1
|
Potdar P, Kharat A, Sanap A, Kheur S, Bhonde R. Pancreatic β cell models for screening insulin secretagogues and cytotoxicity. J Appl Toxicol 2025; 45:89-106. [PMID: 39662958 DOI: 10.1002/jat.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 12/13/2024]
Abstract
In the past 2-3 decades, numerous attempts have been made to create an insulin-secreting β cell line that maintains normal insulin secretion. However, primary β cell cultures have finite life and, therefore, cannot be used for long-term experiments. The most widely used insulin-secreting cell lines are Insulinoma-1, rat insulinoma cell line, hamster pancreatic β cell line, mouse insulinoma, and β tumor cell line. Insulinoma-derived cell lines show infinite growth in tissue culture but exhibit varying differences in their insulin responsiveness to glucose levels compared to normal β cells. Despite difficulties with β cell cultures, these cell lines have offered some useful insights in diabetes research concerning physiological functions and pathological investigations. In this review, we describe insulinoma cell lines used for drug screening, insulin secretion, cell viability, proliferation, and other relevant cellular functions. In addition, we have also incorporated recently developed human β cell lines. These cell lines have provided some helpful insights into physiological activities and pathology in diabetes research, despite challenges with β cell culturing. We propose that these cell lines could also be explored for screening Ayurvedic Rasayanas and homeopathy preparations for their cytotoxicity and insulin secretagogue activities to have evidence-based data on alternative and complementary medicines.
Collapse
Affiliation(s)
- Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
2
|
Firdos, Pramanik T, Verma P, Mittal A. (Re-)Viewing Role of Intracellular Glucose Beyond Extracellular Regulation of Glucose-Stimulated Insulin Secretion by Pancreatic Cells. ACS OMEGA 2024; 9:11755-11768. [PMID: 38496986 PMCID: PMC10938456 DOI: 10.1021/acsomega.3c09171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
For glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells in animals, it is believed that ATP generated from glucose metabolism is primarily responsible. However, this ignores two well-established aspects in literature: (a) intracellular ATP generation from other sources resulting in an overall pool of ATP, regardless of the original source, and (b) that intracellular glucose transport is 10- to 100-fold higher than intracellular glucose phosphorylation in β-cells. The latter especially provides an earlier unaddressed, but highly appealing, observation pertaining to (at least transient) the presence of intracellular glucose molecules. Could these intracellular glucose molecules be responsible for the specificity of GSIS to glucose (instead of the widely believed ATP production from its metabolism)? In this work, we provide a comprehensive compilation of literature on glucose and GSIS using various cellular systems - all studies focus only on the extracellular role of glucose in GSIS. Further, we carried out a comprehensive analysis of differential gene expression in Mouse Insulinoma 6 (MIN6) cells, exposed to low and high extracellular glucose concentrations (EGC), from the existing whole transcriptome data. The expression of other genes involved in glycolysis, Krebs cycle, and electron transport chain was found to be unaffected by EGC, except Gapdh, Atp6v0a4, and Cox20. Remarkably, 3 upregulated genes (Atp6v0a4, Cacnb4, Kif11) in high EGC were identified to have an association with cellular secretion. Using glucose as a possible ligand for the 3 proteins, computational investigations were carried out (that will require future 'wet validation', both in vitro and in vivo, e.g., using primary islets and animal models). The glucose-affinity/binding scores (in kcal/mol) obtained were also compared with glucose binding scores for positive controls (GCK and GLUT2), along with negative controls (RPA1, KU70-80, POLA1, ACAA1A, POLR1A). The binding affinity scores of glucose molecules for the 3 proteins were found to be closer to positive controls. Therefore, we report the glucose binding ability of 3 secretion-related proteins and a possible direct role of intracellular glucose molecules in GSIS.
Collapse
Affiliation(s)
- Firdos
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Tapabrata Pramanik
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Prachi Verma
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Aditya Mittal
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
- Supercomputing
Facility for Bioinformatics and Computational Biology (SCFBio), IIT Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
3
|
Forsythe SD, Pu T, Andrews SG, Madigan JP, Sadowski SM. Models in Pancreatic Neuroendocrine Neoplasms: Current Perspectives and Future Directions. Cancers (Basel) 2023; 15:3756. [PMID: 37568572 PMCID: PMC10416968 DOI: 10.3390/cancers15153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are a heterogeneous group of tumors derived from multiple neuroendocrine origin cell subtypes. Incidence rates for pNENs have steadily risen over the last decade, and outcomes continue to vary widely due to inability to properly screen. These tumors encompass a wide range of functional and non-functional subtypes, with their rarity and slow growth making therapeutic development difficult as most clinically used therapeutics are derived from retrospective analyses. Improved molecular understanding of these cancers has increased our knowledge of the tumor biology for pNENs. Despite these advances in our understanding of pNENs, there remains a dearth of models for further investigation. In this review, we will cover the current field of pNEN models, which include established cell lines, animal models such as mice and zebrafish, and three-dimensional (3D) cell models, and compare their uses in modeling various disease aspects. While no study model is a complete representation of pNEN biology, each has advantages which allow for new scientific understanding of these rare tumors. Future efforts and advancements in technology will continue to create new options in modeling these cancers.
Collapse
Affiliation(s)
- Steven D. Forsythe
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Tracey Pu
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stephen G. Andrews
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - James P. Madigan
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Samira M. Sadowski
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| |
Collapse
|
4
|
Duque Escobar J, Kutschenko A, Schröder S, Blume R, Köster KA, Painer C, Lemcke T, Maison W, Oetjen E. Regulation of dual leucine zipper kinase activity through its interaction with calcineurin. Cell Signal 2021; 82:109953. [PMID: 33600948 DOI: 10.1016/j.cellsig.2021.109953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022]
Abstract
Hyperglycemia enhancing the intracellular levels of reactive oxygen species (ROS) contributes to dysfunction and progressive loss of beta cells and thereby to diabetes mellitus. The oxidation sensitive calcium/calmodulin dependent phosphatase calcineurin promotes pancreatic beta cell function and survival whereas the dual leucine zipper kinase (DLK) induces apoptosis. Therefore, it was studied whether calcineurin interferes with DLK action. In a beta cell line similar concentrations of H2O2 decreased calcineurin activity and activated DLK. DLK interacted via its φLxVP motif (aa 362-365) with the interface of the calcineurin subunits A and B. Mutation of the Val prevented this protein protein interaction, hinting at a distinct φLxVP motif. Indeed, mutational analysis revealed an ordered structure of DLK's φLxVP motif whereby Val mediates the interaction with calcineurin and Leu maintains an enzymatically active conformation. Overexpression of DLK wild-type but not the DLK mutant unable to bind calcineurin diminished calcineurin-induced nuclear localisation of the nuclear factor of activated T-cells (NFAT), suggesting that both, DLK and NFAT compete for the substrate binding site of calcineurin. The calcineurin binding-deficient DLK mutant exhibited increased DLK activity measured as phosphorylation of the downstream c-Jun N-terminal kinase, inhibition of CRE-dependent gene transcription and induction of apoptosis. These findings show that calcineurin interacts with DLK; and inhibition of calcineurin increases DLK activity. Hence, this study demonstrates a novel mechanism regulating DLK action. These findings suggest that ROS through inhibition of calcineurin enhance DLK activity and thereby lead to beta cell dysfunction and loss and ultimately diabetes mellitus.
Collapse
Affiliation(s)
- J Duque Escobar
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; DZHK Standort Hamburg, Kiel, Lübeck, Germany
| | - Anna Kutschenko
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Sabine Schröder
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Roland Blume
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Kyra-Alexandra Köster
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; DZHK Standort Hamburg, Kiel, Lübeck, Germany
| | - Christina Painer
- Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | - Thomas Lemcke
- Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | - Wolfgang Maison
- Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | - Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; DZHK Standort Hamburg, Kiel, Lübeck, Germany; Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany; Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany.
| |
Collapse
|
5
|
Miyazaki S, Tashiro F, Tsuchiya T, Sasaki K, Miyazaki JI. Establishment of a long-term stable β-cell line and its application to analyze the effect of Gcg expression on insulin secretion. Sci Rep 2021; 11:477. [PMID: 33436850 PMCID: PMC7804151 DOI: 10.1038/s41598-020-79992-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
A pancreatic β-cell line MIN6 was previously established in our lab from an insulinoma developed in an IT6 transgenic mouse expressing the SV40 T antigen in β-cells. This cell line has been widely used for in vitro analysis of β-cell function, but tends to lose the mature β-cell features, including glucose-stimulated insulin secretion (GSIS), in long-term culture. The aim of this study was to develop a stable β-cell line that retains the characteristics of mature β-cells. Considering that mice derived from a cross between C3H and C57BL/6 strains are known to exhibit higher insulin secretory capacity than C57BL/6 mice, an IT6 male mouse of this hybrid background was used to isolate insulinomas, which were independently cultured. After 7 months of continuous culturing, we obtained the MIN6-CB4 β-cell line, which stably maintains its GSIS. It has been noted that β-cell lines express the glucagon (Gcg) gene at certain levels. MIN6-CB4 cells were utilized to assess the effects of differential Gcg expression on β-cell function. Our data show the functional importance of Gcg expression and resulting basal activation of the GLP-1 receptor in β-cells. MIN6-CB4 cells can serve as an invaluable tool for studying the regulatory mechanisms of insulin secretion, such as the GLP-1/cAMP signaling, in β-cells.
Collapse
Affiliation(s)
- Satsuki Miyazaki
- grid.136593.b0000 0004 0373 3971Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Fumi Tashiro
- grid.136593.b0000 0004 0373 3971Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Takashi Tsuchiya
- grid.410796.d0000 0004 0378 8307National Cerebral and Cardiovascular Center, Suita, Osaka Japan
| | - Kazuki Sasaki
- grid.410796.d0000 0004 0378 8307National Cerebral and Cardiovascular Center, Suita, Osaka Japan ,grid.419521.a0000 0004 1763 8692Present Address: Sasaki Institute, 2-2, Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062 Japan
| | - Jun-ichi Miyazaki
- grid.136593.b0000 0004 0373 3971The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 560-0047 Japan
| |
Collapse
|
6
|
Acosta-Montalvo A, Saponaro C, Kerr-Conte J, Prehn JHM, Pattou F, Bonner C. Proglucagon-Derived Peptides Expression and Secretion in Rat Insulinoma INS-1 Cells. Front Cell Dev Biol 2020; 8:590763. [PMID: 33240888 PMCID: PMC7683504 DOI: 10.3389/fcell.2020.590763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022] Open
Abstract
Rat insulinoma INS-1 cells are widely used to study insulin secretory mechanisms. Studies have shown that a population of INS-1 cells are bi-hormonal, co-expressing insulin, and proglucagon proteins. They coined this population as immature cells since they co-secrete proglucagon-derived peptides from the same secretory vesicles similar to that of insulin. Since proglucagon encodes multiple peptides including glucagon, glucagon-like-peptide-1 (GLP-1), GLP-2, oxyntomodulin, and glicentin, their specific expression and secretion are technically challenging. In this study, we aimed to focus on glucagon expression which shares the same amino acid sequence with glicentin and proglucagon. Validation of the anti-glucagon antibody (Abcam) by Western blotting techniques revealed that the antibody detects proglucagon (≈ 20 kDa), glicentin (≈ 9 kDa), and glucagon (≈ 3 kDa) in INS-1 cells and primary islets, all of which were absent in the kidney cell line (HEK293). Using the validated anti-glucagon antibody, we showed by immunofluorescence imaging that a population of INS-1 cells co-express insulin and proglucagon-derived proteins. Furthermore, we found that chronic treatment of INS-1 cells with high-glucose decreases insulin and glucagon content, and also reduces the percentage of bi-hormonal cells. In line with insulin secretion, we found glucagon and glicentin secretion to be induced in a glucose-dependent manner. We conclude that INS-1 cells are a useful model to study glucose-stimulated insulin secretion, but not that of glucagon or glicentin. Our study suggests Western blotting technique as an important tool for researchers to study proglucagon-derived peptides expression and regulation in primary islets in response to various metabolic stimuli.
Collapse
Affiliation(s)
- Ana Acosta-Montalvo
- INSERM, U1190, Lille, France.,European Genomic Institute for Diabetes, Lille, France.,University of Lille, Lille, France
| | - Chiara Saponaro
- INSERM, U1190, Lille, France.,European Genomic Institute for Diabetes, Lille, France.,University of Lille, Lille, France
| | - Julie Kerr-Conte
- INSERM, U1190, Lille, France.,European Genomic Institute for Diabetes, Lille, France.,University of Lille, Lille, France
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - François Pattou
- INSERM, U1190, Lille, France.,European Genomic Institute for Diabetes, Lille, France.,University of Lille, Lille, France.,Chirurgie Endocrinienne et Métabolique, CHU Lille, Lille, France
| | - Caroline Bonner
- INSERM, U1190, Lille, France.,European Genomic Institute for Diabetes, Lille, France.,University of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
7
|
Yoon CW, Lee NS, Koo KM, Moon S, Goo K, Jung H, Yoon C, Lim HG, Shung KK. Investigation of Ultrasound-Mediated Intracellular Ca 2+ Oscillations in HIT-T15 Pancreatic β-Cell Line. Cells 2020; 9:E1129. [PMID: 32375298 PMCID: PMC7290496 DOI: 10.3390/cells9051129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/17/2022] Open
Abstract
In glucose-stimulated insulin secretion (GSIS) of pancreatic β-cells, the rise of free cytosolic Ca2+ concentration through voltage-gated calcium channels (VGCCs) triggers the exocytosis of insulin-containing granules. Recently, mechanically induced insulin secretion pathways were also reported, which utilize free cytosolic Ca2+ ions as a direct regulator of exocytosis. In this study, we aimed to investigate intracellular Ca2+ responses on the HIT-T15 pancreatic β-cell line upon low-intensity pulsed ultrasound (LIPUS) stimulation and found that ultrasound induces two distinct types of intracellular Ca2+ oscillation, fast-irregular and slow-periodic, from otherwise resting cells. Both Ca2+ patterns depend on the purinergic signaling activated by the rise of extracellular ATP or ADP concentration upon ultrasound stimulation, which facilitates the release through mechanosensitive hemichannels on the plasma membrane. Further study demonstrated that two subtypes of purinergic receptors, P2X and P2Y, are working in a competitive manner depending on the level of glucose in the cell media. The findings can serve as an essential groundwork providing an underlying mechanism for the development of a new therapeutic approach for diabetic conditions with further validation.
Collapse
Affiliation(s)
- Chi Woo Yoon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Nan Sook Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Kweon Mo Koo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Sunho Moon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Kyosuk Goo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Hayong Jung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| | - Changhan Yoon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam 50834, Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
- Department of Creative IT Engineering and Future IT Innovation Lab, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.W.Y.); (N.S.L.); (K.M.K.); (S.M.); (K.G.); (H.J.); (C.Y.); (K.K.S.)
| |
Collapse
|
8
|
Exploring G Protein-Coupled Receptor Signaling in Primary Pancreatic Islets. Biol Proced Online 2020; 22:4. [PMID: 32082084 PMCID: PMC7023723 DOI: 10.1186/s12575-019-0116-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Targeting G protein-coupled receptors (GPCRs) in pancreatic cells is feasible to modulate glucose-induced insulin secretion. Because pancreatic islets consist of several cell types and GPCRs can couple to more than one G-protein family, results obtained in pancreatic cell lines do not always match the response in primary cells or intact islets. Therefore, we set out to establish a protocol to analyze second messenger activation in mouse pancreatic islets. Results Activation of Gq/11-coupled receptor expressed in primary β cells increased the second messenger IP1 in an accumulation assay. Applying a Gq/11 protein inhibitor completely abolished this signal. Activation of the V1 vasopressin and ghrelin receptors, predominantly expressed in the less abundant alpha and delta cells, was not sufficient to induce a significant IP1 increase in this assay. However, fura-2-based fluorescence imaging showed calcium signals upon application of arginine vasopressin or ghrelin within intact pancreatic islets. Using the here established protocol we were also able to determine changes in intracellular cAMP levels induced by receptors coupling to Gs and Gi/o proteins. Conclusions Detection of the second messengers IP1, cAMP, and calcium, can be used to reliably analyze GPCR activation in intact islets.
Collapse
|
9
|
Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. PLANT METHODS 2019; 15:105. [PMID: 31516543 PMCID: PMC6731622 DOI: 10.1186/s13007-019-0487-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 05/15/2023]
Abstract
Type 2 Diabetes Mellitus has reached epidemic proportions as a result of over-nutrition and increasingly sedentary lifestyles. Current therapies, although effective, are not without limitations. These limitations, the alarming increase in the prevalence of diabetes, and the soaring cost of managing diabetes and its complications underscores an urgent need for safer, more efficient and affordable alternative treatments. Over 1200 plant species are reported in ethnomedicine for treating diabetes and these represents an important and promising source for the identification of novel antidiabetic compounds. Evaluating medicinal plants for desirable bioactivity goes hand-in-hand with methods in analytical biochemistry for separating and identifying lead compounds. This review aims to provide a comprehensive summary of current methods used in antidiabetic plant research to form a useful resource for researchers beginning in the field. The review summarises the current understanding of blood glucose regulation and the general mechanisms of action of current antidiabetic medications, and combines knowledge on common experimental approaches for screening plant extracts for antidiabetic activity and currently available analytical methods and technologies for the separation and identification of bioactive natural products. Common in vivo animal models, in vitro models, in silico methods and biochemical assays used for testing the antidiabetic effects of plants are discussed with a particular emphasis on in vitro methods such as cell-based bioassays for screening insulin secretagogues and insulinomimetics. Enzyme inhibition assays and molecular docking are also highlighted. The role of metabolomics, metabolite profiling, and dereplication of data for the high-throughput discovery of novel antidiabetic agents is reviewed. Finally, this review also summarises sample preparation techniques such as liquid-liquid extraction, solid phase extraction, and supercritical fluid extraction, and the critical function of nuclear magnetic resonance and high resolution liquid chromatography-mass spectrometry for the dereplication, putative identification and structure elucidation of natural compounds from evidence-based medicinal plants.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, VIC 3083 Australia
| | - Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| |
Collapse
|
10
|
Scharfmann R, Staels W, Albagli O. The supply chain of human pancreatic β cell lines. J Clin Invest 2019; 129:3511-3520. [PMID: 31478912 PMCID: PMC6715382 DOI: 10.1172/jci129484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with type 1 or type 2 diabetes have an insufficiency in their functional β cell mass. To advance diabetes treatment and to work toward a cure, a better understanding of how to protect the pancreatic β cells against autoimmune or metabolic assaults (e.g., obesity, gestation) will be required. Over the past decades, β cell protection has been extensively investigated in rodents both in vivo and in vitro using isolated islets or rodent β cell lines. Transferring these rodent data to humans has long been challenging, at least partly for technical reasons: primary human islet preparations were scarce and functional human β cell lines were lacking. In 2011, we described a robust protocol of targeted oncogenesis in human fetal pancreas and produced the first functional human β cell line, and in subsequent years additional lines with specific traits. These cell lines are currently used by more than 150 academic and industrial laboratories worldwide. In this Review, we first explain how we developed the human β cell lines and why we think we succeeded where others, despite major efforts, did not. Next, we discuss the use of such functional human β cell lines and share some perspectives on their use to advance diabetes research.
Collapse
Affiliation(s)
- Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Willem Staels
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Albagli
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|
11
|
Green AD, Vasu S, Flatt PR. Cellular models for beta-cell function and diabetes gene therapy. Acta Physiol (Oxf) 2018; 222. [PMID: 29226587 DOI: 10.1111/apha.13012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
Diabetes is characterized by the destruction and/or relative dysfunction of insulin-secreting beta-cells in the pancreatic islets of Langerhans. Consequently, considerable effort has been made to understand the physiological processes governing insulin production and secretion in these cells and to elucidate the mechanisms involved in their deterioration in the pathogenesis of diabetes. To date, considerable research has exploited clonal beta-cell lines derived from rodent insulinomas. Such cell lines have proven to be a great asset in diabetes research, in vitro drug testing, and studies of beta-cell physiology and provide a sustainable, and in many cases, more practical alternative to the use of animals or primary tissue. However, selection of the most appropriate rodent beta cell line is often challenging and no single cell line entirely recapitulates the properties of human beta-cells. The generation of stable human beta-cell lines would provide a much more suitable model for studies of human beta-cell physiology and pathology and could potentially be used as a readily available source of implantable insulin-releasing tissue for cell-based therapies of diabetes. In this review, we discuss the history, development, functional characteristics and use of available clonal rodent beta-cell lines, as well as reflecting on recent advances in the generation of human-derived beta-cell lines, their use in research studies and their potential for cell therapy of diabetes.
Collapse
Affiliation(s)
- A. D. Green
- SAAD Centre for Pharmacy & Diabetes; School of Biomedical Sciences; University of Ulster; Coleraine UK
| | - S. Vasu
- SAAD Centre for Pharmacy & Diabetes; School of Biomedical Sciences; University of Ulster; Coleraine UK
- Cell Growth and Metabolism Section; Diabetes, Endocrinology, and Obesity Branch; NIDDK; National Institutes of Health; Bethesda MD USA
| | - P. R. Flatt
- SAAD Centre for Pharmacy & Diabetes; School of Biomedical Sciences; University of Ulster; Coleraine UK
| |
Collapse
|
12
|
Abstract
OBJECTIVES The aim of this study was to identify an epithelial cell line isolated from the spontaneous differentiation of totipotent pig epiblast cells. METHODS PICM-31 and its colony-cloned derivative cell line, PICM-31A, were established from the culture and differentiation of an epiblast mass isolated from an 8-day-old pig blastocyst. The cell lines were analyzed by transmission electron microscopy, marker gene expression, and mass spectroscopy-based proteomics. RESULTS The PICM-31 cell lines were continuously cultured and could be successively colony cloned. They spontaneously self-organized into acinarlike structures. Transmission electron microscopy indicated that the cell lines' cells were epithelial and filled with secretory granules. Candidate gene expression analysis of the cells showed an exocrine pancreatic profile that included digestive enzyme expression, for example, carboxypeptidase A1, and expression of the fetal marker, α-fetoprotein. Pancreatic progenitor marker expression included pancreatic and duodenal homeobox 1, NK6 homeobox 1, and pancreas-specific transcription factor 1a, but not neurogenin 3. Proteomic analysis of cellular proteins confirmed the cells' production of digestive enzymes and showed that the cells expressed cytokeratins 8 and 18. CONCLUSIONS The PICM-31 cell lines provide in vitro models of fetal pig pancreatic exocrine cells. They are the first demonstration of continuous cultures, that is, cell lines, of nontransformed pig pancreas cells.
Collapse
|
13
|
Börchers S, Babaei R, Klimpel C, Duque Escobar J, Schröder S, Blume R, Malik MNH, Oetjen E. TNFα-induced DLK activation contributes to apoptosis in the beta-cell line HIT. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:813-825. [DOI: 10.1007/s00210-017-1385-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
|
14
|
Green AD, Vasu S, McClenaghan NH, Flatt PR. Implanting 1.1B4 human β-cell pseudoislets improves glycaemic control in diabetic severe combined immune deficient mice. World J Diabetes 2016; 7:523-533. [PMID: 27895821 PMCID: PMC5107712 DOI: 10.4239/wjd.v7.i19.523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/01/2016] [Accepted: 08/31/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the potential of implanting pseudoislets formed from human insulin-releasing β-cell lines as an alternative to islet transplantation.
METHODS In this study, the anti-diabetic potential of novel human insulin releasing 1.1B4 β-cells was evaluated by implanting the cells, either as free cell suspensions, or as three-dimensional pseudoislets, into the subscapular region of severe combined immune deficient mice rendered diabetic by single high-dose administration of streptozotocin. Metabolic parameters including food and fluid intake, bodyweight and blood glucose were monitored throughout the study. At the end of the study animals were given an intraperitoneal glucose tolerance test. Animals were then culled and blood and tissues were collected for analysis. Insulin and glucagon contents of plasma and tissues were measured by insulin radioimmunoassay and chemiluminescent enzyme-linked immunosorbance assay respectively. Histological analyses of pancreatic islets were carried out by quantitative fluorescence immunohistochemistry staining.
RESULTS Both pseudoislet and cell suspension implants yielded well vascularised β-cell masses of similar insulin content. This was associated with progressive amelioration of hyperphagia (P < 0.05), polydipsia (P < 0.05), body weight loss (P < 0.05), hypoinsulinaemia (P < 0.05), hyperglycaemia (P < 0.05 - P < 0.001) and glucose tolerance (P < 0.01). Islet morphology was also significantly improved in both groups of transplanted mice, with increased β-cell (P < 0.05 - P < 0.001) and decreased alpha cell (P < 0.05 - P < 0.001) areas. Whereas mice receiving 1.1B4 cell suspensions eventually exhibited hypoglycaemic complications, pseudoislet recipients displayed a more gradual amelioration of diabetes, and achieved stable blood glucose control similar to non-diabetic mice at the end of the study.
CONCLUSION Although further work is needed to address safety issues, these results provide proof of concept for possible therapeutic applicability of human β-cell line pseudoislets in diabetes.
Collapse
|
15
|
Lin Y, Krogh-Andersen K, Pelletier J, Marcotte H, Östenson CG, Hammarström L. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats. PLoS One 2016; 11:e0162733. [PMID: 27610615 PMCID: PMC5017604 DOI: 10.1371/journal.pone.0162733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo.
Collapse
Affiliation(s)
- Yin Lin
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Kasper Krogh-Andersen
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Julien Pelletier
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, M1:03 Karolinska University Hospital, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Harold Marcotte
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, M1:03 Karolinska University Hospital, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
- * E-mail:
| |
Collapse
|
16
|
Li Y, Jing C, Tang X, Chen Y, Han X, Zhu Y. LXR activation causes G1/S arrest through inhibiting SKP2 expression in MIN6 pancreatic beta cells. Endocrine 2016; 53:689-700. [PMID: 27071658 DOI: 10.1007/s12020-016-0915-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
Abstract
Liver X receptors (LXRs) are nuclear hormone receptors with central roles in lipid homeostasis. We previously showed that LXR activation induced aberrant lipid metabolism and G1 cell cycle arrest in pancreatic beta cells. In this study, we aimed to identify the molecular target of LXR causing G1 arrest. LXR activation was induced by its agonist, T0901317. A series of luciferase reporters of truncated Skp2 promoter were analyzed in MIN6 cells. mRNA and protein levels of SKP2 and P27 were detected. Flow cytometry assay was used to determine the cell cycle distribution. MTT assay was used to evaluate cell viability. LXR activation increased cell distribution in G1 phase and lipid accumulation. Since dominant-negative Srebp1c could clear the deposited lipid rather than recover the G1 arrest, we identified S-phase kinase-associated protein 2 (Skp2) as a potential target gene of LXR. In deed, LXR activation significantly inhibited Skp2 gene expression and protein amount. We also observed that the luciferase activity of Skp2 promoter was suppressed by T0901317 and the potential LXR regulatory site was narrowed down to a region of nt -289 to -38. Silencing Lxrα and Lxrβ rescued SKP2 protein level and recovered the cellular growth repressed by LXR activation. Moreover, SKP2 overabundance reduced P27 protein level by promoting its degradation, consequently overcame the G1 arrest caused by T0901317. Our findings demonstrate that transrepressing Skp2 expression by LXR activation resulted in defective SKP2-mediated P27 degradation and inhibitory cell growth in beta cells.
Collapse
Affiliation(s)
- Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Changwen Jing
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Xinyi Tang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Yuanyuan Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
17
|
Scharfmann R, Didiesheim M, Richards P, Chandra V, Oshima M, Albagli O. Mass production of functional human pancreatic β-cells: why and how? Diabetes Obes Metab 2016; 18 Suppl 1:128-36. [PMID: 27615142 DOI: 10.1111/dom.12728] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022]
Abstract
Diabetes (either type 1 or type 2) is due to insufficient functional β-cell mass. Research has, therefore, aimed to discover new ways to maintain or increase either β-cell mass or function. For this purpose, rodents have mainly been used as model systems and a large number of discoveries have been made. Meanwhile, although we have learned that rodent models represent powerful systems to model β-cell development, function and destruction, we realize that there are limitations when attempting to transfer the data to what is occurring in humans. Indeed, while human β-cells share many similarities with rodent β-cells, they also differ on a number of important parameters. In this context, developing ways to study human β-cell development, function and death represents an important challenge. This review will describe recent data on the development and use of convenient sources of human β-cells that should be useful tools to discover new ways to modulate functional β-cell mass in humans.
Collapse
Affiliation(s)
- R Scharfmann
- INSERM U1016, Université Paris-Descartes, Institut Cochin, Paris, France.
| | - M Didiesheim
- INSERM U1016, Université Paris-Descartes, Institut Cochin, Paris, France
| | - P Richards
- INSERM U1016, Université Paris-Descartes, Institut Cochin, Paris, France
| | - V Chandra
- INSERM U1016, Université Paris-Descartes, Institut Cochin, Paris, France
| | - M Oshima
- INSERM U1016, Université Paris-Descartes, Institut Cochin, Paris, France
| | - O Albagli
- INSERM U1016, Université Paris-Descartes, Institut Cochin, Paris, France
| |
Collapse
|
18
|
Zhang H, Olejnicka B, Öllinger K, Brunk UT. Starvation-induced autophagocytosis enhances the susceptibility of insulinoma cells to oxidative stress. Redox Rep 2016; 2:235-47. [DOI: 10.1080/13510002.1996.11747056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
19
|
Wallbach M, Duque Escobar J, Babaeikelishomi R, Stahnke MJ, Blume R, Schröder S, Kruegel J, Maedler K, Kluth O, Kehlenbach RH, Miosge N, Oetjen E. Distinct functions of the dual leucine zipper kinase depending on its subcellular localization. Cell Signal 2016; 28:272-83. [PMID: 26776303 DOI: 10.1016/j.cellsig.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/20/2015] [Accepted: 01/04/2016] [Indexed: 01/09/2023]
Abstract
The dual leucine zipper kinase DLK induces β-cell apoptosis by inhibiting the transcriptional activity conferred by the β-cell protective transcription factor cAMP response element binding protein CREB. This action might contribute to β-cell loss and ultimately diabetes. Within its kinase domain DLK shares high homology with the mixed lineage kinase (MLK) 3, which is activated by tumor necrosis factor (TNF) α and interleukin (IL)-1β, known prediabetic signals. In the present study, the regulation of DLK in β-cells by these cytokines was investigated. Both, TNFα and IL-1β induced the nuclear translocation of DLK. Mutations within a putative nuclear localization signal (NLS) prevented basal and cytokine-induced nuclear localization of DLK and binding to the importin receptor importin α, thereby demonstrating a functional NLS within DLK. DLK NLS mutants were catalytically active as they phosphorylated their down-stream kinase c-Jun N-terminal kinase to the same extent as DLK wild-type but did neither inhibit CREB-dependent gene transcription nor transcription conferred by the promoter of the anti-apoptotic protein BCL-xL. In addition, the β-cell apoptosis-inducing effect of DLK was severely diminished by mutation of its NLS. In a murine model of prediabetes, enhanced nuclear DLK was found. These data demonstrate that DLK exerts distinct functions, depending on its subcellular localization and thus provide a novel level of regulating DLK action. Furthermore, the prevention of the nuclear localization of DLK as induced by prediabetic signals with consecutive suppression of β-cell apoptosis might constitute a novel target in the therapy of diabetes mellitus.
Collapse
Affiliation(s)
- Manuel Wallbach
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Jorge Duque Escobar
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Rohollah Babaeikelishomi
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Marie-Jeannette Stahnke
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Roland Blume
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Sabine Schröder
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jenny Kruegel
- Department of Prothetics, Faculty of Medicine, Georg-August-University, GZMB, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Kathrin Maedler
- Center for Biomolecular Interactions Bremen, Leobener Str. Im NW2, 28359 Bremen, Germany
| | - Oliver Kluth
- German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University, GZMB, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nicolai Miosge
- Department of Prothetics, Faculty of Medicine, Georg-August-University, GZMB, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Elke Oetjen
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany.
| |
Collapse
|
20
|
Yokoi N, Gheni G, Takahashi H, Seino S. β-Cell glutamate signaling: Its role in incretin-induced insulin secretion. J Diabetes Investig 2016; 7 Suppl 1:38-43. [PMID: 27186354 PMCID: PMC4854503 DOI: 10.1111/jdi.12468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022] Open
Abstract
Insulin secretion from the pancreatic β-cell (referred to as β-cell hereafter) plays a central role in glucose homeostasis. Impaired insulin secretion is a major factor contributing to the development of diabetes and, therefore, is an important target for treatment of the disease. Cyclic adenosine monophosphate is a key second messenger in β-cells that amplifies insulin secretion. Incretins released by the gut potentiate insulin secretion through cyclic adenosine monophosphate signaling in β-cells, which is the basis for the incretin-based diabetes therapies now being used worldwide. Despite its importance, the interaction between glucose metabolism and incretin/cyclic adenosine monophosphate signaling in β-cells has long been unknown. A recent study showed that cytosolic glutamate produced by glucose metabolism in β-cells is a key signal in incretin-induced insulin secretion. Here we review the physiological and pathophysiological roles of β-cell glutamate signaling in incretin-induced insulin secretion.
Collapse
Affiliation(s)
- Norihide Yokoi
- Division of Molecular and Metabolic Medicine Kobe University Graduate School of Medicine Kobe Japan
| | - Ghupurjan Gheni
- Division of Molecular and Metabolic Medicine Kobe University Graduate School of Medicine Kobe Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine Kobe University Graduate School of Medicine Kobe Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
21
|
Thomas A, Rajesh EK, Kumar DS. The Significance of Tinospora crispa
in Treatment of Diabetes Mellitus. Phytother Res 2016; 30:357-66. [DOI: 10.1002/ptr.5559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/22/2015] [Accepted: 12/04/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Alex Thomas
- CARe Keralam Ltd, KINFRA Small Industries Park; KINFRA Park P.O. Koratty 680 309 Kerala India
| | - E. K. Rajesh
- My Holdings Consultancy Pvt Ltd; First Floor, Supriya Tower Chalakudy 680307 Thrissur District, Kerala India
| | - D. Suresh Kumar
- CARe Keralam Ltd, KINFRA Small Industries Park; KINFRA Park P.O. Koratty 680 309 Kerala India
| |
Collapse
|
22
|
Slepchenko KG, Daniels NA, Guo A, Li YV. Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion. Endocrine 2015; 50:110-22. [PMID: 25771886 DOI: 10.1007/s12020-015-0568-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.
Collapse
Affiliation(s)
- Kira G Slepchenko
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | | | | | | |
Collapse
|
23
|
Iwasaki M, Minami K, Shibasaki T, Miki T, Miyazaki JI, Seino S. Establishment of new clonal pancreatic β-cell lines (MIN6-K) useful for study of incretin/cyclic adenosine monophosphate signaling. J Diabetes Investig 2014; 1:137-42. [PMID: 24843422 PMCID: PMC4008005 DOI: 10.1111/j.2040-1124.2010.00026.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Incretin/cyclic adenosine monophosphate (cAMP) signaling is critical for potentiation of insulin secretion. Although several cell lines of pancreatic β‐cells are currently available, there are no cell lines suitable for investigation of incretin/cAMP signaling. In the present study, we have newly established pancreatic β‐cell lines (named MIN6‐K) from the IT6 mouse, which develops insulinoma. MIN6‐K8 cells respond to both glucose and incretins, such as glucagon‐like peptide‐1 (GLP‐1) and glucose‐dependent insulinotropic polypeptide (GIP), as is the case in pancreatic islets, whereas MIN6‐K20 cells respond to glucose, but not to incretins. Despite the difference in incretin‐potentiated insulin secretion between these two cell lines, the accumulation of cAMP after stimulation of GLP‐1 is comparable in these cells. Interestingly, we also found that incretin responsiveness is drastically induced by the formation of pseudoislets from MIN6‐K20 cells to a level comparable to that of pancreatic islets. Thus, these cell lines are useful for studying incretin/cAMP signaling in β‐cells. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00026.x, 2010)
Collapse
Affiliation(s)
- Masahiro Iwasaki
- Division of Cellular and Molecular Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe
| | - Kohtaro Minami
- Division of Cellular and Molecular Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe
| | - Tadao Shibasaki
- Division of Cellular and Molecular Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe
| | - Takashi Miki
- Division of Cellular and Molecular Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe ; Department of Autonomic Physiology, Graduate School of Medicine, Chiba University, Chiba
| | - Jun-Ichi Miyazaki
- Department of Nutrition and Physiological Chemistry, Osaka University Graduate School of Medicine, Osaka
| | - Susumu Seino
- Division of Cellular and Molecular Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe ; Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe ; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
24
|
Stahnke MJ, Dickel C, Schröder S, Kaiser D, Blume R, Stein R, Pouponnot C, Oetjen E. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase. Cell Signal 2014; 26:1792-9. [PMID: 24726898 DOI: 10.1016/j.cellsig.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 01/25/2023]
Abstract
Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5'- and 3'-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2.
Collapse
Affiliation(s)
| | - Corinna Dickel
- Department of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Sabine Schröder
- Institute of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Kaiser
- Institute of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Blume
- Department of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Celio Pouponnot
- Institut Curie, CNRS UMR 3347, INSERM U1021, Paris Sud University Centre de Recherche, Orsay, France
| | - Elke Oetjen
- Department of Pharmacology, University Medical Center Göttingen, Göttingen, Germany; Institute of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany; Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
25
|
Semache M, Ghislain J, Zarrouki B, Tremblay C, Poitout V. Pancreatic and duodenal homeobox-1 nuclear localization is regulated by glucose in dispersed rat islets but not in insulin-secreting cell lines. Islets 2014; 6:e982376. [PMID: 25437380 PMCID: PMC4588559 DOI: 10.4161/19382014.2014.982376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transcription factor Pancreatic and Duodenal Homeobox-1 (PDX-1) plays a major role in the development and function of pancreatic β-cells and its mutation results in diabetes. In adult β-cells, glucose stimulates transcription of the insulin gene in part by regulating PDX-1 expression, stability and activity. Glucose is also thought to modulate PDX-1 nuclear translocation but in vitro studies examining nucleo-cytoplasmic shuttling of endogenous or ectopically expressed PDX-1 in insulin-secreting cell lines have led to conflicting results. Here we show that endogenous PDX-1 undergoes translocation from the cytoplasm to the nucleus in response to glucose in dispersed rat islets but not in insulin-secreting MIN6, HIT-T15, or INS832/13 cells. Interestingly, however, we found that a PDX-1-GFP fusion protein can shuttle from the cytoplasm to the nucleus in response to glucose stimulation in HIT-T15 cells. Our results suggest that the regulation of endogenous PDX-1 sub-cellular localization by glucose is observed in primary islets and that care should be taken when interpreting data from insulin-secreting cell lines.
Collapse
Key Words
- ANOVA, analysis of variance
- BSA, bovine serum albumin
- DAPI, 4′, 6-diamidino-2-phenylindole
- DMEM, dulbecco's modified eagle medium
- EDTA, ethylenediaminetetraacetic acid
- GFP, green fluorescent protein
- HDAC, histone deacetylase
- HIT-T15
- INS832/13
- KRBH, krebs ringer bicarbonate hepes
- MIN6
- MODY, maturity-onset diabetes of the young
- PDX-1
- PDX-1, pancreatic and duodenal homeobox-1
- SEM, standard error of the mean
- SUMO, small ubiquitin-like modifier
- T2D, type 2 diabetes
- ZDF, zucker diabetic fatty
- glucose
- glucose-stimulated insulin secretion
- nucleo-cytoplasmic shuttling
- pancreatic β cells
Collapse
Affiliation(s)
- Meriem Semache
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
| | - Bader Zarrouki
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
| | | | - Vincent Poitout
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
- Correspondence to: Vincent Poitout;
| |
Collapse
|
26
|
Ozasa R, Okada T, Nadanaka S, Nagamine T, Zyryanova A, Harding H, Ron D, Mori K. The antipsychotic olanzapine induces apoptosis in insulin-secreting pancreatic β cells by blocking PERK-mediated translational attenuation. Cell Struct Funct 2013; 38:183-195. [PMID: 23812432 DOI: 10.1247/csf.13012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Patients with schizophrenia receive medication to alleviate various symptoms, but some efficacious second generation antipsychotics, particularly olanzapine, can cause obesity, dyslipidemia, and diabetes mellitus. It has been generally considered that olanzapine contributes to the development of diabetes by inducing obesity and subsequent insulin resistance. In this study, we examined the effect of olanzapine and risperidone, another second generation antipsychotic, on a hamster pancreatic β cell line, and found that both evoked mild endoplasmic reticulum (ER) stress, as evidenced by mild activation of the ER stress sensor molecule PERK. Surprisingly, only olanzapine induced marked apoptosis. Phosphorylation of the α subunit of eukaryotic initiation factor 2, an event immediately downstream of PERK activation, was not observed in cells treated with olanzapine, protein synthesis continued despite PERK activation, and ER stress was thereby sustained. Secretion of insulin was markedly inhibited, and both proinsulin and insulin accumulated inside olanzapine-treated cells. Inhibition of protein synthesis and knockdown of insulin mRNA, which result in less unfolded protein burden, both attenuated subsequent olanzapine-induced apoptosis. Given clinical observations that some patients taking olanzapine exhibit hyperlipidemia and hyperglycemia without gaining weight, our observations suggest that damage to pancreatic β cells may contribute to the undesirable metabolic consequences of olanzapine treatment in some cases.
Collapse
Affiliation(s)
- Riwa Ozasa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chepurny OG, Bertinetti D, Diskar M, Leech CA, Afshari P, Tsalkova T, Cheng X, Schwede F, Genieser HG, Herberg FW, Holz GG. Stimulation of proglucagon gene expression by human GPR119 in enteroendocrine L-cell line GLUTag. Mol Endocrinol 2013; 27:1267-82. [PMID: 23798572 DOI: 10.1210/me.2013-1029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
GPR119 is a G protein-coupled receptor expressed on enteroendocrine L-cells that synthesize and secrete the incretin hormone glucagon-like peptide-1 (GLP-1). Although GPR119 agonists stimulate L-cell GLP-1 secretion, there is uncertainty concerning whether GLP-1 biosynthesis is under the control of GPR119. Here we report that GPR119 is functionally coupled to increased proglucagon (PG) gene expression that constitutes an essential first step in GLP-1 biosynthesis. Using a mouse L-cell line (GLUTag) that expresses endogenous GPR119, we demonstrate that PG gene promoter activity is stimulated by GPR119 agonist AS1269574. Surprisingly, transfection of GLUTag cells with recombinant human GPR119 (hGPR119) results in a constitutive and apparently ligand-independent increase of PG gene promoter activity and PG mRNA content. These constitutive actions of hGPR119 are mediated by cAMP-dependent protein kinase (PKA) but not cAMP sensor Epac2. Thus, the constitutive action of hGPR119 to stimulate PG gene promoter activity is diminished by: 1) a dominant-negative Gαs protein, 2) a dominant-negative PKA regulatory subunit, and 3) a dominant-negative A-CREB. Interestingly, PG gene promoter activity is stimulated by 6-Bn-cAMP-AM, a cAMP analog that selectively activates α and β isoforms of type II, but not type I PKA regulatory subunits expressed in GLUTag cells. Finally, our analysis reveals that a specific inhibitor of Epac2 activation (ESI-05) fails to block the stimulatory action of 6-Bn-cAMP-AM at the PG gene promoter, nor is PG gene promoter activity stimulated by: 1) a constitutively active Epac2, or 2) cAMP analogs that selectively activate Epac proteins. Such findings are discussed within the context of ongoing controversies concerning the relative contributions of PKA and Epac2 to the control of PG gene expression.
Collapse
Affiliation(s)
- Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Istvanffy R, Oostendorp RAJ. Generation and establishment of murine adherent cell lines. Methods Mol Biol 2013. [PMID: 23179840 DOI: 10.1007/978-1-62703-128-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
We describe a method to derive cell lines and clones from cells of the murine midgestation aorta-gonads-mesonephros (AGM) microenvironment. We start from subdissected AGM regions in "explant" or "single cell suspension" type cultures from embryos transgenic for tsA58, a temperature-sensitive mutant of the SV40 T antigen gene. The number of cells in such cultures initially expand, but in most cases, this expansion phase is followed by a stable or even decline in cell number. After this so-called crisis phase, cell proliferation is noticeable in more than 90% of the cultures. Stromal cell clones can be isolated from these cultures, some of which have been cultured for more than 50 population doublings, and functionally characterized using various methods These stromal cell clones are valuable tools for the study of the regulation of hematopoietic stem and progenitor cells in the midgestation mouse embryo.
Collapse
Affiliation(s)
- Rouzanna Istvanffy
- The Stem Cell Physiology Laboratory, Medizinische Klinik, Technische Universität München, Munich, Germany
| | | |
Collapse
|
29
|
Suzuki T, Dai P, Hatakeyama T, Harada Y, Tanaka H, Yoshimura N, Takamatsu T. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression. Acta Histochem Cytochem 2013; 46:51-8. [PMID: 23720603 PMCID: PMC3661777 DOI: 10.1267/ahc.12035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells.
Collapse
Affiliation(s)
- Tomoyuki Suzuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
- Department of Transplantation and Regenerative Surgery, Kyoto Prefectural University of Medicine
| | - Ping Dai
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Tomoya Hatakeyama
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
- Division of Digestive Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Norio Yoshimura
- Department of Transplantation and Regenerative Surgery, Kyoto Prefectural University of Medicine
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| |
Collapse
|
30
|
Slepchenko KG, James CBL, Li YV. Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting β-cell line. Exp Physiol 2013; 98:1301-11. [PMID: 23603373 DOI: 10.1113/expphysiol.2013.072348] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diminished or inappropriate secretion of insulin is associated with type II diabetes. The cellular/molecular mechanism coupled with the regulation of insulin secretion is still under intense investigation. Divalent ion zinc (Zn(2+)) is co-packaged and co-secreted with insulin and is intimately involved in the process of insulin biosynthesis and the maturation of insulin secretory granules. The study reported here investigated glucose-stimulated zinc secretion (GSZS) and the effect of zinc on glucose-stimulated insulin secretion (GSIS) in the HIT-T15 pancreatic β-cell line. Zinc secretion was measured using a newly developed fluorescent zinc imaging approach, and the insulin secretion was measured using an enzyme-linked immunosorbent assay. There was apparent granular-like zinc staining in β-cells. The application of glucose induced detectable zinc secretion or GSZS. Like GSIS, GSZS was dependent on the glucose concentration (5-20 mm) and the presence of extracellular calcium. The application of a zinc chelator enhanced GSZS. When brief paired-pulse glucose stimulations, which involve the initial glucose stimulation followed by a second round of glucose stimulation, were applied, zinc secretion or GSZS that followed the first pulse was inhibited. This inhibition was reversed by zinc chelation, suggesting a feedback mechanism on GSZS by zinc secreted from β-cells. Finally, the application of zinc (50 μm) strongly inhibited GSIS as measured by enzyme-linked immunosorbent assay. The present study suggests that insulin secretion is regulated by co-secreted zinc that may act as an autocrine inhibitory modulator.
Collapse
Affiliation(s)
- Kira G Slepchenko
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | | | | |
Collapse
|
31
|
Oshima H, Yoshida S, Ohishi T, Matsui T, Tanaka H, Yonetoku Y, Shibasaki M, Uchiyama Y. Novel GPR119 agonist AS1669058 potentiates insulin secretion from rat islets and has potent anti-diabetic effects in ICR and diabetic db/db mice. Life Sci 2013; 92:167-73. [DOI: 10.1016/j.lfs.2012.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
32
|
Scharfmann R, Rachdi L, Ravassard P. Concise review: in search of unlimited sources of functional human pancreatic beta cells. Stem Cells Transl Med 2012; 2:61-7. [PMID: 23283495 DOI: 10.5966/sctm.2012-0120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It is well-established that insulin-producing pancreatic beta cells are central in diabetes. In type 1 diabetes, beta cells are destroyed by an autoimmune mechanism, whereas in type 2 diabetes, there is a decrease in functional beta-cell mass. In this context, studying beta cells is of major importance. Beta cells represent only 1% of total pancreatic cells and are found dispersed in the pancreatic gland. During the past decades, many tools and approaches have been developed to study rodent beta cells that efficiently pushed the field forward. However, rodent and human beta cells are not identical, and our knowledge of human beta cells has not progressed as quickly as our understanding of rodent beta cells. We believe that one of the reasons for this inefficient progress is the difficulty of accessing unlimited sources of functional human pancreatic beta cells. The main focus of this review concerns recent strategies to generate new sources of human pancreatic beta cells.
Collapse
|
33
|
Wang Y, Guo T, Zhao S, Li Z, Mao Y, Li H, Wang X, Wang R, Xu W, Song R, Jin L, Li X, Irwin DM, Niu G, Tan H. Expression of the human glucokinase gene: important roles of the 5' flanking and intron 1 sequences. PLoS One 2012; 7:e45824. [PMID: 23029263 PMCID: PMC3447760 DOI: 10.1371/journal.pone.0045824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/24/2012] [Indexed: 02/07/2023] Open
Abstract
Background Glucokinase plays important tissue-specific roles in human physiology, where it acts as a sensor of blood glucose levels in the pancreas, and a few other cells of the gut and brain, and as the rate-limiting step in glucose metabolism in the liver. Liver-specific expression is driven by one of the two tissue-specific promoters, and has an absolute requirement for insulin. The sequences that mediate regulation by insulin are incompletely understood. Methodology/Principal Findings To better understand the liver-specific expression of the human glucokinase gene we compared the structures of this gene from diverse mammals. Much of the sequence located between the 5′ pancreatic beta-cell-specific and downstream liver-specific promoters of the glucokinase genes is composed of repetitive DNA elements that were inserted in parallel on different mammalian lineages. The transcriptional activity of the liver-specific promoter 5′ flanking sequences were tested with and without downstream intronic sequences in two human liver cells lines, HepG2 and L-02. While glucokinase liver-specific 5′ flanking sequences support expression in liver cell lines, a sequence located about 2000 bases 3′ to the liver-specific mRNA start site represses gene expression. Enhanced reporter gene expression was observed in both cell lines when cells were treated with fetal calf serum, but only in the L-02 cells was expression enhanced by insulin. Conclusions/Significance Our results suggest that the normal liver L-02 cell line may be a better model to understand the regulation of the liver-specific expression of the human glucokinase gene. Our results also suggest that sequences downstream of the liver-specific mRNA start site have important roles in the regulation of liver-specific glucokinase gene expression.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Tingting Guo
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Shuyong Zhao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Zhixin Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Yiqing Mao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Hui Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Xi Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Rong Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Wei Xu
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Rongjing Song
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Ling Jin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Xiuli Li
- Department of Pharmacology, Chifeng College, Chifeng, China
| | - David M. Irwin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (HT); (DMI)
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- * E-mail: (HT); (DMI)
| |
Collapse
|
34
|
Guo-Parke H, McCluskey JT, Kelly C, Hamid M, McClenaghan NH, Flatt PR. Configuration of electrofusion-derived human insulin-secreting cell line as pseudoislets enhances functionality and therapeutic utility. J Endocrinol 2012; 214:257-65. [PMID: 22685334 DOI: 10.1530/joe-12-0188] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Formation of pseudoislets from rodent cell lines has provided a particularly useful model to study homotypic islet cell interactions and insulin secretion. This study aimed to extend this research to generate and characterize, for the first time, functional human pseudoislets comprising the recently described electrofusion-derived insulin-secreting 1.1B4 human β-cell line. Structural pseudoislets formed readily over 3-7 days in culture using ultra-low-attachment plastic, attaining a static size of 100-200 μm in diameter, corresponding to ~6000 β cells. This was achieved by decreases in cell proliferation and integrity as assessed by BrdU ELISA, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, and lactate dehydrogenase assays. Insulin content was comparable between monolayers and pseudoislets. However, pseudoislet formation enhanced insulin secretion by 1·7- to 12·5-fold in response to acute stimulation with glucose, amino acids, incretin hormones, or drugs compared with equivalent cell monolayers. Western blot and RT-PCR showed expression of key genes involved in cell communication and the stimulus-secretion pathway. Expression of E-Cadherin and connexin 36 and 43 was greatly enhanced in pseudoislets with no appreciable connexin 43 protein expression in monolayers. Comparable levels of insulin, glucokinase, and GLUT1 were found in both cell populations. The improved secretory function of human 1.1B4 cell pseudoislets over monolayers results from improved cellular interactions mediated through gap junction communication. Pseudoislets comprising engineered electrofusion-derived human β cells provide an attractive model for islet research and drug testing as well as offering novel therapeutic application through transplantation.
Collapse
Affiliation(s)
- Hong Guo-Parke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
35
|
Samuelson L, Gerber DA. Improved function and growth of pancreatic cells in a three-dimensional bioreactor environment. Tissue Eng Part C Methods 2012; 19:39-47. [PMID: 22712746 DOI: 10.1089/ten.tec.2012.0236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Methods of three-dimensional (3D) cell culture have made significant progress in recent years due to a better understanding of cell to cell interactions and the cell's interface with their surrounding environment. We hypothesized that a microgravity 3D culture system would improve upon the growth and function of a pancreatic progenitor cell population. We developed a rotating wall vessel bioreactor and established a culture system using a pancreatic cell line. Cells in the bioreactors showed robust proliferation, enhanced transcriptional signaling, and improved translation of pancreatic genes compared with two-dimensional static culture. Cells also gained the ability to respond to glucose stimulation, which was not observed in the control cultures. These findings suggest that a 3D microgravity bioreactor environment mimics the niche of the pancreas yielding a cell source with potential for cell-based therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Lisa Samuelson
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
36
|
Meng ZX, Yin Y, Lv JH, Sha M, Lin Y, Gao L, Zhu YX, Sun YJ, Han X. Aberrant activation of liver X receptors impairs pancreatic beta cell function through upregulation of sterol regulatory element-binding protein 1c in mouse islets and rodent cell lines. Diabetologia 2012; 55:1733-44. [PMID: 22415588 DOI: 10.1007/s00125-012-2516-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS Liver X receptors (LXR) are important transcriptional regulators of lipid and glucose metabolism. Our previous report demonstrated that LXR activation inhibited pancreatic beta cell proliferation through cell cycle arrest. Here we explore the role of LXR activation in beta cell insulin secretion and the underlying mechanism that might be involved. METHODS Mouse pancreatic islets or insulin-secreting MIN6 cells were exposed to the LXR agonist, T0901317, and insulin secretion, glucose and fatty acid oxidation, and lipogenic gene expression were assessed. The unsaturated fatty acid eicosapentaenoic acid and the dominant negative sterol regulatory element binding protein 1c (SREBP1c) were used to inhibit endogenous SREBP1c and evaluate the involvement of SREBP1c in beta cell dysfunction induced by LXR activation. RESULTS Treatment with the LXR agonist decreased beta cell glucose sensitivity and impaired glucose-stimulated insulin secretion in vivo and in vitro. This was accompanied by derangements of beta cell glucose oxygen consumption, glucose oxidation, ATP production and intracellular voltage-gated calcium channel flux. LXR activation also regulated the expression of lipid metabolism-related genes such as Fas, Acc (also known as Acaca) and Cpt1a, and led to intracellular lipid accumulation. Further studies revealed that inhibition of SREBP1c abolished LXR activation-induced lipid accumulation and improved beta cell glucose metabolism, ATP production and insulin secretion. CONCLUSIONS/INTERPRETATION Our data reveal that aberrant activation of LXR reproduced the phenomenon of beta cell dysfunction in the development of type 2 diabetes in vitro and in vivo. Upregulation of SREBP1c production and the lipotoxicity mediated by it played a central role in this process.
Collapse
Affiliation(s)
- Z X Meng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee NS, Rohan JG, Zitting M, Kamath S, Weitz A, Sipos A, Salvaterra PM, Hasegawa K, Pera M, Chow RH. A novel dual-color reporter for identifying insulin-producing beta-cells and classifying heterogeneity of insulinoma cell lines. PLoS One 2012; 7:e35521. [PMID: 22530041 PMCID: PMC3329476 DOI: 10.1371/journal.pone.0035521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/17/2012] [Indexed: 12/14/2022] Open
Abstract
Many research studies use immortalized cell lines as surrogates for primary beta- cells. We describe the production and use of a novel "indirect" dual-fluorescent reporter system that leads to mutually exclusive expression of EGFP in insulin-producing (INS(+)) beta-cells or mCherry in non-beta-cells. Our system uses the human insulin promoter to initiate a Cre-mediated shift in reporter color within a single transgene construct and is useful for FACS selection of cells from single cultures for further analysis. Application of our reporter to presumably clonal HIT-T15 insulinoma cells, as well as other presumably clonal lines, indicates that these cultures are in fact heterogeneous with respect to INS(+) phenotype. Our strategy could be easily applied to other cell- or tissue-specific promoters. We anticipate its utility for FACS purification of INS(+) and glucose-responsive beta-like-cells from primary human islet cell isolates or in vitro differentiated pluripotent stem cells.
Collapse
Affiliation(s)
- Nan Sook Lee
- Department of Physiology & Biophysics and Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Grozinsky-Glasberg S, Shimon I, Rubinfeld H. The role of cell lines in the study of neuroendocrine tumors. Neuroendocrinology 2012; 96:173-87. [PMID: 22538498 DOI: 10.1159/000338793] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/09/2012] [Indexed: 12/12/2022]
Abstract
Cell lines originating from neuroendocrine tumors (NETs) represent useful experimental models to assess the control of synthesis and release of different hormones and hormone-like peptides, to evaluate the mechanisms of action of these agents in target tissues at the cellular and subcellular levels, and to study cell proliferation and tumor development, as well as the effect of different drugs on these complex processes. To date, the understanding of NET biology (with regard to their mechanisms of hormone secretion, cell proliferation and metastatic spread) has been hampered by the lack of appropriate animal models or cell lines for their study. In the present review, we aim to summarize the recent in vitro/in vivo data regarding cell lines derived from NETs which are most frequently employed in experimental neuroendocrinology.
Collapse
Affiliation(s)
- Simona Grozinsky-Glasberg
- Neuroendocrine Tumor Unit, Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | |
Collapse
|
39
|
Ravassard P, Hazhouz Y, Pechberty S, Bricout-Neveu E, Armanet M, Czernichow P, Scharfmann R. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 2011; 121:3589-97. [PMID: 21865645 DOI: 10.1172/jci58447] [Citation(s) in RCA: 452] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/15/2011] [Indexed: 12/12/2022] Open
Abstract
Despite intense efforts over the past 30 years, human pancreatic β cell lines have not been available. Here, we describe a robust technology for producing a functional human β cell line using targeted oncogenesis in human fetal tissue. Human fetal pancreatic buds were transduced with a lentiviral vector that expressed SV40LT under the control of the insulin promoter. The transduced buds were then grafted into SCID mice so that they could develop into mature pancreatic tissue. Upon differentiation, the newly formed SV40LT-expressing β cells proliferated and formed insulinomas. The resulting β cells were then transduced with human telomerase reverse transcriptase (hTERT), grafted into other SCID mice, and finally expanded in vitro to generate cell lines. One of these cell lines, EndoC-βH1, expressed many β cell-specific markers without any substantial expression of markers of other pancreatic cell types. The cells secreted insulin when stimulated by glucose or other insulin secretagogues, and cell transplantation reversed chemically induced diabetes in mice. These cells represent a unique tool for large-scale drug discovery and provide a preclinical model for cell replacement therapy in diabetes. This technology could be generalized to generate other human cell lines when the cell type-specific promoter is available.
Collapse
Affiliation(s)
- Philippe Ravassard
- Université Pierre et Marie Curie-Paris 6, Biotechnology and Biotherapy Team, Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière (CRICM), UMRS 975, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
For decades, investigators have made numerous attempts to generate human pancreatic β cell lines that could be used to advance β cell biology, facilitate drug discovery, and provide a pathway to β cell replacement therapy for the treatment of diabetes. In this issue of the JCI, Ravassard and colleagues report that this has finally been achieved successfully with a multistep process that led to the generation of cells, which they termed EndoC-βH1 cells, that secreted insulin in response to glucose challenge.
Collapse
Affiliation(s)
- Gordon C Weir
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
41
|
McCluskey JT, Hamid M, Guo-Parke H, McClenaghan NH, Gomis R, Flatt PR. Development and functional characterization of insulin-releasing human pancreatic beta cell lines produced by electrofusion. J Biol Chem 2011; 286:21982-92. [PMID: 21515691 DOI: 10.1074/jbc.m111.226795] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Three novel human insulin-releasing cell lines designated 1.1B4, 1.4E7, and 1.1E7 were generated by electrofusion of freshly isolated of human pancreatic beta cells and the immortal human PANC-1 epithelial cell line. Functional studies demonstrated glucose sensitivity and responsiveness to known modulators of insulin secretion. Western blot, RT-PCR, and immunohistochemistry showed expression of the major genes involved in proinsulin processing and the pancreatic beta cell stimulus-secretion pathway including PC1/3, PC2, GLUT-1, glucokinase, and K-ATP channel complex (Sur1 and Kir6.2) and the voltage-dependent L-type Ca(2+) channel. The cells stained positively for insulin, and 1.1B4 cells were used to demonstrate specific staining for insulin, C-peptide, and proinsulin together with insulin secretory granules by electron microscopy. Analysis of metabolic function indicated intact mechanisms for glucose uptake, oxidation/utilization, and phosphorylation by glucokinase. Glucose, alanine, and depolarizing concentrations of K(+) were all able to increase [Ca(2+)](i) in at least two of the cell lines tested. Insulin secretion was also modulated by other nutrients, hormones, and drugs acting as stimulators or inhibitors in normal beta cells. Subscapular implantation of the 1.1B4 cell line improved hyperglycemia and resulted in glucose lowering in streptozotocin-diabetic SCID mice. These novel human electrofusion-derived beta cell lines therefore exhibit stable characteristics reminiscent of normal pancreatic beta cells, thereby providing an unlimited source of human insulin-producing cells for basic biochemical studies and pharmacological drug testing plus proof of concept for cellular insulin replacement therapy.
Collapse
Affiliation(s)
- Jane T McCluskey
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine BT52 1SA, Northern Ireland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
42
|
Phu DT, Wallbach M, Depatie C, Fu A, Screaton RA, Oetjen E. Regulation of the CREB coactivator TORC by the dual leucine zipper kinase at different levels. Cell Signal 2011; 23:344-53. [DOI: 10.1016/j.cellsig.2010.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 10/25/2022]
|
43
|
Abstract
Several inositol compounds undergo rapid cycles of phosphorylation and dephosphorylation. These cycles are dependent on ATP and energy metabolism. Therefore, interfering with the cellular energy metabolism can change the concentration of rapidly turning over inositols. Many pharmacological inhibitors, apart from their intended action, also affect the energy metabolism of the cells and lower ATP. This can unspecifically influence rapidly turning over inositol phosphates. Thus, the ATP concentration should be checked when reduced inositol phosphates are observed after application of pharmacological inhibitors. A luminescence-based assay for the measurement of ATP and ADP is described. ATP is measured luminometrically using firefly luciferase. Detection of ADP is performed in a two-step enzymatic procedure: (1) The sample ATP is degraded to AMP and (2) ADP is phosphorylated to ATP, which can then be measured luminometrically. This method gives a better signal-to-noise ratio than other methods that do not degrade the sample ATP, but convert ADP directly to ATP and then measure the sum of ATP plus ADP.
Collapse
|
44
|
Kim D, Kim HY, Koh HS, Park HE, Ahn C, Kim JY. Alginate Microencapsulation of Islet Cells Using Electrostatic Droplet Generator. KOREAN JOURNAL OF TRANSPLANTATION 2010. [DOI: 10.4285/jkstn.2010.24.2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Donghee Kim
- Department of Biological Science, Gachon University of Medicine and Science, Incheon, Korea
| | - Hee Yeon Kim
- Department of Biological Science, Gachon University of Medicine and Science, Incheon, Korea
| | - Hyun Sook Koh
- Department of Biological Science, Gachon University of Medicine and Science, Incheon, Korea
| | - Hyo Eun Park
- Department of Biological Science, Gachon University of Medicine and Science, Incheon, Korea
| | - Curie Ahn
- Transplantation Research Institute, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Young Kim
- Department of Biological Science, Gachon University of Medicine and Science, Incheon, Korea
| |
Collapse
|
45
|
Meng Z, Lv J, Luo Y, Lin Y, Zhu Y, Nie J, Yang T, Sun Y, Han X. Forkhead box O1/pancreatic and duodenal homeobox 1 intracellular translocation is regulated by c-Jun N-terminal kinase and involved in prostaglandin E2-induced pancreatic beta-cell dysfunction. Endocrinology 2009; 150:5284-93. [PMID: 19837872 DOI: 10.1210/en.2009-0671] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prostaglandin E(2) (PGE(2)) is a well-known mediator of beta-cell dysfunction in both type 1 and type 2 diabetes. We recently reported that down-regulation of the Akt pathway activity is implicated in PGE(2)-induced pancreatic beta-cell dysfunction. The aim of this study was to further dissect the signaling pathway of this process in pancreatic beta-cell line HIT-T15 cells and primary mouse islets. We found that PGE(2) time-dependently increased the c-Jun N-terminal kinase (JNK) pathway activity. JNK inhibition by the JNK-specific inhibitor SP600125 reversed PGE(2)-inhibited glucose-stimulated insulin secretion (GSIS). PGE(2) induced dephosphorylation of Akt and FOXO1, leading to nuclear localization and transactivation of FOXO1. Activation of FOXO1 induced nuclear exclusion but had no obvious effect on the whole-cell protein level of pancreatic and duodenal homeobox 1 (PDX1). However, these effects were all attenuated by JNK inhibition. Furthermore, adenovirus-mediated overexpression of dominant-negative (DN)-FOXO1 abolished whereas constitutively active (CA)-FOXO1 mimicked the effects of PGE(2) on GSIS in isolated mouse islets. In addition, we demonstrated that DN-JNK1 but not DN-JNK2 or CA-Akt abolished the PGE(2)-induced AP-1 luciferase reporter activity, whereas DN-JNK1 and CA-Akt but not DN-JNK2 reversed the effect of PGE(2) on FOXO1 transcriptional activity, and overexpression of DN-JNK1 rescued PGE(2)-impaired GSIS in mouse islets. Our results revealed that activation of the JNK is involved in PGE(2)-induced beta-cell dysfunction. PGE(2)-mediated JNK1 activation, through dephosphorylation of Akt and FOXO1, leads to nuclear accumulation of FOXO1 and nucleocytoplasmic shuttling of PDX1, finally resulting in defective GSIS in pancreatic beta-cells.
Collapse
Affiliation(s)
- Zhuoxian Meng
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Centre, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tsukada S, Kobayashi MA, Omori S, Unoki H, Maeda S. Transcription factor AP-2beta inhibits glucose-induced insulin secretion in cultured insulin-secreting cell-line. Diabetes Res Clin Pract 2009; 85:279-85. [PMID: 19596470 DOI: 10.1016/j.diabres.2009.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/24/2022]
Abstract
AIM We previously identified the transcription factor activating enhancer-binding protein-2beta (AP-2beta) gene as a new candidate for conferring susceptibility to type 2 diabetes. To ascertain the possible involvement of AP-2beta in the pathogenesis of type 2 diabetes we examined the effects of AP-2beta on glucose-induced insulin secretion. METHODS We measured the insulin secretion stimulated by glucose, tolbutamide, or KCl in the HIT-T15 cells infected with adenovirus vectors encoding AP-2beta or LacZ (control). RESULTS We identified clear expression of AP-2beta in isolated rat pancreatic islets and in HIT-T15 cells. Glucose-induced increase in insulin secretion was significantly inhibited in AP-2beta-overexpressing cells (LacZ, 5.0+/-0.8 ng h(-1)mg(-1) protein; AP-2beta, 1.7+/-0.2 ng h(-1)mg(-1) protein; P=0.0015), whereas insulin expression was the same in both types of cells. Tolbutamide-induced insulin secretion was also suppressed in the AP-2beta-overexpressing cells, but KCl-induced insulin secretion was not affected by AP-2beta overexpression. In addition, Kir6.2 and glucokinase expression was significantly decreased in the AP-2beta-overexpressing cells. CONCLUSION We identified for the first time that AP-2beta expressed and functioned in insulin-secreting cell-line HIT-T15. These results suggest that AP-2beta contributes to susceptibility to type 2 diabetes by inhibiting glucose-induced insulin secretion in pancreatic beta cells.
Collapse
Affiliation(s)
- Shuichi Tsukada
- Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
47
|
Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD. The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 2009; 4:e5033. [PMID: 19343226 PMCID: PMC2660411 DOI: 10.1371/journal.pone.0005033] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 03/02/2009] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs) are known to play an essential role in controlling a broad range of biological processes including animal development. Accordingly, many miRNAs are expressed preferentially in one or a small number of cell types. Yet the mechanisms responsible for this selectivity are not well understood. The aim of this study was to elucidate the molecular basis of cell-specific expression of the pri-miR-375 gene, which is selectively expressed in pancreatic islets, and has been implicated both in the development of islets, and the function of mature pancreatic beta cells. An evolutionarily conserved 768 bp region of DNA upstream of the pri-miR-375 gene was linked to GFP and luciferase reporter genes, and expression monitored in transgenic mice and transfected cultured cells. Deletion and targeted mutagenesis analysis was used to evaluate the functional significance of sequence blocks within the upstream fragment. 5′-RACE analysis was used for mapping the pri-miR-375 gene transcription start site. The conserved 768 bp region was able to direct preferential expression of a GFP reporter gene to pancreatic islets in transgenic mice. Deletion analysis using a luciferase reporter gene in transfected cultured cell lines confirmed the cell specificity of the putative promoter region, and identified several key cis-elements essential for optimal activity, including E-boxes and a TATA sequence. Consistent with this, 5′-RACE analysis identified a transcription start site within this DNA region, 24 bp downstream of the TATA sequence. These studies define the promoter of the pri-miR-375 gene, and show that islet-specific expression of the pri-miR-375 gene is controlled at the transcriptional level. Detailed analysis of the transcriptional mechanisms controlling expression of miRNA genes will be essential to permit a comprehensive understanding of the complex role of miRNAs such as miR-375 in developmental processes.
Collapse
Affiliation(s)
- Tali Avnit-Sagi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Lia Kantorovich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Kredo-Russo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael D. Walker
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
48
|
Schinner S, Krätzner R, Baun D, Dickel C, Blume R, Oetjen E. Inhibition of human insulin gene transcription by peroxisome proliferator-activated receptor gamma and thiazolidinedione oral antidiabetic drugs. Br J Pharmacol 2009; 157:736-45. [PMID: 19338578 DOI: 10.1111/j.1476-5381.2009.00208.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) is essential for glucose homeostasis. PPARgamma ligands reducing insulin levels in vivo are used as drugs to treat type 2 diabetes mellitus. Genes regulated by PPARgamma have been found in several tissues including insulin-producing pancreatic islet beta-cells. However, the role of PPARgamma at the insulin gene was unknown. Therefore, the effect of PPARgamma and PPARgamma ligands like rosiglitazone on insulin gene transcription was investigated. EXPERIMENTAL APPROACH Reporter gene assays were used in the beta-cell line HIT and in primary mature pancreatic islets of transgenic mice. Mapping studies and internal mutations were carried out to locate PPARgamma-responsive promoter regions. KEY RESULTS Rosiglitazone caused a PPARgamma-dependent inhibition of insulin gene transcription in a beta-cell line. This inhibition was concentration-dependent and had an EC(50) similar to that for the activation of a reporter gene under the control of multimerized PPAR binding sites. Also in normal primary pancreatic islets of transgenic mice, known to express high levels of PPARgamma, rosiglitazone inhibited glucose-stimulated insulin gene transcription. Transactivation and mapping experiments suggest that, in contrast to the rat glucagon gene, the inhibition of the human insulin gene promoter by PPARgamma/rosiglitazone does not depend on promoter-bound Pax6 and is attributable to the proximal insulin gene promoter region around the transcription start site from -56 to +18. CONCLUSIONS AND IMPLICATIONS The human insulin gene represents a novel PPARgamma target that may contribute to the action of thiazolidinediones in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- S Schinner
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
A new strategy to generate functional insulin-producing cell lines by somatic gene transfer into pancreatic progenitors. PLoS One 2009; 4:e4731. [PMID: 19266046 PMCID: PMC2649535 DOI: 10.1371/journal.pone.0004731] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/04/2009] [Indexed: 01/25/2023] Open
Abstract
Background There is increasing interest in developing human cell lines to be used to better understand cell biology, but also for drug screening, toxicology analysis and future cell therapy. In the endocrine pancreatic field, functional human beta cell lines are extremely scarce. On the other hand, rodent insulin producing beta cells have been generated during the past years with great success. Many of such cell lines were produced by using transgenic mice expressing SV40T antigen under the control of the insulin promoter, an approach clearly inadequate in human. Our objective was to develop and validate in rodent an alternative transgenic-like approach, applicable to human tissue, by performing somatic gene transfer into pancreatic progenitors that will develop into beta cells. Methods and Findings In this study, rat embryonic pancreases were transduced with recombinant lentiviral vector expressing the SV40T antigen under the control of the insulin promoter. Transduced tissues were next transplanted under the kidney capsule of immuno-incompetent mice allowing insulinoma development from which beta cell lines were established. Gene expression profile, insulin content and glucose dependent secretion, normalization of glycemia upon transplantation into diabetic mice validated the approach to generate beta cell lines. Conclusions Somatic gene transfer into pancreatic progenitors represents an alternative strategy to generate functional beta cell lines in rodent. Moreover, this approach can be generalized to derive cells lines from various tissues and most importantly from tissues of human origin.
Collapse
|
50
|
Meng ZX, Nie J, Ling JJ, Sun JX, Zhu YX, Gao L, Lv JH, Zhu DY, Sun YJ, Han X. Activation of liver X receptors inhibits pancreatic islet beta cell proliferation through cell cycle arrest. Diabetologia 2009; 52:125-35. [PMID: 18949453 DOI: 10.1007/s00125-008-1174-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/09/2008] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Liver X receptors (LXRs) are important transcriptional regulators of lipid homeostasis and proliferation in several cell types. However, the roles of LXRs in pancreatic beta cells have not been fully established. The aim of this study was to investigate the effects of LXRs on pancreatic beta cell proliferation. METHODS Gene expression was analysed using real-time RT-PCR. Transient transfection and reporter gene assays were used to determine the transcriptional activity of LXRs in pancreatic beta cells. Cell viability and proliferation were analysed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), DNA fluorometric, BrdU labelling and [(3)H]thymidine incorporation assays. Cell cycle distribution was investigated by flow cytometry analysis. Adenovirus-based RNA interference was used to knockdown LXRalpha, LXRbeta and p27 in MIN6 cells and mouse islets. RESULTS We found that both Lxralpha (also known as Nr1h3) and Lxrbeta (also known as Nr1h2) were expressed and transactivated the LXR response element in HIT-T15 and MIN6 cells. Activation of LXRs dose-dependently inhibited pancreatic beta cell viability and proliferation. This was accompanied by beta cell cycle arrest at the G1 phase. Furthermore, LXR activation increased levels of the p27 protein by inhibiting its degradation. Knockdown of p27 reversed these effects of LXR activation on growth inhibition and cell cycle arrest. CONCLUSIONS/INTERPRETATION Our observations indicate that LXR activation inhibits pancreatic beta cell proliferation through cell cycle arrest. A well-known regulator of pancreatic beta cell cycle progression, p27, is upregulated and mediates the effects of LXRs on growth inhibition in beta cells. These observations suggest the involvement of aberrant activation of LXR in beta cell mass inadequacy, which is an important step in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Z X Meng
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Clinical Diabetes Centre of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|