1
|
Pérez-Medina C, Fisher EA, Fayad ZA, Mulder WJM, Teunissen AJP. Radiolabeling lipoproteins to study and manage disease. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07281-4. [PMID: 40293448 DOI: 10.1007/s00259-025-07281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Lipoproteins are endogenous nanoparticles with essential roles in lipid transport and inflammation. Lipoproteins are also valuable in diagnosing and treating disease. For instance, certain lipoproteins are overexpressed in patients with atherosclerotic cardiovascular disease, and reconstituted lipoproteins have been extensively used for drug delivery. Radiolabeling has proven an especially powerful approach for studying and therapeutically exploiting lipoproteins. This review details how radiochemistry and nuclear imaging can facilitate the study of lipoproteins in health and disease. Among other topics, we discuss approaches for radiolabeling lipoproteins and detail how these have helped advance our understanding of lipoprotein biology and the diagnosis and treatment of diseases, including atherosclerosis, cancer, and hypercholesteremia. METHODS We performed an extensive literature search on all peer-reviewed studies involving radiolabeled lipoproteins and selected representative examples to provide a high-level overview of the most important discoveries and technological advancements. RESULTS More than 200 peer-reviewed papers involved radiolabeled lipoproteins, spanning mechanistic, diagnostic, and therapeutic studies across a wide range of diseases. CONCLUSION Radiolabeling has been critical in advancing our understanding of lipoprotein biology and leveraging these nanomaterials for diagnosing and treating disease.
Collapse
Affiliation(s)
| | - Edward A Fisher
- Department of Medicine (Cardiology), New York University Grossman School of Medicine, New York, NY, USA
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Willem J M Mulder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Henry JP, Gabriel L, Luchian ML, Higny J, Benoit M, Xhaët O, Blommaert D, Telbis AM, Robaye B, Guedes A, Demeure F. Evaluating the Efficacy of a Pre-Established Lipid-Lowering Algorithm in Managing Hypercholesterolemia in Patients at Very High Cardiovascular Risk. J Pers Med 2024; 14:1044. [PMID: 39452551 PMCID: PMC11509033 DOI: 10.3390/jpm14101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Recent data from European studies (EUROASPIRE V, DA VINCI, SANTORINI) indicate that achieving the LDL cholesterol (LDL-C) target in patients at very high cardiovascular risk is uncommon. Additionally, using a combination therapy involving statins and ezetimibe remains infrequent. METHODS A single-center assessment of a pre-defined lipid lowering treatment algorithm's effectiveness at achieving the LDL-C target in patients at very high cardiovascular risk one month and one year after hospitalization. RESULTS 81 patients were included, all in secondary prevention. The average age of the patient was 66.9 years, and the main cardiovascular risk factors included hypertension, diabetes mellitus, and smoking history. Following the predefined lipid-lowering algorithm specific to our study, which involves initiating high-intensity statin therapy or a combination of statin and ezetimibe depending on initial LDL-C levels and patient history; 30 (37%) patients initiated high-intensity statin therapy (Atorvastatin (40 mg, 80 mg) or Rosuvastatin (20 mg, 40 mg)), while 51 (63%) started combination therapy with high-intensity statin and ezetimibe 10 mg. After one year, 57 (70.4%) remained adherent to their initial treatment, achieving a mean LDL-C of 49.5 ± 16.9 mg/dL, with 36 (63.2%) of them reaching the LDL-C target of <55 mg/dL. A total of 13 patients discontinued treatment, and 9 were lost to follow-up, withdrew from the study, or died. CONCLUSION Initiating dual statin and ezetimibe therapy or high-intensity statin therapy early, based on the expected treatment efficacy, holds the potential to more rapidly and effectively achieve LDL-C targets in a larger proportion of very high-risk cardiovascular patients.
Collapse
Affiliation(s)
- Jean Philippe Henry
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (L.G.); (M.-L.L.); (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (A.G.); (F.D.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Tao T, Shu Q, Zhao Y, Guo W, Wang J, Shi Y, Jia S, Zhai H, Chen H, Wang C, Xu G. Mechanical regulation of lipid and sugar absorption by Piezo1 in enterocytes. Acta Pharm Sin B 2024; 14:3576-3590. [PMID: 39220873 PMCID: PMC11365390 DOI: 10.1016/j.apsb.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity is primarily caused by excessive intake as well as absorption of sugar and lipid. Postprandial surge in distention pressure and intestinal motility accelerates the absorption of nutrients. The response of intestinal epithelial cells to mechanical stimulation is not fully understood. Piezo1, a mechanosensitive ion channel, is widely expressed throughout the digestive tract. However, its function in intestinal nutrient absorption is not yet clear. In our study, excessive lipid deposition was observed in the duodenum of obese patients, while duodenal Piezo1-CaMKK2-AMPKα was decreased when compared to normal-weight individuals. Under high-fat diet condition, the Piezo1 iKO mice exhibited abnormally elevated sugar and lipid absorption as well as severe lipid deposition in the duodenum and liver. These phenotypes were mainly caused by the inhibition of duodenal CaMKK2-AMPKα and the upregulation of SGLT1 and DGAT2. In contrast, Yoda1, a Piezo1 agonist, was found to reduce intestinal lipid absorption in diet induced obese mice. Overexpression of Piezo1, stretch and Yoda1 inhibited lipid accumulation and the expression of DGAT2 and SGLT1, whereas knockdown of Piezo1 stimulated lipid accumulation and DGAT2 in Caco-2 cells. Our study reveals a previously unexplored mechanical regulation of nutrient absorption in intestinal epithelial cells, which may shed new light on the therapy of obesity.
Collapse
Affiliation(s)
- Tian Tao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qing Shu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yawen Zhao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wenying Guo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jinting Wang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yuhao Shi
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shiqi Jia
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hening Zhai
- Endoscopy Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Chen
- Biotherapy Center; Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
4
|
Bell G, Thoma A, Hargreaves IP, Lightfoot AP. The Role of Mitochondria in Statin-Induced Myopathy. Drug Saf 2024; 47:643-653. [PMID: 38492173 DOI: 10.1007/s40264-024-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Statins represent the primary therapy for combatting hypercholesterolemia and reducing mortality from cardiovascular events. Despite their pleiotropic effects in lowering cholesterol synthesis, circulating cholesterol, as well as reducing the risk of other systemic diseases, statins have adverse events in a small, but significant, population of treated patients. The most prominent of these adverse effects is statin-induced myopathy, which lacks precise definition but is characterised by elevations in the muscle enzyme creatine kinase alongside musculoskeletal complaints, including pain, weakness and fatigue. The exact aetiology of statin-induced myopathy remains to be elucidated, although impaired mitochondrial function is thought to be an important underlying cause. This may result from or be the consequence of several factors including statin-induced inhibition of coenzyme Q10 (CoQ10) biosynthesis, impaired Ca2+ signalling and modified reactive oxygen species (ROS) generation. The purpose of this review article is to provide an update on the information available linking statin therapy with mitochondrial dysfunction and to outline any mechanistic insights, which may be beneficial in the future treatment of myopathic adverse events.
Collapse
Affiliation(s)
- Gavin Bell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Anastasia Thoma
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Adam P Lightfoot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
5
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
6
|
Pham N, Benhammou JN. Statins in Chronic Liver Disease: Review of the Literature and Future Role. Semin Liver Dis 2024; 44:191-208. [PMID: 38701856 DOI: 10.1055/a-2319-0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Chronic liver disease (CLD) is a major contributor to global mortality, morbidity, and healthcare burden. Progress in pharmacotherapeutic for CLD management is lagging given its impact on the global population. While statins are indicated for the management of dyslipidemia and cardiovascular disease, their role in CLD prevention and treatment is emerging. Beyond their lipid-lowering effects, their liver-related mechanisms of action are multifactorial and include anti-inflammatory, antiproliferative, and immune-protective effects. In this review, we highlight what is known about the clinical benefits of statins in viral and nonviral etiologies of CLD and hepatocellular carcinoma (HCC), and explore key mechanisms and pathways targeted by statins. While their benefits may span the spectrum of CLD and potentially HCC treatment, their role in CLD chemoprevention is likely to have the largest impact. As emerging data suggest that genetic variants may impact their benefits, the role of statins in precision hepatology will need to be further explored.
Collapse
Affiliation(s)
- Nguyen Pham
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jihane N Benhammou
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Veterans Affairs Greater Los Angeles, Los Angeles, California
- Comprehensive Liver Research Center at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
7
|
Tulk A, Watson R, Erdrich J. The Influence of Statin Use on Chemotherapeutic Efficacy in Studies of Mouse Models: A Systematic Review. Anticancer Res 2023; 43:4263-4275. [PMID: 37772570 PMCID: PMC10637576 DOI: 10.21873/anticanres.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND/AIM Using statins as antitumor agents is an approach to cancer therapy that has been explored extensively in specific cancer types. Reframing the query to how a statin interacts with the treatment regimen instead might provide new insight. Given that cell-cycle regulation influences tumorigenesis, it is possible that the cell-cycle phase which a given chemotherapy acts on influences the synergistic effects with adjuvant statin use. In this review, we outline the effect of statins in combination with chemotherapeutic drugs in in vivo animal model studies based on the class of chemotherapy and its relation to the cell cycle. MATERIALS AND METHODS This systematic review was conducted using the Preferred Reporting Items for Systematic reviews and Meta-Analyses for Protocols 2015 with 23 articles deemed eligible to be included. RESULTS Our review suggests that statins influence the success of chemotherapy treatments. Furthermore, enhanced efficacy was demonstrated with chemotherapeutic drugs that act at every phase of the cell cycle. CONCLUSION This type of compilation departs from the norm of describing statin influence on named cancer subtypes and instead catalogs how statins interact with categorical chemotherapy agents which might be beneficial for broader therapeutic decision-making across cancer subtypes, possibly contributing to pharmaceutical development, and thereby helping to maximize patient outcomes.
Collapse
Affiliation(s)
- Angela Tulk
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, U.S.A.;
| | - Raj Watson
- A.T. Still University-Kirksville College of Osteopathic Medicine, Kirksville, MO, U.S.A
| | - Jennifer Erdrich
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, U.S.A
| |
Collapse
|
8
|
Haney SL, Holstein SA. Targeting the Isoprenoid Biosynthetic Pathway in Multiple Myeloma. Int J Mol Sci 2022; 24:ijms24010111. [PMID: 36613550 PMCID: PMC9820492 DOI: 10.3390/ijms24010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy for which there is currently no cure. While treatment options for MM have expanded over the last two decades, all patients will eventually become resistant to current therapies. Thus, there is an urgent need for novel therapeutic strategies to treat MM. The isoprenoid biosynthetic pathway (IBP) is responsible for the post-translational modification of proteins belonging to the Ras small GTPase superfamily, such as Ras, Rho and Rab family members. Given the important roles these GTPase proteins play in various cellular processes, there is significant interest in the development of inhibitors that disturb their prenylation and consequently their activity in MM cells. Numerous preclinical studies have demonstrated that IBP inhibitors have anti-MM effects, including the induction of apoptosis in MM cells and inhibition of osteoclast activity. Some IBP inhibitors have made their way into the clinic. For instance, nitrogenous bisphosphonates are routinely prescribed for the management MM bone disease. Other IBP inhibitors, including statins and farnesyltransferase inhibitors, have been evaluated in clinical trials for MM, while there is substantial preclinical investigation into geranylgeranyl diphosphate synthase inhibitors. Here we discuss recent advances in the development of IBP inhibitors, assess their mechanism of action and evaluate their potential as anti-MM agents.
Collapse
|
9
|
Ying Q, Ronca A, Chan DC, Pang J, Favari E, Watts GF. Effect of a PCSK9 inhibitor and a statin on cholesterol efflux capacity: A limitation of current cholesterol-lowering treatments? Eur J Clin Invest 2022; 52:e13766. [PMID: 35294778 PMCID: PMC9541635 DOI: 10.1111/eci.13766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cellular cholesterol efflux is a key step in reverse cholesterol transport that may impact on atherosclerotic cardiovascular risk. The process may be reliant on the availability of apolipoprotein (apo) B-100-containing lipoproteins to accept cholesterol from high-density lipoprotein. Evolocumab and atorvastatin are known to lower plasma apoB-100-containing lipoproteins that could impact on cholesterol efflux capacity (CEC). METHODS We conducted a 2-by-2 factorial trial of the effects of subcutaneous evolocumab (420 mg every 2 weeks) and atorvastatin (80 mg daily) for 8 weeks on CEC in 81 healthy, normolipidaemic men. The capacity of whole plasma and apoB-depleted plasma, including ATP-binding cassette transporter A1 (ABCA1)-mediated and passive diffusion, to efflux cholesterol, was measured. RESULTS Evolocumab and atorvastatin independently decreased whole plasma CEC (main effect p < .01 for both). However, there were no significant effects of evolocumab and atorvastatin on apoB-depleted plasma, ABCA1-mediated and passive diffusion-mediated CEC (p > .05 in all). In the three intervention groups combined, the reduction in whole plasma CEC was significantly correlated with the corresponding reduction in plasma apoB-100 concentration (r = .339, p < .01). In the evolocumab monotherapy group, the reduction in whole plasma CEC was also significantly correlated with the corresponding reduction in plasma lipoprotein(a) concentration (r = .487, p < .05). CONCLUSIONS In normolipidaemic men, evolocumab and atorvastatin decrease the capacity of whole plasma to efflux cellular cholesterol. These effects may be chiefly owing to a fall in the availability of apoB-100-containing lipoproteins. Reduction in circulating lipoprotein(a) may also contribute to the decrease in whole plasma cholesterol efflux with evolocumab monotherapy.
Collapse
Affiliation(s)
- Qidi Ying
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jing Pang
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Zechner J, Britza SM, Farrington R, Byard RW, Musgrave IF. Flavonoid-statin interactions causing myopathy and the possible significance of OATP transport, CYP450 metabolism and mevalonate synthesis. Life Sci 2021; 291:119975. [PMID: 34560084 DOI: 10.1016/j.lfs.2021.119975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, statins, are a primary treatment for hyperlipidemic cardiovascular diseases which are a leading global cause of death. Statin therapy is life saving and discontinuation due to adverse events such as myotoxicity may lead to unfavourable outcomes. There is no known mechanism for statin-induced myotoxicity although it is theorized that it is due to inhibition of downstream products of the HMG-CoA pathway. It is known that drug-drug interactions with conventional medicines exacerbate the risk of statin-induced myotoxicity, though little attention has been paid to herb-drug interactions with complementary medicines. Flavonoids are a class of phytochemicals which can be purchased as high dose supplements. There is evidence that flavonoids can raise statin plasma levels, increasing the risk of statin-induced myopathy. This could be due to pharmacokinetic interactions involving hepatic cytochrome 450 (CYP450) metabolism and organic anion transporter (OATP) absorption. There is also the potential for flavonoids to directly and indirectly inhibit HMG-CoA reductase which could contraindicate statin-therapy. This review aims to discuss what is currently known about the potential for high dose flavonoids to interact with the hepatic CYP450 metabolism, OATP uptake of statins or their ability to interact with HMG-CoA reductase. Flavonoids of particular interest will be covered and the difficulties of examining herbal products will be discussed throughout.
Collapse
Affiliation(s)
- Joshua Zechner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Susan M Britza
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Rachael Farrington
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Roger W Byard
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Forensic Science SA, Adelaide, SA 5000, Australia
| | - Ian F Musgrave
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Xu Q, Deng Y, Xiao J, Liu X, Zhou M, Ren Z, Peng J, Tang Y, Jiang Z, Tang Z, Liu L. Three Musketeers for Lowering Cholesterol: Statins, Ezetimibe and Evolocumab. Curr Med Chem 2021; 28:1025-1041. [PMID: 32368969 DOI: 10.2174/0929867327666200505091738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 11/22/2022]
Abstract
Coronary heart disease (CHD) is closely related to hypercholesterolemia, and lowering serum cholesterol is currently the most important strategy in reducing CHD. In humans, the serum cholesterol level is determined mainly by three metabolic pathways, namely, dietary cholesterol intake, cholesterol synthesis, and cholesterol degradation in vivo. An intervention that targets the key molecules in the three pathways is an important strategy in lowering serum lipids. Statins inhibit 3-hydroxyl-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) to reduce low-density lipoprotein (LDL) by about 20% to 45%. However, up to 15% of patients cannot tolerate the potential side effects of high statin dosages, and several patients also still do not reach their optimal LDL goals after being treated with statins. Ezetimibe inhibits cholesterol absorption by targeting the Niemann-Pick C1-like 1 protein (NPC1L1), which is related to cholesterol absorption in the intestines. Ezetimibe lowers LDL by about 18% when used alone and by an additional 25% when combined with statin therapy. The proprotein convertase subtilisin/kexin type 9 (PCSK9) increases hepatic LDLR degradation, thereby reducing the liver's ability to remove LDL, which can lead to hypercholesterolemia. Evolocumab, which is a PCSK9 monoclonal antibody, can reduce LDL from baseline by 53% to 56%. The three drugs exert lipid-lowering effects by regulating the three key pathways in lipid metabolism. Combining any with the two other drugs on the basis of statin treatment has improved the lipid-lowering effect. Whether the combination of the three musketeers will reduce the side effects of monotherapy and achieve the lipid-lowering effect should be studied further in the future.
Collapse
Affiliation(s)
- Qian Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yiming Deng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jun Xiao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiangrui Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Min Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yaling Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zhihan Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Lushan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
12
|
Naresh S, Bitla AR, Rao PVLNS, Sachan A, Amancharla YL. Efficacy of oral rosuvastatin intervention on HDL and its associated proteins in men with type 2 diabetes mellitus. Endocrine 2021; 71:76-86. [PMID: 32895874 DOI: 10.1007/s12020-020-02472-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE High-density lipoprotein (HDL) undergoes structural and functional modification in patients with type 2 diabetes mellitus (T2DM). There are limited data on effect of rosuvastatin on HDL-associated proteins and the antiatherogenic effects of rosuvastatin. The present study intended to study the efficacy of rosuvastatin intervention on HDL-associated proteins and its other antiatherogenic effects in men with T2DM. METHODS Men with T2DM on oral antidiabetic treatment, with LDL-C levels > 75 mg/dL and willing for rosuvastatin intervention (20 mg/day orally for a period of 12 weeks), were included. Fasting glucose, lipid profile were measured using standard methods. Oxidized low-density lipoprotein (oxLDL), oxidized HDL (oxHDL), paraoxonase-1 (PON-1), tumour necrosis factor-α (TNF-α) and lecithin:cholesterol acyltransferase (LCAT) in serum were measured by ELISA; serum myeloperoxidase (MPO) by spectrophotometric method and cholesterol efflux by fluorometric assay. Carotid intima-media thickness (cIMT) measurement to assess vascular health status was done using doppler. RESULTS Rosuvastatin produced a significant decrease (p < 0.05) in lipids (total cholesterol, triglycerides, LDL-C); oxidative stress (oxLDL, oxHDL, MPO); inflammation (TNF-α); LCAT concentration; cIMT; significant increase in antiatherogenic HDL and cholesterol efflux (p < 0.05) and no change in apoA-I levels from baseline to 12 weeks of follow-up. A decrease in MPO activity was found to be independently associated with an increase in cholesterol efflux. CONCLUSIONS Post intervention there is a quantitative and qualitative improvement in HDL, which helps in its reverse cholesterol transport (RCT) and antioxidant functions. Improvement in HDL functions and suppression of inflammation by rosuvastatin lead to regression in cIMT, which is beneficial in decreasing the progression of cardiovascular disease (CVD) in men with diabetes.
Collapse
Affiliation(s)
- Sriram Naresh
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna R Bitla
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India.
| | - P V L N Srinivasa Rao
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Alok Sachan
- Department of Endocrinology and Metabolism, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Yadagiri Lakshmi Amancharla
- Department of Radiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
13
|
Ko CW, Qu J, Black DD, Tso P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020; 17:169-183. [PMID: 32015520 DOI: 10.1038/s41575-019-0250-7] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Lipids entering the gastrointestinal tract include dietary lipids (triacylglycerols, cholesteryl esters and phospholipids) and endogenous lipids from bile (phospholipids and cholesterol) and from shed intestinal epithelial cells (enterocytes). Here, we comprehensively review the digestion, uptake and intracellular re-synthesis of intestinal lipids as well as their packaging into pre-chylomicrons in the endoplasmic reticulum, their modification in the Golgi apparatus and the exocytosis of the chylomicrons into the lamina propria and subsequently to lymph. We also discuss other fates of intestinal lipids, including intestinal HDL and VLDL secretion, cytosolic lipid droplets and fatty acid oxidation. In addition, we highlight the applicability of these findings to human disease and the development of therapeutics targeting lipid metabolism. Finally, we explore the emerging role of the gut microbiota in modulating intestinal lipid metabolism and outline key questions for future research.
Collapse
Affiliation(s)
- Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Dennis D Black
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Newman CB, Preiss D, Tobert JA, Jacobson TA, Page RL, Goldstein LB, Chin C, Tannock LR, Miller M, Raghuveer G, Duell PB, Brinton EA, Pollak A, Braun LT, Welty FK. Statin Safety and Associated Adverse Events: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2019; 39:e38-e81. [PMID: 30580575 DOI: 10.1161/atv.0000000000000073] [Citation(s) in RCA: 449] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One in 4 Americans >40 years of age takes a statin to reduce the risk of myocardial infarction, ischemic stroke, and other complications of atherosclerotic disease. The most effective statins produce a mean reduction in low-density lipoprotein cholesterol of 55% to 60% at the maximum dosage, and 6 of the 7 marketed statins are available in generic form, which makes them affordable for most patients. Primarily using data from randomized controlled trials, supplemented with observational data where necessary, this scientific statement provides a comprehensive review of statin safety and tolerability. The review covers the general patient population, as well as demographic subgroups, including the elderly, children, pregnant women, East Asians, and patients with specific conditions such as chronic disease of the kidney and liver, human immunodeficiency viral infection, and organ transplants. The risk of statin-induced serious muscle injury, including rhabdomyolysis, is <0.1%, and the risk of serious hepatotoxicity is ≈0.001%. The risk of statin-induced newly diagnosed diabetes mellitus is ≈0.2% per year of treatment, depending on the underlying risk of diabetes mellitus in the population studied. In patients with cerebrovascular disease, statins possibly increase the risk of hemorrhagic stroke; however, they clearly produce a greater reduction in the risk of atherothrombotic stroke and thus total stroke, as well as other cardiovascular events. There is no convincing evidence for a causal relationship between statins and cancer, cataracts, cognitive dysfunction, peripheral neuropathy, erectile dysfunction, or tendonitis. In US clinical practices, roughly 10% of patients stop taking a statin because of subjective complaints, most commonly muscle symptoms without raised creatine kinase. In contrast, in randomized clinical trials, the difference in the incidence of muscle symptoms without significantly raised creatinine kinase in statin-treated compared with placebo-treated participants is <1%, and it is even smaller (0.1%) for patients who discontinued treatment because of such muscle symptoms. This suggests that muscle symptoms are usually not caused by pharmacological effects of the statin. Restarting statin therapy in these patients can be challenging, but it is important, especially in patients at high risk of cardiovascular events, for whom prevention of these events is a priority. Overall, in patients for whom statin treatment is recommended by current guidelines, the benefits greatly outweigh the risks.
Collapse
|
15
|
Alkagiet S, Giannakoulas G, Hatzitolios AI, Tziomalos K. The Role of Statins in the Management of Heart Failure with Preserved Ejection Fraction. CURRENT PHARMACOLOGY REPORTS 2019; 5:210-213. [DOI: 10.1007/s40495-019-00172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
|
16
|
Neto RNM, de Barros Gomes E, Weba-Soares L, Dias LRL, da Silva LCN, de Miranda RDCM. Biotechnological Production of Statins: Metabolic Aspects and Genetic Approaches. Curr Pharm Biotechnol 2019; 20:1244-1259. [PMID: 31333127 DOI: 10.2174/1389201020666190718165746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
Abstract
Statins are drugs used for people with abnormal lipid levels (hyperlipidemia) and are among the best-selling medications in the United States. Thus, the aspects related to the production of these drugs are of extreme importance for the pharmaceutical industry. Herein, we provide a non-exhaustive review of fungal species used to produce statin and highlighted the major factors affecting the efficacy of this process. The current biotechnological approaches and the advances of a metabolic engineer to improve statins production are also emphasized. The biotechnological production of the main statins (lovastatin, pravastatin and simvastatin) uses different species of filamentous fungi, for example Aspergillus terreus. The statins production is influenced by different types of nutrients available in the medium such as the carbon and nitrogen sources, and several researches have focused their efforts to find the optimal cultivation conditions. Enzymes belonging to Lov class, play essential roles in statin production and have been targeted to genetic manipulations in order to improve the efficiency for Lovastatin and Simvastatin production. For instance, Escherichia coli strains expressing the LovD have been successfully used for lovastatin production. Other examples include the use of iRNA targeting LovF of A. terreus. Therefore, fungi are important allies in the fight against hyperlipidemias. Although many studies have been conducted, investigations on bioprocess optimization (using both native or genetic- modified strains) still necessary.
Collapse
Affiliation(s)
- Roberval N M Neto
- Pro-reitoria de Pos-Graduacao, Pesquisa e Extensao, Universidade Ceuma, Sao Luis, Maranhao, Brazil
| | | | - Lucas Weba-Soares
- Pro-reitoria de Pos-Graduacao, Pesquisa e Extensao, Universidade Ceuma, Sao Luis, Maranhao, Brazil
| | - Léo R L Dias
- Pro-reitoria de Pos-Graduacao, Pesquisa e Extensao, Universidade Ceuma, Sao Luis, Maranhao, Brazil
| | - Luís C N da Silva
- Pro-reitoria de Pos-Graduacao, Pesquisa e Extensao, Universidade Ceuma, Sao Luis, Maranhao, Brazil
| | - Rita de C M de Miranda
- Pro-reitoria de Pos-Graduacao, Pesquisa e Extensao, Universidade Ceuma, Sao Luis, Maranhao, Brazil
| |
Collapse
|
17
|
Kinoshita M, Yokote K, Arai H, Iida M, Ishigaki Y, Ishibashi S, Umemoto S, Egusa G, Ohmura H, Okamura T, Kihara S, Koba S, Saito I, Shoji T, Daida H, Tsukamoto K, Deguchi J, Dohi S, Dobashi K, Hamaguchi H, Hara M, Hiro T, Biro S, Fujioka Y, Maruyama C, Miyamoto Y, Murakami Y, Yokode M, Yoshida H, Rakugi H, Wakatsuki A, Yamashita S, Committee for Epidemiology and Clinical Management of Atherosclerosis. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2017. J Atheroscler Thromb 2018; 25:846-984. [PMID: 30135334 PMCID: PMC6143773 DOI: 10.5551/jat.gl2017] [Citation(s) in RCA: 566] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/11/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Koutaro Yokote
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Yasushi Ishigaki
- Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Seiji Umemoto
- Center for Integrated Medical Research, Hiroshima University Hospital, Hiroshima, Japan
| | | | - Hirotoshi Ohmura
- Department of Cardiovascular Medicine, Juntendo University, Tokyo, Japan
| | - Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Kihara
- Biomedical Informatics, Osaka University, Osaka, Japan
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Isao Saito
- Department of Community Health Systems Nursing, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama, Japan
| | - Seitaro Dohi
- Chief Health Management Department, Mitsui Chemicals Inc., Tokyo, Japan
| | - Kazushige Dobashi
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine, Kanagawa, Japan
| | - Takafumi Hiro
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University, Hyogo, Japan
| | - Chizuko Maruyama
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Yoshihiro Miyamoto
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, Jikei University Kashiwa Hospital, Chiba, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiko Wakatsuki
- Department of Obstetrics and Gynecology, Aichi Medical University, Aichi, Japan
| | - Shizuya Yamashita
- Department of Community Medicine, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Rinku General Medical Center, Osaka, Japan
| | | |
Collapse
|
18
|
Bradbury P, Traini D, Ammit AJ, Young PM, Ong HX. Repurposing of statins via inhalation to treat lung inflammatory conditions. Adv Drug Deliv Rev 2018; 133:93-106. [PMID: 29890243 DOI: 10.1016/j.addr.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
Despite many therapeutic advancements over the past decade, the continued rise in chronic inflammatory lung diseases incidence has driven the need to identify and develop new therapeutic strategies, with superior efficacy to treat these diseases. Statins are one class of drug that could potentially be repurposed as an alternative treatment for chronic lung diseases. They are currently used to treat hypercholesterolemia by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, that catalyses the rate limiting step in the mevalonate biosynthesis pathway, a key intermediate in cholesterol metabolism. Recent research has identified statins to have other protective pleiotropic properties including anti-inflammatory, anti-oxidant, muco-inhibitory effects that may be beneficial for the treatment of chronic inflammatory lung diseases. However, clinical studies have yielded conflicting results. This review will summarise some of the current evidences for statins pleiotropic effects that could be applied for the treatment of chronic inflammatory lung diseases, their mechanisms of actions, and the potential to repurpose statins as an inhaled therapy, including a detailed discussion on their different physical-chemical properties and how these characteristics could ultimately affect treatment efficacies. The repurposing of statins from conventional anti-cholesterol oral therapy to inhaled anti-inflammatory formulation is promising, as it provides direct delivery to the airways, reduced risk of side effects, increased bioavailability and tailored physical-chemical properties for enhanced efficacy.
Collapse
|
19
|
Lipid lowering agents of natural origin: An account of some promising chemotypes. Eur J Med Chem 2017; 140:331-348. [DOI: 10.1016/j.ejmech.2017.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/07/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
|
20
|
Current drugs, targets, and drug delivery systems for the treatment of dyslipidemia. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0353-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Recent Advances in the Development of Mammalian Geranylgeranyl Diphosphate Synthase Inhibitors. Molecules 2017; 22:molecules22060886. [PMID: 28555000 PMCID: PMC5902023 DOI: 10.3390/molecules22060886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022] Open
Abstract
The enzyme geranylgeranyl diphosphate synthase (GGDPS) catalyzes the synthesis of the 20-carbon isoprenoid geranylgeranyl diphosphate (GGPP). GGPP is the isoprenoid donor for protein geranylgeranylation reactions catalyzed by the enzymes geranylgeranyl transferase (GGTase) I and II. Inhibitors of GGDPS result in diminution of protein geranylgeranylation through depletion of cellular GGPP levels, and there has been interest in GGDPS inhibitors as potential anti-cancer agents. Here we discuss recent advances in the development of GGDPS inhibitors, including insights gained by structure-function relationships, and review the preclinical data that support the continued development of this novel class of drugs.
Collapse
|
22
|
Hallengren E, Almgren P, Rosvall M, Östling G, Persson M, Bergmann A, Struck J, Engström G, Hedblad B, Melander O. Fasting levels of growth hormone are associated with carotid intima media thickness but are not affected by fluvastatin treatment. BMC Cardiovasc Disord 2017; 17:125. [PMID: 28511669 PMCID: PMC5434616 DOI: 10.1186/s12872-017-0563-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background Growth hormone (GH) has been linked to cardiovascular disease but the exact mechanism of this association is still unclear. We here test if the fasting levels of GH are cross-sectionally associated with carotid intima media thickness (IMT) and whether treatment with fluvastatin affects the fasting level of GH. Methods We examined the association between GH and IMT in 4425 individuals (aged 46–68 years) included in the baseline examination (1991–1994) of the Malmö Diet and Cancer cardiovascular cohort (MDC-CC). From that cohort we then studied 472 individuals (aged 50-70 years) who also participated (1994–1999) in the β-Blocker Cholesterol-Lowering Asymptomatic Plaque Study (BCAPS), a randomized, double blind, placebo-controlled, single-center clinical trial. Using multivariate linear regression models we related the change in GH-levels at 12 months compared with baseline to treatment with 40 mg fluvastatin once daily. Results In MDC-CC fasting values of GH exhibited a positive cross-sectional relation to the IMT at the carotid bulb independent of traditional cardiovascular risk factors (p = 0.002). In a gender-stratified analysis the correlation were significant for males (p = 0.005), but not for females (p = 0.09). Treatment with fluvastatin was associated with a minor reduction in the fasting levels of hs-GH in males (p = 0.05) and a minor rise in the same levels among females (p = 0.05). Conclusions We here demonstrate that higher fasting levels of GH are associated with thicker IMT in the carotid bulb in males. Treatment with fluvastatin for 12 months only had a minor, and probably not clinically relevant, effect on the fasting levels of hs-GH. Electronic supplementary material The online version of this article (doi:10.1186/s12872-017-0563-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erik Hallengren
- Department of Clinical Sciences, Lund University, Malmö, Sweden. .,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden. .,Department of Internal Medicine, SUS, Skåne University Hospital, Inga Marie Nilssons gata 36, SE 205 02, Malmö, Sweden.
| | - Peter Almgren
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Maria Rosvall
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Gerd Östling
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Margaretha Persson
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Andreas Bergmann
- SphingoTec GmbH, Hohen Neuendorf, Germany.,Waltraut Bergmann Foundation, Hohen Neuendorf, Germany
| | | | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Bo Hedblad
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
23
|
Thaxton CS, Rink JS, Naha PC, Cormode DP. Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Adv Drug Deliv Rev 2016; 106:116-131. [PMID: 27133387 PMCID: PMC5086317 DOI: 10.1016/j.addr.2016.04.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
Lipoproteins are a set of natural nanoparticles whose main role is the transport of fats within the body. While much work has been done to develop synthetic nanocarriers to deliver drugs or contrast media, natural nanoparticles such as lipoproteins represent appealing alternatives. Lipoproteins are biocompatible, biodegradable, non-immunogenic and are naturally targeted to some disease sites. Lipoproteins can be modified to act as contrast agents in many ways, such as by insertion of gold cores to provide contrast for computed tomography. They can be loaded with drugs, nucleic acids, photosensitizers or boron to act as therapeutics. Attachment of ligands can re-route lipoproteins to new targets. These attributes render lipoproteins attractive and versatile delivery vehicles. In this review we will provide background on lipoproteins, then survey their roles as contrast agents, in drug and nucleic acid delivery, as well as in photodynamic therapy and boron neutron capture therapy.
Collapse
Affiliation(s)
- C Shad Thaxton
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA; International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jonathan S Rink
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Cardiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Wagner J, Abdel-Rahman SM. Pediatric Statin Administration: Navigating a Frontier with Limited Data. J Pediatr Pharmacol Ther 2016; 21:380-403. [PMID: 27877092 DOI: 10.5863/1551-6776-21.5.380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasingly, children and adolescents with dyslipidemia qualify for pharmacologic intervention. As they are for adults, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins) are the mainstay of pediatric dyslipidemia treatment when lifestyle modifications have failed. Despite the overall success of these drugs, the magnitude of variability in dose-exposure-response profiles contributes to adverse events and treatment failure. In children, the cause of treatment failures remains unclear. This review describes the updated guidelines for screening and management of pediatric dyslipidemia and statin disposition pathway to assist the provider in recognizing scenarios where alterations in dosage may be warranted to meet patients' specific needs.
Collapse
Affiliation(s)
- Jonathan Wagner
- Ward Family Heart Center, Children's Mercy Hospital, Kansas City, Missouri ; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Hospital, Kansas City, Missouri ; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Susan M Abdel-Rahman
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Hospital, Kansas City, Missouri ; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| |
Collapse
|
25
|
Rondini EA, Duniec-Dmuchowski Z, Cukovic D, Dombkowski AA, Kocarek TA. Differential Regulation of Gene Expression by Cholesterol Biosynthesis Inhibitors That Reduce (Pravastatin) or Enhance (Squalestatin 1) Nonsterol Isoprenoid Levels in Primary Cultured Mouse and Rat Hepatocytes. J Pharmacol Exp Ther 2016; 358:216-29. [PMID: 27225895 PMCID: PMC4959097 DOI: 10.1124/jpet.116.233312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/24/2016] [Indexed: 01/09/2023] Open
Abstract
Squalene synthase inhibitors (SSIs), such as squalestatin 1 (SQ1), reduce cholesterol biosynthesis but cause the accumulation of isoprenoids derived from farnesyl pyrophosphate (FPP), which can modulate the activity of nuclear receptors, including the constitutive androstane receptor (CAR), farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs). In comparison, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (e.g., pravastatin) inhibit production of both cholesterol and nonsterol isoprenoids. To characterize the effects of isoprenoids on hepatocellular physiology, microarrays were used to compare orthologous gene expression from primary cultured mouse and rat hepatocytes that were treated with either SQ1 or pravastatin. Compared with controls, 47 orthologs were affected by both inhibitors, 90 were affected only by SQ1, and 51 were unique to pravastatin treatment (P < 0.05, ≥1.5-fold change). When the effects of SQ1 and pravastatin were compared directly, 162 orthologs were found to be differentially coregulated between the two treatments. Genes involved in cholesterol and unsaturated fatty acid biosynthesis were up-regulated by both inhibitors, consistent with cholesterol depletion; however, the extent of induction was greater in rat than in mouse hepatocytes. SQ1 induced several orthologs associated with microsomal, peroxisomal, and mitochondrial fatty acid oxidation and repressed orthologs involved in cell cycle regulation. By comparison, pravastatin repressed the expression of orthologs involved in retinol and xenobiotic metabolism. Several of the metabolic genes altered by isoprenoids were inducible by a PPARα agonist, whereas cytochrome P450 isoform 2B was inducible by activators of CAR. Our findings indicate that SSIs uniquely influence cellular lipid metabolism and cell cycle regulation, probably due to FPP catabolism through the farnesol pathway.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Institute of Environmental Health Sciences (E.A.R., Z.D.-D., T.A.K.), and Department of Pediatrics, Division of Clinical Pharmacology and Toxicology (D.C., A.A.D.), Wayne State University, Detroit, Michigan
| | - Zofia Duniec-Dmuchowski
- Institute of Environmental Health Sciences (E.A.R., Z.D.-D., T.A.K.), and Department of Pediatrics, Division of Clinical Pharmacology and Toxicology (D.C., A.A.D.), Wayne State University, Detroit, Michigan
| | - Daniela Cukovic
- Institute of Environmental Health Sciences (E.A.R., Z.D.-D., T.A.K.), and Department of Pediatrics, Division of Clinical Pharmacology and Toxicology (D.C., A.A.D.), Wayne State University, Detroit, Michigan
| | - Alan A Dombkowski
- Institute of Environmental Health Sciences (E.A.R., Z.D.-D., T.A.K.), and Department of Pediatrics, Division of Clinical Pharmacology and Toxicology (D.C., A.A.D.), Wayne State University, Detroit, Michigan
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences (E.A.R., Z.D.-D., T.A.K.), and Department of Pediatrics, Division of Clinical Pharmacology and Toxicology (D.C., A.A.D.), Wayne State University, Detroit, Michigan
| |
Collapse
|
26
|
Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int J Mol Sci 2016; 17:569. [PMID: 27092490 PMCID: PMC4849025 DOI: 10.3390/ijms17040569] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Obesity and diabetes are the most prevailing health concerns worldwide and their incidence is increasing at a high rate, resulting in enormous social costs. Obesity is a complex disease commonly accompanied by insulin resistance and increases in oxidative stress and inflammatory marker expression, leading to augmented fat mass in the body. Diabetes mellitus (DM) is a metabolic disorder characterized by the destruction of pancreatic β cells or diminished insulin secretion and action insulin. Obesity causes the development of metabolic disorders such as DM, hypertension, cardiovascular diseases, and inflammation-based pathologies. Flavonoids are the secondary metabolites of plants and have 15-carbon skeleton structures containing two phenyl rings and a heterocyclic ring. More than 5000 naturally occurring flavonoids have been reported from various plants and have been found to possess many beneficial effects with advantages over chemical treatments. A number of studies have demonstrated the potential health benefits of natural flavonoids in treating obesity and DM, and show increased bioavailability and action on multiple molecular targets. This review summarizes the current progress in our understanding of the anti-obesity and anti-diabetic potential of natural flavonoids and their molecular mechanisms for preventing and/or treating obesity and diabetes.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Yingfu Yin
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
27
|
Vavvas DG, Daniels AB, Kapsala ZG, Goldfarb JW, Ganotakis E, Loewenstein JI, Young LH, Gragoudas ES, Eliott D, Kim IK, Tsilimbaris MK, Miller JW. Regression of Some High-risk Features of Age-related Macular Degeneration (AMD) in Patients Receiving Intensive Statin Treatment. EBioMedicine 2016; 5:198-203. [PMID: 27077128 PMCID: PMC4816836 DOI: 10.1016/j.ebiom.2016.01.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022] Open
Abstract
Importance Age-related macular degeneration (AMD) remains the leading cause of blindness in developed countries, and affects more than 150 million worldwide. Despite effective anti-angiogenic therapies for the less prevalent neovascular form of AMD, treatments are lacking for the more prevalent dry form. Similarities in risk factors and pathogenesis between AMD and atherosclerosis have led investigators to study the effects of statins on AMD incidence and progression with mixed results. A limitation of these studies has been the heterogeneity of AMD disease and the lack of standardization in statin dosage. Objective We were interested in studying the effects of high-dose statins, similar to those showing regression of atherosclerotic plaques, in AMD. Design Pilot multicenter open-label prospective clinical study of 26 patients with diagnosis of AMD and the presence of many large, soft drusenoid deposits. Patients received 80 mg of atorvastatin daily and were monitored at baseline and every 3 months with complete ophthalmologic exam, best corrected visual acuity (VA), fundus photographs, optical coherence tomography (OCT), and blood work (AST, ALT, CPK, total cholesterol, TSH, creatinine, as well as a pregnancy test for premenopausal women). Results Twenty-three subjects completed a minimum follow-up of 12 months. High-dose atorvastatin resulted in regression of drusen deposits associated with vision gain (+ 3.3 letters, p = 0.06) in 10 patients. No subjects progressed to advanced neovascular AMD. Conclusions High-dose statins may result in resolution of drusenoid pigment epithelial detachments (PEDs) and improvement in VA, without atrophy or neovascularization in a high-risk subgroup of AMD patients. Confirmation from larger studies is warranted. High dose lipophilic statin administration was associated with regression of large soft drusen and vision gain in 10/23 AMD patients. Duration of treatment before a positive response was observed was usually 1–1.5 years. Patients on high-dose statin appeared to be protected from progression to “wet” neovascular-AMD.
There is a lack of effective therapies for dry age-related macular degeneration (AMD), one of the leading causes of blindness affecting millions. Although AMD shares similarities with atherosclerosis, prior studies on statins and AMD have failed to show improvement. A limitation of these studies has been the heterogeneity of AMD disease and the lack of standardization in statin dosage. Here, we present for the first time evidence that treatment with high-dose atorvastatin (80 mg) is associated with regression of lipid deposits and improvement in visual acuity, without atrophy or neovascularization, in high-risk AMD patients.
Collapse
Affiliation(s)
- Demetrios G. Vavvas
- Corresponding authors at: 243 Charles St., Boston, MA 02114, USA.243 Charles St.BostonMA02114USA
| | - Anthony B. Daniels
- Corresponding authors at: 243 Charles St., Boston, MA 02114, USA.243 Charles St.BostonMA02114USA
| | | | | | | | | | | | | | | | | | - Miltiadis K. Tsilimbaris
- Corresponding authors at: 243 Charles St., Boston, MA 02114, USA.243 Charles St.BostonMA02114USA
| | - Joan W. Miller
- Corresponding authors at: 243 Charles St., Boston, MA 02114, USA.243 Charles St.BostonMA02114USA
| |
Collapse
|
28
|
Sahebkar A, Simental-Mendía LE, Pedone C, Ferretti G, Nachtigal P, Bo S, Derosa G, Maffioli P, Watts GF. Statin therapy and plasma free fatty acids: a systematic review and meta-analysis of controlled clinical trials. Br J Clin Pharmacol 2016; 81:807-18. [PMID: 26624855 DOI: 10.1111/bcp.12854] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/31/2015] [Accepted: 11/22/2015] [Indexed: 12/30/2022] Open
Abstract
AIM The aim of this meta-analysis was to evaluate the effect of statin therapy on plasma FFA concentrations in a systematic review and meta-analysis of controlled clinical trials. METHODS PubMed-Medline, SCOPUS, Web of Science and Google Scholar databases were searched (from inception to February 16 2015) to identify controlled trials evaluating the impact of statins on plasma FFA concentrations. A systematic assessment of bias in the included studies was performed using the Cochrane criteria. A random effects model and generic inverse variance method were used for quantitative data synthesis. Sensitivity analysis was conducted using the leave-one-out method. Random effects meta-regression was performed using unrestricted maximum likelihood method to evaluate the impact of potential moderators. RESULTS Meta-analysis of data from 14 treatment arms indicated a significant reduction in plasma FFA concentrations following treatment with statins (weighted mean difference (WMD) -19.42%, 95% CI -23.19, --15.64, P < 0.001). Subgroup analysis confirmed the significance of the effect with both atorvastatin (WMD -20.56%, 95% CI -24.51, -16.61, P < 0.01) and simvastatin (WMD -18.05%, 95% CI -28.12, -7.99, P < 0.001). Changes in plasma FFA concentrations were independent of treatment duration (slope -0.10, 95% CI -0.30, 0.11, P = 0.354) and magnitude of reduction in plasma low density lipoprotein cholesterol concentrations (slope 0.55, 95% CI -0.17, 1.27, P = 0.133) by statins. CONCLUSIONS The results of the present study suggest that statin therapy may lower plasma FFA concentrations. The cardiovascular and metabolic significance of this finding requires further investigation.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.,Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Luis E Simental-Mendía
- Biomedical Research Unit, Mexican Social Security Institute, Durango.,Universidad Autónoma España de Durango, Durango, Dgo., México
| | - Claudio Pedone
- Area di Geriatria, Università Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128, Roma
| | - Gianna Ferretti
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Università Politecnica Delle Marche, Italy
| | - Petr Nachtigal
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Simona Bo
- Department of Medical Sciences, University of Turin, Turin
| | - Giuseppe Derosa
- Center for the Study of Endocrine-Metabolic Pathophysiology and Clinical Research, University of Pavia, Pavia.,Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, Pavia, Pavia, Italy
| | - Pamela Maffioli
- Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, Pavia, Pavia, Italy
| | - Gerald F Watts
- Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
29
|
Im S, Kim BH, Lee K, Kwack K, Yim SV. Screening study for genetic polymorphisms affecting pharmacokinetics of simvastatin. Transl Clin Pharmacol 2016. [DOI: 10.12793/tcp.2016.24.1.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Sohee Im
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Bo-Hyung Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Kidong Lee
- Department of BioMedical Science, College of Life Science, CHA University, Pangyo-ro, Bundang-gu, SeongNam 13488, Korea
| | - KyuBum Kwack
- Department of BioMedical Science, College of Life Science, CHA University, Pangyo-ro, Bundang-gu, SeongNam 13488, Korea
| | - Sung-Vin Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
30
|
Henriksbo BD, Schertzer JD. Is immunity a mechanism contributing to statin-induced diabetes? Adipocyte 2015; 4:232-8. [PMID: 26451278 PMCID: PMC4573193 DOI: 10.1080/21623945.2015.1024394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/21/2022] Open
Abstract
Statins lower cholesterol and are commonly prescribed for prevention and treatment of cardiovascular disease risk. Statins have pleotropic actions beyond cholesterol lowering, including decreased protein prenylation, which can alter immune function. The general anti-inflammatory effect of statins may be a key pleiotropic effect that improves cardiovascular disease risk. However, a series of findings have shown that statins increase the pro-inflammatory cytokine, IL-1β, via decreased protein prenylation in immune cells. IL-1β can be regulated by the NLRP3 inflammasome containing caspase-1. Statins have been associated with an increased risk of new onset diabetes. Inflammation can promote ineffective insulin action (insulin resistance), which often precedes diabetes. This review highlights the links between statins, insulin resistance and immunity via the NLRP3 inflammasome. We propose that statin-induced changes in immunity should be investigated as a mechanism underlying increased risk of diabetes. It is possible that statin-related insulin resistance occurs through a separate pathway from various mechanisms that confer cardiovascular benefits. Therefore, understanding the potential mechanisms that segregate statin-induced cardiovascular effects from those that cause dysglycemia may lead to improvements in this drugs class.
Collapse
Affiliation(s)
- Brandyn D Henriksbo
- Department of Biochemistry and Biomedical Sciences; McMaster University; Hamilton, ON, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences; McMaster University; Hamilton, ON, Canada
| |
Collapse
|
31
|
mTORC1 is essential for early steps during Schwann cell differentiation of amniotic fluid stem cells and regulates lipogenic gene expression. PLoS One 2014; 9:e107004. [PMID: 25221943 PMCID: PMC4164523 DOI: 10.1371/journal.pone.0107004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/04/2014] [Indexed: 01/18/2023] Open
Abstract
Schwann cell development is hallmarked by the induction of a lipogenic profile. Here we used amniotic fluid stem (AFS) cells and focused on the mechanisms occurring during early steps of differentiation along the Schwann cell lineage. Therefore, we initiated Schwann cell differentiation in AFS cells and monitored as well as modulated the activity of the mechanistic target of rapamycin (mTOR) pathway, the major regulator of anabolic processes. Our results show that mTOR complex 1 (mTORC1) activity is essential for glial marker expression and expression of Sterol Regulatory Element-Binding Protein (SREBP) target genes. Moreover, SREBP target gene activation by statin treatment promoted lipogenic gene expression, induced mTORC1 activation and stimulated Schwann cell differentiation. To investigate mTORC1 downstream signaling we expressed a mutant S6K1, which subsequently induced the expression of the Schwann cell marker S100b, but did not affect lipogenic gene expression. This suggests that S6K1 dependent and independent pathways downstream of mTORC1 drive AFS cells to early Schwann cell differentiation and lipogenic gene expression. In conclusion our results propose that future strategies for peripheral nervous system regeneration will depend on ways to efficiently induce the mTORC1 pathway.
Collapse
|
32
|
Ng TWK, Ooi EMM, Watts GF, Chan DC, Barrett PHR. Atorvastatin plus omega-3 fatty acid ethyl ester decreases very-low-density lipoprotein triglyceride production in insulin resistant obese men. Diabetes Obes Metab 2014; 16:519-26. [PMID: 24299019 DOI: 10.1111/dom.12243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/24/2013] [Accepted: 11/15/2013] [Indexed: 02/01/2023]
Abstract
AIM To test the effect of atorvastatin (ATV) and ATV plus ω-3 FAEEs on VLDL-TG metabolism in obese, insulin resistant men. METHODS We carried out a 6-week randomized, placebo-controlled study to examine the effect of ATV (40 mg/day) and ATV plus ω-3 FAEEs (4 g/day) on VLDL-TG metabolism in 36 insulin resistant obese men. VLDL-TG kinetics were determined using d5 -glycerol, gas chromatography-mass spectrometry and compartmental modelling. RESULTS Compared with the placebo, ATV significantly decreased VLDL-TG concentration (-40%, p < 0.001) by increasing VLDL-TG fractional catabolic rate (FCR) (+47%, p < 0.01). ATV plus ω-3 FAEEs lowered VLDL-TG concentration to a greater degree compared with placebo (-46%, p < 0.001) or ATV monotherapy (-13%, p = 0.04). This was achieved by a reduction in VLDL-TG production rate (PR) compared with placebo (-32%, p = 0.008) or ATV (-20%, p = 0.03) as well as a reciprocal increase in VLDL-TG FCR (+42%, p < 0.05) compared with placebo. CONCLUSION In insulin resistant, dyslipidaemic, obese men, ATV improves VLDL-TG metabolism by increasing VLDL-TG FCR. The addition of 4 g/day ω-3 FAEE to statin therapy provides further TG-lowering by lowering VLDL-TG PR.
Collapse
Affiliation(s)
- T W K Ng
- Metabolic Research Centre, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Australia
| | | | | | | | | |
Collapse
|
33
|
Clinical Efficacy and Tolerability of Ezetimibe in Combination With Atorvastatin in Japanese Patients With Hypercholesterolemia-Ezetimibe Phase IV Randomized Controlled Trial in Patients With Hypercholesterolemia. Curr Ther Res Clin Exp 2014; 73:16-40. [PMID: 24653510 DOI: 10.1016/j.curtheres.2012.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2012] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The purpose of this study was to compare the efficacy and tolerability of combination therapy of ezetimibe and atorvastatin in patients with high LDL cholesterol that had not reached the lipid management target value with 10 mg atorvastatin monotherapy, against increasing the dose to 20 mg atorvastatin or switching to 2.5 mg rosuvastatin. DESIGN SETTING AND PARTICIPANTS This was an open-label, randomized, multicenter, 3-parallel-group comparison trial at 23 community hospitals and clinics in Japan (enrollment period March 2009 to May 2010) in 125 patients with high LDL cholesterol. INTERVENTIONS A total of 125 Japanese patients with high LDL cholesterol level were randomized to 1 of the following 3 treatment groups: the ezetimibe (10 mg/d) and atorvastatin (10 mg/d) group, the atorvastatin (20 mg/d) group, or the rosuvastatin (2.5 mg/d) group for 12 weeks after treatment with 10 mg atorvastatin alone for 4 weeks. MAIN OUTCOME MEASURE Percent change in LDL cholesterol level from baseline (4 weeks after treatment with 10 mg atorvastatin alone) until study completion. RESULTS The percent change in LDL cholesterol level from baseline until study completion was statistically greater for the combination of 10 mg ezetimibe + 10 mg atorvastatin compared with increasing atorvastatin to 20 mg (-25.8% vs -15.1%; P < 0.0001). A similar result was observed for ezetimibe + atorvastatin compared with switching to 2.5 mgt rosuvastatin (-25.8% vs 0.8%; P < 0.0001). The proportion of patients who reached the target LDL cholesterol value with the combination of ezetimibe + atorvastatin was significantly higher than increasing atorvastatin and switching to rosuvastatin (78.7%, 41.3%, and 3.1%, respectively). Although 5 serious adverse experiences bearing no relation to the study medications were reported, there were no adverse reactions. CONCLUSIONS The combination of 10 mg ezetimibe +10 mg atorvastatin was more effective than increasing atorvastatin to 20 mg or switching to 2.5 mg rosuvastatin in patients with hypercholesterolemia whose LDL cholesterol levels had not reached the recommended target value with 10 mg atorvastatin monotherapy for 4 weeks. Ezetimibe coadministration with atorvastatin was well tolerated. ClinicalTrials.gov identifier: NCT00871351.
Collapse
|
34
|
Abstract
Statins, inhibitors of the hydroxymethylglutaryl-CoA (HMG-CoA) reductase enzyme, are molecules of fungal origin. By inhibiting a key step in the sterol biosynthetic pathway statins are powerful cholesterol lowering medications and have provided outstanding contributions to the prevention of cardiovascular disease. Their detection in mycetes traces back to close to 40 years ago: there were, originally, widely opposing views on their therapeutic potential. From then on, intensive pharmaceutical development has led to the final availability in the clinic of seven statin molecules, characterized by differences in bioavailability, lipo/hydrophilicity, cytochrome P-450 mediated metabolism and cellular transport mechanisms. These differences are reflected in their relative power (mg LDL-cholesterol reduction per mg dose) and possibly in parenchymal or muscular toxicities. The impact of the antagonism of statins on a crucial step of intermediary metabolism leads, in fact, both to a reduction of cholesterol biosynthesis as well as to additional pharmacodynamic (so called "pleiotropic") effects. In the face of an extraordinary clinical success, the emergence of some side effects, e.g. raised incidence of diabetes and cataracts as well as frequent muscular side effects, have led to increasing concern by physicians. However, also in view of the present relatively low cost of these drugs, their impact on daily therapy of vascular patients is unlikely to change.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, Niguarda Hospital, Italy; Professor of Clinical Pharmacology, Università degli Studi di Milano, Italy.
| |
Collapse
|
35
|
France M, Schofield J, Kwok S, Soran H. Treatment of homozygous familial hypercholesterolemia. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.13.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Navarro-González I, Pérez-Sánchez H, Martín-Pozuelo G, García-Alonso J, Periago MJ. The inhibitory effects of bioactive compounds of tomato juice binding to hepatic HMGCR: in vivo study and molecular modelling. PLoS One 2014; 9:e83968. [PMID: 24392102 PMCID: PMC3879275 DOI: 10.1371/journal.pone.0083968] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/18/2013] [Indexed: 02/03/2023] Open
Abstract
The hypocholesterolemic effect of tomato juice has been investigated in an intervention study with rats, along with the possible inhibition effect of bioactive tomato compounds binding to the HMGCR enzyme. Two experimental groups (n = 8 Sprague-Dawley rats) were fed ad libitum for five weeks, with water or tomato juice provided to the control and intervention groups, respectively. Total, LDL and HDL cholesterol, and total triglycerides were analysed in plasma, and the lycopene content and the expression and activity of the enzyme HMGCR were determined in liver samples. A computational molecular modelling was carried out to determine the interactions between HMGCR and lycopene, chlorogenic acid and naringenin. Total, LDL and HDL cholesterol were significantly lower in the intervention group after the intake of tomato juice. In addition, a significant reduction in HMGCR activity was observed, although this was not accompanied by changes in gene expression. The molecular modelling showed that components of tomato can bind to the active site of the enzyme and compete with the ligand HMGCoA. Lycopene, from tomato juice, accumulates in the liver and can inhibit the activity of the rate-limiting enzyme of cholesterol biosynthesis, HMGCR.
Collapse
Affiliation(s)
- Inmaculada Navarro-González
- Dept. of Food Science and Nutrition, Faculty of Veterinary Science. University of Murcia, Campus de Espinardo. Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
- * E-mail: (IG); (HPS)
| | - Horacio Pérez-Sánchez
- Computer Science Department, Catholic University of Murcia (UCAM), Murcia, Spain
- * E-mail: (IG); (HPS)
| | - Gala Martín-Pozuelo
- Dept. of Food Science and Nutrition, Faculty of Veterinary Science. University of Murcia, Campus de Espinardo. Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Javier García-Alonso
- Dept. of Food Science and Nutrition, Faculty of Veterinary Science. University of Murcia, Campus de Espinardo. Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Maria Jesús Periago
- Dept. of Food Science and Nutrition, Faculty of Veterinary Science. University of Murcia, Campus de Espinardo. Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
37
|
Simvastatin treatment upregulates intestinal lipid secretion pathways in a rodent model of the metabolic syndrome. Atherosclerosis 2013; 232:141-8. [PMID: 24401228 DOI: 10.1016/j.atherosclerosis.2013.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 10/15/2013] [Accepted: 10/30/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Statins are widely used for the treatment of hyperlipidemia to reduce cardiovascular disease (CVD) risk. Intriguingly, recent reports suggest that whilst statins are effective in reducing hepatic cholesterol synthesis, they in turn may up-regulate intestinal cholesterol absorption. The direct effects and/or mechanisms of this phenomenon remain largely unknown. The aim of this study was to investigate the potential for statins to increase intestinal lipid absorption and/or secretion in a rodent model of the metabolic syndrome (MetS). METHODS AND RESULTS Mets JCR:LA-cp rats received a 1% cholesterol diet containing Simvastatin (0.01% w/w), for 8 weeks. Fasting and postprandial plasma biochemical profile was assessed using enzymatic assays and a modified apoB48 (chylomicron; CM) western blotting protocol. Statin treatment reduced fasting plasma TG (-49%), cholesterol (-24%) and postprandial plasma apoB48 (-58%). The intestinal secretion of lipids into mesenteric lymph was assessed using lymph fistulae procedures. Interestingly, MetS rats treated with statin secreted greater cholesterol (1.9-fold) and TG (1.5-fold) per apoB48 particle, into mesenteric lymph. This was shown to be as a result of simvastatin-induced increase in intestinal cholesterol absorption (31.5%). Experiments using in vivo inhibition of lipoprotein lipase (LPL; poloxamer-407) demonstrated statin treatment reduced hepatic cholesterol secretion (-49%), but significantly increased hepatic (73%) TG secretion in MetS rats. Statin treatment also increased the expression of genes involved in lipid synthesis (Hmgcr, Srebp1, Fas, Acc; 33-67%) and reduced those involved in efflux (Abca1, Abcg8; -36 to 73%) in enterocytes and liver of MetS rats versus untreated control. CONCLUSIONS In a rodent model of MetS, statin treatment adversely up-regulates intestinal lipid secretion as a result of increased intestinal cholesterol absorption, and increases the intestinal expression of genes involved in lipid synthesis; effects which may confound clinical benefits to remnant dyslipidemia.
Collapse
|
38
|
Shen PM, Shiao MS, Chung HR, Lee KR, Chao YS, Hunt VM. Liquid Chromatographic Determination of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Inhibitors. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199600065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Rahalkar AR, Ban MR, Hegele RA. Clinical Equivalence of Proprietary and Generic Atorvastatin in Lipid Clinic Patients. Can J Cardiol 2013; 29:418-22. [DOI: 10.1016/j.cjca.2012.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/20/2012] [Accepted: 05/20/2012] [Indexed: 10/28/2022] Open
|
40
|
Teramoto T, Sasaki J, Ishibashi S, Birou S, Daida H, Dohi S, Egusa G, Hiro T, Hirobe K, Iida M, Kihara S, Kinoshita M, Maruyama C, Ohta T, Okamura T, Yamashita S, Yokode M, Yokote K. Treatment B) Drug Therapy. J Atheroscler Thromb 2013; 20:850-60. [DOI: 10.5551/jat.19166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Ferreira TM, Coreta-Gomes F, Ollila OHS, Moreno MJ, Vaz WLC, Topgaard D. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies. Phys Chem Chem Phys 2012; 15:1976-89. [PMID: 23258433 DOI: 10.1039/c2cp42738a] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concentration of cholesterol in cell membranes affects membrane fluidity and thickness, and might regulate different processes such as the formation of lipid rafts. Since interpreting experimental data from biological membranes is rather intricate, investigations on simple models with biological relevance are necessary to understand the natural systems. We study the effect of cholesterol on the molecular structure of multi-lamellar vesicles (MLVs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a phospholipid ubiquitous in cell membranes, with compositions in the range 0-60 mol% cholesterol. Order parameters, |S(CH)|, are experimentally determined by using (1)H-(13)C solid-state nuclear magnetic resonance (NMR) spectroscopy with segmental detail for all parts of both the cholesterol and POPC molecules, namely the ring system and alkyl chain of the sterol, as well as the glycerol backbone, choline headgroup and the sn-1 and sn-2 acyl chains of POPC. With increasing cholesterol concentration the acyl chains gradually adopt a more extended conformation while the orientation and dynamics of the polar groups are rather unaffected. Additionally, we perform classical molecular dynamics simulations on virtual bilayers mimicking the POPC-cholesterol MLVs investigated by NMR. Good agreement between experiments and simulations is found for the cholesterol alignment in the bilayer and for the |S(CH)| profiles of acyl chains below 15 mol% cholesterol. Deviations occur for the choline headgroup and glycerol backbone parts of POPC, as well as for the phospholipid and cholesterol alkyl chains at higher cholesterol concentrations. The unprecedented detail of the NMR data enables a more complete comparison between simulations and experiments on POPC-cholesterol bilayers and may aid in developing more realistic model descriptions of biological membranes.
Collapse
|
42
|
Stubbs RJ, Schwartz MS, Gerson RJ, Thornton TJ, Bayne WF. Comparison of Plasma Profiles of Lovastatin (Mevinolin), Simvastatin (Epistatin) and Pravastatin (Eptastatin) in the Dog. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03258190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Inhibition of cholesterol absorption: targeting the intestine. Pharm Res 2012; 29:3235-50. [PMID: 22923351 DOI: 10.1007/s11095-012-0858-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/06/2012] [Indexed: 01/06/2023]
Abstract
Atherosclerosis, the gradual formation of a lipid-rich plaque in the arterial wall is the primary cause of Coronary Artery Disease (CAD), the leading cause of mortality worldwide. Hypercholesterolemia, elevated circulating cholesterol, was identified as a key risk factor for CAD in epidemiological studies. Since the approval of Mevacor in 1987, the primary therapeutic intervention for hypercholesterolemia has been statins, drugs that inhibit the biosynthesis of cholesterol. With improved understanding of the risks associated with elevated cholesterol levels, health agencies are recommending reductions in cholesterol that are not achievable in every patient with statins alone, underlying the need for improved combination therapies. The whole body cholesterol pool is derived from two sources, biosynthesis and diet. Although statins are effective at reducing the biosynthesis of cholesterol, they do not inhibit the absorption of cholesterol, making this an attractive target for adjunct therapies. This report summarizes the efforts to target the gastrointestinal absorption of cholesterol, with emphasis on specifically targeting the gastrointestinal tract to avoid the off-target effects sometimes associated with systemic exposure.
Collapse
|
44
|
Vega GL, Dunn FL, Grundy SM. Effect of colesevelam hydrochloride on glycemia and insulin sensitivity in men with the metabolic syndrome. Am J Cardiol 2011; 108:1129-35. [PMID: 21813109 DOI: 10.1016/j.amjcard.2011.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 12/26/2022]
Abstract
Colesevelam hydrochloride (colesevelam) lowers low-density lipoprotein (LDL) cholesterol and glycated hemoglobin in patients with type 2 diabetes mellitus. The present study examined the effects of colesevelam treatment in nondiabetic men with metabolic syndrome. Twenty men completed the study, which consisted of two 8-week phases of treatment with colesevelam (3.75 g/day) or placebo and a 6-week washout between study phases. Of the 20 men, 17 took statins throughout. The fasting plasma LDL cholesterol, triglyceride, glucose, and glycated hemoglobin levels were measured in the last 2 weeks of each study phase. Nonesterified fatty acids and 3-hydroxybutyrate, insulin, and glucose were measured hourly for 5 hours during fasting and during an extended glucose tolerance test. The colesevelam treatment reduced LDL cholesterol from 96 ± 28 mg/dl to 78 ± 32 mg/dl (p <0.006) and non-high-density lipoprotein cholesterol by 8.2% (p = 0.07). Triglycerides increased by 17% (p <0.02). The fasting plasma glucose was reduced by 5 mg/dl (p <0.03), and glycated hemoglobin remained unchanged by colesevelam. No significant treatment changes were noted for the 2-hour glucose test or insulin sensitivity. The fasting nonesterified fatty acid level was significantly reduced with treatment but the 3-hydroxybutyrate level was unchanged. Insulin-mediated suppression of nonesterified fatty acids during extended glucose tolerance test was significantly less effective during treatment than during placebo. In conclusion, colesevelam significantly reduced the LDL cholesterol levels, even though the baseline LDL cholesterol level was low owing to statin treatment. The fasting and postprandial blood glucose level but not the glycated hemoglobin level was lowered by colesevelam therapy. The effect on fasting glucose was unrelated to the changes in insulin resistance or fatty acid oxidation. Finally, an increase in triglycerides with colesevelam therapy might have been related to a lesser suppression of nonesterified fatty acids levels in the postprandial state.
Collapse
Affiliation(s)
- Gloria Lena Vega
- The Metabolic Unit, Lipid, and Diabetes Clinics of the Veterans Affairs North Health Care System, Dallas, Texas, USA.
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Rachel Hajar
- Department of Cardiology, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
46
|
The Isoprenoid Biosynthetic Pathway and Statins. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-415922-8.00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Nair PK, Mulukutla SR, Marroquin OC. Stents and statins: history, clinical outcomes and mechanisms. Expert Rev Cardiovasc Ther 2010; 8:1283-95. [PMID: 20828351 DOI: 10.1586/erc.10.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 1980s witnessed the inception of both stents and 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins). While they evolved separately, it was soon realized that they each offered a unique and powerful mechanism for targeting the major offender in cardiovascular disease, namely atherosclerosis. Coincidentally, the first statin was approved by the US FDA in 1987, the same year that the coronary stent was conceived. Since that time, stents and statins have revolutionized the field of cardiovascular medicine and their paths have been intertwined. Several pivotal randomized clinical trials have established statins as an effective therapy for improving clinical outcomes after percutaneous coronary intervention (PCI) among patients presenting with stable coronary artery disease and acute coronary syndromes. In addition, chronic statin therapy and acute loading of statins prior to PCI has consistently been shown to limit periprocedural myocardial necrosis. The mechanism for improved clinical outcomes with statins has clearly been associated with statin-induced reductions in LDL. In addition, statins may also exert 'pleiotropic' effects, independent of LDL lowering, that might counteract the inflammatory and prothrombotic mileu created with PCI. This article provides a brief historical perspective of the evolution of the use of statins and stents in patients with coronary artery disease, an evaluation of the available clinical data supporting the use of statins in patients undergoing PCI across a wide spectrum of clinical scenarios, and a discussion of the potential mechanisms of the benefit of statins in these patients.
Collapse
Affiliation(s)
- Pradeep K Nair
- Center for Interventional Cardiology Research, Cardiovascular Institute, University of Pittsburgh Medical Center, 200 Lothrop Street, A-333 PUH, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
48
|
Palozza P, Parrone N, Simone RE, Catalano A. Lycopene in atherosclerosis prevention: An integrated scheme of the potential mechanisms of action from cell culture studies. Arch Biochem Biophys 2010; 504:26-33. [DOI: 10.1016/j.abb.2010.06.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/14/2010] [Accepted: 06/27/2010] [Indexed: 12/31/2022]
|
49
|
Kim HJ, Jeon SM, Lee MK, Cho YY, Kwon EY, Lee JH, Choi MS. Comparison of hesperetin and its metabolites for cholesterol-lowering and antioxidative efficacy in hypercholesterolemic hamsters. J Med Food 2010; 13:808-814. [PMID: 20553191 DOI: 10.1089/jmf.2009.1320] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was performed to compare the hypolipidemic and antioxidant efficacy of hesperetin and its metabolites in hypercholesterolemic hamsters. The hamsters were fed a high-fat (10% coconut oil and 0.2% cholesterol, wt/wt) diet or a high-fat diet supplemented with hesperetin (0.02%) or hesperetin metabolites, 3,4-dihydroxyphenylpropionic acid (DHPP) (0.012%) and 3-methoxy-4-hydroxycinnamic acid (ferulic acid) (0.013%), for 12 weeks. Dietary DHPP and ferulic acid were found to have significantly decreased the levels of the plasma total cholesterol, non-high-density lipoprotein-cholesterol (HDL-C), apolipoprotein B, hepatic lipids, and cholesterol-regulating enzymes compared to the control group. In particular, ferulic acid was more potent with respect to raising HDL-C/total cholesterol ratio and paraoxonase levels while decreasing atherogenic index values. Hesperetin and its metabolites seemed to enhance antioxidant capacity by lowering the hydrogen peroxide and lipid peroxide (thiobarbituric acid-reactive substrates) levels. Among the hesperetin metabolites tested, the relative potency of ferulic acid for reducing the risks of atherosclerosis in hamsters was found to be greater.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Foods R&D, CJ Cheiljedang Corp, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Nicholson AM, Ferreira A. CHOLESTEROL AND NEURONAL SUSCEPTIBILITY TO BETA-AMYLOID TOXICITY. COGNITIVE SCIENCES 2010; 5:35-56. [PMID: 25339981 PMCID: PMC4203449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurocognitive disorder rapidly growing across the elderly population. Although few cases arise due to genetic mutations, sporadic AD is the most common form of this disease. Therefore, there is a continuing research effort to discover a unifying cause of this form of AD. To date, the only strong genetic correlate to the sporadic AD is inheritance of the apolipoprotein E4 (ApoE4) allele, whose encoded protein is involved in cholesterol transport in the central nervous system. This genetic link has prompted a series of studies on the potential molecular mechanisms by which cholesterol could modulate neuronal degeneration in the context of AD. In this review, we discussed the involvement of cholesterol in the production of the pathological hallmarks of the disease and how it might alter the susceptibility of cells to AD-related insult. Finally, we discussed the use of cholesterol-lowering drugs as a potential preventative approach in AD.
Collapse
Affiliation(s)
| | - Adriana Ferreira
- Correspondence should be addressed to: Adriana Ferreira, M.D., Ph. D., Cell and Molecular Biology Department Northwestern University, Ward Building 8-140, 303 East Chicago Avenue, Chicago, Illinois 60611, Phone: (312) 503-0597, Fax: (312) 503-7345,
| |
Collapse
|