Innovations in Gene Editing Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410237. [PMID: 40025867 PMCID: PMC11984848 DOI: 10.1002/advs.202410237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/13/2024] [Indexed: 03/04/2025]
Abstract
The advent of gene editing has significantly advanced the field of medicine, opening new frontiers in the treatment of genetic disorders, cancer, and infectious diseases. Gene editing technology remains a dynamic and promising area of research and development. Recent advancements in protein and RNA engineering within this field have addressed critical issues such as imprecise edits, poor editing efficiency, and off-target effects. Advancements in delivery methods have allowed the achievement of therapeutic or even selection-free gene editing efficiency with reduced toxicity in primary cells, thereby enhancing the safety and efficacy of gene manipulation. This progress paves the way for transformative changes in molecular biology, medicine, and other fields. This review provides a comprehensive overview of the advancements in gene editing techniques, focusing on prime editor proteins and their engineered variants. It also explores alternative systems that expand the toolkit for precise genomic modifications and highlights the potential of these innovations in treating hematological disorders, while also discussing the limitations and challenges that remain.
Collapse
Affiliation(s)
- Abhijith Koodamvetty
- Centre for Stem Cell Research (CSCR)A unit of InStem BengaluruChristian Medical College campusVelloreTamil Nadu632002India
- Manipal Academy of Higher EducationManipalKarnataka576104India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR)A unit of InStem BengaluruChristian Medical College campusVelloreTamil Nadu632002India
| |
Collapse
|
2
|
Feliciello I. Role of Polyadenylation in mRNA Genome Integration via LINE-1 Retrotransposons: An Opinion on mRNA Vaccine Safety. Front Biosci (Schol Ed) 2025; 17:26335. [PMID: 40150872 DOI: 10.31083/fbs26335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 03/29/2025]
Abstract
The polyadenylated (polyA) tail of mRNA plays a crucial role in regulating mRNA stability and translation, and it may also contribute to genome integration through interactions with long interspersed nuclear element-1 (LINE-1, L1) retrotransposons. This interaction is particularly relevant for mRNA vaccines. Understanding how the polyA tail interacts with L1 proteins, especially open reading frame 2 protein (ORF2p), is critical for assessing these risks and developing strategies to enhance the safety of mRNA vaccines. We suggest conducting in vitro experiments to explore polyA tail modifications and their effects on L1 binding.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, School of Medicine, 80130 Naples, Italy
| |
Collapse
|
3
|
Maliha ST, Fatemi R, Akter M, Zheng Q, Araf Y, Tabassum T, Munif MR, Saha S, Xue M, Wang H, Zheng C, Hossain MG. Exploring the dynamics of SARS-CoV-2 and HIV Co-infection: Mutation risks, therapeutic efficacy, and future variant prevention. Diagn Microbiol Infect Dis 2025; 111:116707. [PMID: 39854809 DOI: 10.1016/j.diagmicrobio.2025.116707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
High mutation rates in SARS-CoV-2, particularly among immunocompromised patients living with HIV, continue to complicate the current COVID-19 pandemic. The threshold for severe COVID-19 and a greater risk of mortality have increased in many immunocompromised individuals due to a weakened immune system. Low CD4+ T-cell counts in people living with both HIV and COVID-19 lead to prolonged disease duration and, therefore, an increased likelihood of viral infection with SARS-CoV-2 mutations in such individuals. These mutations could decrease the efficiency of ongoing vaccines and cause new outbreaks. Recently, the rise of new mutations in this patient population has created increasing concern; however, few data are currently available on the direct association of HIV infection with SARS-CoV-2 mutations. This review highlights the implications of SARS-CoV-2 and HIV co-infection, highlighting the need for extra caution and monitoring of the immune-compromised population during a pandemic. Access to HIV care and COVID-19 treatments, careful surveillance, and adapted health strategies are key to reducing risks and protecting these populations. Further research is required to elucidate the dynamics of mutations and develop intervention methods to manage COVID-19 among immunocompromised patients.
Collapse
Affiliation(s)
- Sumaiya Tasnim Maliha
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Rabeya Fatemi
- Department of Genetic Engineering and Biotechnology, East-West University, Dhaka 1212, Bangladesh
| | - Marjana Akter
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Qingcong Zheng
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yusha Araf
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Tahani Tabassum
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Mohammad Raguib Munif
- Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
4
|
Fekete M, Lehoczki A, Szappanos Á, Toth A, Mahdi M, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Ungvari Z. Cerebromicrovascular mechanisms contributing to long COVID: implications for neurocognitive health. GeroScience 2025; 47:745-779. [PMID: 39777702 PMCID: PMC11872997 DOI: 10.1007/s11357-024-01487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Long COVID (also known as post-acute sequelae of SARS-CoV-2 infection [PASC] or post-COVID syndrome) is characterized by persistent symptoms that extend beyond the acute phase of SARS-CoV-2 infection, affecting approximately 10% to over 30% of those infected. It presents a significant clinical challenge, notably due to pronounced neurocognitive symptoms such as brain fog. The mechanisms underlying these effects are multifactorial, with mounting evidence pointing to a central role of cerebromicrovascular dysfunction. This review investigates key pathophysiological mechanisms contributing to cerebrovascular dysfunction in long COVID and their impacts on brain health. We discuss how endothelial tropism of SARS-CoV-2 and direct vascular infection trigger endothelial dysfunction, impaired neurovascular coupling, and blood-brain barrier disruption, resulting in compromised cerebral perfusion. Furthermore, the infection appears to induce mitochondrial dysfunction, enhancing oxidative stress and inflammation within cerebral endothelial cells. Autoantibody formation following infection also potentially exacerbates neurovascular injury, contributing to chronic vascular inflammation and ongoing blood-brain barrier compromise. These factors collectively contribute to the emergence of white matter hyperintensities, promote amyloid pathology, and may accelerate neurodegenerative processes, including Alzheimer's disease. This review also emphasizes the critical role of advanced imaging techniques in assessing cerebromicrovascular health and the need for targeted interventions to address these cerebrovascular complications. A deeper understanding of the cerebrovascular mechanisms of long COVID is essential to advance targeted treatments and mitigate its long-term neurocognitive consequences.
Collapse
Affiliation(s)
- Monika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.
| | - Ágnes Szappanos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032, Debrecen, Hungary
- Infectology Clinic, University of Debrecen Clinical Centre, 4031, Debrecen, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
5
|
Balzanelli MG, Rastmanesh R, Distratis P, Lazzaro R, Inchingolo F, Del Prete R, Pham VH, Aityan SK, Cong TT, Nguyen KCD, Isacco CG. The Role of SARS-CoV-2 Spike Protein in Long-term Damage of Tissues and Organs, the Underestimated Role of Retrotransposons and Stem Cells, a Working Hypothesis. Endocr Metab Immune Disord Drug Targets 2025; 25:85-98. [PMID: 38468535 DOI: 10.2174/0118715303283480240227113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024]
Abstract
Coronavirus disease-2019 (COVID-19) is a respiratory disease in which Spike protein from SARS-CoV-2 plays a key role in transferring virus genomic code into target cells. Spike protein, which is found on the surface of the SARS-CoV-2 virus, latches onto angiotensin-converting enzyme 2 receptors (ACE2r) on target cells. The RNA genome of coronaviruses, with an average length of 29 kb, is the longest among all RNA viruses and comprises six to ten open reading frames (ORFs) responsible for encoding replicase and structural proteins for the virus. Each component of the viral genome is inserted into a helical nucleocapsid surrounded by a lipid bilayer. The Spike protein is responsible for damage to several organs and tissues, even leading to severe impairments and long-term disabilities. Spike protein could also be the cause of the long-term post-infectious conditions known as Long COVID-19, characterized by a group of unresponsive idiopathic severe neuro- and cardiovascular disorders, including strokes, cardiopathies, neuralgias, fibromyalgia, and Guillaume- Barret's like-disease. In this paper, we suggest a pervasive mechanism whereby the Spike proteins either from SARS-CoV-2 mRNA or mRNA vaccines, tend to enter the mature cells, and progenitor, multipotent, and pluripotent stem cells (SCs), altering the genome integrity. This will eventually lead to the production of newly affected clones and mature cells. The hypothesis presented in this paper proposes that the mRNA integration into DNA occurs through several components of the evolutionarily genetic mechanism such as retrotransposons and retrotransposition, LINE-1 or L1 (long interspersed element-1), and ORF-1 and 2 responsible for the generation of retrogenes. Once the integration phase is concluded, somatic cells, progenitor cells, and SCs employ different silencing mechanisms. DNA methylation, followed by histone modification, begins to generate unlimited lines of affected cells and clones that form affected tissues characterized by abnormal patterns that become targets of systemic immune cells, generating uncontrolled inflammatory conditions, as observed in both Long COVID-19 syndrome and the mRNA vaccine.
Collapse
Affiliation(s)
- Mario G Balzanelli
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Italy
| | - Reza Rastmanesh
- Department of Nutrition and Metabolism, The Nutrition Society, Boyd Orr House, 10 Cambridge Court, 210 Shepherds Bush Road, London, UK
| | - Pietro Distratis
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Ital
| | - Rita Lazzaro
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Ital
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Raffaele Del Prete
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Van H Pham
- Phan Chau Trinh University of Medicine, Quang Nam 70000, Vietnam
| | - Sergey K Aityan
- Northwestern University, Multidisciplinary Research Center, Oakland, CA 94612, USA
| | - Toai Tran Cong
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Kieu C D Nguyen
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Ciro Gargiulo Isacco
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Italy
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
6
|
Yang M, Zhou J, Lu L, Deng D, Huang J, Tang Z, Shi X, Lo P, Lovell JF, Zheng Y, Jin H. Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230171. [PMID: 39713208 PMCID: PMC11655317 DOI: 10.1002/exp.20230171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Because therapeutic cancer vaccines can, in theory, eliminate tumor cells specifically with relatively low toxicity, they have long been considered for application in repressing cancer progression. Traditional cancer vaccines containing a single or a few discrete tumor epitopes have failed in the clinic, possibly due to challenges in epitope selection, target downregulation, cancer cell heterogeneity, tumor microenvironment immunosuppression, or a lack of vaccine immunogenicity. Whole cancer cell or cancer membrane vaccines, which provide a rich source of antigens, are emerging as viable alternatives. Autologous and allogenic cellular cancer vaccines have been evaluated as clinical treatments. Tumor cell membranes (TCMs) are an intriguing antigen source, as they provide membrane-accessible targets and, at the same time, serve as integrated carriers of vaccine adjuvants and other therapeutic agents. This review provides a summary of the properties and technologies for TCM cancer vaccines. Characteristics, categories, mechanisms, and preparation methods are discussed, as are the demonstrable additional benefits derived from combining TCM vaccines with chemotherapy, sonodynamic therapy, phototherapy, and oncolytic viruses. Further research in chemistry, biomedicine, cancer immunology, and bioinformatics to address current drawbacks could facilitate the clinical adoption of TCM vaccines.
Collapse
Affiliation(s)
- Muyang Yang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jie Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liseng Lu
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deqiang Deng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zijian Tang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong KongKowloonHong KongChina
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Yongfa Zheng
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
7
|
Redondo-Calvo F, Rabanal-Ruiz Y, Verdugo-Moreno G, Bejarano-Ramírez N, Bodoque-Villar R, Durán-Prado M, Illescas S, Chicano-Galvez E, Gómez-Romero FJ, Martinez-Alarcón J, Arias-Pardilla J, Lopez-Juarez P, Padin JF, Peinado JR, Serrano-Oviedo L. Longitudinal Assessment of Nasopharyngeal Biomarkers Post-COVID-19: Unveiling Persistent Markers and Severity Correlations. J Proteome Res 2024; 23:5064-5084. [PMID: 39392878 PMCID: PMC11536464 DOI: 10.1021/acs.jproteome.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
SARS-CoV-19 infection provokes a variety of symptoms; most patients present mild/moderate symptoms, whereas a small proportion of patients progress to severe illness with multiorgan failure accompanied by metabolic disturbances requiring ICU-level care. Given the importance of the disease, researchers focused on identifying severity-associated biomarkers in infected patients as well as markers associated with patients suffering long-COVID. However, little is known about the presence of biomarkers that remain a few years after SARS-CoV-2 infection once the patients fully recover of the symptoms. In this study, we evaluated the presence of persistent biomarkers in the nasopharyngeal tract two years after SARS-Cov-2 infection in fully asymptomatic patients, taking into account the severity of their infection (mild/moderate and severe infections). In addition to the direct identification of several components of the Coronavirus Infection Pathway in those individuals that suffered severe infections, we describe herein 371 proteins and their associated canonical pathways that define the different adverse effects of SARS-CoV-2 infections. The persistence of these biomarkers for up to two years after infection, along with their ability to distinguish the severity of the infection endured, highlights the surprising presence of persistent nasopharyngeal exudate changes in fully recovered patients.
Collapse
Affiliation(s)
- Francisco
Javier Redondo-Calvo
- Department
of Anesthesiology and Critical Care Medicine, University General Hospital, SESCAM, Ciudad Real 13004, Spain
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
- Faculty
of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real 13071, Spain
| | - Yoana Rabanal-Ruiz
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Gema Verdugo-Moreno
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Natalia Bejarano-Ramírez
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
- Faculty
of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real 13071, Spain
- Department
of Pediatrics, University General Hospital, Ciudad Real 13004, Spain
| | - Raquel Bodoque-Villar
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Mario Durán-Prado
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Soledad Illescas
- Department
of Microbiology, University General Hospital, Ciudad Real 13004, Spain
| | - Eduardo Chicano-Galvez
- IMIBIC
Mass Spectrometry and Molecular Imaging Unit (IMSMI). Maimonides Biomedical
Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba 14004, Spain
| | - Francisco Javier Gómez-Romero
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | | | - Javier Arias-Pardilla
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Pilar Lopez-Juarez
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Juan Fernando Padin
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Juan Ramón Peinado
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Leticia Serrano-Oviedo
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| |
Collapse
|
8
|
Zhou J, Sekiguchi Y, Sano M, Nishimura K, Hisatake K, Fukuda A. A Sendai virus-based expression system directs efficient induction of chondrocytes by transcription factor-mediated reprogramming. Sci Rep 2024; 14:26004. [PMID: 39472618 PMCID: PMC11522313 DOI: 10.1038/s41598-024-77508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Cartilage rarely heals spontaneously once damaged. Osteoarthritis (OA) is the most common degenerative joint disease among the elderly; however, effective treatment for OA is currently lacking. Autologous chondrocyte implantation (ACI), an innovative regenerative technology involving the implantation of healthy chondrocytes, may restore damaged lesions. Chondrocytes for ACI may potentially be induced from differentiated somatic cells using retrovirus (RV)-mediated transduction of three reprogramming factors (SOX9, KLF4, and c-MYC). However, the efficiency of the current induction system needs to be improved and the safety issues arising from the genomic integration of the vector DNA have to be addressed. To solve these problems, we used an RNA vector, termed the replication-defective and persistent Sendai virus vector (SeVdp), to express reprogramming factors for chondrocyte induction. Our results showed that the SeVdp-based vector induced chondrocytes more efficiently than the RV vector, probably because of robust and rapid expression of the transgenes, without any apparent integration of the SeVdp vector. The induced chondrocytes formed cartilage-like tissues when injected subcutaneously into mice. Thus, the SeVdp-based system for inducing chondrocytes may act as a foundation for developing safer and more effective treatments for damaged cartilage.
Collapse
Affiliation(s)
- Jingwen Zhou
- Laboratory of Gene regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuya Sekiguchi
- Laboratory of Gene regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Ken Nishimura
- Laboratory of Gene regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Koji Hisatake
- Laboratory of Gene regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Aya Fukuda
- Laboratory of Gene regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
9
|
Tapescu I, Madsen PJ, Lowenstein PR, Castro MG, Bagley SJ, Fan Y, Brem S. The transformative potential of mRNA vaccines for glioblastoma and human cancer: technological advances and translation to clinical trials. Front Oncol 2024; 14:1454370. [PMID: 39399167 PMCID: PMC11466887 DOI: 10.3389/fonc.2024.1454370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Originally devised for cancer control, mRNA vaccines have risen to the forefront of medicine as effective instruments for control of infectious disease, notably their pivotal role in combating the COVID-19 pandemic. This review focuses on fundamental aspects of the development of mRNA vaccines, e.g., tumor antigens, vector design, and precise delivery methodologies, - highlighting key technological advances. The recent, promising success of personalized mRNA vaccines against pancreatic cancer and melanoma illustrates the potential value for other intractable, immunologically resistant, solid tumors, such as glioblastoma, as well as the potential for synergies with a combinatorial, immunotherapeutic approach. The impact and progress in human cancer, including pancreatic cancer, head and neck cancer, bladder cancer are reviewed, as are lessons learned from first-in-human CAR-T cell, DNA and dendritic cell vaccines targeting glioblastoma. Going forward, a roadmap is provided for the transformative potential of mRNA vaccines to advance cancer immunotherapy, with a particular focus on the opportunities and challenges of glioblastoma. The current landscape of glioblastoma immunotherapy and gene therapy is reviewed with an eye to combinatorial approaches harnessing RNA science. Preliminary preclinical and clinical data supports the concept that mRNA vaccines could be a viable, novel approach to prolong survival in patients with glioblastoma.
Collapse
Affiliation(s)
- Iulia Tapescu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter J. Madsen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Stephen J. Bagley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Fan
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven Brem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Harutyunyan T, Sargsyan A, Kalashyan L, Stepanyan N, Aroutiounian R, Liehr T, Hovhannisyan G. DNA Damage in Moderate and Severe COVID-19 Cases: Relation to Demographic, Clinical, and Laboratory Parameters. Int J Mol Sci 2024; 25:10293. [PMID: 39408623 PMCID: PMC11476890 DOI: 10.3390/ijms251910293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The ability of the SARS-CoV-2 virus to cause DNA damage in infected humans requires its study as a potential indicator of COVID-19 progression. DNA damage was studied in leukocytes of 65 COVID-19 patients stratified by sex, age, and disease severity in relation to demographic, clinical, and laboratory parameters. In a combined group of COVID-19 patients, DNA damage was shown to be elevated compared to controls (12.44% vs. 5.09%, p < 0.05). Severe cases showed higher DNA damage than moderate cases (14.66% vs. 10.65%, p < 0.05), and males displayed more damage than females (13.45% vs. 8.15%, p < 0.05). DNA damage is also correlated with international normalized ratio (INR) (r = 0.471, p < 0.001) and creatinine (r = 0.326, p < 0.05). In addition to DNA damage, severe COVID-19 is associated with age, C-reactive protein (CRP), and creatinine. Receiver operating characteristic analysis identified age, INR, creatinine, DNA damage, and CRP as significant predictors of disease severity, with cut-off values of 72.50 years, 1.46 s, 78.0 µmol/L, 9.72%, and 50.0 mg/L, respectively. The results show that DNA damage correlates with commonly accepted COVID-19 risk factors. These findings underscore the potential of DNA damage as a biomarker for COVID-19 severity, suggesting its inclusion in prognostic assessments to facilitate early intervention and improve patient outcomes.
Collapse
Affiliation(s)
- Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Anzhela Sargsyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Lily Kalashyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (R.A.); (G.H.)
| | - Naira Stepanyan
- National Center for Infectious Diseases, Arno Babajanyan 21, Yerevan 0064, Armenia;
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany
| | - Galina Hovhannisyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| |
Collapse
|
11
|
Seaman WT, Keener O, Nanayakkara D, Mollan KR, Premkumar L, Cuadra EC, Jones CD, Pettifor A, Bowman NM, Wang F, Webster-Cyriaque J. Oral SARS-CoV-2 host responses predict the early COVID-19 disease course. Sci Rep 2024; 14:21788. [PMID: 39294156 PMCID: PMC11411107 DOI: 10.1038/s41598-024-67504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/11/2024] [Indexed: 09/20/2024] Open
Abstract
Oral fluids provide ready detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host responses. This study sought to evaluate relationships between oral virus, oral and systemic anti-SARS-CoV-2-specific antibodies, and symptoms. Oral fluids (saliva/throat wash (saliva/TW)) and serum were collected from asymptomatic and symptomatic, nasopharyngeal (NP) SARS-CoV-2 RT-qPCR+ human participants (n = 45). SARS-CoV-2 RT-qPCR and N-antigen detection by immunoblot and lateral flow assay (LFA) were performed. RT-qPCR for subgenomic RNA (sgRNA) was sequence confirmed. SARS-CoV-2-anti-S protein RBD LFA and ELISA assessed IgM and IgG responses. Structural analysis identified host salivary molecules analogous to SARS-CoV-2-N-antigen. At time of enrollment (baseline, BL), LFA-detected N-antigen in 86% of TW and was immunoblot-confirmed. However, only 3/17 were saliva/TW qPCR+ . Sixty percent of saliva and 83% of TW demonstrated persistent N-antigen at 4 weeks. N-antigen LFA signal in three anti-spike sero-negative participants suggested potential cross-detection of 4 structurally analogous salivary RNA binding proteins (alignment 19-29aa, RMSD 1-1.5 Angstroms). At enrollment, symptomatic participants demonstrated replication-associated sgRNA junctions, were IgG+ (94%/100% in saliva/TW), and IgM+ (63%/54%). At 4 weeks, SARS-CoV-2 IgG (100%/83%) and IgM (80%/67%) persisted. Oral and serum IgG correlated 100% with NP+ PCR status. Cough and fatigue severity (p = 0.010 and 0.018 respectively), and presence of weakness, nausea, and composite upper respiratory symptoms (p = 0.037, 0.005, and 0.017, respectively) were negatively associated with saliva IgM but not TW or serum IgM. Throat wash IgM levels were higher in women compared to men, although the association did not reach statistical significance (median: 290 (female) versus 0.697, p = 0.056). Important to transmission and disease course, oral viral replication and persistence showed clear relationships with select symptoms and early oral IgM responses during early infection. N-antigen cross-reactivity may reflect mimicry of structurally analogous host proteins.
Collapse
Affiliation(s)
- William T Seaman
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Olive Keener
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- North Carolina School of Math and Science, Durham, NC, USA
| | - Dinelka Nanayakkara
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katie R Mollan
- UNC School of Medicine, University of North Carolina at Chapel Hill, 111 Mason Farm Rd, Medical Biomolecular Research Building, Room 2341b, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edwing Centeno Cuadra
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Corbin D Jones
- UNC School of Medicine, University of North Carolina at Chapel Hill, 111 Mason Farm Rd, Medical Biomolecular Research Building, Room 2341b, Chapel Hill, NC, 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Audrey Pettifor
- UNC School of Medicine, University of North Carolina at Chapel Hill, 111 Mason Farm Rd, Medical Biomolecular Research Building, Room 2341b, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie M Bowman
- UNC School of Medicine, University of North Carolina at Chapel Hill, 111 Mason Farm Rd, Medical Biomolecular Research Building, Room 2341b, Chapel Hill, NC, 27599, USA
| | | | - Jennifer Webster-Cyriaque
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC School of Medicine, University of North Carolina at Chapel Hill, 111 Mason Farm Rd, Medical Biomolecular Research Building, Room 2341b, Chapel Hill, NC, 27599, USA.
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Compeer B, Neijzen TR, van Lelyveld SFL, Martina BEE, Russell CA, Goeijenbier M. Uncovering the Contrasts and Connections in PASC: Viral Load and Cytokine Signatures in Acute COVID-19 versus Post-Acute Sequelae of SARS-CoV-2 (PASC). Biomedicines 2024; 12:1941. [PMID: 39335455 PMCID: PMC11428903 DOI: 10.3390/biomedicines12091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The recent global COVID-19 pandemic has had a profound and enduring impact, resulting in substantial loss of life. The scientific community has responded unprecedentedly by investigating various aspects of the crisis, particularly focusing on the acute phase of COVID-19. The roles of the viral load, cytokines, and chemokines during the acute phase and in the context of patients who experienced enduring symptoms upon infection, so called Post-Acute Sequelae of COVID-19 or PASC, have been studied extensively. Here, in this review, we offer a virologist's perspective on PASC, highlighting the dynamics of SARS-CoV-2 viral loads, cytokines, and chemokines in different organs of patients across the full clinical spectrum of acute-phase disease. We underline that the probability of severe or critical disease progression correlates with increased viral load levels detected in the upper respiratory tract (URT), lower respiratory tract (LRT), and plasma. Acute-phase viremia is a clear, although not unambiguous, predictor of PASC development. Moreover, both the quantity and diversity of functions of cytokines and chemokines increase with acute-phase disease severity. Specific cytokines remain or become elevated in the PASC phase, although the driving factor of ongoing inflammation found in patients with PASC remains to be investigated. The key findings highlighted in this review contribute to a further understanding of PASC and their differences and overlap with acute disease.
Collapse
Affiliation(s)
- Brandon Compeer
- Artemis Bioservices B.V., 2629 JD Delft, The Netherlands
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Tobias R Neijzen
- Department of Intensive Care Medicine, Spaarne Gasthuis, 2035 RC Haarlem, The Netherlands
| | | | | | - Colin A Russell
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
- Department of Intensive Care, Erasmus MC University Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
13
|
Lin K, Cai J, Guo J, Zhang H, Sun G, Wang X, Zhu K, Xue Q, Zhu F, Wang P, Yuan G, Sun Y, Wang S, Ai J, Zhang W. Multi-omics landscapes reveal heterogeneity in long COVID patients characterized with enhanced neutrophil activity. J Transl Med 2024; 22:753. [PMID: 39135185 PMCID: PMC11318262 DOI: 10.1186/s12967-024-05560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Omicron variant impacts populations with its rapid contagiousness, and part of patients suffered from persistent symptoms termed as long COVID. The molecular and immune mechanisms of this currently dominant global variant leading to long COVID remain unclear, due to long COVID heterogeneity across populations. METHODS We recruited 66 participants in total, 22 out of 66 were healthy control without COVID-19 infection history, and 22 complaining about long COVID symptoms 6 months after first infection of Omicron, referred as long COVID (LC) Group. The left ones were defined as non-long COVID (NLC) Group. We profiled them via plasma neutralizing antibody titer, SARS-CoV-2 viral load, transcriptomic and proteomics screening, and machine learning. RESULTS No serum residual SARS-CoV-2 was observed in the participants 6 months post COVID-19 infection. No significant difference in neutralizing antibody titers was found between the long COVID (LC) Group and the non-long COVID (NLC) Group. Transcriptomic and proteomic profiling allow the stratification of long COVID into neutrophil function upregulated (NU-LC) and downregulated types (ND-LC). The NU-LC, identifiable through a refined set of 5 blood gene markers (ABCA13, CEACAM6, CRISP3, CTSG and BPI), displays evidence of relatively higher neutrophil counts and function of degranulation than the ND-LC at 6 months after infection, while recovered at 12 months post COVID-19. CONCLUSION The transcriptomic and proteomic profiling revealed heterogeneity among long COVID patients. We discovered a subgroup of long COVID population characterized by neutrophil activation, which might associate with the development of psychiatric symptoms and indicate a higher inflammatory state. Meanwhile, a cluster of 5 genes was manually curated as the most potent discriminators of NU-LC from long COVID population. This study can serve as a foundational exploration of the heterogeneity in the pathogenesis of long COVID and assist in therapeutic targeting and detailed epidemiological investigation of long COVID.
Collapse
Affiliation(s)
- Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingxin Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- Institute of Infection and Health, Fudan University, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gangqiang Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Kun Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Quanlin Xue
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi Fifth People's Hospital, Wuxi, People's Republic of China
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guanmin Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuhan Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China.
- Institute of Infection and Health, Fudan University, Shanghai, China.
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China.
- Institute of Infection and Health, Fudan University, Shanghai, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- Institute of Infection and Health, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Tang X, Shang J, Chen G, Chan KHK, Shi M, Sun Y. SegVir: Reconstruction of Complete Segmented RNA Viral Genomes from Metatranscriptomes. Mol Biol Evol 2024; 41:msae171. [PMID: 39137184 PMCID: PMC11346362 DOI: 10.1093/molbev/msae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Segmented RNA viruses are a complex group of RNA viruses with multisegment genomes. Reconstructing complete segmented viruses is crucial for advancing our understanding of viral diversity, evolution, and public health impact. Using metatranscriptomic data to identify known and novel segmented viruses has sped up the survey of segmented viruses in various ecosystems. However, the high genetic diversity and the difficulty in binning complete segmented genomes present significant challenges in segmented virus reconstruction. Current virus detection tools are primarily used to identify nonsegmented viral genomes. This study presents SegVir, a novel tool designed to identify segmented RNA viruses and reconstruct their complete genomes from complex metatranscriptomes. SegVir leverages both close and remote homology searches to accurately detect conserved and divergent viral segments. Additionally, we introduce a new method that can evaluate the genome completeness and conservation based on gene content. Our evaluations on simulated datasets demonstrate SegVir's superior sensitivity and precision compared to existing tools. Moreover, in experiments using real data, we identified some virus segments missing in the NCBI database, underscoring SegVir's potential to enhance viral metagenome analysis. The source code and supporting data of SegVir are available via https://github.com/HubertTang/SegVir.
Collapse
Affiliation(s)
- Xubo Tang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Jiayu Shang
- Department of Information Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong (SAR), China
| | - Guowei Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Kei Hang Katie Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| |
Collapse
|
15
|
Nguyen H, Nguyen HL, Li MS. Binding of SARS-CoV-2 Nonstructural Protein 1 to 40S Ribosome Inhibits mRNA Translation. J Phys Chem B 2024; 128:7033-7042. [PMID: 39007765 DOI: 10.1021/acs.jpcb.4c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Experimental evidence has established that SARS-CoV-2 NSP1 acts as a factor that restricts cellular gene expression and impedes mRNA translation within the ribosome's 40S subunit. However, the precise molecular mechanisms underlying this phenomenon have remained elusive. To elucidate this issue, we employed a combination of all-atom steered molecular dynamics and coarse-grained alchemical simulations to explore the binding affinity of mRNA to the 40S ribosome, both in the presence and absence of SARS-CoV-2 NSP1. Our investigations revealed that the binding of SARS-CoV-2 NSP1 to the 40S ribosome leads to a significant enhancement in the binding affinity of mRNA. This observation, which aligns with experimental findings, strongly suggests that SARS-CoV-2 NSP1 has the capability to inhibit mRNA translation. Furthermore, we identified electrostatic interactions between mRNA and the 40S ribosome as the primary driving force behind mRNA translation. Notably, water molecules were found to play a pivotal role in stabilizing the mRNA-40S ribosome complex, underscoring their significance in this process. We successfully pinpointed the specific SARS-CoV-2 NSP1 residues that play a critical role in triggering the translation arrest.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang City 550000, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Quang Trung Software City, Life Science Lab, Institute for Computational Science and Technology, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam
| |
Collapse
|
16
|
Kudryavtsev DS, Mozhaeva VA, Ivanov IA, Siniavin AE, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Tsetlin VI, Balykin VI, Melentiev PN. Optical detection of infectious SARS-CoV-2 virions by counting spikes. NANOSCALE 2024; 16:12424-12430. [PMID: 38887059 DOI: 10.1039/d4nr01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Existing methods for the mass detection of viruses are limited to the registration of small amounts of a viral genome or specific protein markers. In spite of high sensitivity, the applied methods cannot distinguish between virulent viral particles and non-infectious viral particle debris. We report an approach to solve this long-standing challenge using the SARS-CoV-2 virus as an example. We show that wide-field optical microscopy with the state-of-the-art mesoscopic fluorescent labels, formed by a core-shell plasmonic nanoparticle with fluorescent dye molecules in the core-shell that are strongly coupled to the plasmonic nanoparticle, not only rapidly, i.e. in less than 20 minutes after sampling, detects SARS-CoV-2 virions directly in a patient sample without a pre-concentration step, but can also distinguish between infectious and non-infectious virus strains by counting the spikes on the lipid envelope of individual viral particles.
Collapse
Affiliation(s)
- Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Vera A Mozhaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | - Andrey E Siniavin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health, Moscow, 123098, Russia
| | | | | | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, 410049, Russia
| | - Shao-Peng Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia.
- Higher School of Economics, National Research University, Moscow, 101000, Russia
| |
Collapse
|
17
|
Moradian H, Schwestka M, Roch T, Gossen M. Deconvolution of synthetic mRNA expression: Nucleoside chemistry alters translatability. Bioeng Transl Med 2024; 9:e10622. [PMID: 39036083 PMCID: PMC11256140 DOI: 10.1002/btm2.10622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 07/23/2024] Open
Abstract
Recent technological advances in the production of in vitro transcribed messenger RNA (IVT-mRNA) facilitate its clinical use as well as its application in basic research. In this regard, numerous chemical modifications, which are not naturally observed in endogenous mRNA, have been implemented primarily to address the issue of immunogenicity and improve its biological performance. However, recent findings suggested pronounced differences between expression levels of IVT-mRNAs with different nucleoside modifications in transfected cells. Given the multistep process of IVT-mRNA delivery and subsequent intracellular expression, it is unclear which step is influenced by IVT-mRNA chemistry. Here, we deconvolute this process and show that the nucleoside modification does not interfere with complexation of carriers, their physicochemical properties, and extracellular stability, as exemplified by selected modifications. The immediate effect of mRNA chemistry on the efficiency of ribosomal protein synthesis as a contributor to differences in expression was quantified by in vitro cell-free translation. Our results demonstrate that for the nucleoside modifications tested, translatability was the decisive step in determining overall protein production. Also of special importance for future work on rational selection of tailored synthetic mRNA chemistries, our findings set a workflow to identify potentially limiting, modification-dependent steps in the complex delivery process.
Collapse
Affiliation(s)
- Hanieh Moradian
- Institute of Active Polymers, Helmholtz‐Zentrum HereonTeltowGermany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT)BerlinGermany
| | - Marko Schwestka
- Institute of Active Polymers, Helmholtz‐Zentrum HereonTeltowGermany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT)BerlinGermany
| | - Toralf Roch
- Berlin Institute of Health Center for Regenerative Therapies (BCRT)BerlinGermany
- CheckImmune GmbH, Campus Virchow KlinikumBerlinGermany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz‐Zentrum HereonTeltowGermany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT)BerlinGermany
| |
Collapse
|
18
|
Müller L, Di Benedetto S. Inflammaging, immunosenescence, and cardiovascular aging: insights into long COVID implications. Front Cardiovasc Med 2024; 11:1384996. [PMID: 38988667 PMCID: PMC11233824 DOI: 10.3389/fcvm.2024.1384996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Aging leads to physiological changes, including inflammaging-a chronic low-grade inflammatory state with significant implications for various physiological systems, particularly for cardiovascular health. Concurrently, immunosenescence-the age-related decline in immune function, exacerbates vulnerabilities to cardiovascular pathologies in older individuals. Examining the dynamic connections between immunosenescence, inflammation, and cardiovascular aging, this mini-review aims to disentangle some of these interactions for a better understanding of their complex interplay. In the context of cardiovascular aging, the chronic inflammatory state associated with inflammaging compromises vascular integrity and function, contributing to atherosclerosis, endothelial dysfunction, arterial stiffening, and hypertension. The aging immune system's decline amplifies oxidative stress, fostering an environment conducive to atherosclerotic plaque formation. Noteworthy inflammatory markers, such as the high-sensitivity C-reactive protein, interleukin-6, interleukin-1β, interleukin-18, and tumor necrosis factor-alpha emerge as key players in cardiovascular aging, triggering inflammatory signaling pathways and intensifying inflammaging and immunosenescence. In this review we aim to explore the molecular and cellular mechanisms underlying inflammaging and immunosenescence, shedding light on their nuanced contributions to cardiovascular diseases. Furthermore, we explore the reciprocal relationship between immunosenescence and inflammaging, revealing a self-reinforcing cycle that intensifies cardiovascular risks. This understanding opens avenues for potential therapeutic targets to break this cycle and mitigate cardiovascular dysfunction in aging individuals. Furthermore, we address the implications of Long COVID, introducing an additional layer of complexity to the relationship between aging, immunosenescence, inflammaging, and cardiovascular health. Our review aims to stimulate continued exploration and advance our understanding within the realm of aging and cardiovascular health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | |
Collapse
|
19
|
Boggiatto PM, Buckley A, Cassmann ED, Seger H, Olsen SC, Palmer MV. Persistence of viral RNA in North American elk experimentally infected with an ancestral strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sci Rep 2024; 14:11171. [PMID: 38750049 PMCID: PMC11096316 DOI: 10.1038/s41598-024-61414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
White-tailed deer (Odocoileus virginianus) have emerged as a reservoir host for SARS-CoV-2 given their susceptibility to infection and demonstrated high rates of seroprevalence and infection across the United States. As SARS-CoV-2 circulates within free-ranging white-tailed deer populations, there is the risk of transmission to other wildlife species and even back to the human population. The goal of this study was to determine the susceptibility, shedding, and immune response of North American elk (Cervus elaphus canadensis) to experimental infection with SARS-CoV-2, to determine if another wide-ranging cervid species could potentially serve as a reservoir host for the virus. Here we demonstrate that while North American elk do not develop clinical signs of disease, they do develop a neutralizing antibody response to infection, suggesting the virus is capable of replicating in this mammalian host. Additionally, we demonstrate SARS-CoV-2 RNA presence in the medial retropharyngeal lymph nodes of infected elk three weeks after experimental infection. Consistent with previous observations in humans, these data may highlight a mechanism of viral persistence for SARS-CoV-2 in elk.
Collapse
Affiliation(s)
- Paola M Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA.
| | - Alexandra Buckley
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research, Ames, IA, USA
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research, Ames, IA, USA
| | - Hannah Seger
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research, Ames, IA, USA
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd., Oak Ridge, TN, 37830, USA
| | - Steven C Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| |
Collapse
|
20
|
Holubovska O, Babich P, Mironenko A, Milde J, Lebed Y, Stammer H, Mueller L, te Velthuis AJW, Margitich V, Goy A. RNA Polymerase Inhibitor Enisamium for Treatment of Moderate COVID-19 Patients: A Randomized, Placebo-Controlled, Multicenter, Double-Blind Phase 3 Clinical Trial. Adv Respir Med 2024; 92:202-217. [PMID: 38804439 PMCID: PMC11130936 DOI: 10.3390/arm92030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Enisamium is an orally available therapeutic that inhibits influenza A virus and SARS-CoV-2 replication. We evaluated the clinical efficacy of enisamium treatment combined with standard care in adult, hospitalized patients with moderate COVID-19 requiring external oxygen. Hospitalized patients with laboratory-confirmed SARS-CoV-2 infection were randomly assigned to receive either enisamium (500 mg per dose, four times a day) or a placebo. The primary outcome was an improvement of at least two points on an eight-point severity rating (SR) scale within 29 days of randomization. We initially set out to study the effect of enisamium on patients with a baseline SR of 4 or 5. However, because the study was started early in the COVID-19 pandemic, and COVID-19 had been insufficiently studied at the start of our study, an interim analysis was performed alongside a conditional power analysis in order to ensure patient safety and assess whether the treatment was likely to be beneficial for one or both groups. Following this analysis, a beneficial effect was observed for patients with an SR of 4 only, i.e., patients with moderate COVID-19 requiring supplementary oxygen. The study was continued for these COVID-19 patients. Overall, a total of 592 patients were enrolled and randomized between May 2020 and March 2021. Patients with a baseline SR of 4 were divided into two groups: 142 (49.8%) were assigned to the enisamium group and 143 (50.2%) to the placebo group. An analysis of the population showed that if patients were treated within 4 days of the onset of COVID-19 symptoms (n = 33), the median time to improvement was 8 days for the enisamium group and 13 days for the placebo group (p = 0.005). For patients treated within 10 days of the onset of COVID-19 symptoms (n = 154), the median time to improvement was 10 days for the enisamium group and 12 days for the placebo group (p = 0.002). Our findings suggest that enisamium is safe to use with COVID-19 patients, and that the observed clinical benefit of enisamium is worth reporting and studying in detail.
Collapse
Affiliation(s)
- Olga Holubovska
- Department of Infectious Diseases, O.O. Bogomolets National Medical University, T. Shevchenko Blvd. 13, 01601 Kyiv, Ukraine;
| | - Pavlo Babich
- State Expert Center, Smolenska Str. 10, 03057 Kyiv, Ukraine;
| | - Alla Mironenko
- Department of Respiratory and Other Viral Infections, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of the NAMS of Ukraine, Amosova Str. 5a, 03083 Kyiv, Ukraine;
| | - Jens Milde
- Pharmalog Institut für Klinische Forschung GmbH, Oskar-Messter-Str. 29, 85737 Ismaning, Germany; (J.M.); (H.S.)
| | - Yuriy Lebed
- Pharmaxi LLC, Filatova Str. 10A, 01042 Kyiv, Ukraine;
| | - Holger Stammer
- Pharmalog Institut für Klinische Forschung GmbH, Oskar-Messter-Str. 29, 85737 Ismaning, Germany; (J.M.); (H.S.)
| | - Lutz Mueller
- Regenold GmbH, Zöllinplatz 4, 79410 Badenweiler, Germany;
| | - Aartjan J. W. te Velthuis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Division of Virology, Department of Pathology, University of Cambridge Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Victor Margitich
- Farmak Joint Stock Company, Kyrylivska Str., 04080 Kyiv, Ukraine
| | - Andrew Goy
- Farmak Joint Stock Company, Kyrylivska Str., 04080 Kyiv, Ukraine
| |
Collapse
|
21
|
Huang Y, Chen T, Chen X, Wan L, Hou X, Zhuang J, Jiang J, Li Y, Qiu J, Yu K, Zhuang J. Corneal Stroma Analysis and Related Ocular Manifestations in Recovered COVID-19 Patients. Invest Ophthalmol Vis Sci 2024; 65:14. [PMID: 38713483 PMCID: PMC11086707 DOI: 10.1167/iovs.65.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose The purpose of this study was to assess the impact of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) on corneal stroma characteristics, ocular manifestations, and post-recovery refractive surgery outcomes after varying recovery durations. Methods Fresh corneal lenticules from patients with post-coronavirus disease 2019 (COVID-19; recovered within 135 days) and healthy controls (HCs) after small incision lenticule extraction (SMILE) surgery were obtained for experimental validation of SARS-CoV-2 susceptibility, morphological changes, and immune response of the corneal stroma. Corneal optical density (CD) was measured using the Pentacam HR. Corneal epithelium thickness (ET) and endothelium parameters were evaluated by wide-field optical coherence tomography (OCT) and non-contact specular microscopy (SP-1P), respectively. All the patients were assessed after SMILE surgery until 3 month of follow-up. Results The cornea was susceptible to SARS-CoV-2 with the presence of SARS-CoV-2 receptors (CD147 and ACE2) and spike protein remnants (4 out of 58) in post-recovery corneal lenticules. Moreover, SARS-CoV-2 infection triggered immune responses in the corneal stroma, with elevated IL-6 levels observed between 45 and 75 days post-recovery, which were then lower at around day 105. Concurrently, corneal mid-stromal nerve length and branching were initially higher in the 60D to 75D group and returned to control levels by day 135. A similar trend was observed in CD within zones 0 to 2 and 2 to 6 and in the hexagonal cells (HEX) ratio in endothelial cells, whereas ET remained consistent. Notably, these changes did not affect the efficacy, safety, or predictability of post-recovery SMILE surgery. Conclusions SARS-CoV-2 induces temporal alterations in corneal stromal morphology and function post-recovery. These findings provided a theoretical basis for corneal health and refractive surgery management in the post-COVID-19 milieu.
Collapse
Affiliation(s)
- Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Taiwei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Linxi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiangtao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiejie Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jingyi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Zhang Z. The Initial COVID-19 Reliable Interactive DNA Methylation Markers and Biological Implications. BIOLOGY 2024; 13:245. [PMID: 38666857 PMCID: PMC11048280 DOI: 10.3390/biology13040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Earlier research has established the existence of reliable interactive genomic biomarkers. However, reliable DNA methylation biomarkers, not to mention interactivity, have yet to be identified at the epigenetic level. This study, drawing from 865,859 methylation sites, discovered two miniature sets of Infinium MethylationEPIC sites, each having eight CpG sites (genes) to interact with each other and disease subtypes. They led to the nearly perfect (96.87-100% accuracy) prediction of COVID-19 patients from patients with other diseases or healthy controls. These CpG sites can jointly explain some post-COVID-19-related conditions. These CpG sites and the optimally performing genomic biomarkers reported in the literature become potential druggable targets. Among these CpG sites, cg16785077 (gene MX1), cg25932713 (gene PARP9), and cg22930808 (gene PARP9) at DNA methylation levels indicate that the initial SARS-CoV-2 virus may be better treated as a transcribed viral DNA into RNA virus, i.e., not as an RNA virus that has concerned scientists in the field. Such a discovery can significantly change the scientific thinking and knowledge of viruses.
Collapse
Affiliation(s)
- Zhengjun Zhang
- School of Computer, Data and Information Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
23
|
Gibo M, Kojima S, Fujisawa A, Kikuchi T, Fukushima M. Increased Age-Adjusted Cancer Mortality After the Third mRNA-Lipid Nanoparticle Vaccine Dose During the COVID-19 Pandemic in Japan. Cureus 2024; 16:e57860. [PMID: 38721172 PMCID: PMC11077472 DOI: 10.7759/cureus.57860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2024] [Indexed: 06/14/2024] Open
Abstract
During the COVID-19 pandemic, excess deaths including cancer have become a concern in Japan, which has a rapidly aging population. Thus, this study aimed to evaluate how age-adjusted mortality rates (AMRs) for different types of cancer in Japan changed during the COVID-19 pandemic (2020-2022). Official statistics from Japan were used to compare observed annual and monthly AMRs with predicted rates based on pre-pandemic (2010-2019) figures using logistic regression analysis. No significant excess mortality was observed during the first year of the pandemic (2020). However, some excess cancer mortalities were observed in 2021 after mass vaccination with the first and second vaccine doses, and significant excess mortalities were observed for all cancers and some specific types of cancer (including ovarian cancer, leukemia, prostate cancer, lip/oral/pharyngeal cancer, pancreatic cancer, and breast cancer) after mass vaccination with the third dose in 2022. AMRs for the four cancers with the most deaths (lung, colorectal, stomach, and liver) showed a decreasing trend until the first year of the pandemic in 2020, but the rate of decrease slowed in 2021 and 2022. This study discusses possible explanations for these increases in age-adjusted cancer mortality rates.
Collapse
Affiliation(s)
- Miki Gibo
- Primary Health Care, Matsubara Clinic, Kochi, JPN
| | - Seiji Kojima
- Pediatrics, Nagoya Pediatric Cancer Fund, Nagoya, JPN
| | - Akinori Fujisawa
- Cardiovascular Medicine, Honbetsu Cardiovascular Medicine Clinic, Honbetsu, JPN
| | - Takayuki Kikuchi
- Translational Research & Health Data Science, Learning Health Society Institute, Nagoya, JPN
| | - Masanori Fukushima
- Translational Research & Health Data Science, Learning Health Society Institute, Nagoya, JPN
| |
Collapse
|
24
|
Szewczyk T, Mattei TA. The questionable rationale of a blanket 2-week ban for lumbar fusions after a positive COVID-19 test. NORTH AMERICAN SPINE SOCIETY JOURNAL 2024; 17:100304. [PMID: 38235483 PMCID: PMC10792620 DOI: 10.1016/j.xnsj.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Affiliation(s)
- Thomas Szewczyk
- Division of Neurological Surgery, Department of Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St, Saint Louis, MO 63104, United States
| | - Tobias A. Mattei
- Division of Neurological Surgery, Department of Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St, Saint Louis, MO 63104, United States
| |
Collapse
|
25
|
Turner S, Naidoo CA, Usher TJ, Kruger A, Venter C, Laubscher GJ, Khan MA, Kell DB, Pretorius E. Increased Levels of Inflammatory and Endothelial Biomarkers in Blood of Long COVID Patients Point to Thrombotic Endothelialitis. Semin Thromb Hemost 2024; 50:288-294. [PMID: 37207671 DOI: 10.1055/s-0043-1769014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The prevailing hypotheses for the persistent symptoms of Long COVID have been narrowed down to immune dysregulation and autoantibodies, widespread organ damage, viral persistence, and fibrinaloid microclots (entrapping numerous inflammatory molecules) together with platelet hyperactivation. Here we demonstrate significantly increased concentrations of von Willebrand factor (VWF), platelet factor 4 (PF4), serum amyloid A (SAA), α-2 antiplasmin (α-2AP), endothelial-leukocyte adhesion molecule 1 (E-selectin), and platelet endothelial cell adhesion molecule (PECAM-1) in the soluble part of the blood. It was noteworthy that the mean level of α-2 antiplasmin exceeded the upper limit of the laboratory reference range in Long COVID patients, and the other 5 were significantly elevated in Long COVID patients as compared to the controls. This is alarming if we take into consideration that a significant amount of the total burden of these inflammatory molecules has previously been shown to be entrapped inside fibrinolysis-resistant microclots (thus decreasing the apparent level of the soluble molecules). We conclude that presence of microclotting, together with relatively high levels of six biomarkers known to be key drivers of endothelial and clotting pathology, points to thrombotic endothelialitis as a key pathological process in Long COVID.
Collapse
Affiliation(s)
- Simone Turner
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Caitlin A Naidoo
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Thomas J Usher
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Arneaux Kruger
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Chantelle Venter
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | | | - M Asad Khan
- Department of Respiratory Medicine, Wythenshawe Hospital, Manchester University, Manchester, United Kingdom
| | - Douglas B Kell
- Department of Biochemistry and Systems Biology; Institute of Systems, Molecular and Integrative Biology; Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet Lyngby, Denmark
| |
Collapse
|
26
|
Mostafa RH, Moustafa A. Beyond acute infection: molecular mechanisms underpinning cardiovascular complications in long COVID. Front Cardiovasc Med 2024; 11:1268571. [PMID: 38495940 PMCID: PMC10942004 DOI: 10.3389/fcvm.2024.1268571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
SARS-CoV-2, responsible for the global COVID-19 pandemic, has manifested significant cardiovascular implications for the infected population. These cardiovascular repercussions not only linger beyond the initial phase of illness but have also been observed in individuals who remain asymptomatic. This extended and pervasive impact is often called the post-acute COVID-19 syndrome (PACS) or "Long COVID". With the number of confirmed global cases approaching an alarming 756 million, the multifaceted challenges of Long COVID are undeniable. These challenges span from individual health complications to considerable burdens on worldwide healthcare systems. Our review comprehensively examines the complications of the persistent cardiovascular complications associated with COVID-19. Furthermore, we shed light on emerging therapeutic strategies that promise to manage and possibly mitigate these complications. We also introduce and discuss the profound concerns regarding the potential transgenerational repercussions of SARS-CoV-2, emphasizing the need for a proactive and informed approach to future research and clinical practice.
Collapse
Affiliation(s)
- Roba Hamed Mostafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Department of Biology, American University in Cairo, New Cairo, Egypt
| |
Collapse
|
27
|
Igyártó BZ, Qin Z. The mRNA-LNP vaccines - the good, the bad and the ugly? Front Immunol 2024; 15:1336906. [PMID: 38390323 PMCID: PMC10883065 DOI: 10.3389/fimmu.2024.1336906] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The mRNA-LNP vaccine has received much attention during the COVID-19 pandemic since it served as the basis of the most widely used SARS-CoV-2 vaccines in Western countries. Based on early clinical trial data, these vaccines were deemed safe and effective for all demographics. However, the latest data raise serious concerns about the safety and effectiveness of these vaccines. Here, we review some of the safety and efficacy concerns identified to date. We also discuss the potential mechanism of observed adverse events related to the use of these vaccines and whether they can be mitigated by alterations of this vaccine mechanism approach.
Collapse
Affiliation(s)
- Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | | |
Collapse
|
28
|
Pathak R, Eliscovich C, Mena I, Cupic A, Rutkowska M, Chandran K, Jangra RK, García-Sastre A, Singer RH, Kalpana GV. Visualization of Early RNA Replication Kinetics of SARS-CoV-2 by Using Single Molecule RNA-FISH Combined with Immunofluorescence. Viruses 2024; 16:262. [PMID: 38400039 PMCID: PMC10893374 DOI: 10.3390/v16020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
SARS-CoV-2 infection remains a global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood, such as the kinetics of the formation of genomic RNA (gRNA), sub-genomic RNA (sgRNA), and replication centers/organelles (ROs). We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA and immunofluorescence to detect nsp3 protein, a marker for the formation of RO, and carried out a time-course analysis. We found that single molecules of gRNA are visible within the cytoplasm at 30 min post infection (p.i.). Starting from 2 h p.i., most of the viral RNA existed in clusters/speckles, some of which were surrounded by single molecules of sgRNA. These speckles associated with nsp3 protein starting at 3 h p.i., indicating that these were precursors to ROs. Furthermore, RNA replication was asynchronous, as cells with RNA at all stages of replication were found at any given time point. Our probes detected the SARS-CoV-2 variants of concern, and also suggested that the BA.1 strain exhibited a slower rate of replication kinetics than the WA1 strain. Our results provide insights into the kinetics of SARS-CoV-2 early post-entry events, which will facilitate identification of new therapeutic targets for early-stage replication to combat COVID-19.
Collapse
Affiliation(s)
- Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (K.C.); (R.K.J.)
| | - Carolina Eliscovich
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (I.M.); (A.C.); (M.R.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (I.M.); (A.C.); (M.R.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Magdalena Rutkowska
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (I.M.); (A.C.); (M.R.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (K.C.); (R.K.J.)
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (K.C.); (R.K.J.)
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (I.M.); (A.C.); (M.R.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert H. Singer
- Departments of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganjam V. Kalpana
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (K.C.); (R.K.J.)
| |
Collapse
|
29
|
Rus M, Ardelean AI, Andronie-Cioara FL, Filimon GC. Acute Myocardial Infarction during the COVID-19 Pandemic: Long-Term Outcomes and Prognosis-A Systematic Review. Life (Basel) 2024; 14:202. [PMID: 38398712 PMCID: PMC10890474 DOI: 10.3390/life14020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) was a global pandemic with high mortality and morbidity that led to an increased health burden all over the world. Although the virus mostly affects the pulmonary tract, cardiovascular implications are often observed among COVID-19 patients and are predictive of poor outcomes. Increased values of myocardial biomarkers such as troponin I or NT-proBNP were proven to be risk factors for respiratory failure. Although the risk of acute coronary syndromes (ACSs) was greater in the acute phase of COVID-19, there were lower rates of hospitalization for ACSs, due to patients' hesitation in presenting at the hospital. Hospitalized ACSs patients with COVID-19 infection had a prolonged symptom-to-first-medical-contact time, and longer door-to-balloon time. The mechanisms of myocardial injury in COVID-19 patients are still not entirely clear; however, the most frequently implicated factors include the downregulation of ACE2 receptors, endothelial dysfunction, pro-coagulant status, and increased levels of pro-inflammatory cytokines. The aim of this paper is to evaluate the long-term outcomes and prognosis of COVID-19 survivors that presented an acute myocardial infarction, by reviewing existing data. The importance of the association between this infectious disease and myocardial infarction arises from the increased mortality of patients with SARS-CoV-2 infection and AMI (10-76%, compared with 4.6% for NSTEMI patients and 7% for STEMI patients without COVID-19). The literature review showed an increased risk of cardiovascular events in COVID-19 survivors compared with the general population, even after the acute phase of the disease, with poorer long-term outcomes.
Collapse
Affiliation(s)
- Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.I.A.); (G.C.F.)
| | - Adriana Ioana Ardelean
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.I.A.); (G.C.F.)
| | - Felicia Liana Andronie-Cioara
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.I.A.); (G.C.F.)
- Department of Psycho Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Georgiana Carmen Filimon
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.I.A.); (G.C.F.)
| |
Collapse
|
30
|
Farahmandnejad M, Mosaddeghi P, Dorvash M, Sakhteman A, Negahdaripour M, Faridi P. Correlation of Myeloid-Derived Suppressor Cell Expansion with Upregulated Transposable Elements in Severe COVID-19 Unveiled in Single-Cell RNA Sequencing Reanalysis. Biomedicines 2024; 12:315. [PMID: 38397917 PMCID: PMC10887269 DOI: 10.3390/biomedicines12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Some studies have investigated the potential role of transposable elements (TEs) in COVID-19 pathogenesis and complications. However, to the best of our knowledge, there is no study to examine the possible association of TE expression in cell functions and its potential role in COVID-19 immune response at the single-cell level. In this study, we reanalyzed single-cell RNA seq data of bronchoalveolar lavage (BAL) samples obtained from six severe COVID-19 patients and three healthy donors to assess the probable correlation of TE expression with the immune responses induced by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in COVID-19 patients. Our findings indicate that the expansion of myeloid-derived suppressor cells (MDSCs) may be a characteristic feature of COVID-19. Additionally, a significant increase in TE expression in MDSCs was observed. This upregulation of TEs in COVID-19 may be linked to the adaptability of these cells in response to their microenvironments. Furthermore, it appears that the identification of overexpressed TEs by pattern recognition receptors (PRRs) in MDSCs may enhance the suppressive capacity of these cells. Thus, this study emphasizes the crucial role of TEs in the functionality of MDSCs during COVID-19.
Collapse
Affiliation(s)
- Mitra Farahmandnejad
- Quality Control of Drug Products Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Pouria Mosaddeghi
- Medicinal Plants Processing Research Center, School of Pharmacy, Shiraz University of Medical Science, Shiraz 71348-14336, Iran;
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammadreza Dorvash
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Amirhossein Sakhteman
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, 80333 Munich, Germany;
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Pouya Faridi
- Monash Proteomics and Metabolomics Platform, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
31
|
Kozak M, Hu J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines (Basel) 2024; 12:71. [PMID: 38250884 PMCID: PMC10820593 DOI: 10.3390/vaccines12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The concept of DNA vaccination was introduced in the early 1990s. Since then, advancements in the augmentation of the immunogenicity of DNA vaccines have brought this technology to the market, especially in veterinary medicine, to prevent many diseases. Along with the successful COVID mRNA vaccines, the first DNA vaccine for human use, the Indian ZyCovD vaccine against SARS-CoV-2, was approved in 2021. In the current review, we first give an overview of the DNA vaccine focusing on the science, including adjuvants and delivery methods. We then cover some of the emerging science in the field of DNA vaccines, notably efforts to optimize delivery systems, better engineer delivery apparatuses, identify optimal delivery sites, personalize cancer immunotherapy through DNA vaccination, enhance adjuvant science through gene adjuvants, enhance off-target and heritable immunity through epigenetic modification, and predict epitopes with bioinformatic approaches. We also discuss the major limitations of DNA vaccines and we aim to address many theoretical concerns.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
32
|
Al-Eitan L, Mihyar A. The controversy of SARS-CoV-2 integration into the human genome. Rev Med Virol 2024; 34:e2511. [PMID: 38282406 DOI: 10.1002/rmv.2511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Bat borne disease have attracted many researchers for years. The ability of the bat to host several exogenous viruses has been a focal point in research lately. The latest pandemic shifted the focus of scholars towards understanding the difference in response to viral infection between humans and bats. In a way to understand the basis of the interaction and behaviour between SARS-CoV-2 and the environment, a conflict between different researchers across the globe arose. This conflict asked many questions about the truth of virus-host integration, whether an interaction between RNA viruses and human genomes has ever been reported, the possible route and mechanism that could lead to genomic integration of viral sequences and the methods used to detect integration. This article highlights those questions and will discuss the diverse opinions of the controversy and provide examples on reported integration mechanisms and possible detection techniques.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ahmad Mihyar
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
33
|
Weissert R. Nervous system-related tropism of SARS-CoV-2 and autoimmunity in COVID-19 infection. Eur J Immunol 2024; 54:e2250230. [PMID: 37733584 DOI: 10.1002/eji.202250230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/05/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
The effects of SARS-CoV-2 in COVID-19 on the nervous system are incompletely understood. SARS-CoV-2 can infect endothelial cells, neurons, astrocytes, and oligodendrocytes with consequences for the host. There are indications that infection of these CNS-resident cells may result in long-term effects, including emergence of neurodegenerative diseases. Indirect effects of infection with SARS-CoV-2 relate to the induction of autoimmune disease involving molecular mimicry or/and bystander activation of T- and B cells and emergence of autoantibodies against various self-antigens. Data obtained in preclinical models of coronavirus-induced disease gives important clues for the understanding of nervous system-related assault of SARS-CoV-2. The pathophysiology of long-COVID syndrome and post-COVID syndrome in which autoimmunity and immune dysregulation might be the driving forces are still incompletely understood. A better understanding of nervous-system-related immunity in COVID-19 might support the development of therapeutic approaches. In this review, the current understanding of SARS-CoV-2 tropism for the nervous system, the associated immune responses, and diseases are summarized. The data indicates that there is viral tropism of SARS-CoV-2 in the nervous system resulting in various disease conditions. Prevention of SARS-CoV-2 infection by means of vaccination is currently the best strategy for the prevention of subsequent tissue damage involving the nervous system.
Collapse
Affiliation(s)
- Robert Weissert
- Department of Neurology, University of Regensburg Hospital, Regensburg, Germany
| |
Collapse
|
34
|
Zhang J, Askenase P, Jaenisch R, Crumpacker CS. Approaches to pandemic prevention - the chromatin vaccine. Front Immunol 2023; 14:1324084. [PMID: 38143744 PMCID: PMC10739501 DOI: 10.3389/fimmu.2023.1324084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Developing effective vaccines against viral infections have significant impacts on development, prosperity and well-being of human populations. Thus, successful vaccines such as smallpox and polio vaccines, have promoted global societal well-being. In contrast, ineffective vaccines may fuel arguments that retard scientific progress. We aim to stimulate a multilevel discussion on how to develop effective vaccines against recent and future pandemics by focusing on acquired immunodeficiency syndrome (AIDS), coronavirus disease (COVID) and other viral infections. We appeal to harnessing recent achievements in this field specifically towards a cure for current pandemics and prevention of the next pandemics. Among these, we propose to apply the HIV DNA in chromatin format - an end product of aborted HIV integration in episomal forms, i.e., the chromatin vaccines (cVacc), to elicit the epigenetic silencing and memory that prevent viral replication and infection.
Collapse
Affiliation(s)
- Jielin Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Askenase
- Allergy & Clinical Immunology, Yale School of Medicine, New Haven, CT, United States
| | - Rudolf Jaenisch
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Clyde S. Crumpacker
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
36
|
Grand RJ. SARS-CoV-2 and the DNA damage response. J Gen Virol 2023; 104:001918. [PMID: 37948194 PMCID: PMC10768691 DOI: 10.1099/jgv.0.001918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is characterized by respiratory distress, multiorgan dysfunction and, in some cases, death. The virus is also responsible for post-COVID-19 condition (commonly referred to as 'long COVID'). SARS-CoV-2 is a single-stranded, positive-sense RNA virus with a genome of approximately 30 kb, which encodes 26 proteins. It has been reported to affect multiple pathways in infected cells, resulting, in many cases, in the induction of a 'cytokine storm' and cellular senescence. Perhaps because it is an RNA virus, replicating largely in the cytoplasm, the effect of SARS-Cov-2 on genome stability and DNA damage responses (DDRs) has received relatively little attention. However, it is now becoming clear that the virus causes damage to cellular DNA, as shown by the presence of micronuclei, DNA repair foci and increased comet tails in infected cells. This review considers recent evidence indicating how SARS-CoV-2 causes genome instability, deregulates the cell cycle and targets specific components of DDR pathways. The significance of the virus's ability to cause cellular senescence is also considered, as are the implications of genome instability for patients suffering from long COVID.
Collapse
Affiliation(s)
- Roger J. Grand
- Institute for Cancer and Genomic Science, The Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
37
|
Mitrofanova L, Makarov I, Goncharova E, Makarova T, Starshinova A, Kudlay D, Shlaykhto E. High Risk of Heart Tumors after COVID-19. Life (Basel) 2023; 13:2087. [PMID: 37895467 PMCID: PMC10608002 DOI: 10.3390/life13102087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
An emergence of evidence suggests that severe COVID-19 is associated with an increased risk of developing breast and gastrointestinal cancers. The aim of this research was to assess the risk of heart tumors development in patients who have had COVID-19. METHODS A comparative analysis of 173 heart tumors was conducted between 2016 and 2023. Immunohistochemical examination with antibodies against spike SARS-CoV-2 was performed on 21 heart tumors: 10 myxomas operated before 2020 (the control group), four cardiac myxomas, one proliferating myxoma, three papillary fibroelastomas, two myxofibrosarcomas, one chondrosarcoma resected in 2022-2023. Immunohistochemical analysis with antibodies against CD34 and CD68 was also conducted on the same 11 Post-COVID period heart tumors. Immunofluorescent examination with a cocktail of antibodies against spike SARS-CoV-2/CD34 and spike SARS-CoV-2/CD68 was performed in 2 cases out of 11 (proliferating myxoma and classic myxoma). RESULTS A 1.5-fold increase in the number of heart tumors by 2023 was observed, with a statistically significant increase in the number of myxomas. There was no correlation with vaccination, and no significant differences were found between patients from 2016-2019 and 2021-2023 in terms of gender, age, and cardiac rhythm dis-orders. Morphological examination revealed the expression of spike SARS-CoV-2 in tumor cells, endothelial cells, and macrophages in 10 out of 11 heart tumors. CONCLUSION The detection of SARS-CoV-2 persistence in endothelium and macrophages as well as in tumor cells of benign and malignant cardiac neoplasms, the increase in the number of these tumors, especially cardiac myxomas, after the pandemic by 2023 may indicate a trend toward an increased risk of cardiac neoplasms in COVID-19 patients, which re-quires further research on this issue and a search for new evidence.
Collapse
Affiliation(s)
- Lubov Mitrofanova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| | - Igor Makarov
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| | - Ekaterina Goncharova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| | - Taiana Makarova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| | - Anna Starshinova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| | - Dmitry Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia;
- Institute of Immunology, 115478 Moscow, Russia
| | - Evgeny Shlaykhto
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| |
Collapse
|
38
|
Kneller A, Abadir C, Amadasu O, Matias M, Arnce RD, Beyersdorfer N, Wolff DW, Stahl G, Johnson K, Goade S. COVID-19 and Respiratory Failure: A Retrospective Observational Study From a Rural Midwest Hospital. Cureus 2023; 15:e47593. [PMID: 38021879 PMCID: PMC10665767 DOI: 10.7759/cureus.47593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) produces the coronavirus disease of 2019 (COVID-19), primarily presenting with respiratory symptoms, including cough, shortness of breath, etc. Respiratory failure can present similarly to a COVID-19 infection, and COVID-19 infection can cause respiratory failure. Thus, it is important to study respiratory failure, COVID-19, and the interaction between the two in hopes of improving patient outcomes. In this study, we compared mortality rates in patients admitted with COVID-19, respiratory failure, or both. Mortality rates in our study populations were further scrutinized based on patient age. Materials and methods Respiratory failure and COVID-19 data were collected via the electronic medical records system at Freeman Health System, a 410-bed, rural hospital, in Neosho and Joplin, Missouri, from April 2020 through December 2021. The patient population included all patients admitted to the hospital with a diagnosis of COVID-19 or respiratory failure, as defined by the International Classification of Disease, Tenth Revision (ICD-10). Patients with or without COVID-19, with or without respiratory failure, and patients with respiratory failure with COVID-19 were included. Results There was a significant increase in mortality (17.28%) in patients with COVID-19 and respiratory failure (P1) compared to patients with COVID-19 who did not have respiratory failure (P2). No significance was found when comparing patients with COVID-19 and respiratory failure (P1) and patients with respiratory failure without COVID-19 (P3) (p value=0.4921). In contrast, when divided based on age, we found a significant increase in mortality in patients 65 and older with COVID-19 and respiratory failure compared to patients 65 and older with respiratory failure who did not have COVID-19 (P5). There were no significant mortality increases in other comparisons. Conclusion When comparing patient populations within the Freeman Health System, patients with COVID-19 and respiratory failure had similar mortality rates as those with respiratory failure without COVID-19, while patients with only COVID-19 had a markedly reduced mortality rate, relatively. The higher mortality rates in patients with only respiratory failure when compared to patients with both respiratory failure and COVID-19 indicate that the presence of respiratory failure likely plays a bigger role in the inflammatory response that reduces one's chance of survival in this setting. Furthermore, age was shown to be a significant risk factor as patients aged 65 and older showed a greater mortality rate when patients had both COVID-19 and respiratory failure compared to patients with both conditions below the age of 65. The decrease in immune response that results in older patients is likely the largest contributing factor along with the increased likelihood of patients in this population also having more comorbidities, further decreasing the chance of survival. Future studies can investigate alternate treatment plans for patients aged 65 and older who are at higher risk of mortality with COVID-19 and respiratory failure.
Collapse
Affiliation(s)
| | | | | | | | - Robert D Arnce
- Primary Care, Kansas City University, Joplin, USA
- Emergency Medicine, Freeman Health System, Joplin, USA
| | | | - Dennis W Wolff
- Basic Sciences and Pharmacology, Kansas City University, Joplin, USA
| | - Greg Stahl
- Statistics, Freeman Health System, Joplin, USA
| | - Kerry Johnson
- Mathematics, Missouri Southern State University, Joplin, USA
| | - Scott Goade
- Clinical Pharmacy, Freeman Health System, Joplin, USA
- Medicine, Kansas City University, Joplin, USA
| |
Collapse
|
39
|
Flamier A, Bisht P, Richards A, Tomasello DL, Jaenisch R. Human iPS cell-derived sensory neurons can be infected by SARS-CoV-2. iScience 2023; 26:107690. [PMID: 37680484 PMCID: PMC10480666 DOI: 10.1016/j.isci.2023.107690] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
COVID-19 has impacted billions of people since 2019 and unfolded a major healthcare crisis. With an increasing number of deaths and the emergence of more transmissible variants, it is crucial to better understand the biology of the disease-causing virus, the SARS-CoV-2. Peripheral neuropathies appeared as a specific COVID-19 symptom occurring at later stages of the disease. In order to understand the impact of SARS-CoV-2 on the peripheral nervous system, we generated human sensory neurons from induced pluripotent stem cells that we infected with the SARS-CoV-2 strain WA1/2020 and the variants delta and omicron. Using single-cell RNA sequencing, we found that human sensory neurons can be infected by SARS-CoV-2 but are unable to produce infectious viruses. Our data indicate that sensory neurons can be infected by the original WA1/2020 strain of SARS-CoV-2 as well as the delta and omicron variants, yet infectability differs between the original strain and the variants.
Collapse
Affiliation(s)
- Anthony Flamier
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Punam Bisht
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
40
|
Ojeda-Fernández L, Baviera M, Foresta A, Tettamanti M, Zambon A, Macaluso G, Schena S, Leoni O, Fortino I, Roncaglioni MC, Parati G. Impact of first and second/third wave of COVID-19 pandemic on post-acute cardiovascular outcomes in Lombardy. Front Cardiovasc Med 2023; 10:1244002. [PMID: 37781303 PMCID: PMC10536134 DOI: 10.3389/fcvm.2023.1244002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Background COVID-19 has been associated with a higher risk of post-acute complications. Our aim was to analyze and compare post-acute cardiovascular complications of COVID-19 survivors of the first and second/third pandemic waves in Lombardy, in both hospitalized and non-hospitalized COVID-19 patients. Methods and results We included adults aged ≥40 years infected during the first and second/third waves of COVID-19 pandemic. The follow-up initiated 30 days after COVID-19 diagnosis and continued up to 9 months. Hazard ratios (HRs) and 95% confidence intervals (CIs) of the post-acute cardiovascular outcomes were calculated against an inverse probability treatment weighted control group. Subgroup analysis were performed by age classes, sex, previous cardiovascular disease and stratified by COVID-19 hospitalization status to explore the impact of COVID-19 severity on outcomes. Compared to the control group, COVID-19 patients had an increased risk of hospitalization for any cardiovascular complications (HR 1st wave 1.53 95% CI: 1.38-1.69; HR 2nd/3rd wave 1.25 95% CI: 1.19-1.31) and for individual cardiovascular outcomes, although HRs were higher in COVID-19 group from the 1st pandemic wave. The results were confirmed in the subgroup analyses. Of note, the risk for any cardiovascular disease was also evident even among individuals who were not hospitalized during the acute phase of the infection. Conclusion Our results provide evidence that COVID-19 is a risk factor for post-acute cardiovascular complications among different pandemic waves regardless of COVID-19 severity, age, sex and a history of cardiovascular diseases. Care strategies of people with COVID-19 should include cardiac monitoring.
Collapse
Affiliation(s)
- Luisa Ojeda-Fernández
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marta Baviera
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Andreana Foresta
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mauro Tettamanti
- Laboratory of Geriatric Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Antonella Zambon
- Department of Statistics and Quantitative Methods, University of Milano Bicocca, Milan, Italy
| | - Giulia Macaluso
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Simone Schena
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Olivia Leoni
- Unità Organizzativa Osservatorio Epidemiologico Regionale, Lombardy Region, Milan, Italy
| | - Ida Fortino
- Unità Organizzativa Osservatorio Epidemiologico Regionale, Lombardy Region, Milan, Italy
| | - Maria Carla Roncaglioni
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianfranco Parati
- Department of Cardiology, Ospedale San Luca, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, Ospedale San Luca, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
41
|
Ogarek N, Oboza P, Olszanecka-Glinianowicz M, Kocelak P. SARS-CoV-2 infection as a potential risk factor for the development of cancer. Front Mol Biosci 2023; 10:1260776. [PMID: 37753372 PMCID: PMC10518417 DOI: 10.3389/fmolb.2023.1260776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
The COVID-19 pandemic has a significant impact on public health and the estimated number of excess deaths may be more than three times higher than documented in official statistics. Numerous studies have shown an increased risk of severe COVID-19 and death in patients with cancer. In addition, the role of SARS-CoV-2 as a potential risk factor for the development of cancer has been considered. Therefore, in this review, we summarise the available data on the potential effects of SARS-CoV-2 infection on oncogenesis, including but not limited to effects on host signal transduction pathways, immune surveillance, chronic inflammation, oxidative stress, cell cycle dysregulation, potential viral genome integration, epigenetic alterations and genetic mutations, oncolytic effects and reactivation of dormant cancer cells. We also investigated the potential long-term effects and impact of the antiviral therapy used in COVID-19 on cancer development and its progression.
Collapse
Affiliation(s)
- Natalia Ogarek
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Paulina Oboza
- Students’ Scientific Society at the Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Piotr Kocelak
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| |
Collapse
|
42
|
Ramirez F, Zambrano A, Hennis R, Holland N, Lakshmanaswamy R, Chacon J. Sending a Message: Use of mRNA Vaccines to Target the Tumor Immune Microenvironment. Vaccines (Basel) 2023; 11:1465. [PMID: 37766141 PMCID: PMC10534833 DOI: 10.3390/vaccines11091465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
While cancer immunotherapies have become central to treatment, challenges associated with the ability of tumors to evade the immune system remain significant obstacles. At the heart of this issue is the tumor immune microenvironment, the complex interplay of the tumor microenvironment and the immune response. Recent advances in mRNA cancer vaccines represent major progress towards overcoming some of the challenges posed by deleterious components of the tumor immune microenvironment. Indeed, major breakthroughs in mRNA vaccine technology, such as the use of replacement nucleotides and lipid nanoparticle delivery, led to the vital success of mRNA vaccine technology in fighting COVID-19. This has in turn generated massive additional interest and investment in the platform. In this review, we detail recent research in the nature of the tumor immune microenvironment and in mRNA cancer vaccines and discuss applications by which mRNA cancer vaccines, often in combination with various adjuvants, represent major areas of potential in overcoming tumor immune microenvironment-imposed obstacles. To this end, we also review current mRNA cancer vaccine clinical trials.
Collapse
Affiliation(s)
- Fabiola Ramirez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Angelica Zambrano
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Robert Hennis
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Nathan Holland
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Rajkumar Lakshmanaswamy
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| |
Collapse
|
43
|
Kurbel S. Jerne's "immune network theory", of interacting anti-idiotypic antibodies applied to immune responses during COVID-19 infection and after COVID-19 vaccination. Bioessays 2023; 45:e2300071. [PMID: 37300287 DOI: 10.1002/bies.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Niels Kaj Jerne has proposed the "immune network theory" of interactions among anti-idiotypic antibodies, able to interfere with humoral responses to certain antigens. After the occurrence of the primary generation of antibodies, against an antigenic epitope, idiotypes of these antibodies induce anti-idiotypic antibodies that modulate the intensity of the first response, and so on. Adverse effects following SARS-COV-2 COVID-19 vaccines are occasionally similar to the symptoms of COVID-19 infection. Rare events linked to SARS-CoV-2 vaccines also resemble some rarely reported COVID-19 complications. Safety data from product information by European Medicines Agency suggest that spectra do overlap for four main vaccines. The proposition is that vaccine events and COVID-19 complications are related to anti-idiotypic antibodies whose spatial shape can lead to interactions with ACE2 molecules, in individuals with a prolonged Spike protein synthesis. The vaccines target cells by their affinity to the vaccine vector, or to engulf lipid nanoparticles. Anti-idiotypic antibodies shaped similarly to the Spike protein possibly interact with ACE2 molecules and cause diverse signs and symptoms.
Collapse
Affiliation(s)
- Sven Kurbel
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Medical Faculty, Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
44
|
Seaman WT, Keener O, Mei W, Mollan KR, Jones CD, Pettifor A, Bowman NM, Wang F, Webster-Cyriaque J. Oral SARS-CoV-2 host responses predict the early COVID-19 disease course. RESEARCH SQUARE 2023:rs.3.rs-3154698. [PMID: 37645853 PMCID: PMC10462189 DOI: 10.21203/rs.3.rs-3154698/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Objectives Oral fluids provide ready detection of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host responses. This study sought to determine relationships between oral virus, oral anti-SARS-CoV-2-specific antibodies, and symptoms. Methods Saliva/throat wash (saliva/TW) were collected from asymptomatic and symptomatic, nasopharyngeal (NP) SARS-CoV-2 RT-qPCR+, subjects (n=47). SARS-CoV-2 RT-qPCR, N-antigen detection by immunoblot and lateral flow assay (LFA) were performed. RT-qPCR targeting viral subgenomic RNA (sgRNA) was sequence confirmed. SARS-CoV-2-anti-S protein RBD LFA assessed IgM and IgG responses. Structural analysis identified host salivary molecules analogous to SARS-CoV-2-N-antigen. Statistical analyses were performed. Results At baseline, LFA-detected N-antigen was immunoblot-confirmed in 82% of TW. However, only 3/17 were saliva/TW qPCR+. Sixty percent of saliva and 83% of TW demonstrated persistent N-antigen at 4 weeks. N-antigen LFA signal in three negative subjects suggested potential cross-detection of 4 structurally analogous salivary RNA binding proteins (alignment 19-29aa, RMSD 1-1.5 Angstroms). At entry, symptomatic subjects demonstrated replication-associated sgRNA junctions, were IgG+ (94%/100% in saliva/TW), and IgM+ (75%/63%). At 4 weeks, SARS-CoV-2 IgG (100%/83%) and IgM (80%/67%) persisted. Oral IgG correlated 100% with NP+PCR status. Cough and fatigue severity (p=0.0008 and 0.016), and presence of nausea, weakness, and composite upper respiratory symptoms (p=0.005, 0.037 and 0.017) were negatively associated with oral IgM. Female oral IgM levels were higher than male (p=0.056). Conclusion Important to transmission and disease course, oral viral replication and persistence showed clear relationships with select symptoms, early Ig responses, and gender during early infection. N-antigen cross-reactivity may reflect mimicry of structurally analogous host proteins.
Collapse
Affiliation(s)
- William T Seaman
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Seaman WT, Keener O, Mei W, Mollan KR, Jones CD, Pettifor A, Bowman NM, Wang F, Webster-Cyriaque J. Oral SARS-CoV-2 host responses predict the early COVID-19 disease course. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286853. [PMID: 37609199 PMCID: PMC10441495 DOI: 10.1101/2023.03.06.23286853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Objectives Oral fluids provide ready detection of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host responses. This study sought to determine relationships between oral virus, oral anti-SARS-CoV-2-specific antibodies, and symptoms. Methods Saliva/throat wash (saliva/TW) were collected from asymptomatic and symptomatic, nasopharyngeal (NP) SARS-CoV-2 RT-qPCR+, subjects (n=47). SARS-CoV-2 RT-qPCR, N-antigen detection by immunoblot and lateral flow assay (LFA) were performed. RT-qPCR targeting viral subgenomic RNA (sgRNA) was sequence confirmed. SARS-CoV-2-anti-S protein RBD LFA assessed IgM and IgG responses. Structural analysis identified host salivary molecules analogous to SARS-CoV-2-N-antigen. Statistical analyses were performed. Results At baseline, LFA-detected N-antigen was immunoblot-confirmed in 82% of TW. However, only 3/17 were saliva/TW qPCR+. Sixty percent of saliva and 83% of TW demonstrated persistent N-antigen at 4 weeks. N-antigen LFA signal in three negative subjects suggested potential cross-detection of 4 structurally analogous salivary RNA binding proteins (alignment 19-29aa, RMSD 1-1.5 Angstroms). At entry, symptomatic subjects demonstrated replication-associated sgRNA junctions, were IgG+ (94%/100% in saliva/TW), and IgM+ (75%/63%). At 4 weeks, SARS-CoV-2 IgG (100%/83%) and IgM (80%/67%) persisted. Oral IgG correlated 100% with NP+PCR status. Cough and fatigue severity (p=0.0008 and 0.016), and presence of nausea, weakness, and composite upper respiratory symptoms (p=0.005, 0.037 and 0.017) were negatively associated with oral IgM. Female oral IgM levels were higher than male (p=0.056). Conclusion Important to transmission and disease course, oral viral replication and persistence showed clear relationships with select symptoms, early Ig responses, and gender during early infection. N-antigen cross-reactivity may reflect mimicry of structurally analogous host proteins.
Collapse
|
46
|
Tijmes FS, Marschner C, Thavendiranathan P, Hanneman K. Magnetic Resonance Imaging of Cardiovascular Manifestations Following COVID-19. J Magn Reson Imaging 2023; 58:26-43. [PMID: 36951477 DOI: 10.1002/jmri.28677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
Globally, over 650 million people have had COVID-19 due to infection with the SARS-Cov-2 virus. Cardiac complications in the acute infectious and early recovery phase were recognized early in the pandemic, including myocardial injury and inflammation. With a decrease in the number of acute COVID-19 related deaths, there has been increased interest in postacute sequela of COVID-19 (PASC) and other longer-term cardiovascular complications. A proportion of patients recovered from COVID-19 have persistent cardiac symptoms and are at risk of cardiovascular disease. Cardiovascular imaging, including MRI, plays an important role in the detection of cardiovascular manifestations of COVID-19 in both the acute and longer-term phases after COVID-19. The purpose of this review is to highlight the role of cardiovascular imaging in the diagnosis and risk stratification of patients with acute and chronic cardiovascular manifestations of COVID-19 with a focus on cardiac MRI. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Felipe Sanchez Tijmes
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile
| | - Constantin Marschner
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile
| | - Paaladinesh Thavendiranathan
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Banoun H. mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues. Int J Mol Sci 2023; 24:10514. [PMID: 37445690 DOI: 10.3390/ijms241310514] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 vaccines were developed and approved rapidly in response to the urgency created by the pandemic. No specific regulations existed at the time they were marketed. The regulatory agencies therefore adapted them as a matter of urgency. Now that the pandemic emergency has passed, it is time to consider the safety issues associated with this rapid approval. The mode of action of COVID-19 mRNA vaccines should classify them as gene therapy products (GTPs), but they have been excluded by regulatory agencies. Some of the tests they have undergone as vaccines have produced non-compliant results in terms of purity, quality and batch homogeneity. The wide and persistent biodistribution of mRNAs and their protein products, incompletely studied due to their classification as vaccines, raises safety issues. Post-marketing studies have shown that mRNA passes into breast milk and could have adverse effects on breast-fed babies. Long-term expression, integration into the genome, transmission to the germline, passage into sperm, embryo/fetal and perinatal toxicity, genotoxicity and tumorigenicity should be studied in light of the adverse events reported in pharmacovigilance databases. The potential horizontal transmission (i.e., shedding) should also have been assessed. In-depth vaccinovigilance should be carried out. We would expect these controls to be required for future mRNA vaccines developed outside the context of a pandemic.
Collapse
|
48
|
Lafon-Hughes L. Towards Understanding Long COVID: SARS-CoV-2 Strikes the Host Cell Nucleus. Pathogens 2023; 12:806. [PMID: 37375496 PMCID: PMC10301789 DOI: 10.3390/pathogens12060806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite what its name suggests, the effects of the COVID-19 pandemic causative agent "Severe Acute Respiratory Syndrome Coronavirus-2" (SARS-CoV-2) were not always confined, neither temporarily (being long-term rather than acute, referred to as Long COVID) nor spatially (affecting several body systems). Moreover, the in-depth study of this ss(+) RNA virus is defying the established scheme according to which it just had a lytic cycle taking place confined to cell membranes and the cytoplasm, leaving the nucleus basically "untouched". Cumulative evidence shows that SARS-CoV-2 components disturb the transport of certain proteins through the nuclear pores. Some SARS-CoV-2 structural proteins such as Spike (S) and Nucleocapsid (N), most non-structural proteins (remarkably, Nsp1 and Nsp3), as well as some accessory proteins (ORF3d, ORF6, ORF9a) can reach the nucleoplasm either due to their nuclear localization signals (NLS) or taking a shuttle with other proteins. A percentage of SARS-CoV-2 RNA can also reach the nucleoplasm. Remarkably, controversy has recently been raised by proving that-at least under certain conditions-, SARS-CoV-2 sequences can be retrotranscribed and inserted as DNA in the host genome, giving rise to chimeric genes. In turn, the expression of viral-host chimeric proteins could potentially create neo-antigens, activate autoimmunity and promote a chronic pro-inflammatory state.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay; ; Tel.: +598-2-93779096
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República (CENUR-UdelaR), Salto 50000, Uruguay
| |
Collapse
|
49
|
Parida VK, Saidulu D, Bhatnagar A, Gupta AK, Afzal MS. A critical assessment of SARS-CoV-2 in aqueous environment: Existence, detection, survival, wastewater-based surveillance, inactivation methods, and effective management of COVID-19. CHEMOSPHERE 2023; 327:138503. [PMID: 36965534 PMCID: PMC10035368 DOI: 10.1016/j.chemosphere.2023.138503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 06/01/2023]
Abstract
In early January 2020, the causal agent of unspecified pneumonia cases detected in China and elsewhere was identified as a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was the major cause of the COVID-19 outbreak. Later, the World Health Organization (WHO) proclaimed the COVID-19 pandemic a worldwide public health emergency on January 30, 2020. Since then, many studies have been published on this topic. In the present study, bibliometric analysis has been performed to analyze the research hotspots of the coronavirus. Coronavirus transmission, detection methods, potential risks of infection, and effective management practices have been discussed in the present review. Identification and quantification of SARS-CoV-2 viral loads in various water matrices have been reviewed. It was observed that the viral shedding through urine and feces of COVID-19-infected patients might be a primary mode of SARS-CoV-2 transmission in water and wastewater. In this context, the present review highlights wastewater-based epidemiology (WBE)/sewage surveillance, which can be utilized as an effective tool for tracking the transmission of COVID-19. This review also emphasizes the role of different disinfection techniques, such as chlorination, ultraviolet irradiation, and ozonation, for the inactivation of coronavirus. In addition, the application of computational modeling methods has been discussed for the effective management of COVID-19.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland.
| | - Ashok Kumar Gupta
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Mohammad Saud Afzal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
50
|
Abduljalil JM, Elghareib AM, Samir A, Ezat AA, Elfiky AA. How helpful were molecular dynamics simulations in shaping our understanding of SARS-CoV-2 spike protein dynamics? Int J Biol Macromol 2023:125153. [PMID: 37268078 DOI: 10.1016/j.ijbiomac.2023.125153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
The SARS-CoV-2 spike protein (S) represents an important viral component that is required for successful viral infection in humans owing to its essential role in recognition of and entry to host cells. The spike is also an appealing target for drug designers who develop vaccines and antivirals. This article is important as it summarizes how molecular simulations successfully shaped our understanding of spike conformational behavior and its role in viral infection. MD simulations found that the higher affinity of SARS-CoV-2-S to ACE2 is linked to its unique residues that add extra electrostatic and van der Waal interactions in comparison to the SARS-CoV S. This illustrates the spread potential of the pandemic SARS-CoV-2 relative to the epidemic SARS-CoV. Different mutations at the S-ACE2 interface, which is believed to increase the transmission of the new variants, affected the behavior and binding interactions in different simulations. The contributions of glycans to the opening of S were revealed via simulations. The immune evasion of S was linked to the spatial distribution of glycans. This help the virus to escape the immune system recognition. This article is important as it summarizes how molecular simulations successfully shaped our understanding of spike conformational behavior and its role in viral infection. This will pave the way to us preparing for the next pandemic as the computational tools are tailored to help fight new challenges.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, Dhamar, Yemen; Department of Botany and Microbiology, College of Science, Cairo University, Giza, Egypt
| | - Ahmed M Elghareib
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Samir
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A Ezat
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|