1
|
Hayashi F, Inoue N, Iwatani Y, Yamashita Y, Yamada H, Miyauchi A, Watanabe M. Increased expression of membrane-bound TGF-β1, GITR, and GITR ligand in patients with autoimmune thyroid disease. Immunol Lett 2025:107036. [PMID: 40412445 DOI: 10.1016/j.imlet.2025.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/08/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Regulatory T (Treg) cells, which play an important role in maintaining self-tolerance, are present in the thyroid-infiltrating lymphocytes of patients with autoimmune thyroid disease (AITD). We examined the expression of membrane-bound transforming growth factor-β1 (mTGF-β1), which mediates regulatory function and glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR). The protein in turn may inhibit regulatory function on Treg cells and TGF-β1 receptor II (TGF-βRII) and GITR expression. We also evaluated GITR ligand (GITRL) localization in thyroid tissues. mTGF-β1+ cells proportion in Treg cells was higher in the thyroid of patients with AITD than in their peripheral blood. GITR+ cells proportion among Tregs and Teff cells was also higher in the thyroid than in peripheral blood. GITRL expression in thyrocytes was higher in AITD patients than in healthy subjects. The interaction and balance of mTGF-β1, GITR, TGF-βRII, and GITRL especially thyrocyte GITRL expression, could be critical in AITD pathogenesis.
Collapse
Affiliation(s)
- Fumiaki Hayashi
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Naoya Inoue
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Yoshinori Iwatani
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Yuka Yamashita
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Hiroya Yamada
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | | | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Ren M, Li M, Boccaccini AR, Xu Y, Li L, Zheng K. Electrospinning of recombinant human-like collagen-reinforced PCL nanofibrous membranes using benign solvents for periodontal regeneration. Int J Biol Macromol 2025; 284:137954. [PMID: 39579833 DOI: 10.1016/j.ijbiomac.2024.137954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Periodontal tissue defects are a leading cause of tooth loss in adults. Guided tissue regeneration (GTR) has emerged as an effective clinical approach for promoting periodontal regeneration. In this study, we employed a green electrospinning technology to combine recombinant human-like collagen (RHC) with polycaprolactone (PCL) to fabricate RHC/PCL membranes for periodontal regeneration. Our results showed that incorporating RHC into PCL up to 40 wt% did not significantly affect the nanofibrous structure of the PCL membranes. When the RHC concentration exceeded 10 wt%, both the tensile strength and modulus of the PCL membranes increased. Additionally, the presence of RHC improved the hydrophilicity of membranes. Biologically, the addition of RHC, regardless of its concentration, significantly enhanced the adhesion, proliferation, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). These effects were confirmed through various assays, including the CCK-8 assay, live/dead staining, as well as ALP and ARS staining. Further, real-time quantitative PCR and Western blot analysis revealed upregulation of osteogenesis-related genes and proteins. Transcriptome sequencing analysis suggested that the PI3K-Akt signaling pathway might play a critical role in the enhanced osteogenesis induced by RHC. Our results emphasize the potential of RHC/PCL nanofibrous membranes to advance the field of periodontal tissue repair.
Collapse
Affiliation(s)
- Minyi Ren
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China
| | - Meng Li
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China
| | - Lu Li
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China.
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China.
| |
Collapse
|
3
|
Papadakos SP, Chatzikalil E, Vakadaris G, Reppas L, Arvanitakis K, Koufakis T, Siakavellas SI, Manolakopoulos S, Germanidis G, Theocharis S. Exploring the Role of GITR/GITRL Signaling: From Liver Disease to Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2609. [PMID: 39061246 PMCID: PMC11275207 DOI: 10.3390/cancers16142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and presents a continuously growing incidence and high mortality rates worldwide. Besides advances in diagnosis and promising results of pre-clinical studies, established curative therapeutic options for HCC are not currently available. Recent progress in understanding the tumor microenvironment (TME) interactions has turned the scientific interest to immunotherapy, revolutionizing the treatment of patients with advanced HCC. However, the limited number of HCC patients who benefit from current immunotherapeutic options creates the need to explore novel targets associated with improved patient response rates and potentially establish them as a part of novel combinatorial treatment options. Glucocorticoid-induced TNFR-related protein (GITR) belongs to the TNFR superfamily (TNFRSF) and promotes CD8+ and CD4+ effector T-cell function with simultaneous inhibition of Tregs function, when activated by its ligand, GITRL. GITR is currently considered a potential immunotherapy target in various kinds of neoplasms, especially with the concomitant use of programmed cell-death protein-1 (PD-1) blockade. Regarding liver disease, a high GITR expression in liver progenitor cells has been observed, associated with impaired hepatocyte differentiation, and decreased progenitor cell-mediated liver regeneration. Considering real-world data proving its anti-tumor effect and recently published evidence in pre-clinical models proving its involvement in pre-cancerous liver disease, the idea of its inclusion in HCC therapeutic options theoretically arises. In this review, we aim to summarize the current evidence supporting targeting GITR/GITRL signaling as a potential treatment strategy for advanced HCC.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Georgios Vakadaris
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Lampros Reppas
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Spyros I. Siakavellas
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
4
|
Regmi M, Wang Y, Liu W, Dai Y, Liu S, Ma K, Lin G, Yang J, Liu H, Wu J, Yang C. From glioma gloom to immune bloom: unveiling novel immunotherapeutic paradigms-a review. J Exp Clin Cancer Res 2024; 43:47. [PMID: 38342925 PMCID: PMC10860318 DOI: 10.1186/s13046-024-02973-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024] Open
Abstract
In tumor therapeutics, the transition from conventional cytotoxic drugs to targeted molecular therapies, such as those targeting receptor tyrosine kinases, has been pivotal. Despite this progress, the clinical outcomes have remained modest, with glioblastoma patients' median survival stagnating at less than 15 months. This underscores the urgent need for more specialized treatment strategies. Our review delves into the progression toward immunomodulation in glioma treatment. We dissect critical discoveries in immunotherapy, such as spotlighting the instrumental role of tumor-associated macrophages, which account for approximately half of the immune cells in the glioma microenvironment, and myeloid-derived suppressor cells. The complex interplay between tumor cells and the immune microenvironment has been explored, revealing novel therapeutic targets. The uniqueness of our review is its exhaustive approach, synthesizing current research to elucidate the intricate roles of various molecules and receptors within the glioma microenvironment. This comprehensive synthesis not only maps the current landscape but also provides a blueprint for refining immunotherapy for glioma, signifying a paradigm shift toward leveraging immune mechanisms for improved patient prognosis.
Collapse
Affiliation(s)
- Moksada Regmi
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
| | - Yingjie Wang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Yuwei Dai
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Shikun Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Ke Ma
- Peking University Health Science Center, Beijing, 100191, China
| | - Guozhong Lin
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Hongyi Liu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Jian Wu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China.
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China.
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China.
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China.
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
| |
Collapse
|
5
|
Yang KY, Liao J, Ma Z, Tse HF, Lu L, Graca L, Lui KO. Single-cell transcriptomics of Treg reveals hallmarks and trajectories of immunological aging. J Leukoc Biol 2024; 115:19-35. [PMID: 37675661 DOI: 10.1093/jleuko/qiad104] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Age-related immunosenescence is characterized by progressive dysfunction of adaptive immune response and increased autoimmunity. Nevertheless, the impact of aging on CD4+ regulatory T cells that are master regulators of the immune system remains largely unclear. Here, we report cellular and molecular hallmarks of regulatory T cells derived from murine lymphoid and adipose tissues at 3, 18, and 24 mo of age, respectively, by analyzing their heterogeneity that displays dynamic changes in transcriptomic effector signatures at a single-cell resolution. Although the proportion of regulatory T cells among total Cd4+ T cells, as well as their expression levels of Foxp3, did not show any global change with time, we have identified 6 transcriptomically distinct clusters of regulatory T cells with cross-tissue conserved hallmarks of aging, including increased numbers of proinflammatory regulatory T cells, reduced precursor cells, increased immature and mature T follicular regulatory cells potentially supported by a metabolic switch from oxidative phosphorylation to glycolysis, a gradual loss of CD150hi regulatory T cells that support hematopoiesis, and increased adipose tissue-specific regulatory T cells that are associated with metabolic disease. To dissect the impact of immunosenescence on humoral immunity, we propose some potential mechanisms underlying T follicular regulatory cell-mediated dysfunction by interactome analysis on T follicular regulatory cells, T follicular helper cells, and B cells during aging. Lastly, spatiotemporal analysis further revealed trajectories of regulatory T-cell aging that demonstrate the most significant changes in marrow and adipose tissues that might contribute to the development of age-related immunosenescence and type 2 diabetes. Taken together, our findings could provide a better understanding of age-associated regulatory T-cell heterogeneity in lymphoid and adipose tissues, as well as regulatory T-cell hallmarks during progressive adaptation to aging that could be therapeutically targeted for rejuvenating the aging immune system in the future.
Collapse
Affiliation(s)
- Kevin Y Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Jinyue Liao
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Zhangjing Ma
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Hung Fat Tse
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Liwei Lu
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10 2nd Yuexin Road, Nanshan District, Shenzhen, China
| |
Collapse
|
6
|
Yang L, Zhuang L, Ye Z, Li L, Guan J, Gong W. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions. iScience 2023; 26:107881. [PMID: 37841590 PMCID: PMC10570004 DOI: 10.1016/j.isci.2023.107881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) are two major global public health problems, and the incidence of LC-TB is currently on the rise. Therefore effective clinical interventions are crucial for LC-TB. The aim of this review is to provide up-to-date information on the immunological profile and therapeutic biomarkers in patients with LC-TB. We discuss the immune mechanisms involved, including the immune checkpoints that play an important role in the treatment of patients with LC-TB. In addition, we explore the susceptibility of patients with LC to TB and summarise the latest research on LC-TB. Finally, we discuss future prospects in this field, including the identification of potential targets for immune intervention. In conclusion, this review provides important insights into the complex relationship between LC and TB and highlights new advances in the detection and treatment of both diseases.
Collapse
Affiliation(s)
- Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, Hebei 075000, China
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jingzhi Guan
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
7
|
Park JS, Gazzaniga FS, Kasper DL, Sharpe AH. Microbiota-dependent regulation of costimulatory and coinhibitory pathways via innate immune sensors and implications for immunotherapy. Exp Mol Med 2023; 55:1913-1921. [PMID: 37696895 PMCID: PMC10545783 DOI: 10.1038/s12276-023-01075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023] Open
Abstract
Our bodies are inhabited by trillions of microorganisms. The host immune system constantly interacts with the microbiota in barrier organs, including the intestines. Over decades, numerous studies have shown that our mucosal immune system is dynamically shaped by a variety of microbiota-derived signals. Elucidating the mediators of these interactions is an important step for understanding how the microbiota is linked to mucosal immune homeostasis and gut-associated diseases. Interestingly, the efficacy of cancer immunotherapies that manipulate costimulatory and coinhibitory pathways has been correlated with the gut microbiota. Moreover, adverse effects of these therapies in the gut are linked to dysregulation of the intestinal immune system. These findings suggest that costimulatory pathways in the immune system might serve as a bridge between the host immune system and the gut microbiota. Here, we review mechanisms by which commensal microorganisms signal immune cells and their potential impact on costimulation. We highlight how costimulatory pathways modulate the mucosal immune system through not only classical antigen-presenting cells but also innate lymphocytes, which are highly enriched in barrier organs. Finally, we discuss the adverse effects of immune checkpoint inhibitors in the gut and the possible relationship with the gut microbiota.
Collapse
Affiliation(s)
- Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca S Gazzaniga
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Mezi S, Pomati G, Fiscon G, Amirhassankhani S, Zizzari IG, Napoletano C, Rughetti A, Rossi E, Schinzari G, Tortora G, Lanzetta G, D’Amati G, Nuti M, Santini D, Botticelli A. A network approach to define the predictive role of immune profile on tumor response and toxicity of anti PD-1 single agent immunotherapy in patients with solid tumors. Front Immunol 2023; 14:1199089. [PMID: 37483633 PMCID: PMC10361061 DOI: 10.3389/fimmu.2023.1199089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background The immune profile of each patient could be considered as a portrait of the fitness of his/her own immune system. The predictive role of the immune profile in immune-related toxicities (irAEs) development and tumour response to treatment was investigated. Methods A prospective, multicenter study evaluating, through a multiplex assay, the soluble immune profile at the baseline of 53 patients with advanced cancer, treated with immunotherapy as single agent was performed. Four connectivity heat maps and networks were obtained by calculating the Spearman correlation coefficients for each group: responder patients who developed cumulative toxicity (R-T), responders who did not develop cumulative toxicity (R-NT), non-responders who developed cumulative toxicity (NR-T), non-responders who did not develop cumulative toxicity (NR-NT). Results A statistically significant up-regulation of IL-17A, sCTLA4, sCD80, I-CAM-1, sP-Selectin and sEselectin in NR-T was detected. A clear loss of connectivity of most of the soluble immune checkpoints and cytokines characterized the immune profile of patients with toxicity, while an inversion of the correlation for ICAM-1 and sP-selectin was observed in NR-T. Four connectivity networks were built for each group. The highest number of connections characterized the NR-T. Conclusions A connectivity network of immune dysregulation was defined for each subgroup of patients, regardless of tumor type. In patients with the worst prognosis (NR-T) the peculiar connectivity model could facilitate their early and timely identification, as well as the design of a personalized treatment approach to improve outcomes or prevent irAEs.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, “Sapienza” University of Rome, Rome, Italy
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Lanzetta
- Clinical Oncology Unit, Istituto Neurotraumatologico Italiano (I.N.I.) Grottaferrata, via di S.Anna snc, Grottaferrata, Italy
| | - Giulia D’Amati
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Daniele Santini
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Steele H, Cheng J, Willicut A, Dell G, Breckenridge J, Culberson E, Ghastine A, Tardif V, Herro R. TNF superfamily control of tissue remodeling and fibrosis. Front Immunol 2023; 14:1219907. [PMID: 37465675 PMCID: PMC10351606 DOI: 10.3389/fimmu.2023.1219907] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Fibrosis is the result of extracellular matrix protein deposition and remains a leading cause of death in USA. Despite major advances in recent years, there remains an unmet need to develop therapeutic options that can effectively degrade or reverse fibrosis. The tumor necrosis super family (TNFSF) members, previously studied for their roles in inflammation and cell death, now represent attractive therapeutic targets for fibrotic diseases. In this review, we will summarize select TNFSF and their involvement in fibrosis of the lungs, the heart, the skin, the gastrointestinal tract, the kidney, and the liver. We will emphasize their direct activity on epithelial cells, fibroblasts, and smooth muscle cells. We will further report on major clinical trials targeting these ligands. Whether in isolation or in combination with other anti-TNFSF member or treatment, targeting this superfamily remains key to improve efficacy and selectivity of currently available therapies for fibrosis.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Jason Cheng
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ashley Willicut
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Garrison Dell
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Joey Breckenridge
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Erica Culberson
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew Ghastine
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Virginie Tardif
- Normandy University, UniRouen, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1096 (EnVI Laboratory), Rouen, France
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
10
|
Wang R, Baxi V, Li Z, Locke D, Hedvat C, Sun Y, Walsh AM, Shao X, Basavanhally T, Greenawalt DM, Patah P, Novosiadly R. Pharmacodynamic activity of BMS-986156, a glucocorticoid-induced TNF receptor-related protein agonist, alone or in combination with nivolumab in patients with advanced solid tumors. ESMO Open 2023; 8:100784. [PMID: 36863094 PMCID: PMC10163007 DOI: 10.1016/j.esmoop.2023.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND The success of immune checkpoint inhibitors has revolutionized cancer treatment options and triggered development of new complementary immunotherapeutic strategies, including T-cell co-stimulatory molecules, such as glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR). BMS-986156 is a fully agonistic human immunoglobulin G subclass 1 monoclonal antibody targeting GITR. We recently presented the clinical data for BMS-986156 with or without nivolumab, which demonstrated no compelling evidence of clinical activity in patients with advanced solid tumors. Here, we further report the pharmacodynamic (PD) biomarker data from this open-label, first-in-human, phase I/IIa study of BMS-986156 ± nivolumab in patients with advanced solid tumors (NCT02598960). MATERIALS AND METHODS We analyzed PD changes of circulating immune cell subsets and cytokines in peripheral blood or serum samples collected from a dataset of 292 patients with solid tumors before and during treatment with BMS-986156 ± nivolumab. PD changes in the tumor immune microenvironment were measured by immunohistochemistry and a targeted gene expression panel. RESULTS BMS-986156 + nivolumab induced a significant increase in peripheral T-cell and natural killer (NK) cell proliferation and activation, accompanied by production of proinflammatory cytokines. However, no significant changes in expression of CD8A, programmed death-ligand 1, tumor necrosis factor receptor superfamily members, or key genes linked with functional parameters of T and NK cells were observed in tumor tissue upon treatment with BMS-986156. CONCLUSIONS Despite the robust evidence of peripheral PD activity of BMS-986156, with or without nivolumab, limited evidence of T- or NK cell activation in the tumor microenvironment was observed. The data therefore explain, at least in part, the lack of clinical activity of BMS-986156 with or without nivolumab in unselected populations of cancer patients.
Collapse
Affiliation(s)
- R Wang
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA
| | - V Baxi
- Informatics & Predictive Sciences, Bristol Myers Squibb, Lawrenceville, USA
| | - Z Li
- Lead Discovery and Optimization, Bristol Myers Squibb, Lawrenceville, USA
| | - D Locke
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA
| | - C Hedvat
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA
| | - Y Sun
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA
| | - A M Walsh
- Informatics & Predictive Sciences, Bristol Myers Squibb, Lawrenceville, USA
| | - X Shao
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA
| | - T Basavanhally
- Informatics & Predictive Sciences, Bristol Myers Squibb, Lawrenceville, USA
| | - D M Greenawalt
- Informatics & Predictive Sciences, Bristol Myers Squibb, Lawrenceville, USA
| | - P Patah
- Global Clinical Research, Bristol Myers Squibb, Lawrenceville, USA
| | - R Novosiadly
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA.
| |
Collapse
|
11
|
Que W, Ma K, Hu X, Guo WZ, Li XK. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. SCIENCE ADVANCES 2022; 8:eabo4413. [PMID: 35921418 PMCID: PMC9348800 DOI: 10.1126/sciadv.abo4413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Type 1 regulatory T (Tr1) cells represent a subset of IL-10-producing CD4+Foxp3- T cells and play key roles in promoting transplant tolerance. However, no effective pharmacological approaches have been able to induce Tr1 cells in vivo. We herein report the combined use of a CD28 superagonist (D665) and anti-glucocorticoid-induced tumor necrosis factor receptor-related protein monoclonal antibody (G3c) to induce Tr1 cells in vivo. Large amounts of IL-10/interferon-γ-co-producing CD4+Foxp3- Tr1 cells were generated by D665-G3c sequential treatment in mice. Mechanistic studies suggested that D665-G3c induced Tr1 cells via transcription factors Prdm1 and Maf. G3c contributed to Tr1 cell generation via the activation of mitogen-activated protein kinase-signal transducer and activator of transcription 3 signaling. Tr1 cells suppressed dendritic cell maturation and T cell responses and mediated permanent allograft acceptance in fully major histocompatibility complex-mismatched mice in an IL-10-dependent manner. In vivo Tr1 cell induction is a promising strategy for achieving transplant tolerance.
Collapse
Affiliation(s)
- Weitao Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kuai Ma
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
12
|
Luo P, Wang P, Xu J, Hou W, Xu P, Xu K, Liu L. Immunomodulatory role of T helper cells in rheumatoid arthritis : a comprehensive research review. Bone Joint Res 2022; 11:426-438. [PMID: 35775145 PMCID: PMC9350707 DOI: 10.1302/2046-3758.117.bjr-2021-0594.r1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps. Cite this article: Bone Joint Res 2022;11(7):426–438.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peixu Wang
- Department of Orthopedics, China-Japan Friendship Hospital, China-Japan Friendship Institute of Clinical Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, China
| | - Jiawen Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Weikun Hou
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Stirling ER, Bronson SM, Mackert JD, Cook KL, Triozzi PL, Soto-Pantoja DR. Metabolic Implications of Immune Checkpoint Proteins in Cancer. Cells 2022; 11:179. [PMID: 35011741 PMCID: PMC8750774 DOI: 10.3390/cells11010179] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/29/2022] Open
Abstract
Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.
Collapse
Affiliation(s)
- Elizabeth R. Stirling
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
| | - Steven M. Bronson
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jessica D. Mackert
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Katherine L. Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Pierre L. Triozzi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Hematology and Oncology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - David R. Soto-Pantoja
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
14
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Zhao M, Fu L, Chai Y, Sun M, Li Y, Wang S, Qi J, Zeng B, Kang L, Gao GF, Tan S. Atypical TNF-TNFR superfamily binding interface in the GITR-GITRL complex for T cell activation. Cell Rep 2021; 36:109734. [PMID: 34551288 DOI: 10.1016/j.celrep.2021.109734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) is a critical regulatory molecule in modulation of T cell immune responses. Here we report the mouse GITR (mGITR) and mGITR ligand (mGITRL) complex structure and find that the binding interface of mGITR and mGITRL is distinct from the typical tumor necrosis factor superfamily (TNFSF)/TNF receptor superfamily (TNFRSF) members. mGITR binds to its ligand with a single domain, whereas the binding interface on mGITRL is located on the side, which is distal from conserved binding sites of TNFSF molecules. Mutational analysis reveals that the binding interface of GITR/GITRL in humans is conserved with that in the mouse. Substitution of key interacting D93-I94-V95 (DIV) in mGITR with the corresponding K93-F94-S95 (KFS) in human GITR enables cross-recognition with human GITRL and cross-activation of receptor signaling. The findings of this study substantially expand our understanding of the interaction of TNFSF/TNFRSF superfamily molecules and can benefit the future design of biologics by targeting GITR/GITRL.
Collapse
Affiliation(s)
- Min Zhao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Fu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yan Chai
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuo Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Zeng
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shuguang Tan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
16
|
Li H, Hostager BS, Arkee T, Bishop GA. Multiple mechanisms for TRAF3-mediated regulation of the T cell costimulatory receptor GITR. J Biol Chem 2021; 297:101097. [PMID: 34418432 PMCID: PMC8441216 DOI: 10.1016/j.jbc.2021.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) plays context-specific roles in multiple receptor-mediated signaling pathways in different cell types. Mice lacking TRAF3 in T cells display defective T-cell-mediated immune responses to immunization and infection and demonstrate defective early signaling via the TCR complex. However, the role of TRAF3 in the function of GITR/TNFRSF18, an important costimulatory member of the TNFR superfamily, is unclear. Here we investigated the impact of T cell TRAF3 status on both GITR expression and activation of specific kinases in the GITR signaling pathway in T cells. Our results indicate that TRAF3 negatively regulates GITR functions in several ways. First, expression of GITR protein was elevated in TRAF3-deficient T cells, resulting from both transcriptional and posttranslational regulation that led to greater GITR transcript levels, as well as enhanced GITR protein stability. TRAF3 associated with T cell GITR in a manner dependent upon GITR ligation. TRAF3 also inhibited several events of the GITR mediated early signaling cascade, in a manner independent of recruitment of phosphatases, a mechanism by which TRAF3 inhibits signaling through several other cytokine receptors. These results add new information to our understanding of GITR signaling and function in T cells, which is relevant to the potential use of GITR to enhance immune therapies.
Collapse
Affiliation(s)
- Hanzeng Li
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Bruce S Hostager
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Tina Arkee
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA; Research, Iowa City VA Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
17
|
Kelly WJ, Giles AJ, Gilbert M. T lymphocyte-targeted immune checkpoint modulation in glioma. J Immunother Cancer 2021; 8:jitc-2019-000379. [PMID: 32051289 PMCID: PMC7057419 DOI: 10.1136/jitc-2019-000379] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
Immunomodulatory therapies targeting inhibitory checkpoint molecules have revolutionized the treatment of solid tumor malignancies. Concerns about whether systemic administration of an immune checkpoint inhibitor could impact primary brain tumors were answered with the observation of definitive responses in pediatric patients harboring hypermutated gliomas. Although initial clinical results in patients with glioblastoma (GBM) were disappointing, recently published results have demonstrated a potential survival benefit in patients with recurrent GBM treated with neoadjuvant programmed cell death protein 1 blockade. While these findings necessitate verification in subsequent studies, they support the possibility of achieving clinical meaningful immune responses in malignant primary brain tumors including GBM, a disease in dire need of additional therapeutic options. There are several challenges involved in treating glioma with immune checkpoint modulators including the immunosuppressive nature of GBM itself with high inhibitory checkpoint expression, the immunoselective blood brain barrier impairing the ability for peripheral lymphocytes to traffic to the tumor microenvironment and the high prevalence of corticosteroid use which suppress lymphocyte activation. However, by simultaneously targeting multiple costimulatory and inhibitory pathways, it may be possible to achieve an effective antitumoral immune response. To this end, there are now several novel agents targeting more recently uncovered “second generation” checkpoint molecules. Given the multiplicity of drugs being considered for combination regimens, an increased understanding of the mechanisms of action and resistance combined with more robust preclinical and early clinical testing will be needed to be able to adequately test these agents. This review summarizes our current understanding of T lymphocyte-modulating checkpoint molecules as it pertains to glioma with the hope for a renewed focus on the most promising therapeutic strategies.
Collapse
Affiliation(s)
| | - Amber Jin Giles
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Mark Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Shami A, Atzler D, Bosmans LA, Winkels H, Meiler S, Lacy M, van Tiel C, Ta Megens R, Nitz K, Baardman J, Kusters P, Seijkens T, Buerger C, Janjic A, Riccardi C, Edsfeldt A, Monaco C, Daemen M, de Winther MPJ, Nilsson J, Weber C, Gerdes N, Gonçalves I, Lutgens E. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur Heart J 2021; 41:2938-2948. [PMID: 32728688 DOI: 10.1093/eurheartj/ehaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD). METHODS AND RESULTS GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy controls. Plaque area in 28-week-old Gitr-/-Apoe-/- mice was reduced, and plaques had a favourable phenotype with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the lymphoid population. RNA sequencing of Gitr-/-Apoe-/- and Apoe-/- monocytes and macrophages revealed altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr-/-Apoe-/- monocytes displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity. CONCLUSION Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the arterial wall and impedes atherosclerosis progression.
Collapse
Affiliation(s)
- Annelie Shami
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Laura A Bosmans
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Holger Winkels
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Svenja Meiler
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Michael Lacy
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Claudia van Tiel
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Remco Ta Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jeroen Baardman
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Pascal Kusters
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tom Seijkens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christina Buerger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Aleksandar Janjic
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, München, Martinsried, Germany
| | - Carlo Riccardi
- Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Mat Daemen
- Department of Pathology, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
19
|
Cecchi M, Paccosi S, Silvano A, Eid AH, Parenti A. Dexamethasone Induces the Expression and Function of Tryptophan-2-3-Dioxygenase in SK-MEL-28 Melanoma Cells. Pharmaceuticals (Basel) 2021; 14:ph14030211. [PMID: 33806305 PMCID: PMC7998133 DOI: 10.3390/ph14030211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022] Open
Abstract
Tryptophan-2,3-dioxygenase (TDO) is one of the key tryptophan-catabolizing enzymes with immunoregulatory properties in cancer. Contrary to expectation, clinical trials showed that inhibitors of the ubiquitously expressed enzyme, indoleamine-2,3-dioxygenase-1 (IDO1), do not provide benefits in melanoma patients. This prompted the hypothesis that TDO may be a more attractive target. Because the promoter of TDO harbors glucocorticoid response elements (GREs), we aimed to assess whether dexamethasone (dex), a commonly used glucocorticoid, modulates TDO expression by means of RT-PCR and immunofluorescence and function by assessing cell proliferation and migration as well as metalloproteinase activity. Our results show that, in SK-Mel-28 melanoma cells, dex up-regulated TDO and its downstream effector aryl hydrocarbon receptor (AHR) but not IDO1. Furthermore, dex stimulated cellular proliferation and migration and potentiated MMP2 activity. These effects were inhibited by the selective TDO inhibitor 680C91 and enhanced by IDO1 inhibitors. Taken together, our results demonstrate that the metastatic melanoma cell line SK-Mel-28 possesses a functional TDO which can also modulate cancer cell phenotype directly rather than through immune suppression. Thus, TDO appears to be a promising, tractable target in the management or the treatment of melanoma progression.
Collapse
Affiliation(s)
- Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Angela Silvano
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (A.H.E.); (A.P.); Tel.: +974-4403-7893 (A.H.E.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
- Correspondence: (A.H.E.); (A.P.); Tel.: +974-4403-7893 (A.H.E.)
| |
Collapse
|
20
|
Ding M, He Y, Zhang S, Guo W. Recent Advances in Costimulatory Blockade to Induce Immune Tolerance in Liver Transplantation. Front Immunol 2021; 12:537079. [PMID: 33732228 PMCID: PMC7959747 DOI: 10.3389/fimmu.2021.537079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
Liver transplantation is an effective therapy for end-stage liver disease. However, most postoperative patients must take immunosuppressive drugs to prevent organ rejection. Interestingly, some transplant recipients have normal liver function and do not experience organ rejection after the withdrawal of immunosuppressive agents. This phenomenon, called immune tolerance, is the ultimate goal in clinical transplantation. Costimulatory molecules play important roles in T cell-mediated immune responses and the maintenance of T cell tolerance. Blocking costimulatory pathways can alter T cell responses and prolong graft survival. Better understanding of the roles of costimulatory molecules has facilitated the use of costimulatory blockade to effectively induce immune tolerance in animal transplantation models. In this article, we review the state of the art in costimulatory pathway blockade for the induction of immune tolerance in transplantation and its potential application prospects for liver transplantation.
Collapse
Affiliation(s)
- Mingjie Ding
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| |
Collapse
|
21
|
Serr I, Kral M, Scherm MG, Daniel C. Advances in Human Immune System Mouse Models for Personalized Treg-Based Immunotherapies. Front Immunol 2021; 12:643544. [PMID: 33679808 PMCID: PMC7930911 DOI: 10.3389/fimmu.2021.643544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Immunodeficient mice engrafted with a functional human immune system [Human immune system (HIS) mice] have paved the way to major advances for personalized medicine and translation of immune-based therapies. One prerequisite for advancing personalized medicine is modeling the immune system of individuals or disease groups in a preclinical setting. HIS mice engrafted with peripheral blood mononuclear cells have provided fundamental insights in underlying mechanisms guiding immune activation vs. regulation in several diseases including cancer. However, the development of Graft-vs.-host disease restrains relevant long-term studies in HIS mice. Alternatively, engraftment with hematopoietic stem cells (HSCs) enables mimicking different disease stages, however, low frequencies of HSCs in peripheral blood of adults impede engraftment efficacy. One possibility to overcome those limitations is the use of patient-derived induced pluripotent stem cells (iPSCs) reprogrammed into HSCs, a challenging process which has recently seen major advances. Personalized HIS mice bridge research in mice and human diseases thereby facilitating the translation of immunomodulatory therapies. Regulatory T cells (Tregs) are important mediators of immune suppression and thereby contribute to tumor immune evasion, which has made them a central target for cancer immunotherapies. Importantly, studying Tregs in the human immune system in vivo in HIS mice will help to determine requirements for efficient Treg-targeting. In this review article, we discuss advances on personalized HIS models using reprogrammed iPSCs and review the use of HIS mice to study requirements for efficient targeting of human Tregs for personalized cancer immunotherapies.
Collapse
Affiliation(s)
- Isabelle Serr
- Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Institute of Diabetes Research, Munich, Germany.,Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Maria Kral
- Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Institute of Diabetes Research, Munich, Germany.,Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Martin G Scherm
- Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Institute of Diabetes Research, Munich, Germany.,Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Carolin Daniel
- Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Institute of Diabetes Research, Munich, Germany.,Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany.,Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
22
|
Wang Y, Liao K, Liu B, Niu C, Zou W, Yang L, Wang T, Tian D, Luo Z, Dai J, Li Q, Liu E, Gong C, Fu Z, Li Y, Ding F. GITRL on dendritic cells aggravates house dust mite-induced airway inflammation and airway hyperresponsiveness by modulating CD4 + T cell differentiation. Respir Res 2021; 22:46. [PMID: 33557842 PMCID: PMC7869253 DOI: 10.1186/s12931-020-01583-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023] Open
Abstract
Background Glucocorticoid-induced tumor necrosis factor receptor family-related protein ligand (GITRL) plays an important role in tumors, autoimmunity and inflammation. However, GITRL is not known to modulate the pathogenesis of allergic asthma. In this study, we investigated whether regulating GITRL expressed on dendritic cells (DCs) can prevent asthma and to elucidate its mechanism of action. Methods In vivo, the role of GITRL in modulating house dust mite (HDM)-induced asthma was assessed in adeno-associated virus (AAV)-shGITRL mice. In vitro, the role of GITRL expression by DCs was evaluated in LV-shGITRL bone marrow dendritic cells (BMDCs) under HDM stimulation. And the direct effect of GITRL was observed by stimulating splenocytes with GITRL protein. The effect of regulating GITRL on CD4+ T cell differentiation was detected. Further, GITRL mRNA in the peripheral blood of asthmatic children was tested. Results GITRL was significantly increased in HDM-challenged mice. In GITRL knockdown mice, allergen-induced airway inflammation, serum total IgE levels and airway hyperresponsiveness (AHR) were reduced. In vitro, GITRL expression on BMDCs was increased after HDM stimulation. Further, knocking down GITRL on DCs partially restored the balance of Th1/Th2 and Th17/Treg cells. Moreover, GITRL stimulation in vitro inhibited Treg cell differentiation and promoted Th2 and Th17 cell differentiation. Similarly, GITRL mRNA expression was increased in the peripheral blood from asthmatic children. Conclusions This study identified a novel role for GITRL expressed by DCs as a positive regulator of CD4+ T cells responses in asthma, which implicates that GITRL inhibitors may be a potential immunotherapy for asthma.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Kou Liao
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bo Liu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chao Niu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenjing Zou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lili Yang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Daiyin Tian
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jihong Dai
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qubei Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Caihui Gong
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China. .,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| | - Fengxia Ding
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Yuzhong District, No. 136, Zhongshan 2nd Road, Chongqing, 400014, China. .,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
23
|
Gao J, Wang S, Liu S. The involvement of protein TNFSF18 in promoting p-STAT1 phosphorylation to induce coronary microcirculation disturbance in atherosclerotic mouse model. Drug Dev Res 2021; 82:115-122. [PMID: 32820830 DOI: 10.1002/ddr.21735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/06/2022]
Abstract
The inflammation of coronary endothelium was critically involved in the pathogenesis of atherosclerosis. The purpose of the study was to reveal the roles of TNFSF18 in promoting p-STAT1 phosphorylation to induce disturbance of coronary microcirculation in atherosclerotic mouse model. This study was dividedly transfected TNFSF18 inhibitor, small interfering-TNFSF18 plasmid (si-TNFSF18) and a blank vector plasmid into atherosclerotic mouse model. Results showed that the coronary vascular lumen was narrowed and crescent plaques were adhered to the coronary vessel wall in atherosclerotic mouse model. However, the accumulation of microthrombus in coronary artery and vascular crescent plaques were evidently reduced with the antagonistic TNFSF18. Besides, the inflammatory cytokines TNF-α, TNF-β and IL-1β were abundant in mouse model, and TNFSF18 inhibition decreased the secretion of cytokines. Meanwhile, the amount of Th1 cells were also reduced after transfected with TNFSF18 inhibitor and si-TNFSF18 plasmid compared with the mouse model transfected with blank vector plasmid. Moreover, the protein TNFSF18 was highly expressed in the cytoplasm and p-STAT1 was located in cell nucleus of the mouse model coronary vascular tissues. Consistently, the proteins TNFSF18, p-STAT1, VCAM1, ICAM1, ITGAD and ITGB3 were significantly expressed in atherosclerotic mouse model, while antagonistic TNFSF18, conversely, decreased the proteins' expression. Taken together, this study indicated that the coronary endothelial inflammation triggered TNFSF18 expression, which promoted p-STAT1 phosphorylation to activate the proteins VCAM1, ICAM1, ITGAD and ITGB3, thus exacerbating coronary microcirculation disorder in atherosclerotic mouse model.
Collapse
Affiliation(s)
- Jing Gao
- Internal Medicine-Cardiovascular Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Sai Wang
- Internal Medicine-Cardiovascular Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Shilei Liu
- Internal Medicine-Cardiovascular Department, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
24
|
Ooki A, Shinozaki E, Yamaguchi K. Immunotherapy in Colorectal Cancer: Current and Future Strategies. J Anus Rectum Colon 2021; 5:11-24. [PMID: 33537496 PMCID: PMC7843143 DOI: 10.23922/jarc.2020-064] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the recent advances in the systemic treatment of metastatic colorectal cancer (mCRC), prognostic outcomes have remained to be poor. Thus, what is needed is an innovative treatment approach. Immune checkpoint inhibitors (ICIs) targeting programmed death-1 (PD-1) and anti-programmed cell death ligand 1 (PD-L1) have exhibited a durable response and dominated the treatment of various tumor types. However, in mCRC, the clinical benefit is limited in patients with deficient mismatch repair (dMMR)/high levels of microsatellite instability (MSI-H), comprising approximately 5% of mCRC cases, and some do not respond to ICI treatment. Thus, further research is needed to identify predictive biomarkers. The most urgent need is developing effective immunotherapy for patients with proficient mismatch repair (pMMR)/microsatellite stable (MSS) cancer, which comprises 95% of mCRC cases. Tumors with the pMMR/MSS phenotype often exhibit a lower tumor mutation burden and fewer tumor-infiltrating lymphocytes than dMMR/MSI-H, leading to immune tolerance and evasion in the tumor microenvironment. Therefore, a number of investigative studies aimed at overcoming tumor resistance in current immunotherapy approaches are underway. A better understanding on the complexity and diversity of the immune system's functioning within the tumor microenvironment will increase the potential for developing predictive biomarkers and novel therapeutic strategies to potentiate anti-tumor immunity in patients with mCRC. In this review, we summarize the most recent advances in immunotherapy based on the findings of pivotal clinical trials for patients with mCRC, highlighting potent therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Shinozaki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
25
|
Tian J, Zhang B, Rui K, Wang S. The Role of GITR/GITRL Interaction in Autoimmune Diseases. Front Immunol 2020; 11:588682. [PMID: 33163004 PMCID: PMC7581784 DOI: 10.3389/fimmu.2020.588682] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Glucocorticoid-induced TNFR-related protein (GITR) is a member of the TNFR superfamily which is expressed in various cells, including T cells, natural killer cells and some myeloid cells. GITR is activated by its ligand, GITRL, mainly expressed on antigen presenting cells and endothelial cells. It has been acknowledged that the engagement of GITR can modulate both innate and adaptive immune responses. Accumulated evidence suggests GITR/GITRL interaction is involved in the pathogenesis of tumor, inflammation and autoimmune diseases. In this review, we describe the effects of GITR/GITRL activation on effector T cells, regulatory T cells (Tregs) and myeloid cells; summarize its role and the underlying mechanisms in modulating autoimmune diseases.
Collapse
Affiliation(s)
- Jie Tian
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Beibei Zhang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
26
|
Geva R, Voskoboynik M, Dobrenkov K, Mayawala K, Gwo J, Wnek R, Chartash E, Long GV. First-in-human phase 1 study of MK-1248, an anti-glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors. Cancer 2020; 126:4926-4935. [PMID: 32809217 DOI: 10.1002/cncr.33133] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Ligation of glucocorticoid-induced tumor necrosis factor receptor (GITR) decreases regulatory T cell-mediated suppression and enhances T-cell proliferation, effector function, and survival. MK-1248 is a humanized immunoglobulin G4 anti-GITR monoclonal antibody agonist. METHODS In patients with advanced solid tumors, MK-1248 (starting dose, 0.12 mg) was tested alone and with pembrolizumab (200 mg) according to a 3 + 3 dose escalation design (ClinicalTrials.gov identifier NCT02553499); both treatments were administered intravenously every 3 weeks for ≤4 and ≤35 cycles, respectively. The safety and tolerability, maximum tolerated dose, and pharmacokinetics/pharmacodynamics were explored. RESULTS Twenty patients received MK-1248 monotherapy; 17 received combination therapy. The most frequent tumor types were colorectal cancer (n = 8), melanoma (n = 6), and renal cell carcinoma (n = 4). MK-1248 was generally well tolerated at the maximum tested doses of 170 (monotherapy) and 60 mg (combination). No dose-limiting toxicities (DLTs) or treatment-related deaths occurred. Adverse events (AEs) occurred in 36 of the 37 patients (97%); the most common were vomiting (n = 13 [35%]), anemia (n = 10 [27%]), and decreased appetite (n = 10 [27%]). Grade 3 to 5 AEs occurred in 19 of the 37 patients (51%). Treatment-related AEs occurred in 18 of the 37 patients (49%): 9 of the 20 patients (45%) on monotherapy and 9 of the 17 patients (53%) on combination therapy. Among the 17 patients receiving combination therapy, 1 achieved a complete response and 2 achieved a partial response, for an objective response rate of 18%; no patients achieved an objective response with monotherapy. The disease control rate (stable disease or better) was 15% with monotherapy and 41% with combination therapy. CONCLUSIONS MK-1248 was generally well tolerated at doses up to 170 (monotherapy) and 60 mg (combination), with no DLTs or treatment-related deaths. Combination therapy provided limited antitumor responses.
Collapse
Affiliation(s)
- Ravit Geva
- Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Mark Voskoboynik
- Nucleus Network, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | | - Georgina V Long
- Royal North Shore Hospital, St. Leonards, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Fish TNF and TNF receptors. SCIENCE CHINA-LIFE SCIENCES 2020; 64:196-220. [DOI: 10.1007/s11427-020-1712-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
|
28
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
29
|
Chen T, Guo J, Cai Z, Li B, Sun L, Shen Y, Wang S, Wang Z, Wang Z, Wang Y, Zhou H, Cai Z, Ye Z. Th9 Cell Differentiation and Its Dual Effects in Tumor Development. Front Immunol 2020; 11:1026. [PMID: 32508847 PMCID: PMC7251969 DOI: 10.3389/fimmu.2020.01026] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
With the improved understanding of the molecular pathogenesis and characteristics of cancers, the critical role of the immune system in preventing tumor development has been widely accepted. The understanding of the relationship between the immune system and cancer progression is constantly evolving, from the cancer immunosurveillance hypothesis to immunoediting theory and the delicate balance in the tumor microenvironment. Currently, immunotherapy is regarded as a promising strategy against cancers. Although adoptive cell therapy (ACT) has shown some exciting results regarding the rejection of tumors, the effect is not always satisfactory. Cellular therapy with CD4+ T cells remains to be further explored since the current ACT is mainly focused on CD8+ cytotoxic T lymphocytes (CTLs). Recently, Th9 cells, a subgroup of CD4+ T helper cells characterized by the secretion of IL-9 and IL-10, have been reported to be effective in the elimination of solid tumors and to exhibit superior antitumor properties to Th1 and Th17 cells. In this review, we summarize the most recent advances in the understanding of Th9 cell differentiation and the dual role, both anti-tumor and pro-tumor effects, of Th9 cells in tumor progression.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhai Cai
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yucheng Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhijian Cai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Fu Z, Wang S, Li J, Zhang Y, Li H, Li G, Wan X, Zhang Y. Biological role of GITR/GITRL in attributes and immune responses of macrophage. J Leukoc Biol 2019; 107:309-321. [PMID: 31833599 DOI: 10.1002/jlb.3a0919-387rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoid-induced tumor necrosis factor receptor family-related protein ligand (GITRL), a member of the tumor necrosis factor superfamily, is expressed in APCs and acts as a costimulatory molecule in the immune system. Although the glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR)/GITRL system has been modulated to promote or decrease T cell-related responses in multiple diseases, studies in macrophages are limited. To address this issue, we compared the expression of GITRL in various types of macrophages and analyzed whether GITRL can affect the fundamental properties and major functions of these cells. Our results demonstrated that M1 polarized macrophages had the highest GITRL levels. Furthermore, GITRL overexpression skewed macrophage polarization toward the M1 phenotype, accelerating proliferation and migration and regulating phagocytosis and killing function. Moreover, GITRL-silenced cells showed a loss of these functions, further confirming its vital role. We also developed an acute peritonitis mouse model, in which macrophages were driven to differentiate into a proinflammatory phenotype with GITRL up-regulation, triggering a positive feedback loop. Our results provide molecular insight into how the GITR/GITRL system modulates innate immune responses, suggesting that manipulation of the GITR/GITRL system to treat diseases depends not only on T cell regulation but also on macrophage participation.
Collapse
Affiliation(s)
- Zhuo Fu
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shuang Wang
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, P.R. China
| | - Yunfeng Zhang
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Han Li
- Department of Infection Control, the First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Xue Wan
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yu Zhang
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
31
|
Yeung MY, Grimmig T, Sayegh MH. Costimulation Blockade in Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:267-312. [PMID: 31758538 DOI: 10.1007/978-981-32-9717-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T cells play a pivotal role in orchestrating immune responses directed against a foreign (allogeneic) graft. For T cells to become fully activated, the T-cell receptor (TCR) must interact with the major histocompatibility complex (MHC) plus peptide complex on antigen-presenting cells (APCs), followed by a second "positive" costimulatory signal. In the absence of this second signal, T cells become anergic or undergo deletion. By blocking positive costimulatory signaling, T-cell allo-responses can be aborted, thus preventing graft rejection and promoting long-term allograft survival and possibly tolerance (Alegre ML, Najafian N, Curr Mol Med 6:843-857, 2006; Li XC, Rothstein DM, Sayegh MH, Immunol Rev 229:271-293, 2009). In addition, costimulatory molecules can provide negative "coinhibitory" signals that inhibit T-cell activation and terminate immune responses; strategies to promote these pathways can also lead to graft tolerance (Boenisch O, Sayegh MH, Najafian N, Curr Opin Organ Transplant 13:373-378, 2008). However, T-cell costimulation involves an incredibly complex array of interactions that may act simultaneously or at different times in the immune response and whose relative importance varies depending on the different T-cell subsets and activation status. In transplantation, the presence of foreign alloantigen incites not only destructive T effector cells but also protective regulatory T cells, the balance of which ultimately determines the fate of the allograft (Lechler RI, Garden OA, Turka LA, Nat Rev Immunol 3:147-158, 2003). Since the processes of alloantigen-specific rejection and regulation both require activation of T cells, costimulatory interactions may have opposing or synergistic roles depending on the cell being targeted. Such complexities present both challenges and opportunities in targeting T-cell costimulatory pathways for therapeutic purposes. In this chapter, we summarize our current knowledge of the various costimulatory pathways in transplantation and review the current state and challenges of harnessing these pathways to promote graft tolerance (summarized in Table 10.1).
Collapse
Affiliation(s)
- Melissa Y Yeung
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Tanja Grimmig
- Department of Surgery, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Mohamed H Sayegh
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine and Immunology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
32
|
Trittel S, Vashist N, Ebensen T, Chambers BJ, Guzmán CA, Riese P. Invariant NKT Cell-Mediated Modulation of ILC1s as a Tool for Mucosal Immune Intervention. Front Immunol 2019; 10:1849. [PMID: 31440243 PMCID: PMC6692890 DOI: 10.3389/fimmu.2019.01849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/23/2019] [Indexed: 11/18/2022] Open
Abstract
Non-NK group 1 innate lymphoid cells (ILC1s), mainly investigated in the mucosal areas of the intestine, are well-known to contribute to anti-parasitic and anti-bacterial immune responses. Recently, our group revealed that lung ILC1s become activated during murine influenza infection, thereby contributing to viral clearance. In this context, worldwide seasonal influenza infections often result in severe disease outbreaks leading to high morbidity and mortality. Therefore, new immune interventions are urgently needed. In contrast to NK cells, the potential of non-NK ILC1s to become functionally tailored by immune modulators to contribute to the combat against mucosal-transmitted viral pathogens has not yet been addressed. The present study aimed at assessing the potential of ILC1s to become modulated by iNKT cells activated through the CD1d agonist αGalCerMPEG. Our results demonstrate an improved functional responsiveness of murine lung and splenic ILC1s following iNKT cell stimulation by the mucosal route, as demonstrated by enhanced surface expression of TNF-related apoptosis-inducing ligand (TRAIL), CD49a and CD28, and increased secretion of IFNγ. Interestingly, iNKT cell stimulation also induced the expression of the immune checkpoint molecules GITR and CTLA-4, which represent crucial points of action for immune regulation. An in vivo influenza infection model revealed that intranasal activation of ILC1s by αGalCerMPEG contributed to increased viral clearance as shown by reduced viral loads in the lungs. The findings that ILC1s can become modulated by mucosally activated iNKT cells in a beneficial manner emphasize their up to now underestimated potential and renders them to be considered as targets for novel immune interventions.
Collapse
Affiliation(s)
- Stephanie Trittel
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Neha Vashist
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Benedict J Chambers
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
33
|
Li Y, Yang S, Li Z, Meng H, Jin W, Yang H, Yin W. Soluble glucocorticoid-induced tumor necrosis factor receptor regulates Helios expression in myasthenia gravis. J Transl Med 2019; 17:168. [PMID: 31118027 PMCID: PMC6530055 DOI: 10.1186/s12967-019-1916-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helios is important for functional and phenotype stability of regulatory T cells (Tregs). However, the role of Helios in autoimmune diseases and its regulation remains unclear. This study aimed to investigate the role of Helios+ Tregs in myasthenia gravis (MG) and glucocorticoid-induced tumor necrosis factor receptor (GITR) and its ligand (GITRL) in the modulation of Helios. METHOD Multicolor flow cytometry was performed to analyze Helios+ Tregs in peripheral blood from MG patients and healthy donors (HDs). Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of soluble GITRL/GITR in plasma. Tregs were isolated via magnetic separation and treated with recombinant GITRL and GITR-Fc. Membrane GITRL on Tregs and expression of Helios and other markers (FOXP3, CD25, CD39, CTLA-4, PD-L1 and IL-10) involved in immunosuppressive activity were determined by flow cytometry. RESULT Both Helios+ Tregs and soluble GITR were decreased in generalized MG (GMG) patients (n = 14), compared with HDs (n = 14) and ocular MG (OMG) patients (n = 16). Helios+ Tregs possessed greater immunosuppressive capacity compared to Helios- Tregs. Further analysis indicates soluble GITR was negatively correlated with quantitative MG score and promoted Helios expression and enhanced function of Tregs independently of membrane GITRL. CONCLUSION This work demonstrates abnormal changes in Helios+ Tregs and soluble GITR in MG, as well as direct regulation of Helios by GITR in the context of Tregs. This work provides new insight into the role of GITR in the regulatory pathway of Helios and pathogenesis of MG.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Shumei Yang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhibin Li
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Huanyu Meng
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Wanling Jin
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
| | - Weifan Yin
- Department of Neurology, Second Xiangya Hospital, Central South University, 137 People Road, Changsha, Hunan, China.
| |
Collapse
|
34
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
35
|
FOXO3 is involved in the tumor necrosis factor-driven inflammatory response in fibroblast-like synoviocytes. J Transl Med 2019; 99:648-658. [PMID: 30679758 DOI: 10.1038/s41374-018-0184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
Abstract
Fibroblast-like synoviocytes (FLS) are major contributors to joint inflammation in rheumatoid arthritis (RA). Forkhead box O 3 (FOXO3) perturbations in immune cells are increasingly linked to RA pathogenesis. Here, we show that FOXO3 is distinctly inactivated/phosphorylated in the FLS of rheumatoid synovitis. In vitro, stimulation of FLS with tumor necrosis factor-alpha α (TNFα) induced a rapid and sustained inactivation of FOXO3. mRNA profiling revealed that the inactivation of FOXO3 is important for the sustained pro-inflammatory interferon response to TNFα (CXCL9, CXCL10, CXCL11, and TNFSF18). Mechanistically, our studies demonstrate that the inactivation of FOXO3 results from TNF-induced downregulation of phosphoinositide-3-kinase-interacting protein 1 (PIK3IP1). Thus, we identified FOXO3 and its modulator PIK3IP1 as a critical regulatory circuit for the inflammatory response of the resident mesenchymal cells to TNFα and contribute insight into how the synovial tissue brings about chronic inflammation that is driven by TNFα.
Collapse
|
36
|
Narumi K, Miyakawa R, Shibasaki C, Henmi M, Mizoguchi Y, Ueda R, Hashimoto H, Hiraoka N, Yoshida T, Aoki K. Local Administration of GITR Agonistic Antibody Induces a Stronger Antitumor Immunity than Systemic Delivery. Sci Rep 2019; 9:5562. [PMID: 30944344 PMCID: PMC6447616 DOI: 10.1038/s41598-019-41724-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
An anti-glucocorticoid induced TNF receptor (GITR) agonistic antibody (Ab) induces an antitumor immunity with both stimulation of effector T cells and inhibition of regulatory T cell activity. To enhance GITR Ab-mediated tumor immunity, we focused on the intratumoral route, since a tumor-localized high concentration of Ab would confer activation of only tumor-infiltrating T cells. First, in a murine colon cancer model, we showed that the intratumoral delivery of Ab significantly increased the number of effector T cells infiltrated into tumors, and suppressed tumor growth more effectively than the intraperitoneal and intravenous injections did. Then, we found that the injection of Ab into the peritumoral area induced a systemic antitumor immunity at a similar level to the intratumoral injection. Therefore, we hypothesized that the transfer of locally administrated Ab into tumor-draining lymph nodes (TDLNs) plays an important role in inducing an effective immunity. In fact, intratumorally or peritumorally injected Ab was detected in TDLNs, and resection of Ab-injected TDLNs significantly reduced GITR Ab-mediated systemic tumor immunity. Intratumoral injection showed less number of auto-reactive T cells in the spleen than the intraperitoneal injection did. Intratumoral delivery of GITR Ab is a promising approach to induce an effective immunity compared to the systemic delivery.
Collapse
Affiliation(s)
- Kenta Narumi
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Reina Miyakawa
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Chihiro Shibasaki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Marina Henmi
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukihiro Mizoguchi
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryosuke Ueda
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hisayoshi Hashimoto
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Nobuyoshi Hiraoka
- Department of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazunori Aoki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
37
|
Lee WH, Seo D, Lim SG, Suk K. Reverse Signaling of Tumor Necrosis Factor Superfamily Proteins in Macrophages and Microglia: Superfamily Portrait in the Neuroimmune Interface. Front Immunol 2019; 10:262. [PMID: 30838001 PMCID: PMC6389649 DOI: 10.3389/fimmu.2019.00262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) is a protein superfamily of type II transmembrane proteins commonly containing the TNF homology domain. The superfamily contains more than 20 protein members, which can be released from the cell membrane by proteolytic cleavage. Members of the TNFSF function as cytokines and regulate diverse biological processes, including immune responses, proliferation, differentiation, apoptosis, and embryogenesis, by binding to TNFSF receptors. Many TNFSF proteins are also known to be responsible for the regulation of innate immunity and inflammation. Both receptor-mediated forward signaling and ligand-mediated reverse signaling play important roles in these processes. In this review, we discuss the functional expression and roles of various reverse signaling molecules and pathways of TNFSF members in macrophages and microglia in the central nervous system (CNS). A thorough understanding of the roles of TNFSF ligands and receptors in the activation of macrophages and microglia may improve the treatment of inflammatory diseases in the brain and periphery. In particular, TNFSF reverse signaling in microglia can be exploited to gain further insights into the functions of the neuroimmune interface in physiological and pathological processes in the CNS.
Collapse
Affiliation(s)
- Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Donggun Seo
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Su-Geun Lim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
38
|
Tian J, Rui K, Hong Y, Wang X, Xiao F, Lin X, Ma J, Guo H, Xu H, Ma K, Xu D, Liu D, Zhao Y, Lu L, Wang S. Increased GITRL Impairs the Function of Myeloid-Derived Suppressor Cells and Exacerbates Primary Sjögren Syndrome. THE JOURNAL OF IMMUNOLOGY 2019; 202:1693-1703. [DOI: 10.4049/jimmunol.1801051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/08/2019] [Indexed: 01/19/2023]
|
39
|
Costimulation of type-2 innate lymphoid cells by GITR promotes effector function and ameliorates type 2 diabetes. Nat Commun 2019; 10:713. [PMID: 30755607 PMCID: PMC6372786 DOI: 10.1038/s41467-019-08449-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Metabolic syndrome is characterized by disturbances in glucose homeostasis and the development of low-grade systemic inflammation, which increase the risk to develop type 2 diabetes mellitus (T2DM). Type-2 innate lymphoid cells (ILC2s) are a recently discovered immune population secreting Th2 cytokines. While previous studies show how ILC2s can play a critical role in the regulation of metabolic homeostasis in the adipose tissue, a therapeutic target capable of modulating ILC2 activation has yet to be identified. Here, we show that GITR, a member of the TNF superfamily, is expressed on both murine and human ILC2s. Strikingly, we demonstrate that GITR engagement of activated, but not naïve, ILC2s improves glucose homeostasis, resulting in both protection against insulin resistance onset and amelioration of established insulin- resistance. Together, these results highlight the critical role of GITR as a novel therapeutic molecule against T2DM and its fundamental role as an immune checkpoint for activated ILC2s. Type-2 innate lymphoid cells (ILC2s) are an immune population secreting Th2 cytokines playing a role in the regulation of adipose metabolic homeostasis. Here the authors show that engagement of GITR, a member of the TNF superfamily, in activated ILC2s is protective against insulin resistance in both a preventive and a therapeutic manner in the context of obesity.
Collapse
|
40
|
Pre-immunization of donor lymphocytes with GITR agonistic antibody enhances antitumor immunity in autologous hematopoietic stem cell transplantation. Biochem Biophys Res Commun 2019; 509:96-101. [PMID: 30579597 DOI: 10.1016/j.bbrc.2018.12.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 01/24/2023]
Abstract
The lymphopenic condition following autologous hematopoietic stem cell transplantation (HSCT) enhances the proliferation of T cells by engaging tumor-associated antigens, leading to the alteration of the T-cell repertoire towards antitumor immunity. However, cure by autologous HSCT alone have rarely occurred in the clinical setting. Since tumor-reactive lymphocytes preferentially proliferate during reconstitution of the immune system, we examined whether the priming of donor lymphocytes can strengthen the antitumor effect by HSCT in a CT26 murine colon cancer model. The systemic administration of an anti-glucocorticoid-induced TNF receptor (GITR) agonistic antibody (Ab) significantly increased the number of CT26-responsive T cells but not that of auto-reactive lymphocytes in donor mice. The infusion of non-primed and GITR Ab-primed donor lymphocytes suppressed the CT26 tumor growth, and only the primed lymphocytes eliminated tumors in all the treated mice. The frequency of CT26-responsive T cells was elevated in recipient mice infused with both primed and non-primed lymphocytes until 4 weeks after transplantation, while the frequency in recipients with primed lymphocytes was markedly elevated compared with that in mice harboring non-primed lymphocytes at 2 weeks. The frequencies of regulatory T cells and myeloid-derived suppressor cells were elevated in recipient mice infused with primed and non-primed lymphocytes 2 weeks after transplantation, and returned to normal levels by week 4. The combination of autologous HSCT with pre-immunization of donor lymphocytes is a promising strategy to induce strong antitumor immunity.
Collapse
|
41
|
Nakajima M, Tamada K. Cancer Immunotherapy Targeting Co-signal Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:313-326. [DOI: 10.1007/978-981-32-9717-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
43
|
Co-signal Molecules in T-Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:3-23. [DOI: 10.1007/978-981-32-9717-3_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Yazdani R, Shapoori S, Rezaeepoor M, Sanaei R, Ganjalikhani-Hakemi M, Azizi G, Rae W, Aghamohammadi A, Rezaei N. Features and roles of T helper 9 cells and interleukin 9 in immunological diseases. Allergol Immunopathol (Madr) 2019; 47:90-104. [PMID: 29703631 DOI: 10.1016/j.aller.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/28/2018] [Accepted: 02/09/2018] [Indexed: 02/08/2023]
Abstract
T helper 9 (TH9) cells are considered as newly classified helper T cells that have an important role in the regulation of immune responses. Since these cells preferentially produce IL-9, these cells are termed TH9 cells. Recently, the role of TH9 and its signature cytokine (IL-9) has been investigated in a wide range of diseases, including autoimmunity, allergy, infections, cancer and immunodeficiency. Herein, we review the most recent data concerning TH9 cells and IL-9 as well as their roles in disease. These insights suggest that TH9 cells are a future target for therapeutic intervention.
Collapse
Affiliation(s)
- R Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - S Shapoori
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Rezaeepoor
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Sanaei
- Department of Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - M Ganjalikhani-Hakemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - G Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - W Rae
- Department of Immunology, MP8, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - A Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
45
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
46
|
Emerson DA, Redmond WL. Overcoming Tumor-Induced Immune Suppression: From Relieving Inhibition to Providing Costimulation with T Cell Agonists. BioDrugs 2018; 32:221-231. [PMID: 29637478 DOI: 10.1007/s40259-018-0277-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advancements in T-cell biology and antibody engineering have opened doors to significant improvements in cancer immunotherapy. Initial success with monoclonal antibodies targeting key receptors that inhibit T-cell function such as cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death-ligand 1 (PD-1) have demonstrated the potency of this new class of therapy, highlighted by long-term complete responses for metastatic cancers once thought incurable. However, only a subset of patients responds to checkpoint blockade because of a multitude of factors, including an immunosuppressive tumor microenvironment and the mutational burden of the cancer. Novel antibodies, as well as ligand-immunoglobulin fusion proteins that target costimulatory immune receptors, are being developed and tested in clinical trials to further enhance the anti-tumor immune response. Many of these costimulatory receptors are in the tumor necrosis factor receptor superfamily (TNFRSF) and are expressed on multiple immune cell types, including inhibitory cells. While TNFRSFs signal through common pathways, the outcome of targeting different receptors depends on the functional status of the cell types expressing the relevant receptors. In this review, we discuss the current state of targeted costimulatory immunotherapy.
Collapse
Affiliation(s)
- Dana A Emerson
- Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St., 2N35, Portland, OR, 97213, USA
- Molecular Microbiology and Immunology Department, Oregon Health and Science University, Portland, OR, 97239, USA
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St., 2N35, Portland, OR, 97213, USA.
| |
Collapse
|
47
|
Tran B, Carvajal RD, Marabelle A, Patel SP, LoRusso PM, Rasmussen E, Juan G, Upreti VV, Beers C, Ngarmchamnanrith G, Schöffski P. Dose escalation results from a first-in-human, phase 1 study of glucocorticoid-induced TNF receptor-related protein agonist AMG 228 in patients with advanced solid tumors. J Immunother Cancer 2018; 6:93. [PMID: 30253804 PMCID: PMC6156919 DOI: 10.1186/s40425-018-0407-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This open-label, first-in-human, phase 1 study evaluated the safety, pharmacokinetics, pharmacodynamics, and maximum tolerated dose (MTD) of AMG 228, an agonistic human IgG1 monoclonal antibody targeting glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR), in patients with refractory advanced solid tumors. METHODS AMG 228 was administered intravenously every 3 weeks (Q3W). Dose escalation was in two stages: single-patient cohorts (3, 9, 30, and 90 mg), followed by "rolling six" design (n = 2-6; 180, 360, 600, 900, and 1200 mg). Primary endpoints included incidence of dose-limiting toxicities (DLTs), AEs, and pharmacokinetics. Additional endpoints were objective response and pharmacodynamic response. RESULTS Thirty patients received AMG 228, which was well tolerated up to the maximum planned dose (1200 mg). No DLTs occurred; the MTD was not reached. The most common treatment-related AEs were fatigue (13%), infusion-related reaction (7%), pyrexia (7%), decreased appetite (7%), and hypophosphatemia (7%). Two patients had binding anti-AMG 228 antibodies (one at baseline); no neutralizing antibodies were detected. AMG 228 exhibited target-mediated drug disposition, and serum exposure was approximately dose proportional at 180-1200 mg and greater than dose proportional at 3-1200 mg. Doses > 360 mg Q3W achieved serum trough coverage for 95% in vitro GITR occupancy. Despite GITR coverage in peripheral blood and tumor biopsies, there was no evidence of T-cell activation or anti-tumor activity. CONCLUSIONS In patients with advanced solid tumors, AMG 228 Q3W was tolerable up to the highest tested dose (1200 mg), exhibited favorable pharmacokinetics, and provided target coverage indicating a pharmacokinetic profile appropriate for longer intervals. However, there was no evidence of T-cell activation or anti-tumor activity with AMG 228 monotherapy. TRIAL REGISTRATION ClinicalTrials.gov, NCT02437916 .
Collapse
Affiliation(s)
- Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000 Australia
| | - Richard D. Carvajal
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, New York USA
| | - Aurelien Marabelle
- Département d’Innovation Thérapeutique et d’Essais Précoces, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U1015, Gustave Roussy, Villejuif, France
| | - Sandip Pravin Patel
- Division of Hematology and Medical Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California USA
| | | | | | | | | | | | | | - Patrick Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
48
|
Popovic A, Jaffee EM, Zaidi N. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J Clin Invest 2018; 128:3209-3218. [PMID: 30067248 DOI: 10.1172/jci120775] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Current immune checkpoint-modulating agents have demonstrated clinical efficacy in certain tumor types, particularly those with a high burden of tumor-specific neoantigens, high tumor-mutational burden, and abundant tumor-infiltrating T cells. However, these tumors often stop responding, with signs of T cells exhaustion, decreased T cell effector function, and upregulated inhibitory checkpoints. To enhance antitumor immunity and rescue exhausted T cells, newer inhibitory and stimulatory checkpoint modulators are being tested as monotherapy or in combination with approved checkpoint inhibitors. In contrast, tumors with low tumor-mutational burden, low neoantigen burden, and a paucity of T cells are immunologically "cold," and therefore first require the addition of agents to facilitate the induction of T cells into tumors. Cold tumors also often recruit immunosuppressive cell subsets, including regulatory T cells, myeloid-derived suppressor cells, and macrophages, and secrete immunosuppressive soluble cytokines, chemokines, and metabolites. To unleash an optimal antitumor immune response, combinatorial therapeutics that combine immune checkpoints with other modalities, such as vaccines, are being developed. From current preclinical data, it appears that combinatorial strategies will provide robust and durable responses in patients with immunologically cold cancers.
Collapse
|
49
|
Acúrcio RC, Scomparin A, Conniot J, Salvador JAR, Satchi-Fainaro R, Florindo HF, Guedes RC. Structure–Function Analysis of Immune Checkpoint Receptors to Guide Emerging Anticancer Immunotherapy. J Med Chem 2018; 61:10957-10975. [DOI: 10.1021/acs.jmedchem.8b00541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, and Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
50
|
Kopru CZ, Cagnan I, Akar I, Esendagli G, Korkusuz P, Gunel-Ozcan A. Dual Effect of Glucocorticoid-Induced Tumor Necrosis Factor-Related Receptor Ligand Carrying Mesenchymal Stromal Cells on Small Cell Lung Cancer: A Preliminary in vitro Study. Cytotherapy 2018; 20:930-940. [PMID: 30180943 DOI: 10.1016/j.jcyt.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND AIMS TNFR family member glucocorticoid-induced tumor necrosis factor-related receptor (GITR/TNFRSF18) activation by its ligand glucocorticoid-induced TNF-related receptor ligand (GITRL) have important roles in proliferation, death and differentiation of cells. Some types of small cell lung cancers (SCLCs) express GITR. Because mesenchymal stromal cells (MSCs) may target tumor cells, we aimed to investigate the effect of MSCs carrying GITRL overexpressing plasmid on the proliferation and viability of a GITR+ SCLC cell line (SCLC-21H) compared with a GITR- SCLC cell line (NCI-H82). METHODS Electroporation was used to transfer pGITRL (GITRL gene carrying plasmid) or pCR3 (mock plasmid) into MSCs. Flow cytometry and semi-quantitative polymerase chain reaction were used to characterize the transfected MSCs. Following SCLC-21H or NCI-H82 cell lines were co-cultured with pGITRL-MSCs. RESULTS Proliferation of NCI-H82 was increased in all types of co-cultures while SCLC-21H cells did not. GITRL expressing MSCs were able to induce cell death of SCLC-21H through the upregulation of SIVA1 apoptosis inducing factor. CONCLUSIONS The influence of MSCs on SCLC cells can vary according to the cancer cell subtypes as obtained in SCLC-21H and NCI-H82 and enabling GITR-GITRL interaction can induce cell death of SCLC cell lines.
Collapse
Affiliation(s)
- Cagla Zubeyde Kopru
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Ilgin Cagnan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Irem Akar
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|