1
|
Malmberg JL, Alder J, Killion H, Buttke D, Pepin KM, Wittemyer G. Cross-Species Transmission at the Wildlife-Livestock Interface: A Case Study of Epidemiological Inference From Mule Deer GPS Collar Data. Ecol Evol 2025; 15:e71182. [PMID: 40225894 PMCID: PMC11985357 DOI: 10.1002/ece3.71182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/31/2025] [Accepted: 03/15/2025] [Indexed: 04/15/2025] Open
Abstract
In the current era of global change, the emergence of infectious diseases at the wildlife-livestock interface poses risks to biodiversity, agricultural economies, and public health. Driven by anthropogenic influence, increased sharing of resources between wildlife and livestock can promote cross-species transmission, the consequences of which are challenging to predict. Mycoplasma bovis , an economically important bacterial pathogen in cattle, has recently emerged as a threat to other ungulate species. This study reports on a case of M. bovis in an intensively monitored free-ranging mule deer (Odocoileus hemionus ) in Colorado, USA, which presented an opportunity to describe the disease in a novel host and infer transmission and infection dynamics from GPS collar data. Following a mortality signal from a GPS-collared adult female mule deer, field investigation revealed predation while postmortem examination further revealed severe, acute, fibrinosuppurative and necrotizing pleuropneumonia. Histopathological analysis, immunohistochemistry, and real-time PCR confirmed M. bovis as the etiology. GPS collar data demonstrated spatial overlap with dairy cattle in the 50 days prior to death, implicating potential spillover from cattle as the transmission pathway. Reduced movement was identified 19 days prior to death, indicative of sickness behavior due to acute pneumonia. This case underscores the potential for M. bovis to cause severe disease in wild ungulates and highlights the value of thorough postmortem investigations as a routine component of studies involving wildlife tracking. The retrospective use of GPS collar data provides valuable insights into the movement ecology of wildlife exposed to novel pathogens, aiding in the understanding of cross-species transmission and informing management strategies to reduce the potential for spillover.
Collapse
Affiliation(s)
- Jennifer L. Malmberg
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureFort CollinsColoradoUSA
| | - Jeremy Alder
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | | | - Danielle Buttke
- Biological Resources DivisionNational Park ServiceFort CollinsColoradoUSA
| | - Kim M. Pepin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureFort CollinsColoradoUSA
| | - George Wittemyer
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
2
|
Hewitt J, Wilson-Henjum G, Chandler JC, Phillips AT, Diel DG, Walter WD, Baker A, Høy-Petersen J, Bastille-Rousseau G, Kishimoto T, Wittemyer G, Alder J, Hathaway S, Manlove KR, Gallo T, Mullinax J, Coriell C, Payne M, Craft ME, Garwood TJ, Wolf TM, Diuk-Wasser MA, VanAcker MC, Plimpton LD, Wilber MQ, Grove D, Kosiewska J, Muller LI, Pepin KM. Evaluation of SARS-CoV-2 antibody detection methods for wild Cervidae. Prev Vet Med 2025; 241:106522. [PMID: 40288233 DOI: 10.1016/j.prevetmed.2025.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Wildlife surveillance programs often use serological data to monitor exposure to pathogens. Diagnostic sensitivity and specificity of a serological assay quantify the true positive and negative rates of the diagnostic assay, respectively. However, an assay's accuracy can be affected by wild animals' pathogen exposure history and quality of the sample collected, requiring separate estimates of an assay's detection ability for wild-sampled animals where an animal's true disease status is unknown (referred to hereafter as sampling sensitivity and specificity). We assessed the sampling sensitivity and specificity of a Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) surrogate virus neutralization test (sVNT) and conventional virus neutralization tests (cVNT) to detect antibodies for ancestral and Omicron B.1.1.529 variants of SARS-CoV-2 in wild white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus). We studied the influence of sample collection method using paired blood samples collected in serum separator tubes and on Nobuto strips from the same animal. Mean estimates of sampling sensitivity and specificity ranged from 0.21-0.95 and 0.94-1.00, respectively, varying by sample collection method, host species, and SARS-CoV-2 variant targeted by the assay. Broadly, sampling sensitivity was estimated to be higher for 1) sera collected in tubes, 2) detecting pre-Omicron SARS-CoV-2 variants, and 3) sVNT relative to cVNT assays. Sampling specificity tended to be high for all tests. We augmented our study with SARS-CoV-2 spike protein sequences derived from sampling locations and times coincident with white-tailed deer captures, finding common amino acid mutations relative to the sVNT Omicron antigen variant. The mutations may indicate that the SARS-CoV-2 variants circulating in cervids from 2021 through 2024 may be better adapted to cervid hosts and more closely related to variants that circulated in humans prior to Omicron variants. We conclude our study with an inter-test comparison of sVNT results, revealing that 40 % inhibition is an optimal threshold for test positivity when testing deer sera for responses to Omicron variant B.1.1.529, compared to the 30 % inhibition recommended for ancestral variants.
Collapse
Affiliation(s)
- Joshua Hewitt
- Department of Wildland Resources and Ecology Center, Utah State University, 5230 Old Main Hill, Logan, UT 84322, USA
| | - Grete Wilson-Henjum
- Department of Wildland Resources and Ecology Center, Utah State University, 5230 Old Main Hill, Logan, UT 84322, USA.
| | - Jeffrey C Chandler
- Wildlife Disease Diagnostic Laboratory, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Aaron T Phillips
- Wildlife Disease Diagnostic Laboratory, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - W David Walter
- US Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, 403 Forest Resources Bldg., University Park, PA 16802, USA
| | - Alec Baker
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, 413 Forest Resources Bldg., University Park, PA 16802, USA
| | | | - Guillaume Bastille-Rousseau
- Cooperative Wildlife Research Laboratory, Southern Illinois University, 1263 Lincoln Dr., Carbondale, IL 62901, USA
| | - Tadao Kishimoto
- Cooperative Wildlife Research Laboratory, Southern Illinois University, 1263 Lincoln Dr., Carbondale, IL 62901, USA
| | - George Wittemyer
- Department of Fish, Wildlife and Conservation Biollogy, Colorado State University, 1474 Campus Delivery, Fort Collins, CO 80523, USA
| | - Jeremy Alder
- Department of Fish, Wildlife and Conservation Biollogy, Colorado State University, 1474 Campus Delivery, Fort Collins, CO 80523, USA
| | - Sara Hathaway
- Department of Fish, Wildlife and Conservation Biollogy, Colorado State University, 1474 Campus Delivery, Fort Collins, CO 80523, USA
| | - Kezia R Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5230 Old Main Hill, Logan, UT 84322, USA
| | - Travis Gallo
- Department of Environmental Sciences and Technology, University of Maryland, College Park, MD 20742, USA
| | - Jennifer Mullinax
- Department of Environmental Sciences and Technology, University of Maryland, College Park, MD 20742, USA
| | - Carson Coriell
- Department of Environmental Sciences and Technology, University of Maryland, College Park, MD 20742, USA
| | - Matthew Payne
- Department of Environmental Sciences and Technology, University of Maryland, College Park, MD 20742, USA
| | - Meggan E Craft
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 340 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Tyler J Garwood
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 340 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Tiffany M Wolf
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Saint Paul, MN 55108, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Meredith C VanAcker
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA; Global Health Program, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Laura Dudley Plimpton
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Daniel Grove
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Justin Kosiewska
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Lisa I Muller
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Kim M Pepin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| |
Collapse
|
3
|
Loy DS, Birn R, Poonsuk K, Tegomoh B, Bartling A, Wiley MR, Loy JD. SARS-CoV-2 surveillance and detection in wild, captive, and domesticated animals in Nebraska: 2021-2023. Front Vet Sci 2025; 11:1496207. [PMID: 39830165 PMCID: PMC11739072 DOI: 10.3389/fvets.2024.1496207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Widespread surveillance for SARS-CoV-2 was conducted across wildlife, captive animals in zoological collections, and domestic cats in Nebraska from 2021 to 2023. The goal of this effort was to determine the prevalence, phylogenetic and spatial distribution characteristics of circulating SARS-CoV-2 variants using various diagnostic methodologies that can utilize both antemortem and postmortem samples, which may be required for wildlife such as white-tailed deer. Statewide surveillance testing revealed high variation in SARS-CoV-2 prevalence among species, with white-tailed deer identified as the primary reservoir. In 2021, seroprevalence in white-tailed deer was 63.73% (n = 91) and 39.66% (n = 237) in 2022, while virus detection in retropharyngeal lymph nodes (RLN) was 16.35% (n = 483) in 2021 and 3.61% (n = 277) in 2022. Phylogenetic analysis was conducted on 11 positive samples from 2021. This analysis revealed the presence of four lineages of the Delta variant: AY.100, AY.119, AY.3, and AY.46.4. Conversely, other species showed no virus detection, except domestic cats, which had a low seroprevalence of 2.38% (n = 628) in 2022, indicating minimal exposure. The detection of SARS-CoV-2 in white-tailed deer and the identification of multiple Delta lineages underscores the need for ongoing surveillance and the importance of using different diagnostic methodologies. These efforts are critical for understanding virus circulation and evolution in wildlife and domestic animals, informing public health strategies, and mitigating the risks of zoonotic transmission of SARS-CoV-2 and other emerging infectious diseases.
Collapse
Affiliation(s)
- Duan Sriyotee Loy
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rachael Birn
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Korakrit Poonsuk
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- Washington Animal Disease Diagnostic Laboratory, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Bryan Tegomoh
- Division of Public Health, Nebraska Department of Health and Human Services, Lincoln, NE, United States
| | - Amanda Bartling
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael R. Wiley
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - John Dustin Loy
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
4
|
Marques AD, Hogenauer M, Bauer N, Gibison M, DeMarco B, Sherrill-Mix S, Merenstein C, Collman RG, Gagne RB, Bushman FD. Evolution of SARS-CoV-2 in white-tailed deer in Pennsylvania 2021-2024. PLoS Pathog 2025; 21:e1012883. [PMID: 39854608 PMCID: PMC11781694 DOI: 10.1371/journal.ppat.1012883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/30/2025] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
SARS-CoV-2 continues to transmit and evolve in humans and animals. White-tailed deer (Odocoileus virginianus) have been previously identified as a zoonotic reservoir for SARS-CoV-2 with high rates of infection and probable spillback into humans. Here we report sampling 1,127 white-tailed deer (WTD) in Pennsylvania, and a genomic analysis of viral dynamics spanning 1,017 days between April 2021 and January 2024. To assess viral load and genotypes, RNA was isolated from retropharyngeal lymph nodes and analyzed using RT-qPCR and viral whole genome sequencing. Samples showed a 14.64% positivity rate by RT-qPCR. Analysis showed no association of SARS-CoV-2 prevalence with age, sex, or diagnosis with Chronic Wasting Disease. From the 165 SARS-CoV-2 positive WTD, we recovered 25 whole genome sequences and an additional 17 spike-targeted amplicon sequences. The viral variants identified included 17 Alpha, 11 Delta, and 14 Omicron. Alpha largely stopped circulating in humans around September 2021, but persisted in WTD as recently as March of 2023. Phylodynamic analysis of pooled genomic data from Pennsylvania documents at least 12 SARS-CoV-2 spillovers from humans into WTD, including a recent series of Omicron spillovers. Prevalence was higher in WTD in regions with crop coverage rather than forest, suggesting an association with proximity to humans. Analysis of seasonality showed increased prevalence in winter and spring. Multiple examples of recurrent mutations were identified associated with transmissions, suggesting WTD-specific evolutionary pressures. These data document ongoing infections in white-tailed deer, probable onward transmission in deer, and a remarkable rate of new spillovers from humans.
Collapse
Affiliation(s)
- Andrew D. Marques
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew Hogenauer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Natalie Bauer
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Michelle Gibison
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Beatrice DeMarco
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Scott Sherrill-Mix
- Department of Microbiology, Genetics, and Immunology, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald G. Collman
- Division of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania, United States of America
| | - Roderick B. Gagne
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Grace SG, Wilson KN, Dorleans R, White ZS, Pu R, Gaudreault NN, Cool K, Campos Krauer JM, Franklin LE, Clemons BC, Subramaniam K, Richt JA, Lednicky JA, Long MT, Wisely SM. Low Prevalence of SARS-CoV-2 in Farmed and Free-Ranging White-Tailed Deer in Florida. Viruses 2024; 16:1886. [PMID: 39772194 PMCID: PMC11680379 DOI: 10.3390/v16121886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population. Between 2020 and 2022, we collected respiratory swabs (N = 366), lung tissue (N = 245), retropharyngeal lymph nodes (N = 491), and serum specimens (N = 381) from 410 farmed and 524 free-ranging WTD. Specimens were analyzed using RT-qPCR for infection and serological assays for exposure. SARS-CoV-2 infection was detected in less than 1% of both northern Florida farmed (0.85%) and free-ranging (0.76%) WTD. No farmed deer possessed virus-neutralizing antibodies, while one free-ranging WTD tested positive for SARS-CoV-2 antibodies (3.45%). Viral sequences in infected WTD matched peaks in human cases and circulating variants, indicating human-to-deer spillover but at a lower frequency than reported elsewhere. Our findings suggest a reduced risk of SARS-CoV-2 spillover to WTD in northern Florida compared to other regions, highlighting the need for further research on transmission dynamics across North America.
Collapse
Affiliation(s)
- Savannah G. Grace
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (S.G.G.); (K.N.W.); (R.D.); (Z.S.W.); (L.E.F.)
| | - Kristen N. Wilson
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (S.G.G.); (K.N.W.); (R.D.); (Z.S.W.); (L.E.F.)
| | - Rayann Dorleans
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (S.G.G.); (K.N.W.); (R.D.); (Z.S.W.); (L.E.F.)
| | - Zoe S. White
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (S.G.G.); (K.N.W.); (R.D.); (Z.S.W.); (L.E.F.)
| | - Ruiyu Pu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (R.P.); (K.S.); (J.A.L.); (M.T.L.)
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (N.N.G.); (K.C.); (J.A.R.)
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (N.N.G.); (K.C.); (J.A.R.)
| | - Juan M. Campos Krauer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Laura E. Franklin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (S.G.G.); (K.N.W.); (R.D.); (Z.S.W.); (L.E.F.)
| | - Bambi C. Clemons
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL 32601, USA;
| | - Kuttichantran Subramaniam
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (R.P.); (K.S.); (J.A.L.); (M.T.L.)
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (N.N.G.); (K.C.); (J.A.R.)
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (R.P.); (K.S.); (J.A.L.); (M.T.L.)
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
| | - Maureen T. Long
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (R.P.); (K.S.); (J.A.L.); (M.T.L.)
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (S.G.G.); (K.N.W.); (R.D.); (Z.S.W.); (L.E.F.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (R.P.); (K.S.); (J.A.L.); (M.T.L.)
| |
Collapse
|
6
|
Lucero Arteaga F, Nabaes Jodar M, Mondino M, Portu A, Boeris M, Jolly A, Jar A, Mundo S, Castro E, Alvarez D, Torres C, Viegas M, Bratanich A. An Outbreak of SARS-CoV-2 in Captive Armadillos Associated with Gamma Variant in Argentina. ECOHEALTH 2024; 21:183-194. [PMID: 38844740 DOI: 10.1007/s10393-024-01686-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 12/17/2024]
Abstract
The current pandemic produced by SARS-CoV-2 and its variants represent an example of the one health concept in which humans and animals are components of the same epidemiologic chain. Animal reservoirs of these viruses are thus the focus of surveillance programs, to monitor their circulation and evolution in potentially new hosts and reservoirs. In this work, we report the detection of the SARS-CoV-2 Gamma variant infection in four specimens of Chaetophractus villosus (big hairy armadillo/armadillo peludo) in Argentina. In addition to the finding of a new wildlife species susceptible to SARS-CoV-2 infection, the identification of the Gamma variant three months after its last detection in humans in Argentina is a noteworthy result, which can be due to alternative non-exclusive scenarios, such as unidentified viral reservoirs, unrecognized circulation in humans or species-specific variation in incubation periods.
Collapse
Affiliation(s)
- Franco Lucero Arteaga
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
- CIDEF (Centro de Investigación y Desarrollo de Fármacos) y Bioterio, Facultad de Ciencias Veterinarias UNLPam, La Pampa, Argentina
| | - Mercedes Nabaes Jodar
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
- Laboratorio de Virología Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD CABA, Buenos Aires, Argentina
| | - Mariela Mondino
- CIDEF (Centro de Investigación y Desarrollo de Fármacos) y Bioterio, Facultad de Ciencias Veterinarias UNLPam, La Pampa, Argentina
| | - Ana Portu
- CIDEF (Centro de Investigación y Desarrollo de Fármacos) y Bioterio, Facultad de Ciencias Veterinarias UNLPam, La Pampa, Argentina
| | - Mónica Boeris
- CIDEF (Centro de Investigación y Desarrollo de Fármacos) y Bioterio, Facultad de Ciencias Veterinarias UNLPam, La Pampa, Argentina
| | - Ana Jolly
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Buenos Aires, Argentina
| | - Ana Jar
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Buenos Aires, Argentina
| | - Silvia Mundo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, INPA Conicet, Buenos Aires, Argentina
| | - Eliana Castro
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martin (UNSAM), Buenos Aires, Argentina
| | - Diego Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martin (UNSAM), Buenos Aires, Argentina
| | - Carolina Torres
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| | - Mariana Viegas
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
- Laboratorio de Virología Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD CABA, Buenos Aires, Argentina.
| | - Ana Bratanich
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, INPA Conicet, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Castillo AP, Miranda JVO, Fonseca PLC, Moreira RG, de Araújo E Santos LCG, Queiroz DC, Bonfim DM, Coelho CM, Lima PCS, Motta ROC, Tinoco HP, da Silveira JAG, Aguiar RS. SARS-CoV-2 surveillance in captive animals at the belo horizonte zoo, Minas Gerais, Brazil. Virol J 2024; 21:297. [PMID: 39563414 PMCID: PMC11575034 DOI: 10.1186/s12985-024-02505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The pandemic caused by SARS-CoV-2 has not only affected humans but also raised concerns about its transmission to wild animals, potentially creating natural reservoirs. Understanding these dynamics is critical for preventing future pandemics and developing control strategies. This study aims to investigate the presence of SARS-CoV-2 in wild mammals at the Belo Horizonte Zoo in Brazil, analyzing the virus's evolution and zoonotic potential. METHODS The study was conducted at the Belo Horizonte Zoo, Minas Gerais, Brazil, covering a diverse population of mammals. Oropharyngeal, rectal, and nasal swabs were collected from 47 captive animals between November 2021 and March 2023. SARS-CoV-2 presence was determined using RT-PCR, and positive samples were sequenced for phylogenetic analysis. Consensus genomes were classified using Pangolin and NextClade tools, and a maximum likelihood phylogeny was inferred using IQ-Tree. RESULTS Of the 47 animals tested, nine (19.1%) were positive for SARS-CoV-2. Positive samples included rectal, oropharyngeal, and nasal swabs, with the highest positivity in rectal samples. Three genomes were successfully sequenced, revealing two variants: VOC Alpha in a maned wolf (Chrysocyon brachyurus) and a fallow deer (Dama dama), and VOC Omicron in a western lowland gorilla (Gorilla gorilla gorilla). Phylogenetic analysis indicated potential human-to-animal transmission, with animal genomes clustering close to human samples from the same region. CONCLUSIONS This study highlights the presence of SARS-CoV-2 in various wild mammal species at the Belo Horizonte Zoo, emphasizing the virus's zoonotic potential and the complexity of interspecies transmission. The detection of different variants suggests ongoing viral evolution and adaptation in new hosts. Continuous monitoring and genomic surveillance of SARS-CoV-2 in wildlife are essential for understanding its transmission dynamics and preventing future zoonotic outbreaks. These findings underscore the need for integrated public health strategies that include wildlife monitoring to mitigate the risks posed by emerging infectious diseases.
Collapse
Affiliation(s)
- Anisleidy Pérez Castillo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de PROTOVET, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Victor Oliveira Miranda
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Luize Camargos Fonseca
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rennan Garcias Moreira
- Centro de Laboratórios Multiusuários, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza Campos Guerra de Araújo E Santos
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Costa Queiroz
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diego Menezes Bonfim
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlyle Mendes Coelho
- Fundação de Parques Municipais E Zoobotânica - FPMZB, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Herlandes Penha Tinoco
- Fundação de Parques Municipais E Zoobotânica - FPMZB, Belo Horizonte, Minas Gerais, Brazil
| | - Júlia Angélica Gonçalves da Silveira
- Laboratório de PROTOVET, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Renato Santana Aguiar
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Li Y, Hu J, Hou J, Lu S, Xiong J, Wang Y, Sun Z, Chen W, Pan Y, Thilakavathy K, Feng Y, Jiang Q, Wang W, Xiong C. Study on sentinel hosts for surveillance of future COVID-19-like outbreaks. Sci Rep 2024; 14:24595. [PMID: 39427096 PMCID: PMC11490639 DOI: 10.1038/s41598-024-76506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
The spread of SARS-CoV-2 to animals has the potential to evolve independently. In this study, we distinguished several sentinel animal species and genera for monitoring the re-emergence of COVID-19 or the new outbreak of COVID-19-like disease. We analyzed SARS-CoV-2 genomic data from human and nonhuman mammals in the taxonomic hierarchies of species, genus, family and order of their host. We find that SARS-CoV-2 carried by domestic dog (Canis lupus familiaris), domestic cat (Felis catus), mink (Neovison vison), and white-tailed deer (Odocoileus virginianus) cluster closely to human-origin viruses and show no differences in the majority of amino acids, but have the most positively selected sites and should be monitored to prevent the re-emergence of COVID-19 caused by novel variants of SARS-CoV-2. Viruses from the genera Panthera (especially lion (Panthera leo)), Manis and Rhinolophus differ significantly from human-origin viruses, and long-term surveillance should be undertaken to prevent the future COVID-19-like outbreaks. Investigation of the variation dynamics of sites 142, 501, 655, 681 and 950 within the S protein may be necessary to predict the novel animal SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yanjiao Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Jingjing Hu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Jingjing Hou
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shuiping Lu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Jiasheng Xiong
- Division of Emergency Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Yuxi Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Zhong Sun
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Weijie Chen
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Yue Pan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Karuppiah Thilakavathy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qingwu Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Weibing Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China.
| | - Chenglong Xiong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Li M, Lv F, Li Z, Zhao C, Wang X, Zhu P, Zhou X. Cross-Species Susceptibility of Emerging Variants of SARS-CoV-2 Spike. Genes (Basel) 2024; 15:1321. [PMID: 39457447 PMCID: PMC11507407 DOI: 10.3390/genes15101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The continuous evolution of SARS-CoV-2 and the emergence of novel variants with numerous mutations have heightened concerns surrounding the possibility of cross-species transmission and the establishment of natural animal reservoirs for the virus, but the host range of emerging SARS-CoV-2 variants has not been fully explored yet. METHODS We employed an in vitro model comprising VSV∆G* pseudotyped viruses bearing SARS-CoV-2 spike proteins to explore the plausible host range of SARS-CoV-2 emerging variants. RESULTS The overall host tropism of emerging SARS-CoV-2 variants are consistent with that of the SARS-CoV-2 wuhan-hu-1 strain with minor difference. Pseudotyped viruses bearing spike protein from RaTG13 and RmYN02 can enter cell cultures from a broad range of mammalian species, revealing that mink and hamsters may act as potential intermediate hosts. We further investigated 95 potential site-specific mutations in the SARS-CoV-2 spike protein that could impact viral infectivity across different species. The results showed that 13 of these mutations notably increased the transduction rates by more than two-fold when compared to the wild-type spike protein. Further examination of these 13 mutations within cell cultures from 31 different species revealed heightened sensitivity in cells derived from palm civets, minks, and Chinese horseshoe bats to the VSV∆G*-SARS2-S mutants. Specific mutations, such as L24F, R158G, and L212I, were seen to significantly enhance the capacity for SARS-CoV-2 of cross-species transmission. CONCLUSIONS This study offers critical insights for the ongoing surveillance and monitoring efforts of SARS-CoV-2 evolution, emphasizing the need for the vigilant monitoring of specific mutations in both human and animal populations.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Fei Lv
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyu Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| |
Collapse
|
10
|
Cook JD, Rosenblatt E, Direnzo GV, Campbell Grant EH, Mosher BA, Arce F, Christensen SA, Ghai RR, Runge MC. One Health collaboration is more effective than single-sector actions at mitigating SARS-CoV-2 in deer. Nat Commun 2024; 15:8677. [PMID: 39375325 PMCID: PMC11458903 DOI: 10.1038/s41467-024-52737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
One Health aims to achieve optimal health outcomes for people, animals, plants, and shared environments. We describe a multisector effort to understand and mitigate SARS-CoV-2 transmission risk to humans via the spread among and between captive and wild white-tailed deer. We first framed a One Health problem with three governance sectors that manage captive deer, wild deer populations, and public health. The problem framing included identifying fundamental objectives, causal chains for transmission, and management actions. We then developed a dynamic model that linked deer herds and simulated SARS-CoV-2. Next, we evaluated management alternatives for their ability to reduce SARS-CoV-2 spread in white-tailed deer. We found that single-sector alternatives reduced transmission, but that the best-performing alternative required collaborative actions among wildlife management, agricultural management, and public health agencies. Here, we show quantitative support that One Health actions outperform single-sector responses, but may depend on coordination to track changes in this evolving system.
Collapse
Affiliation(s)
- Jonathan D Cook
- U. S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA.
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Graziella V Direnzo
- U. S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, MA, USA
| | | | - Brittany A Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Fernando Arce
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sonja A Christensen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Ria R Ghai
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael C Runge
- U. S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
| |
Collapse
|
11
|
Hall JS, Nashold S, Hofmeister E, Leon AE, Falendysz EA, Ip HS, Malavé CM, Rocke TE, Carossino M, Balasuriya U, Knowles S. Little Brown Bats (Myotis lucifugus) Are Resistant to SARS-CoV-2 Infection. J Wildl Dis 2024; 60:924-930. [PMID: 39053909 DOI: 10.7589/jwd-d-23-00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
It has been proposed that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that spread through human populations as a pandemic originated in Asian bats. There is concern that infected humans could transmit the virus to native North American bats; therefore, the susceptibility of several North American bat species to the pandemic virus has been experimentally assessed. Big brown bats (Eptesicus fuscus) were shown to be resistant to infection by SARS-CoV-2, whereas Mexican free-tailed bats (Tadarida brasiliensis) became infected and orally excreted moderate amounts of virus for up to 18 d postinoculation. Little brown bats (Myotis lucifugus) frequently contact humans, and their populations are threatened over much of their range due to white-nose syndrome, a fungal disease that is continuing to spread across North America. We experimentally challenged little brown bats with SARS-CoV-2 to determine their susceptibility and host potential and whether the virus presents an additional risk to this species. We found that this species was resistant to infection by SARS-CoV-2. These findings provide reassurance to wildlife rehabilitators, biologists, conservation scientists, and the public at large who are concerned with possible transmission of this virus to threatened bat populations.
Collapse
Affiliation(s)
- Jeffrey S Hall
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, Wisconsin 53711, USA
| | - Sean Nashold
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, Wisconsin 53711, USA
| | - Erik Hofmeister
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, Wisconsin 53711, USA
| | - Ariel E Leon
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, Wisconsin 53711, USA
| | - Elizabeth A Falendysz
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, Wisconsin 53711, USA
| | - Hon S Ip
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, Wisconsin 53711, USA
| | - Carly M Malavé
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, Wisconsin 53711, USA
| | - Tonie E Rocke
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, Wisconsin 53711, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, Louisiana 70803, USA
| | - Udeni Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, Louisiana 70803, USA
| | - Susan Knowles
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, Wisconsin 53711, USA
| |
Collapse
|
12
|
Hearst S, Palermo PM, Watts DM, Campbell K, Ivey R, Young C, Yarbrough W, Facundus E, Spears J, Mills S, McNeely KA, Ray P, Burnett GC, Bates GT, Bates JT. Evidence of SARS-CoV-2 Antibody in Mississippi White-Tailed Deer. Vector Borne Zoonotic Dis 2024; 24:682-688. [PMID: 38695836 PMCID: PMC12059620 DOI: 10.1089/vbz.2023.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Background: Early detection and monitoring of SARS-CoV-2 infections in animal populations living in close proximity to humans is crucial for preventing reverse zoonosis of new viral strains. Evidence accumulated has revealed widespread SARS-CoV-2 infection among white-tailed deer (WTD), (Odocoileus virginianus) populations in the United States except in the southeast region. Therefore, the objective was to conduct surveillance for evidence of SARS-CoV-2 infection among WTD in Mississippi. Materials and Methods: Blood, kidney tissues, and nasal swab samples were collected in 17 counties from hunter-harvested deer during 2021-2022 and 2022-2023.Samples of kidney tissue were collected to evaluate for detecting antibody as a possible alternative to blood that is not always available from dead WTD. Nasal swab samples were tested for SARS-CoV-2 viral RNA by a RT-PCR assay. Sera and kidney tissue samples were tested for SARS-CoV-2 antibody by an enzyme-linked immunoassay (ELISA) and sera by a plaque reduction neutralization test (PRNT80). Results: The results of testing sera and kidney homogenate samples provided the first evidence of SARS-CoV-2 infection among WTD in Mississippi. The infection rate during 2021-2022 was 67% (10/15) based on the detection of neutralizing antibody by the PRNT80 and 26%(16/62) based on the testing of kidney tissue homogenates by an ELISA, and viral RNA was detected in 25% (3/12) of nasal swab samples. In 2022 to 2023, neutralizing antibody was detected in 62% (28/45) of WTD serum samples. In contrast, antibodies were not detected in 220 kidney homogenates by an ELISA nor was viral RNA detected in 220 nasal swab samples. Evidence of WTD activity was common in urban areas during the survey. Conclusion: Overall, the findings documented the first SARS-CoV-2 infection among WTD in Mississippi and showed that WTD commonly inhabited urban areas as a possible source of acquiring infection from humans infected with this virus.
Collapse
Affiliation(s)
- Scoty Hearst
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Pedro M. Palermo
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas M. Watts
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Kamen Campbell
- Mississippi Department of Wildlife, Fisheries, and Parks, Deer Program, Jackson, Mississippi, USA
| | - Ryan Ivey
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Caleb Young
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - William Yarbrough
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Edward Facundus
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Jack Spears
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Stephen Mills
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Kaitlin A. McNeely
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Priya Ray
- Summer Undergraduate Research Experience, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Grace C. Burnett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - John T. Bates
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
13
|
Breugem TI, Riesebosch S, Schipper D, Mykytyn AZ, van den Doel P, Segalés J, Lamers MM, Haagmans BL. Resistance to SARS-CoV-2 infection in camelid nasal organoids is associated with lack of ACE2 expression. NPJ VIRUSES 2024; 2:42. [PMID: 40295820 PMCID: PMC11721443 DOI: 10.1038/s44298-024-00054-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 04/30/2025]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects a variety of animal species. Susceptibility to SARS-CoV-2 is primarily determined by the utilization of the viral receptor, ACE2. SARS-CoV-2 can utilize a broad range of animal ACE2 isoforms in vitro, including the ACE2 from various camelid species. However, experimental infection of these animals does not lead to productive infection or seroconversion. In this study, we investigate the susceptibility of camelids to SARS-CoV-2 using novel well-differentiated camelid nasal organoids. We show that camelid nasal organoids are highly susceptible to Middle East respiratory syndrome coronavirus (MERS-CoV) infection, but not to infection with different SARS-CoV-2 variants (614G, BA.1 or EG.5.1.1). All viruses efficiently infected human airway organoids. Immunohistochemistry analysis revealed the absence of ACE2 on camelid nasal organoids and dromedary camel upper respiratory tract. In contrast, DPP4 was expressed in both camelid nasal organoids and the camel upper respiratory tract, which correlates with MERS-CoV infection. This study indicates that the camelid upper respiratory tract lacks expression of ACE2, which is associated with resistance to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tim I Breugem
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samra Riesebosch
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
- Infection and Immunity, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Debby Schipper
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Petra van den Doel
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Barcelona, Spain
| | - Mart M Lamers
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Holmes EC. The Emergence and Evolution of SARS-CoV-2. Annu Rev Virol 2024; 11:21-42. [PMID: 38631919 DOI: 10.1146/annurev-virology-093022-013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The origin of SARS-CoV-2 has evoked heated debate and strong accusations, yet seemingly little resolution. I review the scientific evidence on the origin of SARS-CoV-2 and its subsequent spread through the human population. The available data clearly point to a natural zoonotic emergence within, or closely linked to, the Huanan Seafood Wholesale Market in Wuhan. There is no direct evidence linking the emergence of SARS-CoV-2 to laboratory work conducted at the Wuhan Institute of Virology. The subsequent global spread of SARS-CoV-2 was characterized by a gradual adaptation to humans, with dual increases in transmissibility and virulence until the emergence of the Omicron variant. Of note has been the frequent transmission of SARS-CoV-2 from humans to other animals, marking it as a strongly host generalist virus. Unless lessons from the origin of SARS-CoV-2 are learned, it is inevitable that more zoonotic events leading to more epidemics and pandemics will plague human populations.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
15
|
Castañeda D, Isaac EJ, Schnieders BP, Kautz T, Romanski MC, Moore SA, Aliota MT. Absence of SARS-CoV-2 in wildlife of northeastern Minnesota and Isle Royale National Park. Zoonoses Public Health 2024; 71:744-747. [PMID: 38853397 DOI: 10.1111/zph.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
AIMS We investigated the presence of SARS-CoV-2 in free-ranging wildlife populations in Northeastern Minnesota on the Grand Portage Indian Reservation and Isle Royale National Park. METHODS AND RESULTS One hundred twenty nasal samples were collected from white-tailed deer, moose, grey wolves and black bears monitored for conservation efforts during 2022-2023. Samples were tested for viral RNA by RT-qPCR using the CDC N1/N2 primer set. Our data indicate that no wildlife samples were positive for SARS-CoV-2 RNA. CONCLUSIONS Continued surveillance is therefore crucial to better understand the changing landscape of zoonotic SARS-CoV-2 in the Upper Midwest.
Collapse
Affiliation(s)
- David Castañeda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Edmund J Isaac
- Grand Portage Band of Lake Superior Chippewa Biology and Environment, Grand Portage, Minnesota, USA
| | - Benjamin P Schnieders
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Todd Kautz
- Grand Portage Band of Lake Superior Chippewa Biology and Environment, Grand Portage, Minnesota, USA
| | | | - Seth A Moore
- Grand Portage Band of Lake Superior Chippewa Biology and Environment, Grand Portage, Minnesota, USA
| | - Matthew T Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
16
|
Shipley R, Seekings AH, Byrne AMP, Shukla S, James J, Goharriz H, Lean FZX, Núñez A, Fooks AR, McElhinney LM, Brookes SM. SARS-CoV-2 infection and transmission via the skin to oro-nasal route with the production of bioaerosols in the ferret model. J Gen Virol 2024; 105. [PMID: 39292223 PMCID: PMC11410047 DOI: 10.1099/jgv.0.002022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Direct and indirect transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been attributed to virus survival in droplets, bioaerosols and on fomites including skin and surfaces. Survival of SARS-CoV-2 variants of concern (Alpha, Beta, Gamma, and Delta) on the skin and virus transference following rounds of skin-to-skin contact were assessed on porcine skin as a surrogate for human skin. SARS-CoV-2 variants were detectable on skin by RT-qPCR after 72 h at biologically relevant temperatures (35.2 °C) with viral RNA (vRNA) detected after ten successive skin-to-skin contacts. Skin-to-skin virus transmission to establish infection in ferrets as a model for mild/asymptomatic SARS-CoV-2 infection in mustelids and humans was also investigated and compared to intranasal ferret inoculation. Naïve ferrets exposed to Delta variant SARS-CoV-2 in a 'wet' or 'dry' form on porcine skin resulted in robust infection with shedding detectable for up to 14 days post-exposure, at comparable viral loads to ferrets inoculated intranasally. Transmission of SARS-CoV-2 to naïve ferrets in direct contact with infected ferrets was achieved, with environmental contamination detected from ferret fur swabs and air samples. Genetic substitutions were identified in bioaerosol samples acquired following single contact passage in ferrets, including Spike, ORF1ab, and ORF3a protein sequences, suggesting a utility for monitoring host adaptation and virus evolution via air sampling. The longevity of SARS-CoV-2 variants survival directly on the skin and skin-to-skin transference, enabling subsequent infection via the skin to oro-nasal contact route, could represent a pathway for SARS-CoV-2 infection with implications to public and veterinary health.
Collapse
Affiliation(s)
- Rebecca Shipley
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Amanda H Seekings
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Alexander M P Byrne
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
- Present address: Worldwide Influenza Centre, The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | - Shweta Shukla
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Joe James
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Hooman Goharriz
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Fabian Z X Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Anthony R Fooks
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Lorraine M McElhinney
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Sharon M Brookes
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
17
|
Kovba A, Nao N, Shimozuru M, Sashika M, Takahata C, Sato K, Uriu K, Yamanaka M, Nakanishi M, Ito G, Ito M, Minamikawa M, Shimizu K, Goka K, Onuma M, Matsuno K, Tsubota T. No Evidence of SARS-CoV-2 Infection in Urban Wildlife of Hokkaido, Japan. Transbound Emerg Dis 2024; 2024:1204825. [PMID: 40303042 PMCID: PMC12016984 DOI: 10.1155/2024/1204825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 05/02/2025]
Abstract
Various domestic and wildlife species have been found susceptible to and infected with SARS-CoV-2, the causative agent of COVID-19, around the globe, raising concerns about virus adaptation and transmission to new animal hosts. The virus circulation in the white-tailed deer population in North America has further called to action for virus surveillance in the wildlife. Here, we report on the first SARS-CoV-2 survey of wild animals in Japan, where frequent wildlife invasions of urban areas have occurred due to the limited predation, field abandonment, the increase of human acclimatization. Genetic testing using nasal swabs and serological screening have been conducted for sika deer, brown bears, raccoons, and raccoon dogs captured in Hokkaido prefecture from the end of the Delta variant wave to the spread of the Omicron variant, between March 2022 and February 2023. No viral RNA was detected in raccoons (0/184), sika deer (0/107), and brown bears (0/14) indicating that the virus was unlikely to spread within the population of these animal species. Among 171 raccoons, 20 raccoon dogs, 100 sika deer, and 13 brown bears, one raccoon, one brown bear, and two deer tested positive in the antibodies screening with multispecies SARS-CoV-2 N-protein ELISA. Still, ELISA-positive samples tested negative in three other serological tests, emphasizing the importance of confirming serological screening results. Our results suggested that SARS-CoV-2 was unlikely to spillback from humans to wildlife in Hokkaido during the study period, with the emergence of new variants, continuous surveillance is of utmost importance.
Collapse
Affiliation(s)
- Anastasiia Kovba
- Graduate School of Veterinary MedicineHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
| | - Naganori Nao
- Institute for Vaccine Research and DevelopmentHU-IVReDHokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo City 001-0021, Hokkaido, Japan
- Division of International Research PromotionInternational Institute for Zoonosis ControlHokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo City 001-0020, Hokkaido, Japan
- One Health Research CenterHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
| | - Michito Shimozuru
- One Health Research CenterHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
- Faculty of Veterinary MedicineHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
| | - Mariko Sashika
- Faculty of Veterinary MedicineHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
| | - Chihiro Takahata
- Faculty of Veterinary MedicineHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
| | - Kei Sato
- Division of Systems VirologyDepartment of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo, 4-6-1 Shirokanedai, Minato-ku 108-8639, Tokyo, Japan
- Graduate School of MedicineThe University of Tokyo, 7-3-1, Hongo, Bunkyo-ku 113-8654, Tokyo, Japan
- International Research Center for Infectious Diseases, 4-6-1 Shirokanedai, Minato-ku 108-8639, Tokyo, Japan
- International Vaccine Design CenterThe Institute of Medical ScienceThe University of Tokyo, 4-6-1 Shirokanedai, Minato-ku 108-8639, Tokyo, Japan
- Collaboration Unit for InfectionJoint Research Center for Human Retrovirus InfectionKumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto City 860-0811, Kumamoto, Japan
- Japan Science and Technology AgencyCREST, 4-1-8, Honcho, Kawaguchi City 332-0012, Saitama, Japan
| | - Keiya Uriu
- Division of Systems VirologyDepartment of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo, 4-6-1 Shirokanedai, Minato-ku 108-8639, Tokyo, Japan
- Graduate School of MedicineThe University of Tokyo, 7-3-1, Hongo, Bunkyo-ku 113-8654, Tokyo, Japan
| | - Masami Yamanaka
- Shiretoko Nature Foundation, 531 Iwaubetsu, Shari City 099-4356, Hokkaido, Japan
| | - Masanao Nakanishi
- Shiretoko Nature Foundation, 531 Iwaubetsu, Shari City 099-4356, Hokkaido, Japan
| | - Genta Ito
- Shiretoko Nature Foundation, 531 Iwaubetsu, Shari City 099-4356, Hokkaido, Japan
| | - Mebuki Ito
- School of Veterinary MedicineHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
- Division of Risk Analysis and ManagementInternational Institute for Zoonosis ControlHokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo City 001-0020, Hokkaido, Japan
| | - Miku Minamikawa
- School of Veterinary MedicineHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
| | - Kotaro Shimizu
- Graduate School of Veterinary MedicineHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
| | - Koichi Goka
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba City 305-8506, Ibaraki, Japan
| | - Manabu Onuma
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba City 305-8506, Ibaraki, Japan
| | - Keita Matsuno
- Institute for Vaccine Research and DevelopmentHU-IVReDHokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo City 001-0021, Hokkaido, Japan
- One Health Research CenterHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
- Division of Risk Analysis and ManagementInternational Institute for Zoonosis ControlHokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo City 001-0020, Hokkaido, Japan
- International Collaboration UnitInternational Institute for Zoonosis ControlHokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo City 001-0020, Hokkaido, Japan
| | - Toshio Tsubota
- Faculty of Veterinary MedicineHokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo City 060-0818, Hokkaido, Japan
| |
Collapse
|
18
|
Herzog CM, Aklilu F, Sibhatu D, Shegu D, Belaineh R, Mohammed AA, Kidane M, Schulz C, Willett BJ, Cleaveland S, Bailey D, Peters AR, Cattadori IM, Hudson PJ, Asgedom H, Buza J, Forza MS, Chibssa TR, Gebre S, Juleff N, Bjørnstad ON, Baron MD, Kapur V. Empirical and model-based evidence for a negligible role of cattle in peste des petits ruminants virus transmission and eradication. Commun Biol 2024; 7:937. [PMID: 39095591 PMCID: PMC11297268 DOI: 10.1038/s42003-024-06619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Peste des petits ruminants virus (PPRV) is a multi-host pathogen with sheep and goats as main hosts. To investigate the role of cattle in the epidemiology of PPR, we simulated conditions similar to East African zero-grazing husbandry practices in a series of trials with local Zebu cattle (Bos taurus indicus) co-housed with goats (Capra aegagrus hircus). Furthermore, we developed a mathematical model to assess the impact of PPRV-transmission from cattle to goats. Of the 32 cattle intranasally infected with the locally endemic lineage IV strain PPRV/Ethiopia/Habru/2014 none transmitted PPRV to 32 co-housed goats. However, these cattle or cattle co-housed with PPRV-infected goats seroconverted. The results confirm previous studies that cattle currently play a negligible role in PPRV-transmission and small ruminant vaccination is sufficient for eradication. However, the possible emergence of PPRV strains more virulent for cattle may impact eradication. Therefore, continued monitoring of PPRV circulation and evolution is recommended.
Collapse
Affiliation(s)
- Catherine M Herzog
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.
| | | | | | | | | | | | | | - Claudia Schulz
- Institute of Virology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sarah Cleaveland
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Andrew R Peters
- Supporting Evidence Based Interventions (SEBI), University of Edinburgh, Edinburgh, UK
| | - Isabella M Cattadori
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Peter J Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | | | - Joram Buza
- Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| | | | | | | | - Nick Juleff
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Ottar N Bjørnstad
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | | | - Vivek Kapur
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
19
|
Purves K, Brown H, Haverty R, Ryan A, Griffin LL, McCormack J, O'Reilly S, Mallon PW, Gautier V, Cassidy JP, Fabre A, Carr MJ, Gonzalez G, Ciuti S, Fletcher NF. SARS-CoV-2 Seropositivity in Urban Population of Wild Fallow Deer, Dublin, Ireland, 2020-2022. Emerg Infect Dis 2024; 30:1609-1620. [PMID: 39043403 PMCID: PMC11286063 DOI: 10.3201/eid3008.231056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
SARS-CoV-2 can infect wildlife, and SARS-CoV-2 variants of concern might expand into novel animal reservoirs, potentially by reverse zoonosis. White-tailed deer and mule deer of North America are the only deer species in which SARS-CoV-2 has been documented, raising the question of whether other reservoir species exist. We report cases of SARS-CoV-2 seropositivity in a fallow deer population located in Dublin, Ireland. Sampled deer were seronegative in 2020 when the Alpha variant was circulating in humans, 1 deer was seropositive for the Delta variant in 2021, and 12/21 (57%) sampled deer were seropositive for the Omicron variant in 2022, suggesting host tropism expansion as new variants emerged in humans. Omicron BA.1 was capable of infecting fallow deer lung type-2 pneumocytes and type-1-like pneumocytes or endothelial cells ex vivo. Ongoing surveillance to identify novel SARS-CoV-2 reservoirs is needed to prevent public health risks during human-animal interactions in periurban settings.
Collapse
|
20
|
Goldberg AR, Langwig KE, Brown KL, Marano JM, Rai P, King KM, Sharp AK, Ceci A, Kailing CD, Kailing MJ, Briggs R, Urbano MG, Roby C, Brown AM, Weger-Lucarelli J, Finkielstein CV, Hoyt JR. Widespread exposure to SARS-CoV-2 in wildlife communities. Nat Commun 2024; 15:6210. [PMID: 39075057 PMCID: PMC11286844 DOI: 10.1038/s41467-024-49891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Pervasive SARS-CoV-2 infections in humans have led to multiple transmission events to animals. While SARS-CoV-2 has a potential broad wildlife host range, most documented infections have been in captive animals and a single wildlife species, the white-tailed deer. The full extent of SARS-CoV-2 exposure among wildlife communities and the factors that influence wildlife transmission risk remain unknown. We sampled 23 species of wildlife for SARS-CoV-2 and examined the effects of urbanization and human use on seropositivity. Here, we document positive detections of SARS-CoV-2 RNA in six species, including the deer mouse, Virginia opossum, raccoon, groundhog, Eastern cottontail, and Eastern red bat between May 2022-September 2023 across Virginia and Washington, D.C., USA. In addition, we found that sites with high human activity had three times higher seroprevalence than low human-use areas. We obtained SARS-CoV-2 genomic sequences from nine individuals of six species which were assigned to seven Pango lineages of the Omicron variant. The close match to variants circulating in humans at the time suggests at least seven recent human-to-animal transmission events. Our data support that exposure to SARS-CoV-2 has been widespread in wildlife communities and suggests that areas with high human activity may serve as points of contact for cross-species transmission.
Collapse
Affiliation(s)
- Amanda R Goldberg
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kate E Langwig
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Katherine L Brown
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Jeffrey M Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Kelsie M King
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Amanda K Sharp
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Alessandro Ceci
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | | | - Macy J Kailing
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Russell Briggs
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Matthew G Urbano
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Clinton Roby
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Anne M Brown
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Data Services, University Libraries, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, USA
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA, USA
| | - James Weger-Lucarelli
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Carla V Finkielstein
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA.
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, USA.
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA, USA.
| | - Joseph R Hoyt
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
21
|
Rosenblatt E, Cook JD, DiRenzo GV, Grant EHC, Arce F, Pepin KM, Rudolph FJ, Runge MC, Shriner S, Walsh DP, Mosher BA. Epidemiological modeling of SARS-CoV-2 in white-tailed deer (Odocoileus virginianus) reveals conditions for introduction and widespread transmission. PLoS Comput Biol 2024; 20:e1012263. [PMID: 38995977 PMCID: PMC11268674 DOI: 10.1371/journal.pcbi.1012263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/24/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Emerging infectious diseases with zoonotic potential often have complex socioecological dynamics and limited ecological data, requiring integration of epidemiological modeling with surveillance. Although our understanding of SARS-CoV-2 has advanced considerably since its detection in late 2019, the factors influencing its introduction and transmission in wildlife hosts, particularly white-tailed deer (Odocoileus virginianus), remain poorly understood. We use a Susceptible-Infected-Recovered-Susceptible epidemiological model to investigate the spillover risk and transmission dynamics of SARS-CoV-2 in wild and captive white-tailed deer populations across various simulated scenarios. We found that captive scenarios pose a higher risk of SARS-CoV-2 introduction from humans into deer herds and subsequent transmission among deer, compared to wild herds. However, even in wild herds, the transmission risk is often substantial enough to sustain infections. Furthermore, we demonstrate that the strength of introduction from humans influences outbreak characteristics only to a certain extent. Transmission among deer was frequently sufficient for widespread outbreaks in deer populations, regardless of the initial level of introduction. We also explore the potential for fence line interactions between captive and wild deer to elevate outbreak metrics in wild herds that have the lowest risk of introduction and sustained transmission. Our results indicate that SARS-CoV-2 could be introduced and maintained in deer herds across a range of circumstances based on testing a range of introduction and transmission risks in various captive and wild scenarios. Our approach and findings will aid One Health strategies that mitigate persistent SARS-CoV-2 outbreaks in white-tailed deer populations and potential spillback to humans.
Collapse
Affiliation(s)
- Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, United States of America
| | - Jonathan D. Cook
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
| | - Graziella V. DiRenzo
- U. S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Evan H. Campbell Grant
- U.S. Geological Survey, Eastern Ecological Science Center, Turner’s Falls, Massachusetts, United States of America
| | - Fernando Arce
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kim M. Pepin
- National Wildlife Research Center, USDA, APHIS, Fort Collins, Colorado, United States of America
| | - F. Javiera Rudolph
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
- Department of Ecosystem Sciences and Management, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael C. Runge
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
| | - Susan Shriner
- National Wildlife Research Center, USDA, APHIS, Fort Collins, Colorado, United States of America
| | - Daniel P. Walsh
- U. S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana, United States of America
| | - Brittany A. Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
22
|
Yang XY, Huang JS, Gong QL, Sun JM, Li YJ, Liu B, Zhang YM, Shi CW, Yang GL, Yang WT, Wang CF. SARS-CoV-2 prevalence in wildlife 2020-2022: a worldwide systematic review and meta-analysis. Microbes Infect 2024; 26:105350. [PMID: 38723999 DOI: 10.1016/j.micinf.2024.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
The widespread transmission of SARS-CoV-2 in humans poses a serious threat to public health security, and a growing number of studies have discovered that SARS-CoV-2 infection in wildlife and mutate over time. This article mainly reports the first systematic review and meta-analysis of the prevalence of SARS-CoV-2 in wildlife. The pooled prevalence of the 29 included articles was calculated by us using a random effects model (22.9%) with a high heterogeneity (I2 = 98.7%, p = 0.00). Subgroup analysis and univariate regression analysis found potential risk factors contributing to heterogeneity were country, wildlife species, sample type, longitude, and precipitation. In addition, the prevalence of SARS-CoV-2 in wildlife increased gradually over time. Consequently, it is necessary to comprehensively analyze the risk factors of SARS-CoV-2 infection in wildlife and develop effective control policies, as well as to monitor the mutation of SARS-CoV-2 in wildlife at all times to reduce the risk of SARS-CoV-2 transmission among different species.
Collapse
Affiliation(s)
- Xue-Yao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing-Shu Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Qing-Long Gong
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jin-Mei Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yan-Jin Li
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Bing Liu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Meng Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
23
|
Milich KM, Morse SS. The reverse zoonotic potential of SARS-CoV-2. Heliyon 2024; 10:e33040. [PMID: 38988520 PMCID: PMC11234007 DOI: 10.1016/j.heliyon.2024.e33040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
There has been considerable emphasis recently on the zoonotic origins of emerging infectious diseases in humans, including the SARS-CoV-2 pandemic; however, reverse zoonoses (infections transmitted from humans to other animals) have received less attention despite their potential importance. The effects can be devastating for the infected species and can also result in transmission of the pathogen back to human populations or other animals either in the original form or as a variant. Humans have transmitted SARS-CoV-2 to other animals, and the virus is able to circulate and evolve in those species. As global travel resumes, the potential of SARS-CoV-2 as a reverse zoonosis threatens humans and endangered species. Nonhuman primates are of particular concern given their susceptibility to human respiratory infections. Enforcing safety measures for all people working in and visiting wildlife areas, especially those with nonhuman primates, and increasing access to safety measures for people living near protected areas that are home to nonhuman primates will help mitigate reverse zoonotic transmission.
Collapse
Affiliation(s)
- Krista M. Milich
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, 63130, United States
| | - Stephen S. Morse
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th St., NY, NY, 10032, United States
| |
Collapse
|
24
|
Larska M, Tomana J, Krzysiak MK, Pomorska-Mól M, Socha W. Prevalence of coronaviruses in European bison (Bison bonasus) in Poland. Sci Rep 2024; 14:12928. [PMID: 38839918 PMCID: PMC11153543 DOI: 10.1038/s41598-024-63717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Coronaviruses have been confirmed to infect a variety of species, but only one case of associated winter dysentery of European bison has been described. The study aimed to analyze the prevalence, and define the impact on the species conservation, the source of coronavirus infection, and the role of the European bison in the transmission of the pathogen in Poland. Molecular and serological screening was performed on 409 European bison from 6 free-ranging and 14 captive herds over the period of 6 years (2017-2023). Presence of coronavirus was confirmed in one nasal swab by pancoronavirus RT-PCR and in 3 nasal swab samples by bovine coronavirus (BCoV) specific real time RT-PCR. The detected virus showed high (> 98%) homology in both RdRp and Spike genes to BCoV strains characterised recently in Polish cattle and strains isolated from wild cervids in Italy. Antibodies specific to BCoV were found in 6.4% of tested samples, all originating from free-ranging animals. Seroprevalence was higher in adult animals over 5 years of age (p = 0.0015) and in females (p = 0.09). Our results suggest that European bison play only a limited role as reservoirs of bovine-like coronaviruses. Although the most probable source of infections in the European bison population in Poland is cattle, other wild ruminants could also be involved. In addition, the zoonotic potential of bovine coronaviruses is quite low.
Collapse
Affiliation(s)
- Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | | | - Michał K Krzysiak
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, Poznan, Poland
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, Puławy, Poland.
| |
Collapse
|
25
|
Boggiatto PM, Buckley A, Cassmann ED, Seger H, Olsen SC, Palmer MV. Persistence of viral RNA in North American elk experimentally infected with an ancestral strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sci Rep 2024; 14:11171. [PMID: 38750049 PMCID: PMC11096316 DOI: 10.1038/s41598-024-61414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
White-tailed deer (Odocoileus virginianus) have emerged as a reservoir host for SARS-CoV-2 given their susceptibility to infection and demonstrated high rates of seroprevalence and infection across the United States. As SARS-CoV-2 circulates within free-ranging white-tailed deer populations, there is the risk of transmission to other wildlife species and even back to the human population. The goal of this study was to determine the susceptibility, shedding, and immune response of North American elk (Cervus elaphus canadensis) to experimental infection with SARS-CoV-2, to determine if another wide-ranging cervid species could potentially serve as a reservoir host for the virus. Here we demonstrate that while North American elk do not develop clinical signs of disease, they do develop a neutralizing antibody response to infection, suggesting the virus is capable of replicating in this mammalian host. Additionally, we demonstrate SARS-CoV-2 RNA presence in the medial retropharyngeal lymph nodes of infected elk three weeks after experimental infection. Consistent with previous observations in humans, these data may highlight a mechanism of viral persistence for SARS-CoV-2 in elk.
Collapse
Affiliation(s)
- Paola M Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA.
| | - Alexandra Buckley
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research, Ames, IA, USA
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research, Ames, IA, USA
| | - Hannah Seger
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research, Ames, IA, USA
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd., Oak Ridge, TN, 37830, USA
| | - Steven C Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| |
Collapse
|
26
|
Tan CS, Adrus M, Rahman SPH, Azman HIM, Abang RAA. Seroevidence of SARS-CoV-2 spillback to rodents in Sarawak, Malaysian Borneo. BMC Vet Res 2024; 20:161. [PMID: 38678268 PMCID: PMC11055293 DOI: 10.1186/s12917-024-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/18/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND SARS-CoV-2 is believed to have originated from a spillover event, where the virus jumped from bats to humans, leading to an epidemic that quickly escalated into a pandemic by early 2020. Despite the implementation of various public health measures, such as lockdowns and widespread vaccination efforts, the virus continues to spread. This is primarily attributed to the rapid emergence of immune escape variants and the inadequacy of protection against reinfection. Spillback events were reported early in animals with frequent contact with humans, especially companion, captive, and farmed animals. Unfortunately, surveillance of spillback events is generally lacking in Malaysia. Therefore, this study aims to address this gap by investigating the presence of SARS-CoV-2 neutralising antibodies in wild rodents in Sarawak, Malaysia. RESULTS We analysed 208 archived plasma from rodents collected between from 2018 to 2022 to detect neutralising antibodies against SARS-CoV-2 using a surrogate virus neutralisation test, and discovered two seropositive rodents (Sundamys muelleri and Rattus rattus), which were sampled in 2021 and 2022, respectively. CONCLUSION Our findings suggest that Sundamys muelleri and Rattus rattus may be susceptible to natural SARS-CoV-2 infections. However, there is currently no evidence supporting sustainable rodent-to-rodent transmission.
Collapse
Affiliation(s)
- Cheng Siang Tan
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia.
| | - Madinah Adrus
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| | | | - Haziq Izzuddin Muhamad Azman
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| | - Riz Anasthasia Alta Abang
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| |
Collapse
|
27
|
Su Z, McDonnell D, Cheshmehzangi A, Bentley BL, Šegalo S, da Veiga CP, Xiang YT. Where should "Humans" be in "One Health"? Lessons from COVID-19 for One Health. Global Health 2024; 20:24. [PMID: 38528528 PMCID: PMC10964596 DOI: 10.1186/s12992-024-01026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
The culling of animals that are infected, or suspected to be infected, with COVID-19 has fuelled outcry. What might have contributed to the ongoing debates and discussions about animal rights protection amid global health crises is the lack of a unified understanding and internationally agreed-upon definition of "One Health". The term One Health is often utilised to describe the imperative to protect the health of humans, animals, and plants, along with the overarching ecosystem in an increasingly connected and globalized world. However, to date, there is a dearth of research on how to balance public health decisions that could impact all key stakeholders under the umbrella of One Health, particularly in contexts where human suffering has been immense. To shed light on the issue, this paper discusses whether One Health means "human-centred connected health" in a largely human-dominated planet, particularly amid crises like COVID-19. The insights of this study could help policymakers make more informed decisions that could effectively and efficiently protect human health while balancing the health and well-being of the rest of the inhabitants of our shared planet Earth.
Collapse
Affiliation(s)
- Zhaohui Su
- School of Public Health, Institute for Human Rights, Southeast University, Nanjing, 210009, China.
| | - Dean McDonnell
- Department of Humanities, South East Technological University, Carlow, R93 V960, Ireland
| | - Ali Cheshmehzangi
- Center of Innovation for Education and Research (CIER), Qingdao City University, Qingdao, China
- Network for Education and Research On Peace and Sustainability, Hiroshima University, Hiroshima, 739-8530, Japan
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
- Collaboration for the Advancement of Sustainable Medical Innovation, University College London, London, UK
| | - Sabina Šegalo
- Faculty of Health Studies, University of Sarajevo, 71000, Sarajevo, Bosnia and Herzegovina
| | - Claudimar Pereira da Veiga
- Fundação Dom Cabral - FDC, Av. Princesa Diana, 760 Alphaville, Lagoa Dos Ingleses, Nova Lima, MG, 34018-006, Brazil.
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration; Institute of Translational Medicine, Faculty of Health Sciences; Centre for Cognitive and Brain Sciences; Institute of Advanced Studies in Humanities and Social Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
28
|
Fang R, Yang X, Guo Y, Peng B, Dong R, Li S, Xu S. SARS-CoV-2 infection in animals: Patterns, transmission routes, and drivers. ECO-ENVIRONMENT & HEALTH 2024; 3:45-54. [PMID: 38169914 PMCID: PMC10758742 DOI: 10.1016/j.eehl.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 01/05/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more widespread in animals than previously thought, and it may be able to infect a wider range of domestic and wild species. To effectively control the spread of the virus and protect animal health, it is crucial to understand the cross-species transmission mechanisms and risk factors of SARS-CoV-2. This article collects published literature on SARS-CoV-2 in animals and examines the distribution, transmission routes, biophysical, and anthropogenic drivers of infected animals. The reported cases of infection in animals are mainly concentrated in South America, North America, and Europe, and species affected include lions, white-tailed deer, pangolins, minks, and cats. Biophysical factors influencing infection of animals with SARS-CoV-2 include environmental determinants, high-risk landscapes, air quality, and susceptibility of different animal species, while anthropogenic factors comprise human behavior, intensive livestock farming, animal markets, and land management. Due to current research gaps and surveillance capacity shortcomings, future mitigation strategies need to be designed from a One Health perspective, with research focused on key regions with significant data gaps in Asia and Africa to understand the drivers, pathways, and spatiotemporal dynamics of interspecies transmission.
Collapse
Affiliation(s)
- Ruying Fang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiyang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingjie Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruixuan Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
29
|
Hewitt J, Wilson-Henjum G, Collins DT, Linder TJ, Lenoch JB, Heale JD, Quintanal CA, Pleszewski R, McBride DS, Bowman AS, Chandler JC, Shriner SA, Bevins SN, Kohler DJ, Chipman RB, Gosser AL, Bergman DL, DeLiberto TJ, Pepin KM. Landscape-Scale Epidemiological Dynamics of SARS-CoV-2 in White-Tailed Deer. Transbound Emerg Dis 2024; 2024:7589509. [PMID: 40303065 PMCID: PMC12017121 DOI: 10.1155/2024/7589509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 05/02/2025]
Abstract
Understanding pathogen emergence in new host species is fundamental for developing prevention and response plans for human and animal health. We leveraged a large-scale surveillance dataset coordinated by United States Department of Agriculture, Animal and Plant Health Inspection Service and State Natural Resources Agencies to quantify the outbreak dynamics of SARS-CoV-2 in North American white-tailed deer (Odocoileus virginianus; WTD) throughout its range in the United States. Local epidemics in WTD were well approximated by a single-outbreak peak followed by fade out. Outbreaks peaked early in the northeast and mid-Atlantic. Local effective reproduction ratios of SARS-CoV-2 were between 1 and 2.5. Ten percent of variability in peak prevalence was explained by human infection pressure. This, together with the similar peak infection prevalence times across many counties and single-peak outbreak dynamics followed by fade out, suggest that widespread transmission via human-to-deer spillover may have been an important driver of the patterns and persistence. We provide a framework for inferring population-level epidemiological processes through joint analysis of many sparsely observed local outbreaks (landscape-scale surveillance data) and linking epidemiological parameters to ecological risk factors. The framework combines mechanistic and statistical models that can identify and track local outbreaks in long-term infection surveillance monitoring data.
Collapse
Affiliation(s)
- Joshua Hewitt
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | | | - Derek T. Collins
- National Wildlife Disease Program, United States Department of Agriculture, Fort Collins, CO, USA
| | - Timothy J. Linder
- National Wildlife Disease Program, United States Department of Agriculture, Fort Collins, CO, USA
| | - Julianna B. Lenoch
- National Wildlife Disease Program, United States Department of Agriculture, Fort Collins, CO, USA
| | - Jonathon D. Heale
- Wildlife Services, United States Department of Agriculture, Fort Collins, CO, USA
| | - Christopher A. Quintanal
- Wildlife Disease Diagnostic Laboratory, United States Department of Agriculture, Fort Collins, CO, USA
| | - Robert Pleszewski
- Wildlife Disease Diagnostic Laboratory, United States Department of Agriculture, Fort Collins, CO, USA
| | - Dillon S. McBride
- Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Andrew S. Bowman
- Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Jeffrey C. Chandler
- Wildlife Disease Diagnostic Laboratory, United States Department of Agriculture, Fort Collins, CO, USA
| | - Susan A. Shriner
- National Wildlife Research Center, United States Department of Agriculture, Fort Collins, CO, USA
| | - Sarah N. Bevins
- National Wildlife Disease Program, United States Department of Agriculture, Fort Collins, CO, USA
| | - Dennis J. Kohler
- National Wildlife Disease Program, United States Department of Agriculture, Fort Collins, CO, USA
| | - Richard B. Chipman
- Wildlife Services, United States Department of Agriculture, Fort Collins, CO, USA
| | - Allen L. Gosser
- Wildlife Services, United States Department of Agriculture, Fort Collins, CO, USA
| | - David L. Bergman
- Wildlife Services, United States Department of Agriculture, Fort Collins, CO, USA
| | - Thomas J. DeLiberto
- Wildlife Services, United States Department of Agriculture, Fort Collins, CO, USA
| | - Kim M. Pepin
- National Wildlife Research Center, United States Department of Agriculture, Fort Collins, CO, USA
| |
Collapse
|
30
|
Nederlof RA, de la Garza MA, Bakker J. Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Vet Sci 2024; 11:78. [PMID: 38393096 PMCID: PMC10893009 DOI: 10.3390/vetsci11020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a zoological institution were initially reported in March 2020. Since then, at least 94 peer-reviewed cases have been reported in zoos worldwide. Among the affected animals, nonhuman primates, carnivores, and artiodactyls appear to be most susceptible to infection, with the Felidae family accounting for the largest number of reported cases. Clinical symptoms tend to be mild across taxa; although, certain species exhibit increased susceptibility to disease. A variety of diagnostic tools are available, allowing for initial diagnostics and for the monitoring of infectious risk. Whilst supportive therapy proves sufficient in most cases, monoclonal antibody therapy has emerged as a promising additional treatment option. Effective transmission of SARS-CoV-2 in some species raises concerns over potential spillover and the formation of reservoirs. The occurrence of SARS-CoV-2 in a variety of animal species may contribute to the emergence of variants of concern due to altered viral evolutionary constraints. Consequently, this review emphasizes the need for effective biosecurity measures and surveillance strategies to prevent and control SARS-CoV-2 infections in zoological institutions.
Collapse
Affiliation(s)
| | - Melissa A. de la Garza
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
31
|
Sarlo Davila KM, Nelli RK, Phadke KS, Ruden RM, Sang Y, Bellaire BH, Gimenez-Lirola LG, Miller LC. How do deer respiratory epithelial cells weather the initial storm of SARS-CoV-2 WA1/2020 strain? Microbiol Spectr 2024; 12:e0252423. [PMID: 38189329 PMCID: PMC10846091 DOI: 10.1128/spectrum.02524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The potential infectivity of severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2) in animals raises a public health and economic concern, particularly the high susceptibility of white-tailed deer (WTD) to SARS-CoV-2. The disparity in the disease outcome between humans and WTD is very intriguing, as the latter are often asymptomatic, subclinical carriers of SARS-CoV-2. To date, no studies have evaluated the innate immune factors responsible for the contrasting SARS-CoV-2-associated disease outcomes in these mammalian species. A comparative transcriptomic analysis in primary respiratory epithelial cells of human (HRECs) and WTD (Deer-RECs) infected with the SARS-CoV-2 WA1/2020 strain was assessed throughout 48 h post inoculation (hpi). Both HRECs and Deer-RECs were susceptible to virus infection, with significantly (P < 0.001) lower virus replication in Deer-RECs. The number of differentially expressed genes (DEG) gradually increased in Deer-RECs but decreased in HRECs throughout the infection. The ingenuity pathway analysis of DEGs further identified that genes commonly altered during SARS-CoV-2 infection mainly belong to cytokine and chemokine response pathways mediated via interleukin-17 (IL-17) and nuclear factor-κB (NF-κB) signaling pathways. Inhibition of the NF-κB signaling in the Deer-RECs pathway was predicted as early as 6 hpi. The findings from this study could explain the lack of clinical signs reported in WTD in response to SARS-CoV-2 infection as opposed to the severe clinical outcomes reported in humans.IMPORTANCEThis study demonstrated that human and white-tailed deer primary respiratory epithelial cells are susceptible to the SARS-CoV-2 WA1/2020 strain infection. However, the comparative transcriptomic analysis revealed that deer cells could limit viral replication without causing hypercytokinemia by downregulating IL-17 and NF-κB signaling pathways. Identifying differentially expressed genes in human and deer cells that modulate key innate immunity pathways during the early infection will lead to developing targeted therapies toward preventing or mitigating the "cytokine storm" often associated with severe cases of coronavirus disease 19 (COVID-19). Moreover, results from this study will aid in identifying novel prognostic biomarkers in predicting SARS-CoV-2 adaption and transmission in deer and associated cervids.
Collapse
Affiliation(s)
- Kaitlyn M. Sarlo Davila
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Disease Research Unit, National Animal Disease Center , Ames, Iowa, USA
| | - Rahul K. Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kruttika S. Phadke
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Rachel M. Ruden
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, Tennessee, USA
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis G. Gimenez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Laura C. Miller
- United States Department of Agriculture, Agricultural Research Service, Virus and Prion Research Unit, National Animal Disease Center, Ames, Iowa, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
32
|
Cankat S, Demael MU, Swadling L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. Cell Mol Immunol 2024; 21:103-118. [PMID: 38148330 PMCID: PMC10805787 DOI: 10.1038/s41423-023-01116-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Members of the coronaviridae family are endemic to human populations and have caused several epidemics and pandemics in recent history. In this review, we will discuss the feasibility of and progress toward the ultimate goal of creating a pan-coronavirus vaccine that can protect against infection and disease by all members of the coronavirus family. We will detail the unmet clinical need associated with the continued transmission of SARS-CoV-2, MERS-CoV and the four seasonal coronaviruses (HCoV-OC43, NL63, HKU1 and 229E) in humans and the potential for future zoonotic coronaviruses. We will highlight how first-generation SARS-CoV-2 vaccines and natural history studies have greatly increased our understanding of effective antiviral immunity to coronaviruses and have informed next-generation vaccine design. We will then consider the ideal properties of a pan-coronavirus vaccine and propose a blueprint for the type of immunity that may offer cross-protection. Finally, we will describe a subset of the diverse technologies and novel approaches being pursued with the goal of developing broadly or universally protective vaccines for coronaviruses.
Collapse
Affiliation(s)
- S Cankat
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - M U Demael
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - L Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK.
| |
Collapse
|
33
|
Porter SM, Hartwig AE, Bielefeldt-Ohmann H, Marano JM, Root JJ, Bosco-Lauth AM. Experimental SARS-CoV-2 Infection of Elk and Mule Deer. Emerg Infect Dis 2024; 30:354-357. [PMID: 38270133 PMCID: PMC10826780 DOI: 10.3201/eid3002.231093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
To assess the susceptibility of elk (Cervus canadensis) and mule deer (Odocoileus hemionus) to SARS-CoV-2, we performed experimental infections in both species. Elk did not shed infectious virus but mounted low-level serologic responses. Mule deer shed and transmitted virus and mounted pronounced serologic responses and thus could play a role in SARS-CoV-2 epidemiology.
Collapse
|
34
|
Hüttl J, Reitt K, Meli ML, Meili T, Bönzli E, Pineroli B, Ginders J, Schoster A, Jones S, Tyson GB, Hosie MJ, Pusterla N, Wernike K, Hofmann-Lehmann R. Serological and Molecular Investigation of SARS-CoV-2 in Horses and Cattle in Switzerland from 2020 to 2022. Viruses 2024; 16:224. [PMID: 38400000 PMCID: PMC10892882 DOI: 10.3390/v16020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Horses and cattle have shown low susceptibility to SARS-CoV-2, and there is no evidence of experimental intraspecies transmission. Nonetheless, seropositive horses in the US and seropositive cattle in Germany and Italy have been reported. The current study investigated the prevalence of antibodies against SARS-CoV-2 in horses and cattle in Switzerland. In total, 1940 serum and plasma samples from 1110 horses and 830 cattle were screened with a species-specific ELISA based on the SARS-CoV-2 receptor-binding domain (RBD) and, in the case of suspect positive results, a surrogate virus neutralization test (sVNT) was used to demonstrate the neutralizing activity of the antibodies. Further confirmation of suspect positive samples was performed using either a pseudotype-based virus neutralization assay (PVNA; horses) or an indirect immunofluorescence test (IFA; cattle). The animals were sampled between February 2020 and December 2022. Additionally, in total, 486 bronchoalveolar lavage (BAL), oropharyngeal, nasal and rectal swab samples from horses and cattle were analyzed for the presence of SARS-CoV-2 RNA via reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Six horses (0.5%; 95% CI: 0.2-1.2%) were suspect positive via RBD-ELISA, and neutralizing antibodies were detected in two of them via confirmatory sVNT and PVNA tests. In the PVNA, the highest titers were measured against the Alpha and Delta SARS-CoV-2 variants. Fifteen cattle (1.8%; 95% CI: 1.0-3.0%) were suspect positive in RBD-ELISA; 3 of them had SARS-CoV-2-specific neutralizing antibodies in sVNT and 4 of the 15 were confirmed to be positive via IFA. All tested samples were RT-qPCR-negative. The results support the hypotheses that the prevalence of SARS-CoV-2 infections in horses and cattle in Switzerland was low up to the end of 2022.
Collapse
Affiliation(s)
- Julia Hüttl
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland;
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Katja Reitt
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland;
| | - Marina L. Meli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Theres Meili
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Eva Bönzli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Benita Pineroli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Julia Ginders
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Angelika Schoster
- Clinic for Equine Internal Medicine, Equine Department, University of Zurich, 8057 Zurich, Switzerland;
| | - Sarah Jones
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK; (S.J.)
| | - Grace B. Tyson
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK; (S.J.)
- MRC-University of Glasgow, Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK;
| | - Margaret J. Hosie
- MRC-University of Glasgow, Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK;
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| |
Collapse
|
35
|
Zhuang J, Yan Z, Zhou T, Li Y, Wang H. The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs. Arch Virol 2024; 169:35. [PMID: 38265497 DOI: 10.1007/s00705-023-05956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/19/2023] [Indexed: 01/25/2024]
Abstract
The pandemic caused by SARS-CoV-2, which has proven capable of infecting over 30 animal species, highlights the critical need for understanding the mechanisms of cross-species transmission and the emergence of novel coronavirus strains. The recent discovery of CCoV-HuPn-2018, a recombinant alphacoronavirus from canines and felines that can infect humans, along with evidence of SARS-CoV-2 infection in pig cells, underscores the potential for coronaviruses to overcome species barriers. This review investigates the origins and cross-species transmission of both human and porcine coronaviruses, with a specific emphasis on the instrumental role receptors play in this process.
Collapse
Affiliation(s)
- Jie Zhuang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhiwei Yan
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Tiezhong Zhou
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Huinuan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
36
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
37
|
Anderson TK, Medina RA, Nelson MI. The Evolution of SARS-CoV-2 and Influenza A Virus at the Human–Animal Interface. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:549-572. [DOI: 10.1016/b978-0-443-28818-0.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Earnest R, Hahn AM, Feriancek NM, Brandt M, Filler RB, Zhao Z, Breban MI, Vogels CBF, Chen NFG, Koch RT, Porzucek AJ, Sodeinde A, Garbiel A, Keanna C, Litwak H, Stuber HR, Cantoni JL, Pitzer VE, Olarte Castillo XA, Goodman LB, Wilen CB, Linske MA, Williams SC, Grubaugh ND. Survey of white-footed mice (Peromyscus leucopus) in Connecticut, USA reveals low SARS-CoV-2 seroprevalence and infection with divergent betacoronaviruses. NPJ VIRUSES 2023; 1:10. [PMID: 40295640 PMCID: PMC11721133 DOI: 10.1038/s44298-023-00010-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 04/30/2025]
Abstract
Diverse mammalian species display susceptibility to SARS-CoV-2. Potential SARS-CoV-2 spillback into rodents is understudied despite their host role for numerous zoonoses and human proximity. We assessed exposure and infection among white-footed mice (Peromyscus leucopus) in Connecticut, USA. We observed 1% (6/540) wild-type neutralizing antibody seroprevalence among 2020-2022 residential mice with no cross-neutralization of variants. We detected no SARS-CoV-2 infections via RT-qPCR, but identified non-SARS-CoV-2 betacoronavirus infections via pan-coronavirus PCR among 1% (5/468) of residential mice. Sequencing revealed two divergent betacoronaviruses, preliminarily named Peromyscus coronavirus-1 and -2. Both belong to the Betacoronavirus 1 species and are ~90% identical to the closest known relative, Porcine hemagglutinating encephalomyelitis virus. In addition, to provide a comparison, we also screened a species with significant SARS-CoV-2 infection and exposure across North America: the white-tailed deer (Odocoileus virginianus). We detected no active coronavirus infections and 7% (4/55) wild-type SARS-CoV-2 neutralizing antibody seroprevalence. Low SARS-CoV-2 seroprevalence suggests white-footed mice may not be sufficiently susceptible or exposed to SARS-CoV-2 to present a long-term human health risk. However, the discovery of divergent, non-SARS-CoV-2 betacoronaviruses expands the diversity of known rodent coronaviruses and further investigation is required to understand their transmission extent.
Collapse
Affiliation(s)
- Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Nicole M Feriancek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Nicholas F G Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Abbey J Porzucek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Alexa Garbiel
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Claire Keanna
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Hannah Litwak
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Heidi R Stuber
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Jamie L Cantoni
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Ximena A Olarte Castillo
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Laura B Goodman
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Scott C Williams
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
39
|
Hopken MW, Piaggio AJ, Abdo Z, Chipman RB, Mankowski CP, Nelson KM, Hilton MS, Thurber C, Tsuchiya MTN, Maldonado JE, Gilbert AT. Are rabid raccoons ( Procyon lotor) ready for the rapture? Determining the geographic origin of rabies virus-infected raccoons using RADcapture and microhaplotypes. Evol Appl 2023; 16:1937-1955. [PMID: 38143904 PMCID: PMC10739080 DOI: 10.1111/eva.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/06/2023] [Accepted: 10/18/2023] [Indexed: 12/26/2023] Open
Abstract
North America is recognized for the exceptional richness of rabies virus (RV) wildlife reservoir species. Management of RV is accomplished through vaccination targeting mesocarnivore reservoir populations, such as the raccoon (Procyon lotor) in Eastern North America. Raccoons are a common generalist species, and populations may reach high densities in developed areas, which can result in contact with humans and pets with potential exposures to the raccoon variant of RV throughout the eastern United States. Understanding the spatial movement of RV by raccoon populations is important for monitoring and refining strategies supporting the landscape-level control and local elimination of this lethal zoonosis. We developed a high-throughput genotyping panel for raccoons based on hundreds of microhaplotypes to identify population structure and genetic diversity relevant to rabies management programs. Throughout the eastern United States, we identified hierarchical population genetic structure with clusters that were connected through isolation-by-distance. We also illustrate that this genotyping approach can be used to support real-time management priorities by identifying the geographic origin of a rabid raccoon that was collected in an area of the United States that had been raccoon RV-free for 8 years. The results from this study and the utility of the microhaplotype panel and genotyping method will provide managers with information on raccoon ecology that can be incorporated into future management decisions.
Collapse
Affiliation(s)
- Matthew W. Hopken
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Antoinette J. Piaggio
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Richard B. Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Clara P. Mankowski
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Kathleen M. Nelson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mikaela Samsel Hilton
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Christine Thurber
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mirian T. N. Tsuchiya
- Data Science Lab, Office of the Chief Information OfficerSmithsonian InstitutionWashingtonDCUSA
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Amy T. Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| |
Collapse
|
40
|
Miller MR, Braun E, Ip HS, Tyson GH. Domestic and wild animal samples and diagnostic testing for SARS-CoV-2. Vet Q 2023; 43:1-11. [PMID: 37779468 PMCID: PMC10614713 DOI: 10.1080/01652176.2023.2263864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
From the first cases in 2019, COVID-19 infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have resulted in over 6 million human deaths in a worldwide pandemic. SARS-CoV-2 is commonly spread from human to human through close contact and is capable of infecting both humans and animals. Worldwide, there have been over 675 animal outbreaks reported that resulted in over 2000 animal infections including domestic and wild animals. As the role of animal infections in the transmission, pathogenesis, and evolution of SARS-CoV-2 is still unfolding, accurate and reliable animal diagnostic tests are critical to aid in managing both human and animal health. This review highlights key animal samples and the three main diagnostic approaches used for animal testing: PCR, serology, and Next Generation Sequencing. Diagnostic results help inform (often difficult) clinical decision-making, but also possible ways to mitigate spread among pets, food supplies, or wildlife. A One Health approach has been key to monitoring the SARS-CoV-2 pandemic, as consistent human-animal interactions can lead to novel variants. Having multiple animal diagnostic tests for SARS-CoV-2 available is critical to ensure human, animal, and environmental health.
Collapse
Affiliation(s)
- Megan R. Miller
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Elias Braun
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
- School of Veterinary Medicine, University of PA, Philadelphia, PA, USA
| | - Hon S. Ip
- National Wildlife Health Center, U.S. Geological Survey, Madison, WI, USA
| | - Gregory H. Tyson
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| |
Collapse
|
41
|
Mena J, Hidalgo C, Estay-Olea D, Sallaberry-Pincheira N, Bacigalupo A, Rubio AV, Peñaloza D, Sánchez C, Gómez-Adaros J, Olmos V, Cabello J, Ivelic K, Abarca MJ, Ramírez-Álvarez D, Torregrosa Rocabado M, Durán Castro N, Carreño M, Gómez G, Cattan PE, Ramírez-Toloza G, Robbiano S, Marchese C, Raffo E, Stowhas P, Medina-Vogel G, Landaeta-Aqueveque C, Ortega R, Waleckx E, Gónzalez-Acuña D, Rojo G. Molecular surveillance of potential SARS-CoV-2 reservoir hosts in wildlife rehabilitation centers. Vet Q 2023; 43:1-10. [PMID: 36594266 PMCID: PMC9858396 DOI: 10.1080/01652176.2023.2164909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by SARS-CoV-2 infection, has become the most devastating zoonotic event in recent times, with negative impacts on both human and animal welfare as well as on the global economy. Although SARS-CoV-2 is considered a human virus, it likely emerged from animals, and it can infect both domestic and wild animals. This constitutes a risk for human and animal health including wildlife with evidence of SARS-CoV-2 horizontal transmission back and forth between humans and wild animals. AIM Molecular surveillance in different wildlife rehabilitation centers and wildlife associated institutions in Chile, which are critical points of animal-human interaction and wildlife conservation, especially since the aim of wildlife rehabilitation centers is to reintroduce animals to their original habitat. MATERIALS AND METHODS The survey was conducted in six WRCs and three wildlife associated institutions. A total of 185 samples were obtained from 83 individuals belonging to 15 different species, including vulnerable and endangered species. Each specimen was sampled with two different swabs: one oropharyngeal or nasopharyngeal according to the nostril diameter, and/or a second rectal sample. RNA was extracted from the samples and two different molecular assays were performed: first, a conventional RT-PCR with pan-coronavirus primers and a second SARS-CoV-2 qPCR targeting the N and S genes. RESULTS All 185 samples were negative for SARS-CoV-2. CLINICAL RELEVANCE This study constitutes the first report on the surveillance of SARS-CoV-2 from wildlife treated in rehabilitation centers in Chile, and supports the biosafety procedures adopted in those centers.
Collapse
Affiliation(s)
- Juan Mena
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| | - Christian Hidalgo
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Chile
| | - Daniela Estay-Olea
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| | - Nicole Sallaberry-Pincheira
- Unidad de Rehabilitación de Fauna Silvestre (UFAS), Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - Antonella Bacigalupo
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - André V. Rubio
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Diego Peñaloza
- Departamento de Áreas Silvestres Protegidas, Corporación Nacional Forestal (CONAF), Región del Libertador General Bernardo O’Higgins, Rancagua, Chile
| | - Carolina Sánchez
- Unidad de Rehabilitación de Fauna Silvestre (UFAS), Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | | | - Valeria Olmos
- Centro de Rehabilitación y Exhibición de Fauna Silvestre, Rancagua, Chile
| | - Javier Cabello
- Centro de Conservación de la Biodiversidad, Ancud, Chile
| | - Kendra Ivelic
- Refugio Animal Cascada, Centro de Rehabilitación y Exhibición de fauna nativa de la Fundación Acción Fauna, Santiago, Chile
| | - María José Abarca
- Comité Nacional Pro Defensa de la Fauna y Flora (CODEFF), Santiago, Chile
| | - Diego Ramírez-Álvarez
- Servicio Agrícola y Ganadero de Chile (SAG), Unidad de Vida Silvestre, Rancagua, Chile
| | - Marisol Torregrosa Rocabado
- Médico Veterinaria Encargada Sección Salud Animal, Zoológico Nacional del Parque Metropolitano, Santiago, Chile
| | - Natalia Durán Castro
- Médico Veterinaria Sección Salud Animal, Zoológico Nacional del Parque Metropolitano, Santiago, Chile
| | | | - Gabriela Gómez
- Departamento de Áreas Silvestres Protegidas, Corporación Nacional Forestal (CONAF), Región de Aysén, Chile
| | - Pedro E. Cattan
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Galia Ramírez-Toloza
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sofía Robbiano
- Centro de Rehabilitación de Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Carla Marchese
- Servicio Agrícola y Ganadero de Chile (SAG), Unidad de Vida Silvestre, Valdivia, Chile
| | - Eduardo Raffo
- Servicio Agrícola y Ganadero de Chile (SAG), Unidad de Vida Silvestre, Valdivia, Chile
| | - Paulina Stowhas
- Programa Nacional Integrado de Gestión de Especies Exóticas Invasoras, Ministerio del Medio Ambiente, Santiago, Chile
| | - Gonzalo Medina-Vogel
- Centro de Investigación para la Sustentabilidad (CIS), Universidad Andres Bello, Santiago, Chile
| | - Carlos Landaeta-Aqueveque
- Departamento Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - René Ortega
- Departamento Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Etienne Waleckx
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, México
| | - Daniel Gónzalez-Acuña
- Departamento Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Gemma Rojo
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| |
Collapse
|
42
|
Fernández-Bastit L, Vergara-Alert J, Segalés J. Transmission of severe acute respiratory syndrome coronavirus 2 from humans to animals: is there a risk of novel reservoirs? Curr Opin Virol 2023; 63:101365. [PMID: 37793299 DOI: 10.1016/j.coviro.2023.101365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic virus able to infect humans and multiple nonhuman animal species. Most natural infections in companion, captive zoo, livestock, and wildlife species have been related to a reverse transmission, raising concern about potential generation of animal reservoirs due to human-animal interactions. To date, American mink and white-tailed deer are the only species that led to extensive intraspecies transmission of SARS-CoV-2 after reverse zoonosis, leading to an efficient spread of the virus and subsequent animal-to-human transmission. Viral host adaptations increase the probability of new SARS-CoV-2 variants' emergence that could cause a major global health impact. Therefore, applying the One Health approach is crucial to prevent and overcome future threats for human, animal, and environmental fields.
Collapse
Affiliation(s)
- Leira Fernández-Bastit
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain.
| |
Collapse
|
43
|
Kotwa JD, Lobb B, Massé A, Gagnier M, Aftanas P, Banerjee A, Banete A, Blais-Savoie J, Bowman J, Buchanan T, Chee HY, Kruczkiewicz P, Nirmalarajah K, Soos C, Vernygora O, Yip L, Lindsay LR, McGeer AJ, Maguire F, Lung O, Doxey AC, Pickering B, Mubareka S. Genomic and transcriptomic characterization of delta SARS-CoV-2 infection in free-ranging white-tailed deer ( Odocoileus virginianus). iScience 2023; 26:108319. [PMID: 38026171 PMCID: PMC10665813 DOI: 10.1016/j.isci.2023.108319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023] Open
Abstract
White-tailed deer (WTD) are susceptible to SARS-CoV-2 and represent an important species for surveillance. Samples from WTD (n = 258) collected in November 2021 from Québec, Canada were analyzed for SARS-CoV-2 RNA. We employed viral genomics and host transcriptomics to further characterize infection and investigate host response. We detected Delta SARS-CoV-2 (B.1.617.2) in WTD from the Estrie region; sequences clustered with human sequences from October 2021 from Vermont, USA, which borders this region. Mutations in the S-gene and a deletion in ORF8 were detected. Host expression patterns in SARS-CoV-2 infected WTD were associated with the innate immune response, including signaling pathways related to anti-viral, pro- and anti-inflammatory signaling, and host damage. We found limited correlation between genes associated with innate immune response from human and WTD nasal samples, suggesting differences in responses to SARS-CoV-2 infection. Our findings provide preliminary insights into host response to SARS-CoV-2 infection in naturally infected WTD.
Collapse
Affiliation(s)
| | - Briallen Lobb
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ariane Massé
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec City, QC G1S 4X4, Canada
| | - Marianne Gagnier
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec City, QC G1S 4X4, Canada
| | | | - Arinjay Banerjee
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andra Banete
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | | | - Jeff Bowman
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON K9J 8M5, Canada
| | - Tore Buchanan
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON K9J 8M5, Canada
| | - Hsien-Yao Chee
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Global Health Research Center and Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215316, China
| | - Peter Kruczkiewicz
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | | | - Catherine Soos
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Oksana Vernygora
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Lily Yip
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - L. Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Allison J. McGeer
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Finlay Maguire
- Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Community Health & Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Shared Hospital Laboratory, Toronto, ON M4N 3M5, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Bradley Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
44
|
Mabry ME, Fanelli A, Mavian C, Lorusso A, Manes C, Soltis PS, Capua I. The panzootic potential of SARS-CoV-2. Bioscience 2023; 73:814-829. [PMID: 38125826 PMCID: PMC10728779 DOI: 10.1093/biosci/biad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Each year, SARS-CoV-2 is infecting an increasingly unprecedented number of species. In the present article, we combine mammalian phylogeny with the genetic characteristics of isolates found in mammals to elaborate on the host-range potential of SARS-CoV-2. Infections in nonhuman mammals mirror those of contemporary viral strains circulating in humans, although, in certain species, extensive viral circulation has led to unique genetic signatures. As in other recent studies, we found that the conservation of the ACE2 receptor cannot be considered the sole major determinant of susceptibility. However, we are able to identify major clades and families as candidates for increased surveillance. On the basis of our findings, we argue that the use of the term panzootic could be a more appropriate term than pandemic to describe the ongoing scenario. This term better captures the magnitude of the SARS-CoV-2 host range and would hopefully inspire inclusive policy actions, including systematic screenings, that could better support the management of this worldwide event.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Carla Mavian
- Emerging Pathogens Institute and with the Department of Pathology, University of Florida, Gainesville, Florida, United States
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Costanza Manes
- Department of Wildlife Ecology and Conservation and with the One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
- School of International Advanced Studies, Johns Hopkins University, Bologna, Italy
| |
Collapse
|
45
|
Hou YJ, Chiba S, Leist SR, Meganck RM, Martinez DR, Schäfer A, Catanzaro NJ, Sontake V, West A, Edwards CE, Yount B, Lee RE, Gallant SC, Zost SJ, Powers J, Adams L, Kong EF, Mattocks M, Tata A, Randell SH, Tata PR, Halfmann P, Crowe JE, Kawaoka Y, Baric RS. Host range, transmissibility and antigenicity of a pangolin coronavirus. Nat Microbiol 2023; 8:1820-1833. [PMID: 37749254 PMCID: PMC10522490 DOI: 10.1038/s41564-023-01476-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.
Collapse
Affiliation(s)
- Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Moderna Inc., Cambridge, MA, USA
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vishwaraj Sontake
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rhianna E Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel C Gallant
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edgar F Kong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aleksandra Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Purushothama R Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Poonsuk K, Loy D, Birn R, Buss B, Donahue M, Nordeen T, Sinclair K, Meduna L, Brodersen B, Loy JD. DETECTION OF SARS-COV-2 NEUTRALIZING ANTIBODIES IN RETROPHARYNGEAL LYMPH NODE EXUDATES OF WHITE-TAILED DEER (ODOCOILEUS VIRGINIANUS) FROM NEBRASKA, USA. J Wildl Dis 2023; 59:702-708. [PMID: 37768779 PMCID: PMC10913095 DOI: 10.7589/jwd-d-23-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 09/30/2023]
Abstract
Disease surveillance testing for emerging zoonotic pathogens in wildlife is a key component in understanding the epidemiology of these agents and potential risk to human populations. Recent emergence of SARS-CoV-2 in humans, and subsequent detection of this virus in wildlife, highlights the need for developing new One Health surveillance strategies. We used lymph node exudate, a sample type that is routinely collected in hunter-harvested white-tailed deer (WTD, Odocoileus virginianus) for surveillance of chronic wasting disease, to assess anti-SARS-CoV-2 neutralizing antibodies. A total of 132 pairs of retropharyngeal lymph nodes collected from Nebraska WTD harvested in Nebraska, US, in 2019 (pre-SARS-CoV-2 pandemic) and 2021 (post-SARS-CoV-2 pandemic) were tested for SARS-CoV-2 with reverse transcription PCR. Thereafter, exudates obtained from these same lymph nodes were tested for SARS-CoV-2 neutralizing antibodies using a surrogate virus neutralization test. Neutralizing antibodies were detected in the exudates with high diagnostic specificity (100% at proposed cutoff of 40% inhibition). Application of this testing approach to samples collected for use in other disease surveillance activities may provide additional epidemiological data on SARS-CoV-2 exposure, and there is further potential to apply this sample type to detection of other pathogens of interest.
Collapse
Affiliation(s)
- Korakrit Poonsuk
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - Duan Loy
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - Rachael Birn
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
- Council State and Territorial Epidemiologists, 2635 Century Pkwy NE no. 700, Atlanta, Georgia 30345, USA
| | - Bryan Buss
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
- Division of State and Local Readiness, Center for Preparedness and Response, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, USA
| | - Matthew Donahue
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
| | - Todd Nordeen
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Kylie Sinclair
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Luke Meduna
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Bruce Brodersen
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - John Dustin Loy
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| |
Collapse
|
47
|
Needham T, Bureš D, Černý J, Hoffman LC. Overview of game meat utilisation challenges and opportunities: A European perspective. Meat Sci 2023; 204:109284. [PMID: 37480669 DOI: 10.1016/j.meatsci.2023.109284] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
Re-wilding and similar initiatives have resulted in an increase in wildlife suitable for human consumption in Europe. However, game meat production and consumption present several challenges, including infectious diseases which pose risks to livestock, processers, and consumers. This review provides insights into the infectious diseases and toxic contaminants associated with game meat. The effect of killing method on the meat quality is also discussed and means of improving the meat quality of game meat is elucidated. The use of different food safety systems that could be applied to provide safe meat is reported. The importance of collaborative multi-sector approaches is emphasized, to generate and distribute knowledge and implement One Health strategies that ensure the safe, traceable, sustainable, and professional development of commercial game meat supply chains.
Collapse
Affiliation(s)
- Tersia Needham
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Suchdol 165 00, Czech Republic.
| | - Daniel Bureš
- Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; Department of Food Science, Faculty of Agrobiology, Food and Natural Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Suchdol 165 00, Czech Republic
| | - Jiří Černý
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Suchdol 165 00, Czech Republic
| | - Louwrens C Hoffman
- Center for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Digital Agricultural Building. 8115. Office 110, Gatton 4343, Australia
| |
Collapse
|
48
|
Han P, Meng Y, Zhang D, Xu Z, Li Z, Pan X, Zhao Z, Li L, Tang L, Qi J, Liu K, Gao GF. Structural basis of white-tailed deer, Odocoileus virginianus, ACE2 recognizing all the SARS-CoV-2 variants of concern with high affinity. J Virol 2023; 97:e0050523. [PMID: 37676003 PMCID: PMC10537675 DOI: 10.1128/jvi.00505-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/01/2023] [Indexed: 09/08/2023] Open
Abstract
SARS-CoV-2 has been expanding its host range, among which the white-tailed deer (WTD), Odocoileus virginianus, became the first wildlife species infected on a large scale and might serve as a host reservoir for variants of concern (VOCs) in case no longer circulating in humans. In this study, we comprehensively assessed the binding of the WTD angiotensin-converting enzyme 2 (ACE2) receptor to the spike (S) receptor-binding domains (RBDs) from the SARS-CoV-2 prototype (PT) strain and multiple variants. We found that WTD ACE2 could be broadly recognized by all of the tested RBDs. We further determined the complex structures of WTD ACE2 with PT, Omicron BA.1, and BA.4/5 S trimer. Detailed structural comparison revealed the important roles of RBD residues on 486, 498, and 501 sites for WTD ACE2 binding. This study deepens our understanding of the interspecies transmission mechanisms of SARS-CoV-2 and further addresses the importance of constant monitoring on SARS-CoV-2 infections in wild animals. IMPORTANCE Even if we manage to eliminate the virus among humans, it will still circulate among wildlife and continuously be transmitted back to humans. A recent study indicated that WTD may serve as reservoir for nearly extinct SARS-CoV-2 strains. Therefore, it is critical to evaluate the binding abilities of SARS-CoV-2 variants to the WTD ACE2 receptor and elucidate the molecular mechanisms of binding of the RBDs to assess the risk of spillback events.
Collapse
Affiliation(s)
- Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Yumin Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Di Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Zhiyuan Li
- College of Veterinary Medicine, China Agricultural University , Beijing, China
| | - Xiaoqian Pan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Linjie Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Lingfeng Tang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Beijing Life Science Academy , Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
49
|
Earnest R, Hahn AM, Feriancek NM, Brandt M, Filler RB, Zhao Z, Breban MI, Vogels CBF, Chen NFG, Koch RT, Porzucek AJ, Sodeinde A, Garbiel A, Keanna C, Litwak H, Stuber HR, Cantoni JL, Pitzer VE, Olarte Castillo XA, Goodman LB, Wilen CB, Linske MA, Williams SC, Grubaugh ND. Survey of white-footed mice in Connecticut, USA reveals low SARS-CoV-2 seroprevalence and infection with divergent betacoronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559030. [PMID: 37808797 PMCID: PMC10557615 DOI: 10.1101/2023.09.22.559030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Diverse mammalian species display susceptibility to and infection with SARS-CoV-2. Potential SARS-CoV-2 spillback into rodents is understudied despite their host role for numerous zoonoses and human proximity. We assessed exposure and infection among white-footed mice (Peromyscus leucopus) in Connecticut, USA. We observed 1% (6/540) wild-type neutralizing antibody seroprevalence among 2020-2022 residential mice with no cross-neutralization of variants. We detected no SARS-CoV-2 infections via RT-qPCR, but identified non-SARS-CoV-2 betacoronavirus infections via pan-coronavirus PCR among 1% (5/468) of residential mice. Sequencing revealed two divergent betacoronaviruses, preliminarily named Peromyscus coronavirus-1 and -2. Both belong to the Betacoronavirus 1 species and are ~90% identical to the closest known relative, Porcine hemagglutinating encephalomyelitis virus. Low SARS-CoV-2 seroprevalence suggests white-footed mice may not be sufficiently susceptible or exposed to SARS-CoV-2 to present a long-term human health risk. However, the discovery of divergent, non-SARS-CoV-2 betacoronaviruses expands the diversity of known rodent coronaviruses and further investigation is required to understand their transmission extent.
Collapse
Affiliation(s)
- Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicole M Feriancek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicholas F G Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Abbey J Porzucek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Alexa Garbiel
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Claire Keanna
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Hannah Litwak
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Heidi R Stuber
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Jamie L Cantoni
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ximena A Olarte Castillo
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Laura B Goodman
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Scott C Williams
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
50
|
Rzymski P, Pokorska-Śpiewak M, Jackowska T, Kuchar E, Nitsch-Osuch A, Pawłowska M, Babicki M, Jaroszewicz J, Szenborn L, Wysocki J, Flisiak R. Key Considerations during the Transition from the Acute Phase of the COVID-19 Pandemic: A Narrative Review. Vaccines (Basel) 2023; 11:1502. [PMID: 37766178 PMCID: PMC10537111 DOI: 10.3390/vaccines11091502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has been met with an unprecedented response from the scientific community, leading to the development, investigation, and authorization of vaccines and antivirals, ultimately reducing the impact of SARS-CoV-2 on global public health. However, SARS-CoV-2 is far from being eradicated, continues to evolve, and causes substantial health and economic burdens. In this narrative review, we posit essential points on SARS-CoV-2 and its responsible management during the transition from the acute phase of the COVID-19 pandemic. As discussed, despite Omicron (sub)variant(s) causing clinically milder infections, SARS-CoV-2 is far from being a negligible pathogen. It requires continued genomic surveillance, particularly if one considers that its future (sub)lineages do not necessarily have to be milder. Antivirals and vaccines remain the essential elements in COVID-19 management. However, the former could benefit from further development and improvements in dosing, while the seasonal administration of the latter requires simplification to increase interest and tackle vaccine hesitancy. It is also essential to ensure the accessibility of COVID-19 pharmaceuticals and vaccines in low-income countries and improve the understanding of their use in the context of the long-term goals of SARS-CoV-2 management. Regardless of location, the primary role of COVID-19 awareness and education must be played by healthcare workers, who directly communicate with patients and serve as role models for healthy behaviors.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Maria Pokorska-Śpiewak
- Department of Children’s Infectious Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Teresa Jackowska
- Department of Pediatrics, Centre for Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Ernest Kuchar
- Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Aneta Nitsch-Osuch
- Department of Social Medicine and Public Health, Medical University of Warsaw, 02-007 Warsaw, Poland;
| | - Małgorzata Pawłowska
- Department of Infectious Diseases and Hepatology, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland;
| | - Mateusz Babicki
- Department of Family Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland;
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia, 41-902 Bytom, Poland;
| | - Leszek Szenborn
- Department of Pediatric Infectious Diseases, Wrocław Medical University, 50-367 Wroclaw, Poland;
| | - Jacek Wysocki
- Department of Preventive Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-089 Bialystok, Poland;
| |
Collapse
|