1
|
Xing N, Gao L, Xie W, Deng H, Yang F, Liu D, Li A, Pang Q. Mining of potentially stem cell-related miRNAs in planarians. Mol Biol Rep 2024; 51:1045. [PMID: 39377855 DOI: 10.1007/s11033-024-09977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Stem cells and regenerative medicine have recently become important research topics. However, the complex stem cell regulatory networks involved in various microRNA (miRNA)-mediated mechanisms have not yet been fully elucidated. Planarians are ideal animal models for studying stem cells owing to their rich stem cell populations (neoblasts) and extremely strong regeneration capacity. The roles of planarian miRNAs in stem cells and regeneration have long attracted attention. However, previous studies have generally provided simple datasets lacking integrative analysis. Here, we have summarized the miRNA family reported in planarians and highlighted conservation in both sequence and function. Furthermore, we summarized miRNA data related to planarian stem cells and regeneration and screened potential involved candidates. Nevertheless, the roles of these miRNAs in planarian regeneration and stem cells remain unclear. The identification of potential stem cell-related miRNAs offers more precise suggestions and references for future investigations of miRNAs in planarians. Furthermore, it provides potential research avenues for understanding the mechanisms of stem cell regulatory networks. Finally, we compiled a summary of the experimental methods employed for studying planarian miRNAs, with the aim of highlighting special considerations in certain procedures and providing more convenient technical support for future research endeavors.
Collapse
Affiliation(s)
- Nianhong Xing
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| | - Wenshuo Xie
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Hongkuan Deng
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Fengtang Yang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| |
Collapse
|
2
|
Pham M, Hoffmann HH, Kurtti TJ, Chana R, Garcia-Cruz O, Aliabadi S, Gulia-Nuss M. Validation of heat-inducible Ixodes scapularis HSP70 and tick-specific 3xP3 promoters in ISE6 cells. iScience 2024; 27:110468. [PMID: 39139404 PMCID: PMC11321315 DOI: 10.1016/j.isci.2024.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Ixodes scapularis is an important vector of many pathogens, including the causative agent of Lyme disease. The gene function studies in I. scapularis and other ticks are hampered by the lack of genetic tools, including an inducible promoter for temporal control over transgene-encoding protein or double-stranded RNA. We characterized an intergenic sequence upstream of a heat shock protein 70 (HSP70) gene that can drive Renilla luciferase and mCherry expression in the I. scapularis cell line ISE6 (IsHSP70). In another construct, we replaced the Drosophila melanogaster minimal HSP70 promoter of the 3xP3 promoter with a minimal portion of IsHSP70 promoter and generated an I. scapularis-specific 3xP3 (Is3xP3) promoter. Both IsHSP70 and Is3xP3 have a heat-inducible expression of mCherry fluorescence in ISE6 cells with an approximately 10-fold increase in the percentage of fluorescent cells upon 2 h heat shock. These promoters described will be valuable tools for gene function studies.
Collapse
Affiliation(s)
- Michael Pham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Diseases, Rockefeller University, New York City, NY, USA
| | | | - Randeep Chana
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Omar Garcia-Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Simindokht Aliabadi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
3
|
Han M, Perkins MH, Novaes LS, Xu T, Chang H. Advances in transposable elements: from mechanisms to applications in mammalian genomics. Front Genet 2023; 14:1290146. [PMID: 38098473 PMCID: PMC10719622 DOI: 10.3389/fgene.2023.1290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
It has been 70 years since Barbara McClintock discovered transposable elements (TE), and the mechanistic studies and functional applications of transposable elements have been at the forefront of life science research. As an essential part of the genome, TEs have been discovered in most species of prokaryotes and eukaryotes, and the relative proportion of the total genetic sequence they comprise gradually increases with the expansion of the genome. In humans, TEs account for about 40% of the genome and are deeply involved in gene regulation, chromosome structure maintenance, inflammatory response, and the etiology of genetic and non-genetic diseases. In-depth functional studies of TEs in mammalian cells and the human body have led to a greater understanding of these fundamental biological processes. At the same time, as a potent mutagen and efficient genome editing tool, TEs have been transformed into biological tools critical for developing new techniques. By controlling the random insertion of TEs into the genome to change the phenotype in cells and model organisms, critical proteins of many diseases have been systematically identified. Exploiting the TE's highly efficient in vitro insertion activity has driven the development of cutting-edge sequencing technologies. Recently, a new technology combining CRISPR with TEs was reported, which provides a novel targeted insertion system to both academia and industry. We suggest that interrogating biological processes that generally depend on the actions of TEs with TEs-derived genetic tools is a very efficient strategy. For example, excessive activation of TEs is an essential factor in the occurrence of cancer in humans. As potent mutagens, TEs have also been used to unravel the key regulatory elements and mechanisms of carcinogenesis. Through this review, we aim to effectively combine the traditional views of TEs with recent research progress, systematically link the mechanistic discoveries of TEs with the technological developments of TE-based tools, and provide a comprehensive approach and understanding for researchers in different fields.
Collapse
Affiliation(s)
- Mei Han
- Guangzhou National Laboratory, Guangzhou, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leonardo Santana Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Pham M, Hoffmann HH, Kurtti TJ, Chana R, Garcia-Cruz O, Aliabadi S, Gulia-Nuss M. Validation of a heat-inducible Ixodes scapularis HSP70 promoter and developing a tick-specific 3xP3 promoter sequence in ISE6 cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569248. [PMID: 38076872 PMCID: PMC10705397 DOI: 10.1101/2023.11.29.569248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ixodes scapularis is an important vector of many pathogens, including the causative agent of Lyme disease, tick-borne encephalitis, and anaplasmosis. The study of gene function in I. scapularis and other ticks has been hampered by the lack of genetic tools, such as an inducible promoter to permit temporal control over transgenes encoding protein or double-stranded RNA expression. Studies of vector-pathogen relationships would also benefit from the capability to activate anti-pathogen genes at different times during pathogen infection and dissemination. We have characterized an intergenic sequence upstream of the heat shock protein 70 (HSP70) gene that can drive Renilla luciferase expression and mCherry fluorescence in the I. scapularis cell line ISE6. In another construct, we replaced the Drosophila melanogaster minimal HSP70 promoter in the synthetic 3xP3 promoter with a minimal portion of the I. scapularis HSP70 promoter and generated an I. scapularis specific 3xP3 (Is3xP3) promoter. Both promoter constructs, IsHSP70 and Is3xP3, allow for heat-inducible expression of mCherry fluorescence in ISE6 cells with an approximately 10-fold increase in the percentage of fluorescent positive cells upon exposure to a 2 h heat shock. These promoters described here will be valuable tools for gene function studies and temporal control of gene expression, including anti-pathogen genes.
Collapse
Affiliation(s)
- Michael Pham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | | | | | - Randeep Chana
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Omar Garcia-Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Simindokht Aliabadi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| |
Collapse
|
5
|
Jaenen V, Bijnens K, Heleven M, Artois T, Smeets K. Live Imaging in Planarians: Immobilization and Real-Time Visualization of Reactive Oxygen Species. Methods Mol Biol 2023; 2680:209-229. [PMID: 37428380 DOI: 10.1007/978-1-0716-3275-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Imaging of living animals allows the study of metabolic processes in relation to cellular structures or larger functional entities. To enable in vivo imaging during long-term time-lapses in planarians, we combined and optimized existing protocols, resulting in an easily reproducible and inexpensive procedure. Immobilization with low-melting-point agarose eliminates the use of anesthetics, avoids interfering with the animal during imaging-functionally or physically-and allows recovering the organisms after the imaging procedure. As an example, we used the immobilization workflow to image the highly dynamic and fast-changing reactive oxygen species (ROS) in living animals. These reactive signaling molecules can only be studied in vivo and mapping their location and dynamics during different physiological conditions is crucial to understand their role in developmental processes and regeneration. In the current protocol, we describe both the immobilization and ROS detection procedure. We used the intensity of the signals together with pharmacological inhibitors to validate the signal specificity and to distinguish it from the autofluorescent nature of the planarian.
Collapse
Affiliation(s)
- Vincent Jaenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karolien Bijnens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Martijn Heleven
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tom Artois
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
6
|
Sukhikh IS, Biryukov MY, Blinov AG. Transgenesis in Worms: Candidates for an Ideal Model. Mol Biol 2022. [DOI: 10.1134/s0026893322060176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Wang X, Yang X, Yuan X, Wang W, Wang Y. Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp Hematol Oncol 2022; 11:85. [PMID: 36324149 PMCID: PMC9628181 DOI: 10.1186/s40164-022-00341-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cells have obtained prominent achievement in the clinical immunotherapy of hematological malignant tumors, leading to a rapid development of cellular immunotherapy in cancer treatment. Scientists are also aware of the prospective advantages of CAR engineering in cellular immunotherapy. Due to various limitations such as the serious side effects of CAR-T therapy, researchers began to investigate other immune cells for CAR modification. Natural killer (NK) cells are critical innate immune cells with the characteristic of non-specifically recognizing target cells and with the potential to become "off-the-shelf" products. In recent years, many preclinical studies on CAR-engineered NK (CAR-NK) cells have shown their remarkable efficacy in cancer therapy and their superiority over autologous CAR-T cells. In this review, we summarize the generation, mechanisms of anti-tumor activity and unique advantages of CAR-NK cells, and then analyze some challenges and recent clinical trials about CAR-NK cells therapy. We believe that CAR-NK therapy is a promising prospect for cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Xiao Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuejiao Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiang Yuan
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wenbo Wang
- grid.24516.340000000123704535Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yueying Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
8
|
Hall RN, Weill U, Drees L, Leal-Ortiz S, Li H, Khariton M, Chai C, Xue Y, Rosental B, Quake SR, Sánchez Alvarado A, Melosh NA, Fire AZ, Rink JC, Wang B. Heterologous reporter expression in the planarian Schmidtea mediterranea through somatic mRNA transfection. CELL REPORTS METHODS 2022; 2:100298. [PMID: 36313809 PMCID: PMC9606109 DOI: 10.1016/j.crmeth.2022.100298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Planarians have long been studied for their regenerative abilities. Moving forward, tools for ectopic expression of non-native proteins will be of substantial value. Using a luminescent reporter to overcome the strong autofluorescence of planarian tissues, we demonstrate heterologous protein expression in planarian cells and live animals. Our approach is based on the introduction of mRNA through several nanotechnological and chemical transfection methods. We improve reporter expression by altering untranslated region (UTR) sequences and codon bias, facilitating the measurement of expression kinetics in both isolated cells and whole planarians using luminescence imaging. We also examine protein expression as a function of variations in the UTRs of delivered mRNA, demonstrating a framework to investigate gene regulation at the post-transcriptional level. Together, these advances expand the toolbox for the mechanistic analysis of planarian biology and establish a foundation for the development and expansion of transgenic techniques in this unique model system.
Collapse
Affiliation(s)
| | - Uri Weill
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Leonard Drees
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sergio Leal-Ortiz
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hongquan Li
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Margarita Khariton
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Howard Hughes Medical Institute, Kansas City, MO 64110, USA
| | - Nicholas A. Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrew Z. Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jochen C. Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Courtier‐Orgogozo V, Danchin A, Gouyon P, Boëte C. Evaluating the probability of CRISPR-based gene drive contaminating another species. Evol Appl 2020; 13:1888-1905. [PMID: 32908593 PMCID: PMC7463340 DOI: 10.1111/eva.12939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
The probability D that a given clustered regularly interspaced short palindromic repeats (CRISPR)-based gene drive element contaminates another, nontarget species can be estimated by the following Drive Risk Assessment Quantitative Estimate (DRAQUE) Equation: D = h y b + t r a n s f × e x p r e s s × c u t × f l a n k × i m m u n e × n o n e x t i n c t with hyb = probability of hybridization between the target species and a nontarget species; transf = probability of horizontal transfer of a piece of DNA containing the gene drive cassette from the target species to a nontarget species (with no hybridization); express = probability that the Cas9 and guide RNA genes are expressed; cut = probability that the CRISPR-guide RNA recognizes and cuts at a DNA site in the new host; flank = probability that the gene drive cassette inserts at the cut site; immune = probability that the immune system does not reject Cas9-expressing cells; nonextinct = probability of invasion of the drive within the population. We discuss and estimate each of the seven parameters of the equation, with particular emphasis on possible transfers within insects, and between rodents and humans. We conclude from current data that the probability of a gene drive cassette to contaminate another species is not insignificant. We propose strategies to reduce this risk and call for more work on estimating all the parameters of the formula.
Collapse
Affiliation(s)
| | - Antoine Danchin
- Institut Cochin INSERM U1016 – CNRS UMR8104 – Université Paris DescartesParisFrance
| | - Pierre‐Henri Gouyon
- Institut de Systématique, Évolution, BiodiversitéMuséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUAParisFrance
| | | |
Collapse
|
10
|
Rosa MT, Loreto ELS. The Catenulida flatworm can express genes from its microbiome or from the DNA it ingests. Sci Rep 2019; 9:19045. [PMID: 31836792 PMCID: PMC6910973 DOI: 10.1038/s41598-019-55659-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
Stenostomum are tiny planarians of the phylum Platyhelminthes that reproduce asexually. We transfected these worms using plasmids containing a gfp reporter gene. Here we show that they can express genes present in plasmids carried by bacteria and those that are encoded by naked DNA, such as plasmids or PCR fragments, transfected by electroporation; they can also express genes taken up during feeding. The microbiome associated with worm maintenance was evaluated, and the results indicated that when a plasmid is maintained in the microbiome, gfp gene expression is stable. When genes originate from naked DNA or bacteria not maintained in the microbiome, GFP expression is transient. Therefore, changes in the microbiome can modify the ability of worms to express foreign genes. In stable GFP-expressing worms, NSG showed that the gfp gene was maintained in the plasmid and was not integrated into the chromosome. These results suggest that, at least for some organisms such as flatworms, the expression of genes provided by the microbiome or the environment can be considered among the potential sources of phenotypic plasticity, which can have implications for evolvability.
Collapse
Affiliation(s)
| | - Elgion L S Loreto
- Department of Biochemistry and Molecular Biology, CCNE, Univ. Fed. de Santa Maria, Av. Roraima 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Jones S, Osman S, Howl J. The planarian Schmidtea mediterranea as a model system for the discovery and characterization of cell-penetrating peptides and bioportides. Chem Biol Drug Des 2019; 93:1036-1049. [PMID: 30790457 DOI: 10.1111/cbdd.13483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
Abstract
The general utility of the planarian Schmidtea mediterranea, an organism with remarkable regenerative capacity, was investigated as a convenient three-dimensional model to analyse the import of cell-penetrating peptides (CPPs) and bioportides (bioactive CPPs) into complex tissues. The unpigmented planarian blastema, 3 days post head amputation, is a robust platform to assess the penetration of red-fluorescent CPPs into epithelial cells and deeper tissues. Three planarian proteins, Ovo, ZicA and Djeya, which collectively control head remodelling and eye regeneration following decapitation, are a convenient source of novel cationic CPP vectors. One example, Djeya1 (RKLAFRYRRIKELYNSYR), is a particularly efficient and seemingly inert CPP vector that could be further developed to assist the delivery of bioactive payloads across the plasma membrane of eukaryotic cells. Eye regeneration, following head amputation, was utilized in an effort to identify bioportides capable of influencing stem cell-dependent morphogenesis. These investigations identified the tetradecapeptide mastoparan (INLKALAALAKKIL) as a bioportide able to influence the gross morphology of head development. We conclude that, compared with cellular monolayers, the S. mediterranea system provides many advantages and will support the identification of bioportides able to selectively modify the biology of totipotent neoblasts and, presumably, other mammalian stem cell types.
Collapse
Affiliation(s)
- Sarah Jones
- Molecular Pharmacology Group, Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Shaimaa Osman
- Peptide Chemistry Department, National Research Centre, Cairo, Egypt
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
12
|
Tran TA, Gentile L. A lineage CLOUD for neoblasts. Semin Cell Dev Biol 2018; 87:22-29. [PMID: 29727726 DOI: 10.1016/j.semcdb.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022]
Abstract
In planarians, pluripotency can be studied in vivo in the adult animal, making these animals a unique model system where pluripotency-based regeneration (PBR)-and its therapeutic potential-can be investigated. This review focuses on recent findings to build a cloud model of fate restriction likelihood for planarian stem and progenitor cells. Recently, a computational approach based on functional and molecular profiling at the single cell level was proposed for human hematopoietic stem cells. Based on data generated both in vivo and ex vivo, we hypothesized that planarian stem cells could acquire multiple direction lineage biases, following a "badlands" landscape. Instead of a discrete tree-like hierarchy, where the potency of stem/progenitor cells reduces stepwise, we propose a Continuum of LOw-primed UnDifferentiated Planarian Stem/Progenitor Cells (CLOUD-PSPCs). Every subclass of neoblast/progenitor cells is a cloud of likelihood, as the single cell transcriptomics data indicate. The CLOUD-HSPCs concept was substantiated by in vitro data from cell culture; therefore, to confirm the CLOUD-PSPCs model, the planarian community needs to develop new tools, like live cell tracking. Future studies will allow a deeper understanding of PBR in planarian, and the possible implications for regenerative therapies in human.
Collapse
Affiliation(s)
- Thao Anh Tran
- Pluripotency and Regeneration Group, Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg, 1, 66280, Sulzbach, Germany
| | - Luca Gentile
- Pluripotency and Regeneration Group, Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg, 1, 66280, Sulzbach, Germany; Planarian Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, von-Esmarch-str. 54, 48149, Münster, Germany; Hasselt University - Campus Diepenbeek, Agoralaan building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
13
|
Efficient transgenesis and annotated genome sequence of the regenerative flatworm model Macrostomum lignano. Nat Commun 2017; 8:2120. [PMID: 29242515 PMCID: PMC5730564 DOI: 10.1038/s41467-017-02214-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 11/12/2017] [Indexed: 01/15/2023] Open
Abstract
Regeneration-capable flatworms are informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. However, the lack of transgenesis methods considerably hampers their wider use. Here we report development of a transgenesis method for Macrostomum lignano, a basal flatworm with excellent regeneration capacity. We demonstrate that microinjection of DNA constructs into fertilized one-cell stage eggs, followed by a low dose of irradiation, frequently results in random integration of the transgene in the genome and its stable transmission through the germline. To facilitate selection of promoter regions for transgenic reporters, we assembled and annotated the M. lignano genome, including genome-wide mapping of transcription start regions, and show its utility by generating multiple stable transgenic lines expressing fluorescent proteins under several tissue-specific promoters. The reported transgenesis method and annotated genome sequence will permit sophisticated genetic studies on stem cells and regeneration using M. lignano as a model organism. Regeneration capable flatworms have emerged as powerful models for studying stem cell biology and patterning, however their study has been hindered by the lack of transgenesis methods. Here, the authors describe a transgenesis method for Macrostomum lignano, as well as a new annotated genome sequence.
Collapse
|
14
|
Su H, Sureda-Gomez M, Rabaneda-Lombarte N, Gelabert M, Xie J, Wu W, Adell T. A C-terminally truncated form of β-catenin acts as a novel regulator of Wnt/β-catenin signaling in planarians. PLoS Genet 2017; 13:e1007030. [PMID: 28976975 PMCID: PMC5643146 DOI: 10.1371/journal.pgen.1007030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/16/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022] Open
Abstract
β-Catenin, the core element of the Wnt/β-catenin pathway, is a multifunctional and evolutionarily conserved protein which performs essential roles in a variety of developmental and homeostatic processes. Despite its crucial roles, the mechanisms that control its context-specific functions in time and space remain largely unknown. The Wnt/β-catenin pathway has been extensively studied in planarians, flatworms with the ability to regenerate and remodel the whole body, providing a ‘whole animal’ developmental framework to approach this question. Here we identify a C-terminally truncated β-catenin (β-catenin4), generated by gene duplication, that is required for planarian photoreceptor cell specification. Our results indicate that the role of β-catenin4 is to modulate the activity of β-catenin1, the planarian β-catenin involved in Wnt signal transduction in the nucleus, mediated by the transcription factor TCF-2. This inhibitory form of β-catenin, expressed in specific cell types, would provide a novel mechanism to modulate nuclear β-catenin signaling levels. Genomic searches and in vitro analysis suggest that the existence of a C-terminally truncated form of β-catenin could be an evolutionarily conserved mechanism to achieve a fine-tuned regulation of Wnt/β-catenin signaling in specific cellular contexts. The Wnt signaling pathway is essential for proper intercellular communication in every developmental process since it controls basic cellular events as cell fate or proliferation. The key element of the Wnt signaling is β-catenin, which controls the transcription of multiple genes in the Wnt receiving cell. A main level of regulation of the Wnt/β-catenin signaling occurs in the cytoplasm, where β-catenin protein levels depend on the activity of the β-catenin destruction complex. However, once it reaches the nucleus, β-catenin transcriptional activity requires a fine-tuned regulation to enable the multiple context-specific responses that it performs. These nuclear mechanisms that regulate the Wnt/β-catenin signaling remain poorly understood. Here we report the existence of C-terminal truncated forms of β-catenin in planarians (β-cat3 and 4), which, in vitro, do not show transactivation activity and compete with the canonical planarian β-catenin (β-cat1), thus acting as competitor inhibitors. Functional analyses in planarians indicate that β-cat4 acts as a negative regulator of β-cat1 during planarian eye photoreceptor specification. We provide evidence to suggest that this novel mechanism for the regulation of nuclear β-catenin activity could be conserved across animal evolution.
Collapse
Affiliation(s)
- Hanxia Su
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Miquel Sureda-Gomez
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Neus Rabaneda-Lombarte
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Maria Gelabert
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Jianlei Xie
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Teresa Adell
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
- * E-mail:
| |
Collapse
|
15
|
Sasidharan V, Marepally S, Elliott SA, Baid S, Lakshmanan V, Nayyar N, Bansal D, Sánchez Alvarado A, Vemula PK, Palakodeti D. The miR-124 family of microRNAs is crucial for regeneration of the brain and visual system in the planarian Schmidtea mediterranea. Development 2017; 144:3211-3223. [PMID: 28807895 PMCID: PMC5612250 DOI: 10.1242/dev.144758] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 08/01/2017] [Indexed: 01/15/2023]
Abstract
Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is crucial for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the miR-124 family of microRNAs in planarian brain regeneration. The miR-124 family (miR-124) is highly conserved in animals and regulates neurogenesis by facilitating neural differentiation, yet its role in neural wiring and brain organization is not known. We developed a novel method for delivering anti-miRs using liposomes for the functional knockdown of microRNAs. Smed-miR-124 knockdown revealed a key role for these microRNAs in neuronal organization during planarian brain regeneration. Our results also demonstrated an essential role for miR-124 in the generation of eye progenitors. Additionally, miR-124 regulates Smed-slit-1, which encodes an axon guidance protein, either by targeting slit-1 mRNA or, potentially, by modulating the canonical Notch pathway. Together, our results reveal a role for miR-124 in regulating the regeneration of a functional brain and visual system. Summary:miR-124 is required during de novo regeneration of the cephalic ganglion and visual system in planarians, as well as in slit-1 expression in the midline of anterior regenerating tissue via canonical Notch signaling.
Collapse
Affiliation(s)
- Vidyanand Sasidharan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India.,Manipal University, Manipal, Karnataka 576104, India
| | - Srujan Marepally
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Sarah A Elliott
- Stowers Institute for Medical Research and Howard Hughes Medical Institute, Kansas City, MO 64110, USA.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Srishti Baid
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Vairavan Lakshmanan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Nishtha Nayyar
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Dhiru Bansal
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India.,Manipal University, Manipal, Karnataka 576104, India
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research and Howard Hughes Medical Institute, Kansas City, MO 64110, USA.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| |
Collapse
|
16
|
Yang D, Liao R, Zheng Y, Sun L, Xu T. Analysis of PBase Binding Profile Indicates an Insertion Target Selection Mechanism Dependent on TTAA, But Not Transcriptional Activity. Int J Biol Sci 2016; 12:1074-82. [PMID: 27570481 PMCID: PMC4997051 DOI: 10.7150/ijbs.15589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/15/2016] [Indexed: 12/20/2022] Open
Abstract
Transposons and retroviruses are important pathogenic agents and tools for mutagenesis and transgenesis. Insertion target selection is a key feature for a given transposon or retrovirus. The piggyBac (PB) transposon is highly active in mice and human cells, which has a much better genome-wide distribution compared to the retrovirus and P-element. However, the underlying reason is not clear. Utilizing a tagged functional PB transposase (PBase), we were able to conduct genome-wide profiling for PBase binding sites in the mouse genome. We have shown that PBase binding mainly depends on the distribution of the tetranucleotide TTAA, which is not affected by the presence of PB DNA. Furthermore, PBase binding is negatively influenced by the methylation of CG sites in the genome. Analysis of a large collection of PB insertions in mice has revealed an insertion profile similar to the PBase binding profile. Interestingly, this profile is not correlated with transcriptional active genes in the genome or transcriptionally active regions within a transcriptional unit. This differs from what has been previously shown for P-element and retroviruses insertions. Our study provides an explanation for PB's genome-wide insertion distribution and also suggests that PB target selection relies on a new mechanism independent of active transcription and open chromatin structure.
Collapse
Affiliation(s)
- Dong Yang
- 1. State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Fudan-Yale Center for Biomedical Research, Innovation Center for International Cooperation of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200433; 2. Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06536
| | - Ruiqi Liao
- 1. State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Fudan-Yale Center for Biomedical Research, Innovation Center for International Cooperation of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200433
| | - Yun Zheng
- 3. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ling Sun
- 1. State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Fudan-Yale Center for Biomedical Research, Innovation Center for International Cooperation of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200433
| | - Tian Xu
- 1. State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Fudan-Yale Center for Biomedical Research, Innovation Center for International Cooperation of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200433; 2. Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06536
| |
Collapse
|
17
|
Bronner IF, Otto TD, Zhang M, Udenze K, Wang C, Quail MA, Jiang RHY, Adams JH, Rayner JC. Quantitative insertion-site sequencing (QIseq) for high throughput phenotyping of transposon mutants. Genome Res 2016; 26:980-9. [PMID: 27197223 PMCID: PMC4937560 DOI: 10.1101/gr.200279.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/04/2016] [Indexed: 01/06/2023]
Abstract
Genetic screening using random transposon insertions has been a powerful tool for uncovering biology in prokaryotes, where whole-genome saturating screens have been performed in multiple organisms. In eukaryotes, such screens have proven more problematic, in part because of the lack of a sensitive and robust system for identifying transposon insertion sites. We here describe quantitative insertion-site sequencing, or QIseq, which uses custom library preparation and Illumina sequencing technology and is able to identify insertion sites from both the 5′ and 3′ ends of the transposon, providing an inbuilt level of validation. The approach was developed using piggyBac mutants in the human malaria parasite Plasmodium falciparum but should be applicable to many other eukaryotic genomes. QIseq proved accurate, confirming known sites in >100 mutants, and sensitive, identifying and monitoring sites over a >10,000-fold dynamic range of sequence counts. Applying QIseq to uncloned parasites shortly after transfections revealed multiple insertions in mixed populations and suggests that >4000 independent mutants could be generated from relatively modest scales of transfection, providing a clear pathway to genome-scale screens in P. falciparum. QIseq was also used to monitor the growth of pools of previously cloned mutants and reproducibly differentiated between deleterious and neutral mutations in competitive growth. Among the mutants with fitness defects was a mutant with a piggyBac insertion immediately upstream of the kelch protein K13 gene associated with artemisinin resistance, implying mutants in this gene may have competitive fitness costs. QIseq has the potential to enable the scale-up of piggyBac-mediated genetics across multiple eukaryotic systems.
Collapse
Affiliation(s)
- Iraad F Bronner
- Malaria Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Min Zhang
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, Florida 33612, USA
| | - Kenneth Udenze
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, Florida 33612, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, Florida 33612, USA
| | - Michael A Quail
- Malaria Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, Florida 33612, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, Florida 33612, USA
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| |
Collapse
|
18
|
Abstract
The piggyBac transposon was originally isolated from the cabbage looper moth, Trichoplusia ni, in the 1980s. Despite its early discovery and dissimilarity to the other DNA transposon families, the piggyBac transposon was not recognized as a member of a large transposon superfamily for a long time. Initially, the piggyBac transposon was thought to be a rare transposon. This view, however, has now been completely revised as a number of fully sequenced genomes have revealed the presence of piggyBac-like repetitive elements. The isolation of active copies of the piggyBac-like elements from several distinct species further supported this revision. This includes the first isolation of an active mammalian DNA transposon identified in the bat genome. To date, the piggyBac transposon has been deeply characterized and it represents a number of unique characteristics. In general, all members of the piggyBac superfamily use TTAA as their integration target sites. In addition, the piggyBac transposon shows precise excision, i.e., restoring the sequence to its preintegration state, and can transpose in a variety of organisms such as yeasts, malaria parasites, insects, mammals, and even in plants. Biochemical analysis of the chemical steps of transposition revealed that piggyBac does not require DNA synthesis during the actual transposition event. The broad host range has attracted researchers from many different fields, and the piggyBac transposon is currently the most widely used transposon system for genetic manipulations.
Collapse
|
19
|
Hosoda K, Morimoto M, Motoishi M, Nishimura O, Agata K, Umesono Y. Simple blood-feeding method for live imaging of gut tube remodeling in regenerating planarians. Dev Growth Differ 2016; 58:260-9. [PMID: 26948408 DOI: 10.1111/dgd.12270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 11/27/2022]
Abstract
Live cell imaging is a powerful technique to study cellular dynamics in vivo during animal development and regeneration. However, few live imaging methods have been reported for studying planarian regeneration. Here, we developed a simple method for steady visualization of gut tube remodeling during regeneration of a living freshwater planarian, Dugesia japonica. When planarians were fed blood several times, gut branches were well-visualized in living intact animals under normal bright-field illumination. Interestingly, tail fragments derived from these colored planarians enabled successive observation of the processes of the formation of a single anterior gut branch in the prepharyngeal region from the preexisting two posterior gut branches in the same living animals during head regeneration. Furthermore, we combined this method and RNA interference (RNAi) and thereby showed that a D. japonica raf-related gene (DjrafA) and mek-related gene (DjmekA) we identified both play a major role in the activation of extracellular signal-regulated kinase (ERK) signaling during planarian regeneration, as indicated by their RNAi-induced defects on gut tube remodeling in a time-saving initial screening using blood-feeding without immunohistochemical detection of the gut. Thus, this blood-feeding method is useful for live imaging of gut tube remodeling, and provides an advance for the field of regeneration study in planarians.
Collapse
Affiliation(s)
- Kazutaka Hosoda
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mizuki Morimoto
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Minako Motoishi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Osamu Nishimura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| |
Collapse
|
20
|
Helios(®) Gene Gun-Mediated Transfection of the Inner Ear Sensory Epithelium: Recent Updates. Methods Mol Biol 2016; 1427:3-26. [PMID: 27259918 DOI: 10.1007/978-1-4939-3615-1_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The transfection of vertebrate inner ear hair cells has proven to be challenging. Therefore, many laboratories attempt to use and improve different transfection methods. Each method has its own advantages and disadvantages. A particular researcher's skills in addition to available equipment and the type of experiment (in vivo or in vitro) likely determine the transfection method of choice. Biolistic delivery of exogenous DNA, mRNA, or siRNA, also known as Helios(®) Gene Gun-mediated transfection, uses the mechanical energy of compressed helium gas to bombard tissue with micron- or submicron-sized DNA or RNA-coated gold particles, which can penetrate and transfect cells in vitro or in vivo. Helios(®) Gene Gun-mediated transfection has several advantages: (1) it is simple enough to learn in a short time; (2) it is designed to overcome cell barriers even as tough as plant cell membrane or stratum corneum in the epidermis; (3) it can transfect cells deep inside a tissue such as specific neurons within a brain slice; (4) it can accommodate mRNA, siRNA, or DNA practically of any size to be delivered; and (5) it works well with various cell types including non-dividing, terminally differentiated cells that are difficult to transfect, such as neurons or mammalian inner ear sensory hair cells. The latter advantage is particularly important for inner ear research. The disadvantages of this method are: (1) low efficiency of transfection due to many variables that have to be adjusted and (2) potential mechanical damage of the tissue if the biolistic shot parameters are not optimal. This chapter provides a step-by-step protocol and critical evaluation of the Bio-Rad Helios(®) Gene Gun transfection method used to deliver green fluorescent protein (GFP)-tagged full-length cDNAs of myosin 15a, whirlin, β-actin, and Clic5 into rodent hair cells of the postnatal inner ear sensory epithelia in culture.
Collapse
|
21
|
Das Gupta M, Chan SKS, Monteiro A. Natural Loss of eyeless/Pax6 Expression in Eyes of Bicyclus anynana Adult Butterflies Likely Leads to Exponential Decrease of Eye Fluorescence in Transgenics. PLoS One 2015; 10:e0132882. [PMID: 26173066 PMCID: PMC4501736 DOI: 10.1371/journal.pone.0132882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/22/2015] [Indexed: 12/03/2022] Open
Abstract
Commonly used visible markers for transgenesis use fluorescent proteins expressed at the surface of the body, such as in eyes. One commonly used marker is the 3xP3-EGFP cassette containing synthetic binding sites for the eyeless/Pax6 conserved transcription factor. This marker cassette leads to fluorescent eyes in a variety of animals tested so far. Here we show that upon reaching adulthood, transgenic Bicyclus anynana butterflies containing this marker cassette exponentially loose fluorescence in their eyes. After 12 days, transgenic individuals are no longer distinguishable from wild type individuals. The decreased eye fluorescence is likely due to significantly decreased or halted eyeless/Pax6 expression observed in wild type animals upon adult emergence. Implications from these findings include care in screening transgenic animals before these reach adulthood, or shortly thereafter, and in using adult animals of the same age for quantitative screening of likely homozygote and heterozygote individuals.
Collapse
Affiliation(s)
- Mainak Das Gupta
- Biological Sciences, National University of Singapore, Singapore
| | - Sam Kok Sim Chan
- Biological Sciences, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, Singapore
- Yale-NUS College, Singapore
| |
Collapse
|
22
|
Transfection of Platyhelminthes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:206161. [PMID: 26090388 PMCID: PMC4450235 DOI: 10.1155/2015/206161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/15/2014] [Indexed: 01/22/2023]
Abstract
Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.
Collapse
|
23
|
Perry KJ, Henry JQ. CRISPR/Cas9-mediated genome modification in the mollusc, Crepidula fornicata. Genesis 2015; 53:237-44. [PMID: 25529990 DOI: 10.1002/dvg.22843] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022]
Abstract
The discovery and application of the CRISPR/Cas9 genome editing method has greatly enhanced the ease with which transgenic manipulation can occur. We applied this technology to the mollusc, Crepidula fornicata, and have successfully created transgenic embryos expressing mCherry fused to endogenous β-catenin. Specific integration of the fluorescent reporter was achieved by homologous recombination with a β-catenin-specific donor DNA containing the mCherry coding sequence. This fluorescent gene knock-in strategy permits in vivo observations of β-catenin expression during embryonic development and represents the first demonstration of CRISPR/Cas9-mediated transgenesis in the Lophotrochozoa superphylum. The CRISPR/Cas9 method is a powerful and economical tool for genome modification and presents an option for analysis of gene expression in not only major model systems, but also in those more diverse species that may not have been amenable to the classic methods of transgenesis. This approach will allow one to generate transgenic lines of snails for future studies.
Collapse
Affiliation(s)
- Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois, 61801
| | | |
Collapse
|
24
|
Jiang L, Sun Q, Liu W, Guo H, Peng Z, Dang Y, Huang C, Zhao P, Xia Q. Postintegration stability of the silkworm piggyBac transposon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:18-23. [PMID: 24727025 DOI: 10.1016/j.ibmb.2014.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 06/03/2023]
Abstract
The piggyBac transposon is the most widely used vector for generating transgenic silkworms. The silkworm genome contains multiple piggyBac-like sequences that might influence the genetic stability of transgenic lines. To investigate the postintegration stability of piggyBac in silkworms, we used random insertion of the piggyBac [3 × p3 EGFP afm] vector to generate a W chromosome-linked transgenic silkworm, named W-T. Results of Southern blot and inverse PCR revealed the insertion of a single copy in the W chromosome of W-T at a standard TTAA insertion site. Investigation of 11 successive generations showed that all W-T females were EGFP positive and all males were EGFP negative; PCR revealed that the insertion site was unchanged in W-T offspring. These results suggested that endogenous piggyBac-like elements did not affect the stability of piggyBac inserted into the silkworm genome.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China; College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China; College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Weiqiang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China; College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China; College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Zhengwen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China; College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Yinghui Dang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China; College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Chunlin Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China; College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China; College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China; College of Biotechnology, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
25
|
Backfisch B, Kozin VV, Kirchmaier S, Tessmar-Raible K, Raible F. Tools for gene-regulatory analyses in the marine annelid Platynereis dumerilii. PLoS One 2014; 9:e93076. [PMID: 24714200 PMCID: PMC3979674 DOI: 10.1371/journal.pone.0093076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/03/2014] [Indexed: 01/22/2023] Open
Abstract
The advent of high-throughput sequencing technology facilitates the exploration of a variety of reference species outside the few established molecular genetic model systems. Bioinformatic and gene expression analyses provide new ways for comparative analyses between species, for instance, in the field of evolution and development. Despite these advances, a critical bottleneck for the exploration of new model species remains the establishment of functional tools, such as the ability to experimentally express genes in specific cells of an organism. We recently established a first transgenic strain of the annelid Platynereis, using a Tc1/mariner-type Mos1 transposon vector. Here, we compare Mos1 with Tol2, a member of the hAT family of transposons. In Platynereis, Tol2-based constructs showed a higher frequency of nuclear genome insertion and sustained gene expression in the G0 generation. However, in contrast to Mos1-mediated transgenes, Tol2-mediated insertions failed to retain fluorescence in the G1 generation, suggesting a germ line-based silencing mechanism. Furthermore, we present three novel expression constructs that were generated by a simple fusion-PCR approach and allow either ubiquitous or cell-specific expression of a reporter gene. Our study indicates the versatility of Tol2 for transient transgenesis, and provides a template for transgenesis work in other emerging reference species.
Collapse
Affiliation(s)
- Benjamin Backfisch
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Vitaly V. Kozin
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Stephan Kirchmaier
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Florian Raible
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
26
|
Hong JB, Chou FJ, Ku AT, Fan HH, Lee TL, Huang YH, Yang TL, Su IC, Yu IS, Lin SW, Chien CL, Ho HN, Chen YT. A nucleolus-predominant piggyBac transposase, NP-mPB, mediates elevated transposition efficiency in mammalian cells. PLoS One 2014; 9:e89396. [PMID: 24586748 PMCID: PMC3933532 DOI: 10.1371/journal.pone.0089396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/20/2014] [Indexed: 11/25/2022] Open
Abstract
PiggyBac is a prevalent transposon system used to deliver transgenes and functionally explore the mammalian untouched genomic territory. The important features of piggyBac transposon are the relatively low insertion site preference and the ability of seamless removal from genome, which allow its potential uses in functional genomics and regenerative medicine. Efforts to increase its transposition efficiency in mammals were made through engineering the corresponding transposase (PBase) codon usage to enhance its expression level and through screening for mutant PBase variants with increased enzyme activity. To improve the safety for its potential use in regenerative medicine applications, site-specific transposition was achieved by using engineered zinc finger- and Gal4-fused PBases. An excision-prone PBase variant has also been successfully developed. Here we describe the construction of a nucleolus-predominant PBase, NP-mPB, by adding a nucleolus-predominant (NP) signal peptide from HIV-1 TAT protein to a mammalian codon-optimized PBase (mPB). Although there is a predominant fraction of the NP-mPB-tGFP fusion proteins concentrated in the nucleoli, an insertion site preference toward nucleolar organizer regions is not detected. Instead a 3–4 fold increase in piggyBac transposition efficiency is reproducibly observed in mouse and human cells.
Collapse
Affiliation(s)
- Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Fu-Ju Chou
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Amy T. Ku
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Hsuan Fan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tung-Lung Lee
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yung-Hsin Huang
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chang Su
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I-Shing Yu
- Transgenic Mouse Model Core Facility of the National Research Program for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Laboratory Animal Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Liang Chien
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Stem Cell Core Laboratory, National Taiwan University Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hong-Nerng Ho
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Stem Cell Core Laboratory, National Taiwan University Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Stem Cell Core Laboratory, National Taiwan University Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Program, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Chen B, Monteiro A. A method for inducible gene over-expression and down-regulation in emerging model species using Pogostick. Methods Mol Biol 2014; 1101:249-266. [PMID: 24233785 DOI: 10.1007/978-1-62703-721-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nontraditional model species need new tools for the functional testing of genes, both conserved and lineage-specific genes. These tools should enable the exploration of gene function, either via knock-downs of endogenous genes or via over-expression and ectopic expression of transgenes. We constructed a new vector called Pogostick that can be used to over-express or down-regulate genes in organisms amenable to germ-line transformation by the piggyBac transposable element. The vector currently uses the heat-shock promoter Hsp70 from Drosophila melanogaster to drive transgene expression and, as such, will have immediate applicability to organisms that can correctly interpret this promotor sequence. Here we introduce the main features of Pogostick and how candidate genes can be inserted into the vector for use in either over-expression or down-regulation experiments. In addition, we also test Pogostick in two insect species, D. melanogaster and the emerging model butterfly Bicyclus anynana. We over-express the fluorescent protein DsRed during the larval and pupal stages of D. melanogaster development, and down-regulate DsRed in a line constitutively expressing this gene in the eyes. We then test the over-expression of Ultrabithorax (Ubx) in B. anynana, and obtain sequences flanking the Pogostick genomic insertions. This new vector will allow emerging model species to enter the field of functional genetics with few hurdles.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, P. R. China
| | | |
Collapse
|
28
|
Ding S, Xu T, Wu X. Generation of genetically engineered mice by the piggyBac transposon system. Methods Mol Biol 2014; 1194:171-85. [PMID: 25064103 DOI: 10.1007/978-1-4939-1215-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetically engineered mice (GEM) are invaluable tools not only for understanding mammalian biology but also for modeling human diseases. Here we present protocols to generate GEM with the piggyBac (PB) transposon system. In the first part, we describe a transgenic procedure that co-injects the transgene carried by a PB donor plasmid and a PB transposase (PBase)-expressing helper plasmid into the pronuclei of fertilized eggs. In the second part, we provide a large-scale, cost-effective insertional mutagenesis strategy that remobilizes single-copy PB transposons in the male germ line. Given that PB can transpose in a broad spectrum of eukaryotic hosts, the protocols described here could be adapted for other species in the future.
Collapse
Affiliation(s)
- Sheng Ding
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Biomedical Research Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | | | | |
Collapse
|
29
|
Meir YJJ, Lin A, Huang MF, Lin JR, Weirauch MT, Chou HC, Lin SJA, Wu SCY. A versatile, highly efficient, and potentially safer piggyBac transposon system for mammalian genome manipulations. FASEB J 2013; 27:4429-43. [PMID: 23896728 DOI: 10.1096/fj.12-223586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The piggyBac transposon is one of the most attractive nonviral tools for mammalian genome manipulations. Given that piggybac mobilizes in a "cut-and-paste" fashion, integrant remobilization could potentially damage the host genome. Here, we report a novel piggyBac transposon system with a series of recombinant transposases. We found that the transposition activity of wild-type (PBase) and hyperactive (hyPBase) piggyBac transposases can be significantly increased by peptide fusions in a cell-type dependent fashion, with the greatest change typically seen in mouse embryonic stem (ES) cells. The two most potent recombinant transposases, TPLGMH and ThyPLGMH, give a 9- and 7-fold increase, respectively, in the number of integrants in HEK293 compared with Myc-tagged PBase (MycPBase), and both display 4-fold increase in generating induced pluripotential stem cells. Interestingly, ThyPLGMH but not TPLGMH shows improved chromosomal excision activity (2.5-fold). This unique feature of TPLGMH provides the first evidence that integration activity of a transposase can be drastically improved without increasing its remobilization activity. Transposition catalyzed by ThyPLGMH is more random and occurs further from CpG islands than that catalyzed by MycPBase or TPLGMH. Our transposon system diversifies the mammalian genetic toolbox and provides a spectrum of piggyBac transposases that is better suited to different experimental purposes.
Collapse
Affiliation(s)
- Yaa-Jyuhn James Meir
- 1S.C.-Y.W., Institute of Molecular Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan 333.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
A Functional Comparison of the 3xP3 Promoter by Recombinase-Mediated Cassette Exchange in Drosophila and a Tephritid Fly, Anastrepha suspensa. G3-GENES GENOMES GENETICS 2013; 3:687-693. [PMID: 23550127 PMCID: PMC3618355 DOI: 10.1534/g3.112.005488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transposable elements are widely used as vectors for integrating transgenes into the genome of insects. However, the random nature of transposon vector integrations often results in mutations and makes transgene expression subject to variable genomic position effects. This makes reliable quantitative comparisons of different transgenes difficult and development of highly fit transgenic strains laborious. Tools for site-specific transgene targeting are essential for functional genomic comparisons and to develop the most advanced transgenic insect strains for applied use. Here we describe a recombinase-mediated cassette exchange gene targeting system based on Cre/loxP that is highly efficient in Drosophila, and for the first time in a non-drosophilid, the tephritid fly, Anastrepha suspensa This system allowed a comparison of the Drosophila constitutive polyubiquitin promoter and the artificial 3xP3 tissue-specific promoter in the same genomic context within each species, showing that the widely used 3xP3 promoter is apparently nonfunctional in the tephritid fly.
Collapse
|
31
|
Rompolas P, Azimzadeh J, Marshall WF, King SM. Analysis of ciliary assembly and function in planaria. Methods Enzymol 2013; 525:245-64. [PMID: 23522473 DOI: 10.1016/b978-0-12-397944-5.00012-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Planarians are free-living invertebrates that employ motile cilia for locomotion. Specifically, cilia that populate the ventral epithelium of the planarian body are highly conserved, with a 9+2 axoneme and a full complement of inner and outer arm dynein motors. The abundance of cilia on the planarian body, their unique accessibility, and high degree of conservation make this organism an attractive experimental model system for cilia biology. Moreover, planarians are genetically amenable and defects that compromise the function and structure of the cilia are not detrimental for their overall health, making them an ideal system for cilia gene loss-of-function studies. In this chapter, we provide information for introducing and maintaining planarians for experimental purposes in the laboratory and describe protocols for RNAi-induced gene knockdown studies. Furthermore, we elaborate on different imaging techniques used to analyze cilia physiology and structure, including live video microscopy, immunofluorescence analysis, and electron microscopy. Last, we provide assays for evaluating physical parameters of ciliary motility, including quantification of planarian gliding locomotion and measurement of ciliary beat frequency.
Collapse
Affiliation(s)
- Panteleimon Rompolas
- Department of Genetics, Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
32
|
Masumoto M, Ohde T, Shiomi K, Yaginuma T, Niimi T. A Baculovirus immediate-early gene, ie1, promoter drives efficient expression of a transgene in both Drosophila melanogaster and Bombyx mori. PLoS One 2012; 7:e49323. [PMID: 23152896 PMCID: PMC3496687 DOI: 10.1371/journal.pone.0049323] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022] Open
Abstract
Many promoters have been used to drive expression of heterologous transgenes in insects. One major obstacle in the study of non-model insects is the dearth of useful promoters for analysis of gene function. Here, we investigated whether the promoter of the immediate-early gene, ie1, from the Bombyx mori nucleopolyhedrovirus (BmNPV) could be used to drive efficient transgene expression in a wide variety of insects. We used a piggyBac-based vector with a 3xP3-DsRed transformation marker to generate a reporter construct; this construct was used to determine the expression patterns driven by the BmNPV ie1 promoter; we performed a detailed investigation of the promoter in transgene expression pattern in Drosophila melanogaster and in B. mori. Drosophila and Bombyx belong to different insect orders (Diptera and Lepidoptera, respectively); however, and to our surprise, ie1 promoter-driven expression was evident in several tissues (e.g., prothoracic gland, midgut, and tracheole) in both insects. Furthermore, in both species, the ie1 promoter drove expression of the reporter gene from a relatively early embryonic stage, and strong ubiquitous ie1 promoter-driven expression continued throughout the larval, pupal, and adult stages by surface observation. Therefore, we suggest that the ie1 promoter can be used as an efficient expression driver in a diverse range of insect species.
Collapse
Affiliation(s)
- Mika Masumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
- Division of Biology, College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Takahiro Ohde
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan
| | - Toshinobu Yaginuma
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Teruyuki Niimi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
- * E-mail:
| |
Collapse
|
33
|
Alrefaei YN, Okatcha TI, Skinner DE, Brindley PJ. Progress with schistosome transgenesis. Mem Inst Oswaldo Cruz 2012; 106:785-93. [PMID: 22124549 DOI: 10.1590/s0074-02762011000700002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/20/2011] [Indexed: 11/22/2022] Open
Abstract
Genome sequences for Schistosoma japonicum and Schistosoma mansoni are now available. The schistosome genome encodes ~13,000 protein encoding genes for which the function of only a minority is understood. There is a valuable role for transgenesis in functional genomic investigations of these new schistosome gene sequences. In gain-of-function approaches, transgenesis can lead to integration of transgenes into the schistosome genome which can facilitate insertional mutagenesis screens. By contrast, transgene driven, vector-based RNA interference (RNAi) offers powerful loss-of-function manipulations. Our laboratory has focused on development of tools to facilitate schistosome transgenesis. We have investigated the utility of retroviruses and transposons to transduce schistosomes. Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) can transduce developmental stages of S. mansoni including eggs. We have also observed that the piggyBac transposon is transpositionally active in schistosomes. Approaches with both VSVG-MLV and piggyBac have resulted in somatic transgenesis and have lead to integration of active reporter transgenes into schistosome chromosomes. These findings provided the first reports of integration of reporter transgenes into schistosome chromosomes. Experience with these systems is reviewed herewith, along with findings with transgene mediated RNAi and germ line transgenesis, in addition to pioneering and earlier reports of gene manipulation for schistosomes.
Collapse
Affiliation(s)
- Yousef Noori Alrefaei
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC, USA
| | | | | | | |
Collapse
|
34
|
Olson PD, Zarowiecki M, Kiss F, Brehm K. Cestode genomics - progress and prospects for advancing basic and applied aspects of flatworm biology. Parasite Immunol 2012; 34:130-50. [PMID: 21793855 DOI: 10.1111/j.1365-3024.2011.01319.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Characterization of the first tapeworm genome, Echinococcus multilocularis, is now nearly complete, and genome assemblies of E. granulosus, Taenia solium and Hymenolepis microstoma are in advanced draft versions. These initiatives herald the beginning of a genomic era in cestodology and underpin a diverse set of research agendas targeting both basic and applied aspects of tapeworm biology. We discuss the progress in the genomics of these species, provide insights into the presence and composition of immunologically relevant gene families, including the antigen B- and EG95/45W families, and discuss chemogenomic approaches toward the development of novel chemotherapeutics against cestode diseases. In addition, we discuss the evolution of tapeworm parasites and introduce the research programmes linked to genome initiatives that are aimed at understanding signalling systems involved in basic host-parasite interactions and morphogenesis.
Collapse
Affiliation(s)
- P D Olson
- Department of Zoology, The Natural History Museum, London, UK
| | | | | | | |
Collapse
|
35
|
Abstract
Draft genome sequences for Schistosoma japonicum and S. mansoni are now available. The schistosome genome encodes ∼13,000 protein-encoding genes for which the functions of few are well understood. Nonetheless, the new genes represent potential intervention targets, and molecular tools are being developed to determine their importance. Over the past 15 years, noteworthy progress has been achieved towards development of tools for gene manipulation and transgenesis of schistosomes. A brief history of genetic manipulation is presented, along with a review of the field with emphasis on reports of integration of transgenes into schistosome chromosomes.
Collapse
|
36
|
Abstract
DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive piggyBac transposase. The active transposition of piggyBac in multiple organisms allowed us to screen a transposase mutant library in yeast for hyperactive mutants and then to test candidates in mouse ES cells. We isolated 18 hyperactive mutants in yeast, among which five were also hyperactive in mammalian cells. By combining all mutations, a total of 7 aa substitutions, into a single reading frame, we generated a unique hyperactive piggyBac transposase with 17-fold and ninefold increases in excision and integration, respectively. We showed its applicability by demonstrating an increased efficiency of generation of transgene-free mouse induced pluripotent stem cells. We also analyzed whether this hyperactive piggyBac transposase affects the genomic integrity of the host cells. The frequency of footprints left by the hyperactive piggyBac transposase was as low as WT transposase (~1%) and we found no evidence that the expression of the transposase affects genomic integrity. This hyperactive piggyBac transposase expands the utility of the piggyBac transposon for applications in mammalian genetics and gene therapy.
Collapse
|
37
|
Abstract
Adult planarians are capable of undergoing regeneration and body remodelling in order to adapt to physical damage or extreme environmental conditions. Moreover, most planarians can tolerate long periods of starvation and during this time, they shrink from an adult size to, and sometimes beyond, the initial size at hatching. Indeed, these properties have made them a classic model to study stem cells and regeneration. Under such stressful conditions, food reserves from the gastrodermis and parenchyma are first used up and later the testes, copulatory organs and ovaries are digested. More surprisingly, when food is again made available to shrunken individuals, they grow back to adult size and all their reproductive structures reappear. These cycles of growth and shrinkage may occur over long periods without any apparent impairment to the individual, or to its future maturation and breeding capacities. This plasticity resides in a mesoderm tissue known as the parenchyma, which is formed by several differentiated non-proliferating cell types and only one mitotically active cell type, the neoblasts, which represent approximately 20-30% of the cells in the parenchyma. Neoblasts are generally thought to be somatic stem-cells that participate in the normal continuous turnover of all cell types in planarians. Hence, planarians are organisms that continuously adapt their bodies (morphallaxis) to different environmental stresses (i.e.: injury or starvation). This adaptation involves a variety of processes including proliferation, differentiation, apoptosis and autophagy, all of which are perfectly orchestrated and tightly regulated to remodel or restore the body pattern. While neoblast biology and body re-patterning are currently the subject of intense research, apoptosis and autophagy remain much less studied. In this review we will summarize our current understanding and hypotheses regarding where and when apoptosis and autophagy occur and fulfil an essential role in planarians.
Collapse
|
38
|
Fernandéz-Taboada E, Moritz S, Zeuschner D, Stehling M, Schöler HR, Saló E, Gentile L. Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development 2010; 137:1055-65. [PMID: 20215344 DOI: 10.1242/dev.042564] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Planarians are an ideal model system to study in vivo the dynamics of adult pluripotent stem cells. However, our knowledge of the factors necessary for regulating the 'stemness' of the neoblasts, the adult stem cells of planarians, is sparse. Here, we report on the characterization of the first planarian member of the LSm protein superfamily, Smed-SmB, which is expressed in stem cells and neurons in Schmidtea mediterranea. LSm proteins are highly conserved key players of the splicing machinery. Our study shows that Smed-SmB protein, which is localized in the nucleus and the chromatoid body of stem cells, is required to safeguard the proliferative ability of the neoblasts. The chromatoid body, a cytoplasmatic ribonucleoprotein complex, is an essential regulator of the RNA metabolism required for the maintenance of metazoan germ cells. However, planarian neoblasts and neurons also rely on its functions. Remarkably, Smed-SmB dsRNA-mediated knockdown results in a rapid loss of organization of the chromatoid body, an impairment of the ability to post-transcriptionally process the transcripts of Smed-CycB, and a severe proliferative failure of the neoblasts. This chain of events leads to a quick depletion of the neoblast pool, resulting in a lethal phenotype for both regenerating and intact animals. In summary, our results suggest that Smed-SmB is an essential component of the chromatoid body, crucial to ensure a proper RNA metabolism and essential for stem cell proliferation.
Collapse
|
39
|
Muñoz-López M, García-Pérez JL. DNA transposons: nature and applications in genomics. Curr Genomics 2010; 11:115-28. [PMID: 20885819 PMCID: PMC2874221 DOI: 10.2174/138920210790886871] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 11/18/2009] [Accepted: 12/01/2009] [Indexed: 12/19/2022] Open
Abstract
Repeated DNA makes up a large fraction of a typical mammalian genome, and some repetitive elements are able to move within the genome (transposons and retrotransposons). DNA transposons move from one genomic location to another by a cut-and-paste mechanism. They are powerful forces of genetic change and have played a significant role in the evolution of many genomes. As genetic tools, DNA transposons can be used to introduce a piece of foreign DNA into a genome. Indeed, they have been used for transgenesis and insertional mutagenesis in different organisms, since these elements are not generally dependent on host factors to mediate their mobility. Thus, DNA transposons are useful tools to analyze the regulatory genome, study embryonic development, identify genes and pathways implicated in disease or pathogenesis of pathogens, and even contribute to gene therapy. In this review, we will describe the nature of these elements and discuss recent advances in this field of research, as well as our evolving knowledge of the DNA transposons most widely used in these studies.
Collapse
Affiliation(s)
- Martín Muñoz-López
- Andalusian Stem Cell Bank, Center for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain
| | - José L. García-Pérez
- Andalusian Stem Cell Bank, Center for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain
| |
Collapse
|
40
|
Charlton-Perkins M, Cook TA. Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 2010; 93:129-73. [PMID: 20959165 DOI: 10.1016/b978-0-12-385044-7.00005-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past, vast differences in ocular structure, development, and physiology throughout the animal kingdom led to the widely accepted notion that eyes are polyphyletic, that is, they have independently arisen multiple times during evolution. Despite the dissimilarity between vertebrate and invertebrate eyes, it is becoming increasingly evident that the development of the eye in both groups shares more similarity at the genetic level than was previously assumed, forcing a reexamination of eye evolution. Understanding the molecular underpinnings of cell type specification during Drosophila eye development has been a focus of research for many labs over the past 25 years, and many of these findings are nicely reviewed in Chapters 1 and 4. A somewhat less explored area of research, however, considers how these cells, once specified, develop into functional ocular structures. This review aims to summarize the current knowledge related to the terminal differentiation events of the retina, corneal lens, and pigmented epithelia in the fly eye. In addition, we discuss emerging evidence that the different functional components of the fly eye share developmental pathways and functions with the vertebrate eye.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
41
|
Rompolas P, Patel-King RS, King SM. Schmidtea mediterranea: a model system for analysis of motile cilia. Methods Cell Biol 2009; 93:81-98. [PMID: 20409812 DOI: 10.1016/s0091-679x(08)93004-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cilia are cellular organelles that appeared early in the evolution of eukaryotes. These structures and the pool of about 600genes involved in their assembly and function are highly conserved in organisms as distant as single-cell protists, like Chlamydomonas reinhardtti, and humans (Silflow and Lefebvre, 2001). A significant body of work on the biology of cilia has been produced over the years, with the help of powerful model organisms including C. reinhardtti, Caenorhabditis elegans, sea urchins, and mice. However, specific limitations of these systems, especially regarding the ability to efficiently study gene loss-of-function, warrant the search for a new model organism to study cilia and cilia-based motility. Schmidtea mediterranea is a species of planarian (Class: Tubellaria) with a well-defined monostratified ciliated epithelium, which contributes to the motility of the organism, in addition to other more specialized ciliary structures. The use of S. mediterranea as an experimental system to study stem cell biology and regeneration has led to a recently sequenced genome and to the development of a wide array of powerful tools including the ability to inhibit gene expression via RNA interference. In addition, we have developed and describe here a number of methods for analyzing motile cilia in S. mediterranea. Overall, S. mediterranea is a highly versatile, easy to maintain, and genetically tractable organism that provides a powerful alternative model system for the study of motile cilia.
Collapse
Affiliation(s)
- Panteleimon Rompolas
- Department of Molecular, Microbial & Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA
| | | | | |
Collapse
|
42
|
Kobayashi K, Hashiguchi T, Ichikawa T, Ishino Y, Hoshi M, Matsumoto M. Neoblast-enriched fraction rescues eye formation in eye-defective planarian ‘menashi’Dugesia ryukyuensis. Dev Growth Differ 2008; 50:689-96. [DOI: 10.1111/j.1440-169x.2008.01066.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Brehm K, Spiliotis M. Recent advances in the in vitro cultivation and genetic manipulation of Echinococcus multilocularis metacestodes and germinal cells. Exp Parasitol 2008; 119:506-515. [DOI: 10.1016/j.exppara.2008.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|
44
|
Altincicek B, Vilcinskas A. Comparative analysis of septic injury-inducible genes in phylogenetically distant model organisms of regeneration and stem cell research, the planarian Schmidtea mediterranea and the cnidarian Hydra vulgaris. Front Zool 2008; 5:6. [PMID: 18439314 PMCID: PMC2386466 DOI: 10.1186/1742-9994-5-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/27/2008] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The planarian Schmidtea mediterranea and the cnidarian Hydra vulgaris have emerged as valuable model organisms in regeneration and stem cell research because of their prominent ability to regenerate a complete organism from any small body fragment. Under natural conditions wounding may result from predator attacks. These injuries open their innermost to a wide array of microbes present in the environment. Therefore, we established the hypothesis that regeneration processes may be linked to or at least accompanied by innate immune responses. In order to screen for septic wounding inducible genes we dissected individuals using a scalpel in the presence of a crude bacterial lipopolysaccharide preparation that is commonly used to elicit innate immune responses in animals and applied the suppression subtractive hybridization technique that selectively amplifies cDNAs of differentially expressed genes. RESULTS This analysis revealed the induced expression of 27 genes in immune challenged Schmidtea and 35 genes in immune challenged Hydra. Identified genes from both animals encode proteins that share sequence similarities with potential homologues from other organisms known to be involved in signaling (e.g. calreticulin in Schmidtea and major vault protein in Hydra), stress responses (e.g. Hsp20 in Schmidtea and a PRP19/PSO4 DNA repair protein in Hydra), or to represent potential antimicrobial effectors (e.g. perforin-like protein in Schmidtea and PR-1-like protein and neutrophil cytosolic factor 1 in Hydra). As expected, septic wounding also induces expression of genes in Schmidtea and Hydra potentially involved in tissue remodeling associated with regeneration processes (e.g. matrix metalloproteinase in Schmidtea and a potential von Willebrand factor in Hydra). CONCLUSION We identified numerous immune-inducible genes in Hydra and Schmidtea that show a similar distribution corresponding to their physiological roles, although lineages of both animals split from their common ancestor for more than five hundred millions of years. The present study is the first analysis of immune-inducible genes of these two phylogenetically distant model organisms of regeneration and provide numerous candidate genes that we can use as a starting point for comparative examination of interrelationships between immunity and homeostasis.
Collapse
Affiliation(s)
- Boran Altincicek
- Interdisciplinary Research Center, Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | |
Collapse
|
45
|
Mitra R, Fain-Thornton J, Craig NL. piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J 2008; 27:1097-109. [PMID: 18354502 PMCID: PMC2323262 DOI: 10.1038/emboj.2008.41] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 02/07/2008] [Indexed: 12/20/2022] Open
Abstract
DNA synthesis is considered a defining feature in the movement of transposable elements. In determining the mechanism of piggyBac transposition, an insect transposon that is being increasingly used for genome manipulation in a variety of systems including mammalian cells, we have found that DNA synthesis can be avoided during piggyBac transposition, both at the donor site following transposon excision and at the insertion site following transposon integration. We demonstrate that piggyBac transposon excision occurs through the formation of transient hairpins on the transposon ends and that piggyBac target joining occurs by the direct attack of the 3'OH transposon ends on to the target DNA. This is the same strategy for target joining used by the members of DDE superfamily of transposases and retroviral integrases. Analysis of mutant piggyBac transposases in vitro and in vivo using a piggyBac transposition system we have established in Saccharomyces cerevisiae suggests that piggyBac transposase is a member of the DDE superfamily of recombinases, an unanticipated result because of the lack of sequence similarity between piggyBac and DDE family of recombinases.
Collapse
Affiliation(s)
- Rupak Mitra
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Fain-Thornton
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nancy L Craig
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
|
47
|
Abstract
Draft genome sequences for Schistosoma mansoni and Schistosoma japonicum are now available. However, the identity and importance of most schistosome genes have yet to be determined. Recently, progress has been made towards the genetic manipulation and transgenesis of schistosomes. Both loss-of-function and gain-of-function approaches appear to be feasible in schistosomes based on findings described in the past 5 years. This review focuses on reports of schistosome transgenesis, specifically those dealing with the transformation of schistosomes with exogenous mobile genetic elements and/or their endogenous relatives for the genetic manipulation of schistosomes. Transgenesis mediated by mobile genetic elements offers a potentially tractable route to introduce foreign genes to schistosomes, a means to determine the importance of schistosome genes, including those that could be targeted in novel interventions and the potential to undertake large-scale forward genetics by insertional mutagenesis.
Collapse
|
48
|
Sun LV, Jin K, Liu Y, Yang W, Xie X, Ye L, Wang L, Zhu L, Ding S, Su Y, Zhou J, Han M, Zhuang Y, Xu T, Wu X, Gu N, Zhong Y. PBmice: an integrated database system of piggyBac (PB) insertional mutations and their characterizations in mice. Nucleic Acids Res 2007; 36:D729-34. [PMID: 17932058 PMCID: PMC2238892 DOI: 10.1093/nar/gkm790] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
DNA transposon piggyBac (PB) is a newly established mutagen for large-scale mutagenesis in mice. We have designed and implemented an integrated database system called PBmice (PB Mutagenesis Information CEnter) for storing, retrieving and displaying the information derived from PB insertions (INSERTs) in the mouse genome. This system is centered on INSERTs with information including their genomic locations and flanking genomic sequences, the expression levels of the hit genes, and the expression patterns of the trapped genes if a trapping vector was used. It also archives mouse phenotyping data linked to INSERTs, and allows users to conduct quick and advanced searches for genotypic and phenotypic information relevant to a particular or a set of INSERT(s). Sequence-based information can be cross-referenced with other genomic databases such as Ensembl, BLAST and GBrowse tools used in PBmice offer enhanced search and display for additional information relevant to INSERTs. The total number and genomic distribution of PB INSERTs, as well as the availability of each PB insertional LINE can also be viewed with user-friendly interfaces. PBmice is freely available at http://www.idmshanghai.cn/PBmice or http://www.scbit.org/PBmice/.
Collapse
Affiliation(s)
- Ling V Sun
- Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200433, Shanghai Center for Bioinformation Technology, Shanghai 200235, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sethuraman N, Fraser MJ, Eggleston P, O’Brochta DA. Post-integration stability of piggyBac in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:941-51. [PMID: 17681233 PMCID: PMC1986768 DOI: 10.1016/j.ibmb.2007.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/19/2007] [Accepted: 05/01/2007] [Indexed: 05/10/2023]
Abstract
The post-integration activity of piggyBac transposable element gene vectors in Aedes aegypti mosquitoes was tested under a variety of conditions. The embryos from five independent transgenic lines of Ae. aegypti, each with a single integrated non-autonomous piggyBac transposable element gene vector, were injected with plasmids containing the piggyBac transposase open-reading frame under the regulatory control of the Drosophila melanogaster hsp70 promoter. No evidence for somatic remobilization was detected in the subsequent adults whereas somatic remobilization was readily detected when similar lines of transgenic D. melanogaster were injected with the same piggyBac transposase-expressing plasmid. Ae. aegypti heterozygotes of piggyBac reporter-containing transgenes and piggyBac transposase-expressing transgenes showed no evidence of somatic and germ-line remobilization based on phenotypic and molecular detection methods. The post-integration mobility properties of piggyBac in Ae. aegypti enhance the utility of this gene vector for certain applications, particularly those where any level of vector remobilization is unacceptable.
Collapse
Affiliation(s)
- Nagaraja Sethuraman
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | - Malcolm J. Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - David. A O’Brochta
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
- Corresponding Author: Center for Biosystems Research, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, 240-314-6343 office, 240-314-6255 fax,
| |
Collapse
|
50
|
González-Estévez C, Felix DA, Aboobaker AA, Saló E. Gtdap-1 promotes autophagy and is required for planarian remodeling during regeneration and starvation. Proc Natl Acad Sci U S A 2007; 104:13373-8. [PMID: 17686979 PMCID: PMC1948951 DOI: 10.1073/pnas.0703588104] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Remodeling is an integral component of tissue homeostasis and regeneration. In planarians, these processes occur constantly in a simple tractable model organism as part of the animal's normal life history. Here, we have studied the gene Gtdap-1, the planarian ortholog of human death-associated protein-1 or DAP-1. DAP-1, together with DAP-kinase, has been identified as a positive mediator of programmed cell death induced by gamma-IFN in HeLa cells. Although the function of DAP-kinase is well characterized, the role of DAP-1 has not been studied in detail. Our findings suggest that Gtdap-1 is involved in autophagy in planarians, and that autophagy plays an essential role in the remodeling of the organism that occurs during regeneration and starvation, providing the necessary energy and building blocks to the neoblasts for cell proliferation and differentiation. The gene functions at the interface between survival and cell death during stress-inducing processes like regeneration and starvation in sexual and asexual races of planarians. Our findings provide insights into the complex interconnections among cell proliferation, homeostasis, and cell death in planarians and perspectives for the understanding of neoblast stem cell dynamics.
Collapse
Affiliation(s)
- Cristina González-Estévez
- *Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; and
- To whom correspondence may be addressed. E-mail: or
| | - Daniel A. Felix
- *Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; and
| | - Aziz A. Aboobaker
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Emili Saló
- *Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|