1
|
Thevenin KR, Tieche IS, Di Benedetto CE, Schrager M, Dye KN. The small tumor antigen of Merkel cell polyomavirus accomplishes cellular transformation by uniquely localizing to the nucleus despite the absence of a known nuclear localization signal. Virol J 2024; 21:125. [PMID: 38831469 PMCID: PMC11149282 DOI: 10.1186/s12985-024-02395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Merkel Cell Carcinoma (MCC) is an aggressive skin cancer that is three times deadlier than melanoma. In 2008, it was found that 80% of MCC cases are caused by the genomic integration of a novel polyomavirus, Merkel Cell Polyomavirus (MCPyV), and the expression of its small and truncated large tumor antigens (ST and LT-t, respectively). MCPyV belongs to a family of human polyomaviruses; however, it is the only one with a clear association to cancer. METHODS To investigate the role and mechanisms of various polyomavirus tumor antigens in cellular transformation, Rat-2 and 293A cells were transduced with pLENTI MCPyV LT-t, MCPyV ST, TSPyV ST, HPyV7 ST, or empty pLENTI and assessed through multiple transformation assays, and subcellular fractionations. One-way ANOVA tests were used to assess statistical significance. RESULTS Soft agar, proliferation, doubling time, glucose uptake, and serum dependence assays confirmed ST to be the dominant transforming protein of MCPyV. Furthermore, it was found that MCPyV ST is uniquely transforming, as the ST antigens of other non-oncogenic human polyomaviruses such as Trichodysplasia Spinulosa-Associated Polyomavirus (TSPyV) and Human Polyomavirus 7 (HPyV7) were not transforming when similarly assessed. Identification of structural dissimilarities between transforming and non-transforming tumor antigens revealed that the uniquely transforming domain(s) of MCPyV ST are likely located within the structurally dissimilar loops of the MCPyV ST unique region. Of all known MCPyV ST cellular interactors, 62% are exclusively or transiently nuclear, suggesting that MCPyV ST localizes to the nucleus despite the absence of a canonical nuclear localization signal. Indeed, subcellular fractionations confirmed that MCPyV ST could achieve nuclear localization through a currently unknown, regulated mechanism independent of its small size, as HPyV7 and TSPyV ST proteins were incapable of nuclear translocation. Although nuclear localization was found to be important for several transforming properties of MCPyV ST, some properties were also performed by a cytoplasmic sequestered MCPyV ST, suggesting that MCPyV ST may perform different transforming functions in individual subcellular compartments. CONCLUSIONS Together, these data further elucidate the unique differences between MCPyV ST and other polyomavirus ST proteins necessary to understand MCPyV as the only known human oncogenic polyomavirus.
Collapse
Affiliation(s)
- Kaira R Thevenin
- Department of Health Sciences, Stetson University, 421 N Woodland Blvd, DeLand, FL, 32723, USA
| | - Isabella S Tieche
- Department of Health Sciences, Stetson University, 421 N Woodland Blvd, DeLand, FL, 32723, USA
| | - Cody E Di Benedetto
- Department of Health Sciences, Stetson University, 421 N Woodland Blvd, DeLand, FL, 32723, USA
| | - Matt Schrager
- Department of Health Sciences, Stetson University, 421 N Woodland Blvd, DeLand, FL, 32723, USA
| | - Kristine N Dye
- Department of Health Sciences, Stetson University, 421 N Woodland Blvd, DeLand, FL, 32723, USA.
- Department of Biology, Stetson University, DeLand, FL, 32723, USA.
| |
Collapse
|
2
|
Thevenin KR, Tieche IS, Di Benedetto CE, Schrager M, Dye KN. The Small Tumor Antigen of Merkel Cell Polyomavirus Accomplishes Cellular Transformation by Uniquely Localizing to the Nucleus Despite the Absence of a Known Nuclear Localization Signal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569067. [PMID: 38293082 PMCID: PMC10827104 DOI: 10.1101/2023.11.28.569067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Merkel Cell Carcinoma (MCC) is an aggressive skin cancer that is three times deadlier than melanoma. In 2008, it was found that 80% of MCC cases are caused by the genomic integration of a novel polyomavirus, Merkel Cell Polyomavirus (MCPyV), and the expression of its small and truncated large tumor antigens (ST and LT-t, respectively). MCPyV belongs to a family of human polyomaviruses; however, it is the only one with a clear association to cancer. Methods To investigate the role and mechanisms of various polyomavirus tumor antigens in cellular transformation, Rat-2, 293A, and human foreskin fibroblasts were transduced with pLENTI MCPyV LT-t, MCPyV ST, TSPyV ST, HPyV7 ST, or empty pLENTI and assessed through multiple transformation assays, and subcellular fractionations. One-way ANOVA tests were used to assess statistical significance. Results Soft agar, proliferation, doubling time, glucose uptake, and serum dependence assays confirmed ST to be the dominant transforming protein of MCPyV. Furthermore, it was found that MCPyV ST is uniquely transforming, as the ST antigens of other non-oncogenic human polyomaviruses such as Trichodysplasia Spinulosa Polyomavirus (TSPyV) and Human Polyomavirus 7 (HPyV7) were not transforming when similarly assessed. Identification of structural dissimilarities between transforming and non-transforming tumor antigens revealed that the uniquely transforming domain(s) of MCPyV ST are likely located within the structurally dissimilar loops of the MCPyV ST unique region. Of all known MCPyV ST cellular interactors, 62% are exclusively or transiently nuclear, suggesting that MCPyV ST localizes to the nucleus despite the absence of a canonical nuclear localization signal. Indeed, subcellular fractionations confirmed that MCPyV ST could achieve nuclear localization through a currently unknown, regulated mechanism independent of its small size, as HPyV7 and TSPyV ST proteins were incapable of nuclear translocation. Although nuclear localization was found to be important for several transforming properties of MCPyV ST, some properties were also performed by a cytoplasmic sequestered MCPyV ST, suggesting that MCPyV ST may perform different transforming functions in individual subcellular compartments. Conclusions Together, these data further elucidate the unique differences between MCPyV ST and other polyomavirus ST proteins necessary to understand MCPyV as the only known human oncogenic polyomavirus.
Collapse
|
3
|
Kiasari BA, Fallah FH, Koohi MK, Duarte PM, Tazerji SS, Fawzy M. Simian virus 40 DNA in immunocompetent children with respiratory disease. J Med Virol 2022; 94:5507-5511. [PMID: 35790406 DOI: 10.1002/jmv.27973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 07/02/2022] [Indexed: 12/15/2022]
Abstract
Evidence of Simian virus 40 (SV40) DNA sequences or gene products has been reported in a variety of organ systems in humans. However, the route of transmission and the significance of SV40 polyomavirus infection in human are unknown. The aim of study was to characterize the frequency of SV40 infection in immunocompetent and immunocompromised patients with respiratory diseases. Respiratory specimens from patients with respiratory tract illness obtained from nasopharyngeal aspirates (n = 280) were screened for SV40 polyomavirus using real-time PCR; coinfection with other viruses was examined. Positive results were confirmed with sequencing. Of the 280 samples analysed, 2 (0.71%) were positive for SV40. SV40 was identified in nasopharyngeal aspirate samples from children aged 8 and 14 months who were immunocompetent. Both patients had upper or lower respiratory tract infection. Coinfections with other viruses were found in 50% of the SV40 positive samples. The data suggest that SV40 can infect respiratory tract, that respiratory tract may represent a route of transmission or a site for virus persistence, and that with the high rate of co-infection, SV40 may not involved in respiratory diseases.
Collapse
Affiliation(s)
- Bahman Abedi Kiasari
- Department of Virology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Hoda Fallah
- Department of Allergy and Clinical Immunology, Children's Medical Centre, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Phelipe Magalhães Duarte
- University of Cuiabá Primavera do Leste - Mato Grosso - Brazil Programa de Pós-Graduação em Biociência Animal (PPGBA) - UFRPE Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Sina Salajegheh Tazerji
- Department of Clinical Science, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Department of Clinical Science, Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
5
|
Abstract
Background The origin of cancer cells is the most fundamental yet unresolved problem in cancer research. Cancer cells are thought to be transformed from the normal cells. However, recent studies reveal that the primary cancer cells (PCCs) for cancer initiation and secondary cancer cells (SCCs) for cancer progression are formed in but not transformed from the senescent normal and cancer cells, respectively. Nevertheless, the cellular mechanism of PCCs/SCCs formation is unclear. Here, based on the evidences (1) the nascent PCCs/SCCs are small and organelle-less resembling bacteria; (2) our finding that the cyanobacterium TDX16 acquires its algal host DNA and turns into a new alga TDX16-DE by de novo organelle biogenesis, and (3) PCCs/SCCs formations share striking similarities with TDX16 development and transition, we propose the bacterial origin of cancer cells (BOCC). Presentation of the hypothesis The intracellular bacteria take up the DNAs of the senescent/necrotic normal cells/PCCs and then develop into PCCs/SCCs by hybridizing the acquired DNAs with their own ones and expressing the hybrid genomes. Testing the hypothesis BOCC can be confirmed by testing BOCC-based predictions, such as normal cells with no intracellular bacteria can not "transform" into cancer cells in any conditions. Implications of the hypothesis According to BOCC theory: (1) cancer cells are new single-celled eukaryotes, which is why the hallmarks of cancer are mostly the characteristics of protists; (2) genetic changes and instabilities are not the causes, but the consequences of cancer cell formation; and (3) the common role of carcinogens, infectious agents and relating factors is inducing or related to cellular senescence rather than mutations. Therefore, BOCC theory provides new rationale and direction for cancer research, prevention and therapy.
Collapse
Affiliation(s)
- Qing-Lin Dong
- Department of Bioengineering, Hebei University of Technology, Tianjin, 300130 China
| | - Xiang-Ying Xing
- Department of Bioengineering, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|
6
|
Hirpara A, Bloomfield M, Duesberg P. Speciation Theory of Carcinogenesis Explains Karyotypic Individuality and Long Latencies of Cancers. Genes (Basel) 2018; 9:genes9080402. [PMID: 30096943 PMCID: PMC6115917 DOI: 10.3390/genes9080402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/14/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
It has been known for over 100 years that cancers have individual karyotypes and arise only years to decades after initiating carcinogens. However, there is still no coherent theory to explain these definitive characteristics of cancer. The prevailing mutation theory holds that cancers are late because the primary cell must accumulate 3–8 causative mutations to become carcinogenic and that mutations, which induce chromosomal instability (CIN), generate the individual karyotypes of cancers. However, since there is still no proven set of mutations that transforms a normal to a cancer cell, we have recently advanced the theory that carcinogenesis is a form of speciation. This theory predicts carcinogens initiate cancer by inducing aneuploidy, which automatically unbalances thousands of genes and thus catalyzes chain-reactions of progressive aneuploidizations. Over time, these aneuploidizations have two endpoints, either non-viable karyotypes or very rarely karyotypes of new autonomous and immortal cancers. Cancer karyotypes are immortalized despite destabilizing congenital aneuploidy by clonal selections for autonomy—similar to those of conventional species. This theory predicts that the very low probability of converting the karyotype of a normal cell to that of a new autonomous cancer species by random aneuploidizations is the reason for the karyotypic individuality of new cancers and for the long latencies from carcinogens to cancers. In testing this theory, we observed: (1) Addition of mutagenic and non-mutagenic carcinogens to normal human and rat cells generated progressive aneuploidizations months before neoplastic transformation. (2) Sub-cloning of a neoplastic rat clone revealed heritable individual karyotypes, rather than the non-heritable karyotypes predicted by the CIN theory. (3) Analyses of neoplastic and preneoplastic karyotypes unexpectedly identified karyotypes with sets of 3–12 new marker chromosomes without detectable intermediates, consistent with single-step origins. We conclude that the speciation theory explains logically the long latencies from carcinogen exposure and the individuality of cancers. In addition, the theory supports the single-step origins of cancers, because karyotypic autonomy is all-or-nothing. Accordingly, we propose that preneoplastic aneuploidy and clonal neoplastic karyotypes provide more reliable therapeutic indications than current analyses of thousands of mutations.
Collapse
Affiliation(s)
- Ankit Hirpara
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Mathew Bloomfield
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94 901, USA.
| | - Peter Duesberg
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Hayashi MT. Telomere biology in aging and cancer: early history and perspectives. Genes Genet Syst 2017; 92:107-118. [PMID: 28993556 DOI: 10.1266/ggs.17-00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ends of eukaryotic linear chromosomes are protected from undesired enzymatic activities by a nucleoprotein complex called the telomere. Expanding evidence indicates that telomeres have central functions in human aging and tumorigenesis. While it is undoubtedly important to follow current advances in telomere biology, it is also fruitful to be well informed in seminal historical studies for a comprehensive understanding of telomere biology, and for the anticipation of future directions. With this in mind, I here summarize the early history of telomere biology and current advances in the field, mostly focusing on mammalian studies relevant to aging and cancer.
Collapse
Affiliation(s)
- Makoto T Hayashi
- Department of Gene Mechanisms, Graduate School of Biostudies/The Hakubi Center for Advanced Research, Kyoto University
| |
Collapse
|
8
|
Bloomfield M, Duesberg P. Karyotype alteration generates the neoplastic phenotypes of SV40-infected human and rodent cells. Mol Cytogenet 2015; 8:79. [PMID: 26500699 PMCID: PMC4618876 DOI: 10.1186/s13039-015-0183-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite over 50 years of research, it remains unclear how the DNA tumor viruses SV40 and Polyoma cause cancers. Prevailing theories hold that virus-coded Tumor (T)-antigens cause cancer by inactivating cellular tumor suppressor genes. But these theories don't explain four characteristics of viral carcinogenesis: (1) less than one in 10,000 infected cells become cancer cells, (2) cancers have complex individual phenotypes and transcriptomes, (3) recurrent tumors without viral DNA and proteins, (4) preneoplastic aneuploidies and immortal neoplastic clones with individual karyotypes. RESULTS As an alternative theory we propose that viral carcinogenesis is a form of speciation, initiated by virus-induced aneuploidy. Since aneuploidy destabilizes the karyotype by unbalancing thousands of genes it catalyzes chain reactions of karyotypic and transcriptomic evolutions. Eventually rare karyotypes evolve that encode cancer-specific autonomy of growth. The low probability of forming new autonomous cancer-species by random karyotypic and transcriptomic variations predicts individual and clonal cancers. Although cancer karyotypes are congenitally aneuploid and thus variable, they are stabilized or immortalized by selections for variants with cancer-specific autonomy. Owing to these inherent variations cancer karyotypes are heterogeneous within clonal margins. To test this theory we analyzed karyotypes and phenotypes of SV40-infected human, rat and mouse cells developing into neoplastic clones. In all three systems we found (1) preneoplastic aneuploidies, (2) neoplastic clones with individual clonal but flexible karyotypes and phenotypes, which arose from less than one in 10,000 infected cells, survived over 200 generations, but were either T-antigen positive or negative, (3) spontaneous and drug-induced variations of neoplastic phenotypes correlating 1-to-1 with karyotypic variations. CONCLUSIONS Since all 14 virus-induced neoplastic clones tested contained individual clonal karyotypes and phenotypes, we conclude that these karyotypes have generated and since maintained these neoplastic clones. Thus SV40 causes cancer indirectly, like carcinogens, by inducing aneuploidy from which new cancer-specific karyotypes evolve automatically at low rates. This theory explains the (1) low probability of carcinogenesis per virus-infected cell, (2) the individuality and clonal flexibility of cancer karyotypes, (3) recurrence of neoplasias without viral T-antigens, and (4) the individual clonal karyotypes, transcriptomes and immortality of virus-induced neoplasias - all unexplained by current viral theories.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA USA
| | - Peter Duesberg
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA USA
| |
Collapse
|
9
|
Klaus C, Schneider U, Hedberg C, Schütz AK, Bernhagen J, Waldmann H, Gassler N, Kaemmerer E. Modulating effects of acyl-CoA synthetase 5-derived mitochondrial Wnt2B palmitoylation on intestinal Wnt activity. World J Gastroenterol 2014; 20:14855-14864. [PMID: 25356045 PMCID: PMC4209548 DOI: 10.3748/wjg.v20.i40.14855] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/05/2014] [Accepted: 06/21/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of acyl-CoA synthetase 5 (ACSL5) activity in Wnt signaling in intestinal surface epithelia. METHODS Several cell lines were used to investigate the ACSL5-dependent expression and synthesis of Wnt2B, a mitochondrially expressed protein of the Wnt signaling family. Wnt activity was functionally assessed with a luciferase reporter assay. ACSL5-related biochemical Wnt2B modifications were investigated with a modified acyl-exchange assay. The findings from the cell culture models were verified using an Apc(min/+) mouse model as well as normal and neoplastic diseased human intestinal tissues. RESULTS In the presence of ACSL5, Wnt2B was unable to translocate into the nucleus and was enriched in mitochondria, which was paralleled by a significant decrease in Wnt activity. ACSL5-dependent S-palmitoylation of Wnt2B was identified as a molecular reason for mitochondrial Wnt2B accumulation. In cell culture systems, a strong relation of ACSL5 expression, Wnt2B palmitoylation, and degree of malignancy were found. Using normal mucosa, the association of ACSL5 and Wnt2B was seen, but in intestinal neoplasias the mechanism was only rudimentarily observed. CONCLUSION ACSL5 mediates antiproliferative activities via Wnt2B palmitoylation with diminished Wnt activity. The molecular pathway is probably relevant for intestinal homeostasis, overwhelmed by other pathways in carcinogenesis.
Collapse
|
10
|
Neu U, Khan ZM, Schuch B, Palma AS, Liu Y, Pawlita M, Feizi T, Stehle T. Structures of B-lymphotropic polyomavirus VP1 in complex with oligosaccharide ligands. PLoS Pathog 2013; 9:e1003714. [PMID: 24204265 PMCID: PMC3814675 DOI: 10.1371/journal.ppat.1003714] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/03/2013] [Indexed: 12/04/2022] Open
Abstract
B-Lymphotropic Polyomavirus (LPyV) serves as a paradigm of virus receptor binding and tropism, and is the closest relative of the recently discovered Human Polyomavirus 9 (HPyV9). LPyV infection depends on sialic acid on host cells, but the molecular interactions underlying LPyV-receptor binding were unknown. We find by glycan array screening that LPyV specifically recognizes a linear carbohydrate motif that contains α2,3-linked sialic acid. High-resolution crystal structures of the LPyV capsid protein VP1 alone and in complex with the trisaccharide ligands 3′-sialyllactose and 3′-sialyl-N-acetyl-lactosamine (3SL and 3SLN, respectively) show essentially identical interactions. Most contacts are contributed by the sialic acid moiety, which is almost entirely buried in a narrow, preformed cleft at the outer surface of the capsid. The recessed nature of the binding site on VP1 and the nature of the observed glycan interactions differ from those of related polyomaviruses and most other sialic acid-binding viruses, which bind sialic acid in shallow, more exposed grooves. Despite their different modes for recognition, the sialic acid binding sites of LPyV and SV40 are half-conserved, hinting at an evolutionary strategy for diversification of binding sites. Our analysis provides a structural basis for the observed specificity of LPyV for linear glycan motifs terminating in α2,3-linked sialic acid, and links the different tropisms of known LPyV strains to the receptor binding site. It also serves as a useful template for understanding the ligand-binding properties and serological crossreactivity of HPyV9. Viruses must engage specific receptors on host cells in order to initiate infection. The type of receptor and its concentration on cells determine viral spread and tropism, but for many viruses, the receptor and the mode of recognition by the virus are not known. We have characterized the structural requirements for receptor binding of B-lymphotropic polyomavirus (LPyV). This virus was originally isolated from African Green Monkey lymph node cultures and attracted interest because of its narrow tropism for a human tumor cell line. LPyV is also the closest relative of the recently discovered Human Polyomavirus 9 (HPyV9). We screened the LPyV coat protein VP1 on an carbohydrate microarray and found that it specifically recognizes a linear sugar motif that terminates in α2,3-linked sialic acid. We then determined the structures LPyV VP1 bound to these carbohydrates. The protein has a preformed, deeply recessed binding site for sialic acid. The binding site differs in both architecture and mode of recognition from the binding sites of other viruses. LPyV only binds linear carbohydrates that are able to penetrate into the binding slot.
Collapse
Affiliation(s)
- Ursula Neu
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Zaigham Mahmood Khan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Benjamin Schuch
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Angelina S. Palma
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Michael Pawlita
- Department of Genome Modificati and Carcinogenesis (F020), German Cancer Research Center, Heidelberg, Germany
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
11
|
White MK, Gordon J, Khalili K. The rapidly expanding family of human polyomaviruses: recent developments in understanding their life cycle and role in human pathology. PLoS Pathog 2013; 9:e1003206. [PMID: 23516356 PMCID: PMC3597531 DOI: 10.1371/journal.ppat.1003206] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since their discovery in 1971, the polyomaviruses JC (JCPyV) and BK (BKPyV), isolated from patients with progressive multifocal leukoencephalopathy and polyomavirus-associated nephropathy, respectively, remained for decades as the only known members of the Polyomaviridae family of viruses of human origin. Over the past five years, the application of new genomic amplification technologies has facilitated the discovery of several novel human polyomaviruses (HPyVs), bringing the present number to 10. These HPyVs share many fundamental features in common such as genome size and organization. Infection by all HPyVs is widespread in the human population, but they show important differences in their tissue tropism and association with disease. Much remains unknown about these new viruses. In this review, we discuss the problems associated with studying HPyVs, such as the lack of culture systems for the new viruses and the gaps in our basic understanding of their biology. We summarize what is known so far about their distribution, life cycle, tissue tropism, their associated pathologies (if any), and future research directions in the field.
Collapse
Affiliation(s)
- Martyn K. White
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer Gordon
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Spurgeon ME, Lambert PF. Merkel cell polyomavirus: a newly discovered human virus with oncogenic potential. Virology 2013; 435:118-30. [PMID: 23217622 DOI: 10.1016/j.virol.2012.09.029] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/24/2022]
Abstract
A marked escalation in the rate of discovery of new types of human polyomavirus has occurred over the last five years largely owing to recent technological advances in their detection. Among the newly discovered viruses, Merkel Cell Polyomavirus (MCPyV or MCV) has gained the most attention due to its link with a rare human cancer. Infection with MCPyV is common in the human population, and the virus is detected in several anatomical locations, but most frequently in skin. Study of MCPyV molecular virology has been complicated by the lack of straightforward cell culture models, but recent in vitro studies are making strides towards understanding the virus life cycle, its cellular tropism, and mode of transmission. While MCPyV shares several traditional traits with other human polyomaviruses, the burst of research since its discovery reveals insight into a virus with many unique genetic and mechanistic features. The evidence for a causal link between MCPyV and the rare neuroendocrine cancer, Merkel Cell Carcinoma (MCC), is compelling. A majority of MCCs contain clonally integrated viral DNA, express viral T antigen transcripts and protein, and exhibit an addiction to the viral large T and small t antigen oncoproteins. The MCPyV large T antigen contains MCC tumor-specific mutations that ablate its replication capacity but preserve its oncogenic functions, and the small t antigen promotes an environment favorable for cap-dependent translation. The mechanisms of MCPyV-induced transformation have not been fully elucidated, but the likely etiological role of this new polyomavirus in human cancer provides a strong opportunity to expand knowledge of virus-host interactions and viral oncology.
Collapse
Affiliation(s)
- Megan E Spurgeon
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | |
Collapse
|
13
|
Palmieri A, Carinci F, Martinelli M, Spinelli G, Lo Muzio L, Rubini C, Scapoli L. Absence of Simian virus 40, BK, and JC polyomavirus DNA in squamous cell carcinoma limited to the oral cavity. Head Neck 2010; 32:375-80. [PMID: 19626633 DOI: 10.1002/hed.21197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinomas (SCCs) are among the most aggressive types of cancer. The Simian virus 40 (SV40), which is a polyomavirus known for its oncogenic potential, was found as a contaminant of oral vaccines and has been related to human pleomorphic adenoma in the parotid gland. The aim of this study was to evaluate the presence of SV40 and 2 human polyomaviruses-BK virus (BKV) and JC virus (JCV)-in a large sample of SCCs of the oral cavity. METHODS Quantitative real-time polymerase chain reaction (PCR) was used to evaluate virus load. RESULTS Overall, the prevalence of SV40, BKV, and JCV in oral SCC was negligible. Matched-pair case-control analysis indicated that prevalence among the controls did not significantly differ with respect to analyzed cases. CONCLUSION The results did not indicate a major role for SV40, BKV, and JCV in the etiology of oral SCC.
Collapse
Affiliation(s)
- Annalisa Palmieri
- Department of Histology, Embryology and Applied Biology, Centre of Molecular Genetics, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Borek C, Sachs L. The difference in contact inhibition of cell replication between normal cells and cells transformed by different carcinogens. Proc Natl Acad Sci U S A 2010; 56:1705-11. [PMID: 16591408 PMCID: PMC220159 DOI: 10.1073/pnas.56.6.1705] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- C Borek
- SECTION OF GENETICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOTH, ISRAEL
| | | |
Collapse
|
15
|
Worthington M, Aaronson SA. Interferon system in cells from human tumors and from persons predisposed to cancer. Infect Immun 2010; 3:424-8. [PMID: 16557991 PMCID: PMC416169 DOI: 10.1128/iai.3.3.424-428.1971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, the interferon system was evaluated in fibroblasts from persons predisposed to leukemia or other cancers, in fibroblasts from persons with neoplastic disease, and in human tumor cells. Of 31 normal fibroblast strains from patients with tumors or diseases associated with a high incidence of malignancy, only one cell strain had a poor response to either of the two interferon inducers used, polyinosinic-polycytidylic acid and Chikungunya virus. On the other hand, cell cultures of five human tumors were much less sensitive to the antiviral effect of these interferon inducers and of human interferon and produced less interferon in response to Chikungunya virus than any of the nontumor tissues studied.
Collapse
Affiliation(s)
- M Worthington
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20014
| | | |
Collapse
|
16
|
Svejda B, Kidd M, Giovinazzo F, Eltawil K, Gustafsson BI, Pfragner R, Modlin IM. The 5-HT2B receptor plays a key regulatory role in both neuroendocrine tumor cell proliferation and the modulation of the fibroblast component of the neoplastic microenvironment. Cancer 2010; 116:2902-12. [DOI: 10.1002/cncr.25049] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
|
18
|
el-Alfi OS, Smith PM, Biesele JJ. Chromosomal breaks in human leucocyte cultures induced by an agent in the plasma of infectious hepatitis patients. Hereditas 2009; 52:285-94. [PMID: 5828747 DOI: 10.1111/j.1601-5223.1965.tb01961.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
19
|
|
20
|
Berg R, Stenram U. Growth in rat of a sarcoma derived from rat kidney cells transformed in vitro by SV40. ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA 2009; 73:305-15. [PMID: 4300730 DOI: 10.1111/j.1699-0463.1968.tb04599.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Blanchette P, Branton PE. Manipulation of the ubiquitin-proteasome pathway by small DNA tumor viruses. Virology 2009; 384:317-23. [PMID: 19013629 DOI: 10.1016/j.virol.2008.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
Viruses have evolved to use cellular pathways to their advantage, including the ubiquitin-proteasome pathway of protein degradation. In several cases, viruses produce proteins that highjack cellular E3 ligases to modify their substrate specificity in order to eliminate unwanted cellular proteins, in particular inhibitors of the cell cycle. They can also inhibit E3 ligase to prevent specific protein degradation or even use the system to control the level of expression of their own proteins. In this review we explore the specific ways that small DNA tumor viruses exploit the ubiquitin-proteasome pathway for their own benefit.
Collapse
|
22
|
Pipas JM. SV40: Cell transformation and tumorigenesis. Virology 2008; 384:294-303. [PMID: 19070883 DOI: 10.1016/j.virol.2008.11.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The story of SV40-induced tumorigenesis and cellular transformation is intimately entwined with the development of modern molecular biology. Because SV40 and other viruses have small genomes and are relatively easy to manipulate in the laboratory, they offered tractable systems for molecular analysis. Thus, many of the early efforts to understand how eukaryotes replicate their DNA, regulate expression of their genes, and translate mRNA were focused on viral systems. The discovery that SV40 induces tumors in certain laboratory animals and transforms many types of cultured cells offered the first opportunity to explore the molecular basis for cancer. The goal of this article is to highlight some of the experiments that have led to our current view of SV40-induced transformation and to provide some context as to how they contributed to basic research in molecular biology and to our understanding of cancer.
Collapse
Affiliation(s)
- James M Pipas
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
23
|
Sablina AA, Hahn WC. SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer Metastasis Rev 2008; 27:137-46. [PMID: 18214640 DOI: 10.1007/s10555-008-9116-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The SV40 early region protein, SV40 small t antigen, promotes cell transformation through negative regulation of the protein phosphatase 2A (PP2A) family of serine-threonine phosphatases. More recently, reduced levels of PP2A activity have been found in different types of human cancer. This occurs either through inactivating mutations of PP2A structural subunits, or by upregulation of the cellular PP2A inhibitors, CIP2A and SET. Several distinct PP2A complexes have been identified that contribute directly to tumor suppression by regulating specific phosphorylation events. These studies provide us with new insights into the role of protein phosphatases in cancer initiation and maintenance.
Collapse
Affiliation(s)
- Anna A Sablina
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
24
|
Martini F, Corallini A, Balatti V, Sabbioni S, Pancaldi C, Tognon M. Simian virus 40 in humans. Infect Agent Cancer 2007; 2:13. [PMID: 17620119 PMCID: PMC1941725 DOI: 10.1186/1750-9378-2-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 07/09/2007] [Indexed: 01/01/2023] Open
Abstract
Simian virus 40 (SV40) is a monkey virus that was administered to human populations by contaminated vaccines which were produced in SV40 naturally infected monkey cells. Recent molecular biology and epidemiological studies suggest that SV40 may be contagiously transmitted in humans by horizontal infection, independently from the earlier administration of SV40-contaminated vaccines.SV40 footprints in humans have been found associated at high prevalence with specific tumor types such as brain and bone tumors, mesotheliomas and lymphomas and with kidney diseases, and at lower prevalence in blood samples from healthy donors. Contrasting reports appeared in the literature on the circulation of SV40 in humans by contagious transmission and its association, as a possible etiologic cofactor, with specific human tumors. As a consequence of the conflicting results, a considerable debate has developed in the scientific community. In the present review we consider the main results obtained by different groups investigating SV40 sequences in human tumors and in blood specimens, the putative role of SV40 in the onset/progression of specific human tumors, and comment on the hypotheses arising from these data.
Collapse
Affiliation(s)
- Fernanda Martini
- Department of Morphology and Embryology, Section of Cell Biology and Molecular Genetics, School of Medicine, and Center of Biotechnology, University of Ferrara, Via Fossato di Mortara, 64/B. 44100 Ferrara, Italy
| | - Alfredo Corallini
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Via Luigi Borsari, 46. 44100 Ferrara, Italy
| | - Veronica Balatti
- Department of Morphology and Embryology, Section of Cell Biology and Molecular Genetics, School of Medicine, and Center of Biotechnology, University of Ferrara, Via Fossato di Mortara, 64/B. 44100 Ferrara, Italy
| | - Silvia Sabbioni
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Via Luigi Borsari, 46. 44100 Ferrara, Italy
| | - Cecilia Pancaldi
- Department of Morphology and Embryology, Section of Cell Biology and Molecular Genetics, School of Medicine, and Center of Biotechnology, University of Ferrara, Via Fossato di Mortara, 64/B. 44100 Ferrara, Italy
| | - Mauro Tognon
- Department of Morphology and Embryology, Section of Cell Biology and Molecular Genetics, School of Medicine, and Center of Biotechnology, University of Ferrara, Via Fossato di Mortara, 64/B. 44100 Ferrara, Italy
| |
Collapse
|
25
|
Abstract
The question of whether Simian Virus 40 (SV40) can cause human tumors has been one of the most highly controversial topics in cancer research during the last 50 years. The longstanding debate began with the discovery of SV40 as a contaminant in poliovirus vaccine stocks that were used to inoculate approximately 100 million children and adults in the United States between 1955 and 1963, and countless more throughout the world. Concerns regarding the potential health risk of SV40 exposure were reinforced by studies demonstrating SV40's potential to transform human cells and promote tumor growth in animal models. Many studies have attempted to assess the relationship between the potential exposure of humans to SV40 and cancer incidence. Reports of the detection of SV40 DNA in a variety of cancers have raised serious concerns as to whether the inadvertent inoculation with SV40 has led to the development of cancer in humans. However, inconsistent reports linking SV40 with various tumor types has led to conflicting views regarding the potential of SV40 as a human cancer virus. Several recent studies suggest that older detection methodologies were flawed, and the limitations of these methods could account for most, if not all, of the positive correlations of SV40 in human tumors to date. Although many people may have been exposed to SV40 by polio vaccination, there is inadequate evidence to support widespread SV40 infection in the population, increased tumor incidence in those individuals who received contaminated vaccine, or a direct role for SV40 in human cancer.
Collapse
Affiliation(s)
- Danielle L Poulin
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
26
|
Barbanti-Brodano G, Sabbioni S, Martini F, Negrini M, Corallini A, Tognon M. BK virus, JC virus and Simian Virus 40 infection in humans, and association with human tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 577:319-41. [PMID: 16626046 DOI: 10.1007/0-387-32957-9_23] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Epidemiology and Etiology of Mesothelioma. TUMORS OF THE CHEST 2006. [PMCID: PMC7120476 DOI: 10.1007/3-540-31040-1_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Unequivocally the history of mesothelioma parallels that of asbestos exposure. The estimation that the asbestos cancer epidemic will cause 10 million deaths past and present renders the need to reach urgently a global ban on asbestos an issue of highest priority, so that the asbestos cancer epidemic will not become more devastating and will not continue indefinitely.
Collapse
|
28
|
White MK, Gordon J, Reiss K, Del Valle L, Croul S, Giordano A, Darbinyan A, Khalili K. Human polyomaviruses and brain tumors. ACTA ACUST UNITED AC 2005; 50:69-85. [PMID: 15982744 DOI: 10.1016/j.brainresrev.2005.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/12/2005] [Accepted: 04/21/2005] [Indexed: 12/25/2022]
Abstract
Polyomaviruses are DNA tumor viruses with small circular genomes. Three polyomaviruses have captured attention with regard to their potential role in the development of human brain tumors: JC virus (JCV), BK virus (BKV), and simian vacuolating virus 40 (SV40). JCV is a neurotropic polyomavirus that is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system occurring mainly in AIDS patients. BKV is the causative agent of polyomavirus-associated nephropathy (PVN) which occurs after renal transplantation when BKV reactivates from a latent state during immunosuppressive therapy to cause allograft failure. SV40, originating in rhesus monkeys, gained notoriety when it entered the human population via contaminated polio vaccines. All three viruses are highly oncogenic when injected into the brain of experimental animals. Reports indicate that these viruses, especially JCV, are associated with brain tumors and other cancers in humans as evidenced from the analysis of clinical samples for the presence of viral DNA sequences and expression of viral proteins. Human polyomaviruses encode three non-capsid regulatory proteins: large T-antigen, small t-antigen, and agnoprotein. These proteins interact with a number of cellular target proteins to exert effects that dysregulate pathways involved in the control of various host cell functions including the cell cycle, DNA repair, and others. In this review, we describe the three polyomaviruses, their abilities to cause brain and other tumors in experimental animals, the evidence for an association with human brain tumors, and the latest findings on the molecular mechanisms of their actions.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
PONTEN J, JENSEN F, KOPROWSKI H. Morphological and virological investigation of human tissue cultures transformed with SV40. ACTA ACUST UNITED AC 2005; 61:145-63. [PMID: 13972152 DOI: 10.1002/jcp.1030610206] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
White MK, Khalili K. Polyomaviruses and human cancer: molecular mechanisms underlying patterns of tumorigenesis. Virology 2004; 324:1-16. [PMID: 15183048 DOI: 10.1016/j.virol.2004.03.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 03/31/2004] [Indexed: 12/18/2022]
Abstract
Polyomaviruses are DNA tumor viruses with small circular genomes encoding only six proteins including three structural capsid proteins. Despite this simplicity, our understanding of the mechanisms of polyomavirus-mediated tumorigenesis is far from complete. The archetypal primate polyomavirus, SV40, was isolated more than 40 years ago and has been used extensively as a model system for the study of basic eukaryotic cellular processes such as DNA replication and transcription. Two human polyomaviruses have been isolated from clinical samples: JC virus (JCV) and BK virus (BKV). In this review, SV40, JCV, and BKV will be compared based on what is known about their molecular biology from experiments performed in vitro, in cell culture and in laboratory animals. The association of these viruses with clinical tumors is discussed along with the possible roles of these polyomaviruses in the etiology of human malignant disease.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | | |
Collapse
|
31
|
Viscidi RP, Rollison DEM, Viscidi E, Clayman B, Rubalcaba E, Daniel R, Major EO, Shah KV. Serological cross-reactivities between antibodies to simian virus 40, BK virus, and JC virus assessed by virus-like-particle-based enzyme immunoassays. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:278-85. [PMID: 12626455 PMCID: PMC150538 DOI: 10.1128/cdli.10.2.278-285.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enzyme immunoassays (EIAs) for detection of serum antibodies to simian virus 40 (SV40), BK virus (BKV), and JC virus (JCV) were developed by using virus-like-particles (VLPs) produced in insect cells from recombinant baculoviruses expressing the VP1 protein of the respective virus. Rhesus macaque sera with neutralizing antibodies to SV40 showed a high level of reactivity in the SV40 VLP-based EIA, and these sera also showed lower levels of reactivity in the BKV and JCV VLP-based EIAs. Rhesus macaque sera negative for neutralizing antibodies to SV40 were negative in all three EIAs. Competitive binding assays showed that SV40 VLPs inhibited BKV reactivity. In rhesus macaque sera, high optical density (OD) values for antibodies to SV40 VLPs were correlated with high OD values for antibodies to BKV but not with high OD values for antibodies to JCV VLPs. Human sera with neutralizing antibodies to SV40 were more reactive to SV40 VLPs than human sera without neutralizing antibodies to SV40. The greater SV40 reactivities of human sera were correlated with greater reactivities to BKV VLPs but not JCV VLPs. These data suggest that cross-reactivity with BKV antibodies may account for part of the low-level SV40 reactivity seen in human sera. With their greater versatility and their suitability for large-scale testing, the VLP-based EIAs for SV40, BKV, and JCV are likely to contribute to a better understanding of the biology of these viruses.
Collapse
Affiliation(s)
- Raphael P Viscidi
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Detection of SV40 DNA sequences in malignant mesothelioma specimens from the United States, but not from Turkey. J Cell Biochem 2002. [DOI: 10.1002/jcb.10058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Jasani B, Cristaudo A, Emri SA, Gazdar AF, Gibbs A, Krynska B, Miller C, Mutti L, Radu C, Tognon M, Procopio A. Association of SV40 with human tumours. Semin Cancer Biol 2001; 11:49-61. [PMID: 11243899 DOI: 10.1006/scbi.2000.0346] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SV40 was discovered as a contaminant of poliovirus vaccines that were inadvertently administered to millions of people in Europe and the United States between 1955 and 1963. Shortly afterwards, SV40 was proven to be oncogenic in rodents and capable of transforming human and animal cells in vitro. The possibility that SV40 might cause tumours in humans thus became a subject of scientific and public interest and scrutiny. However, largely due to a lack of significant epidemiological evidence, interest in assessing SV40's potential carcinogenic role in humans diminished. Recently, many laboratories have reported the presence of SV40-like DNA in a high proportion of human mesotheliomas, ependymomas and osteosarcoma (the three main types of tumours caused by virus in hamsters), renewing the question whether SV40 might be a human tumour virus. Molecular data from these studies are reviewed to re-evaluate the potential role of SV40 as a human carcinogen.
Collapse
Affiliation(s)
- B Jasani
- Immunocytochemistry and Molecular Pathology Unit, Department of Pathology, University of Wales College of Medicine, CF14 4XN, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci U S A 2000; 97. [PMID: 10725343 PMCID: PMC16222 DOI: 10.1073/pnas.040529797] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For nearly a century, cancer has been blamed on somatic mutation. But it is still unclear whether this mutation is aneuploidy, an abnormal balance of chromosomes, or gene mutation. Despite enormous efforts, the currently popular gene mutation hypothesis has failed to identify cancer-specific mutations with transforming function and cannot explain why cancer occurs only many months to decades after mutation by carcinogens and why solid cancers are aneuploid, although conventional mutation does not depend on karyotype alteration. A recent high-profile publication now claims to have solved these discrepancies with a set of three synthetic mutant genes that "suffices to convert normal human cells into tumorigenic cells." However, we show here that even this study failed to explain why it took more than "60 population doublings" from the introduction of the first of these genes, a derivative of the tumor antigen of simian virus 40 tumor virus, to generate tumor cells, why the tumor cells were clonal although gene transfer was polyclonal, and above all, why the tumor cells were aneuploid. If aneuploidy is assumed to be the somatic mutation that causes cancer, all these results can be explained. The aneuploidy hypothesis predicts the long latent periods and the clonality on the basis of the following two-stage mechanism: stage one, a carcinogen (or mutant gene) generates aneuploidy; stage two, aneuploidy destabilizes the karyotype and thus initiates an autocatalytic karyotype evolution generating preneoplastic and eventually neoplastic karyotypes. Because the odds are very low that an abnormal karyotype will surpass the viability of a normal diploid cell, the evolution of a neoplastic cell species is slow and thus clonal, which is comparable to conventional evolution of new species.
Collapse
|
35
|
Li R, Sonik A, Stindl R, Rasnick D, Duesberg P. Aneuploidy vs. gene mutation hypothesis of cancer: Recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci U S A 2000; 97:3236-41. [PMID: 10725343 PMCID: PMC16222 DOI: 10.1073/pnas.97.7.3236] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For nearly a century, cancer has been blamed on somatic mutation. But it is still unclear whether this mutation is aneuploidy, an abnormal balance of chromosomes, or gene mutation. Despite enormous efforts, the currently popular gene mutation hypothesis has failed to identify cancer-specific mutations with transforming function and cannot explain why cancer occurs only many months to decades after mutation by carcinogens and why solid cancers are aneuploid, although conventional mutation does not depend on karyotype alteration. A recent high-profile publication now claims to have solved these discrepancies with a set of three synthetic mutant genes that "suffices to convert normal human cells into tumorigenic cells." However, we show here that even this study failed to explain why it took more than "60 population doublings" from the introduction of the first of these genes, a derivative of the tumor antigen of simian virus 40 tumor virus, to generate tumor cells, why the tumor cells were clonal although gene transfer was polyclonal, and above all, why the tumor cells were aneuploid. If aneuploidy is assumed to be the somatic mutation that causes cancer, all these results can be explained. The aneuploidy hypothesis predicts the long latent periods and the clonality on the basis of the following two-stage mechanism: stage one, a carcinogen (or mutant gene) generates aneuploidy; stage two, aneuploidy destabilizes the karyotype and thus initiates an autocatalytic karyotype evolution generating preneoplastic and eventually neoplastic karyotypes. Because the odds are very low that an abnormal karyotype will surpass the viability of a normal diploid cell, the evolution of a neoplastic cell species is slow and thus clonal, which is comparable to conventional evolution of new species.
Collapse
Affiliation(s)
- R Li
- Department of Molecular and Cell Biology, Stanley Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Mesotheliomas are malignant tumors usually associated with occupational asbestos exposure. Simian virus 40 (SV40) is a DNA tumor virus that preferentially causes mesotheliomas when injected intracardially and/or intrapleurally into hamsters. SV40 also transforms human cells in tissue culture, and these cells contain extensive DNA damage. In the United States, at least 60% of human mesotheliomas contain and express SV40. In these tumor cells, the SV40 tumor antigen binds and inhibits the cellular tumor suppressors p53 and Rb. These findings suggest that SV40 may contribute to the development of those human mesotheliomas that occur in people not exposed to asbestos. SV40 may also facilitate asbestos-mediated carcinogenicity. The epidemiological data available are insufficient to address the role that SV40 may have played in contributing to the increased incidence of mesothelioma in the second half of this century.
Collapse
Affiliation(s)
- M Carbone
- Cancer Immunology Program, Cardinal Bernardin Cancer Center, Department of Pathology, Loyola Medical School, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
37
|
SHEIN HM, ENDERS JF, LEVINTHAL JD. Transformation induced by simian virus 40 in human renal cell cultures. II. Cell-virus relationships. Proc Natl Acad Sci U S A 1998; 48:1350-7. [PMID: 13911590 PMCID: PMC220958 DOI: 10.1073/pnas.48.8.1350] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
VOGT M, DULBECCO R. Steps in the neoplastic transformation of hamster embryo cells by polyoma virus. Proc Natl Acad Sci U S A 1998; 49:171-9. [PMID: 13997682 PMCID: PMC299772 DOI: 10.1073/pnas.49.2.171] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Szybalska EH, Szybalski W. Genetics of human cell line. IV. DNA-mediated heritable transformation of a biochemical trait. Proc Natl Acad Sci U S A 1998; 48:2026-34. [PMID: 13980043 PMCID: PMC221117 DOI: 10.1073/pnas.48.12.2026] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
SHEIN HM, ENDERS JF, LEVINTHAL JD, BURKET AE. Transformation induced by simian virus 40 in newborn Syrian hamster renal cell cultures. Proc Natl Acad Sci U S A 1998; 49:28-34. [PMID: 13977058 PMCID: PMC300623 DOI: 10.1073/pnas.49.1.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
HAMPAR B, ELLISON SA. Cellular alterations in the MCH line of Chinese hamster cells following infection with herpes simplex virus. Proc Natl Acad Sci U S A 1998; 49:474-80. [PMID: 13952430 PMCID: PMC299881 DOI: 10.1073/pnas.49.4.474] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Barbanti-Brodano G, Martini F, De Mattei M, Lazzarin L, Corallini A, Tognon M. BK and JC human polyomaviruses and simian virus 40: natural history of infection in humans, experimental oncogenicity, and association with human tumors. Adv Virus Res 1998; 50:69-99. [PMID: 9520997 DOI: 10.1016/s0065-3527(08)60806-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Abstract
The monkey polyomavirus simian virus 40 (SV40) has been reported to be associated with tumorigenesis of human neoplasms, mainly brain tumors. However, it remains controversial whether the virus really exists in human neoplasms and how the virus transforms human cells in vivo. We investigated the presence of SV40 T antigen genome in 33 human glioma tissue specimens from Japanese patients with different histopathologies by means of the polymerase chain reaction (PCR) followed by Southern blotting. The SV40 T antigen genome was amplified in 4 of the 13 ependymomas (31%) and 3 of the 20 other histotypes of gliomas (15%), whereas in the 22 nontumoral brain tissue specimens, only one case was found to be positive. DNA sequencing confirmed the PCR products to be those of SV40 T antigen. The findings thus suggest that the SV40 genome appears to exist in a certain population of brain tumors from Japanese patients, and that it may also play a role in the oncogenicity or maintenance of the transformed state.
Collapse
Affiliation(s)
- S O Suzuki
- Department of Neuropathology, Neurological Institute, Faculty of Medicine, Kyushu University, Fukuoka 812-82, Japan.
| | | | | |
Collapse
|
44
|
Hayflick L. SV40 and human cancer. Science 1997; 276:337-8. [PMID: 9139350 DOI: 10.1126/science.276.5311.337b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
SAKSELA E, MOORHEAD PS. ANEUPLOIDY IN THE DEGENERATIVE PHASE OF SERIAL CULTIVATION OF HUMAN CELL STRAINS. Proc Natl Acad Sci U S A 1996; 50:390-5. [PMID: 14060661 PMCID: PMC221185 DOI: 10.1073/pnas.50.2.390] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
LEUCHTENBERGER C, LEUCHTENBERGER R, BRUNNER T, NORLIN D, WEISS S. TRANSFORMATION INDUCED BY PR 8 INFLUENZA VIRUS IN PRIMARY CULTURES OF MOUSE KIDNEY AND BRONCHUS, AND PRODUCTION OF MALIGNANT KIDNEY TUMORS IN MICE BY SUBCULTURES. Proc Natl Acad Sci U S A 1996; 53:694-701. [PMID: 14338252 PMCID: PMC337000 DOI: 10.1073/pnas.53.3.694] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
STENKVIST B, PONTEN J. MORPHOLOGICAL CHANGES IN BOVINE AND HUMAN FIBROBLASTS EXPOSED TO TWO STRAINS OF ROUS SARCOMA VIRUS IN VITRO. ACTA ACUST UNITED AC 1996; 62:315-30. [PMID: 14227875 DOI: 10.1111/apm.1964.62.3.315] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
JENSEN F, KOPROWSKI H, PONTEN JA. RAPID TRANSFORMATION OF HUMAN FIBROBLAST CULTURES BY SIMIAN VIRUS. Proc Natl Acad Sci U S A 1996; 50:343-8. [PMID: 14060654 PMCID: PMC221178 DOI: 10.1073/pnas.50.2.343] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Todaro GJ, Wolman SR, Green H. RAPID TRANSFORMATION OF HUMAN FIBROBLASTS WITH LOW GROWTH POTENTIAL INTO ESTABLISHED CELL LINES BY SV40. ACTA ACUST UNITED AC 1996; 62:257-65. [PMID: 14086148 DOI: 10.1002/jcp.1030620305] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
|