1
|
Kumar P, Kumar A, Garg N, Giri R. An insight into SARS-CoV-2 membrane protein interaction with spike, envelope, and nucleocapsid proteins. J Biomol Struct Dyn 2023; 41:1062-1071. [PMID: 34913847 DOI: 10.1080/07391102.2021.2016490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Intraviral protein-protein interactions are crucial for replication, pathogenicity, and viral assembly. Among these, virus assembly is a critical step as it regulates the arrangements of viral structural proteins and helps in the encapsulation of genomic material. SARS-CoV-2 structural proteins play an essential role in the self-rearrangement, RNA encapsulation, and mature virus particle formation. In SARS-CoV, the membrane protein interacts with the envelope and spike protein in Endoplasmic Reticulum Golgi Intermediate Complex (ERGIC) to form an assembly in the lipid bilayer, followed by membrane-ribonucleoprotein (nucleocapsid) interaction. In this study, we tried to understand the interaction of membrane protein's interaction with envelope, spike, and nucleocapsid proteins using protein-protein docking. Further, simulation studies were performed up to 100 ns to examine the stability of protein-protein complexes of Membrane-Envelope, Membrane-Spike, and Membrane-Nucleocapsid proteins. Prime MM-GBSA showed high binding energy calculations for the simulated structures than the docked complex. The interactions identified in our study will be of great importance, as it provides valuable insight into the protein-protein complex, which could be the potential drug targets for future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Amit Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| |
Collapse
|
2
|
Wang Y, Grunewald M, Perlman S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods Mol Biol 2020; 2203:1-29. [PMID: 32833200 DOI: 10.1007/978-1-0716-0900-2_1] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. CoVs cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs, and upper respiratory tract and kidney disease in chickens to lethal human respiratory infections. Most recently, the novel coronavirus, SARS-CoV-2, which was first identified in Wuhan, China in December 2019, is the cause of a catastrophic pandemic, COVID-19, with more than 8 million infections diagnosed worldwide by mid-June 2020. Here we provide a brief introduction to CoVs discussing their replication, pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), which are relevant for understanding COVID-19.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Matthew Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Characterization of an Immunodominant Epitope in the Endodomain of the Coronavirus Membrane Protein. Viruses 2016; 8:v8120327. [PMID: 27973413 PMCID: PMC5192388 DOI: 10.3390/v8120327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/26/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
The coronavirus membrane (M) protein acts as a dominant immunogen and is a major player in virus assembly. In this study, we prepared two monoclonal antibodies (mAbs; 1C3 and 4C7) directed against the transmissible gastroenteritis virus (TGEV) M protein. The 1C3 and 4C7 mAbs both reacted with the native TGEV M protein in western blotting and immunofluorescence (IFA) assays. Two linear epitopes, 243YSTEART249 (1C3) and 243YSTEARTDNLSEQEKLLHMV262 (4C7), were identified in the endodomain of the TGEV M protein. The 1C3 mAb can be used for the detection of the TGEV M protein in different assays. An IFA method for the detection of TGEV M protein was optimized using mAb 1C3. Furthermore, the ability of the epitope identified in this study to stimulate antibody production was also evaluated. An immunodominant epitope in the TGEV membrane protein endodomain was identified. The results of this study have implications for further research on TGEV replication.
Collapse
|
4
|
Analyses of Coronavirus Assembly Interactions with Interspecies Membrane and Nucleocapsid Protein Chimeras. J Virol 2016; 90:4357-4368. [PMID: 26889024 DOI: 10.1128/jvi.03212-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/08/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The coronavirus membrane (M) protein is the central actor in virion morphogenesis. M organizes the components of the viral membrane, and interactions of M with itself and with the nucleocapsid (N) protein drive virus assembly and budding. In order to further define M-M and M-N interactions, we constructed mutants of the model coronavirus mouse hepatitis virus (MHV) in which all or part of the M protein was replaced by its phylogenetically divergent counterpart from severe acute respiratory syndrome coronavirus (SARS-CoV). We were able to obtain viable chimeras containing the entire SARS-CoV M protein as well as mutants with intramolecular substitutions that partitioned M protein at the boundaries between the ectodomain, transmembrane domains, or endodomain. Our results show that the carboxy-terminal domain of N protein, N3, is necessary and sufficient for interaction with M protein. However, despite some previous genetic and biochemical evidence that mapped interactions with N to the carboxy terminus of M, it was not possible to define a short linear region of M protein sufficient for assembly with N. Thus, interactions with N protein likely involve multiple linearly discontiguous regions of the M endodomain. The SARS-CoV M chimera exhibited a conditional growth defect that was partially suppressed by mutations in the envelope (E) protein. Moreover, virions of the M chimera were markedly deficient in spike (S) protein incorporation. These findings suggest that the interactions of M protein with both E and S protein are more complex than previously thought. IMPORTANCE The assembly of coronavirus virions entails concerted interactions among the viral structural proteins and the RNA genome. One strategy to study this process is through construction of interspecies chimeras that preserve or disrupt particular inter- or intramolecular associations. In this work, we replaced the membrane (M) protein of the model coronavirus mouse hepatitis virus with its counterpart from a heterologous coronavirus. The results clarify our understanding of the interaction between the coronavirus M protein and the nucleocapsid protein. At the same time, they reveal unanticipated complexities in the interactions of M with the viral spike and envelope proteins.
Collapse
|
5
|
Liu DX, Fung TS, Chong KKL, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 2014; 109:97-109. [PMID: 24995382 PMCID: PMC7113789 DOI: 10.1016/j.antiviral.2014.06.013] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 01/21/2023]
Abstract
The huge RNA genome of SARS coronavirus comprises a number of open reading frames that code for a total of eight accessory proteins. Although none of these are essential for virus replication, some appear to have a role in virus pathogenesis. Notably, some SARS-CoV accessory proteins have been shown to modulate the interferon signaling pathways and the production of pro-inflammatory cytokines. The structural information on these proteins is also limited, with only two (p7a and p9b) having their structures determined by X-ray crystallography. This review makes an attempt to summarize the published knowledge on SARS-CoV accessory proteins, with an emphasis on their involvement in virus-host interaction. The accessory proteins of other coronaviruses are also briefly discussed. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses" (see Introduction by Hilgenfeld and Peiris (2013)).
Collapse
Affiliation(s)
- Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - To Sing Fung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kelvin Kian-Long Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aditi Shukla
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF), University of Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF), University of Lübeck, Germany
| |
Collapse
|
6
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
7
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
8
|
Evolved variants of the membrane protein can partially replace the envelope protein in murine coronavirus assembly. J Virol 2010; 84:12872-85. [PMID: 20926558 DOI: 10.1128/jvi.01850-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coronavirus small envelope (E) protein plays a crucial, but poorly defined, role in the assembly of virions. To investigate E protein function, we previously generated E gene point mutants of mouse hepatitis virus (MHV) that were defective in growth and assembled virions with anomalous morphologies. We subsequently constructed an E gene deletion (ΔE) mutant that was only minimally viable. The ΔE virus formed tiny plaques and reached optimal infectious titers many orders of magnitude below those of wild-type virus. We have now characterized highly aberrant viral transcription patterns that developed in some stocks of the ΔE mutant. Extensive analysis of three independent stocks revealed that, in each, a faster-growing virus harboring a genomic duplication had been selected. Remarkably, the net result of each duplication was the creation of a variant version of the membrane protein (M) gene that was situated upstream of the native copy of the M gene. Each different variant M gene encoded an expressed protein (M*) containing a truncated endodomain. Reconstruction of one variant M gene in a ΔE background showed that expression of the M* protein markedly enhanced the growth of the ΔE mutant and that the M* protein was incorporated into assembled virions. These findings suggest that M* proteins were repeatedly selected as surrogates for the E protein and that one role of E is to mediate interactions between transmembrane domains of M protein monomers. Our results provide a demonstration of the capability of coronaviruses to evolve new gene functions through recombination.
Collapse
|
9
|
A conserved domain in the coronavirus membrane protein tail is important for virus assembly. J Virol 2010; 84:11418-28. [PMID: 20719948 DOI: 10.1128/jvi.01131-10] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Coronavirus membrane (M) proteins play key roles in virus assembly, through M-M, M-spike (S), and M-nucleocapsid (N) protein interactions. The M carboxy-terminal endodomain contains a conserved domain (CD) following the third transmembrane (TM) domain. The importance of the CD (SWWSFNPETNNL) in mouse hepatitis virus was investigated with a panel of mutant proteins, using genetic analysis and transient-expression assays. A charge reversal for negatively charged E(121) was not tolerated. Lysine (K) and arginine (R) substitutions were replaced in recovered viruses by neutrally charged glutamine (Q) and leucine (L), respectively, after only one passage. E121Q and E121L M proteins were capable of forming virus-like particles (VLPs) when coexpressed with E, whereas E121R and E121K proteins were not. Alanine substitutions for the first four or the last four residues resulted in viruses with significantly crippled phenotypes and proteins that failed to assemble VLPs or to be rescued into the envelope. All recovered viruses with alanine substitutions in place of SWWS residues had second-site, partially compensating, changes in the first TM of M. Alanine substitution for proline had little impact on the virus. N protein coexpression with some M mutants increased VLP production. The results overall suggest that the CD is important for formation of the viral envelope by helping mediate fundamental M-M interactions and that the presence of the N protein may help stabilize M complexes during virus assembly.
Collapse
|
10
|
A single tyrosine in the severe acute respiratory syndrome coronavirus membrane protein cytoplasmic tail is important for efficient interaction with spike protein. J Virol 2009; 84:1891-901. [PMID: 20007283 DOI: 10.1128/jvi.02458-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes 3 major envelope proteins: spike (S), membrane (M), and envelope (E). Previous work identified a dibasic endoplasmic reticulum retrieval signal in the cytoplasmic tail of SARS-CoV S that promotes efficient interaction with SARS-CoV M. The dibasic signal was shown to be important for concentrating S near the virus assembly site rather than for direct interaction with M. Here, we investigated the sequence requirements of the SARS-CoV M protein that are necessary for interaction with SARS-CoV S. The SARS-CoV M tail was shown to be necessary for S localization in the Golgi region when the proteins were exogenously coexpressed in cells. This was specific, since SARS-CoV M did not retain an unrelated glycoprotein in the Golgi. Importantly, we found that an essential tyrosine residue in the SARS-CoV M cytoplasmic tail, Y(195), was important for S-M interaction. When Y(195) was mutated to alanine, M(Y195A) no longer retained S intracellularly at the Golgi. Unlike wild-type M, M(Y195A) did not reduce the amount of SARS-CoV S carbohydrate processing or surface levels when the two proteins were coexpressed. Mutating Y(195) also disrupted SARS-CoV S-M interaction in vitro. These results suggest that Y(195) is necessary for efficient SARS-CoV S-M interaction and, thus, has a significant involvement in assembly of infectious virus.
Collapse
|
11
|
Identification of a novel linear B-cell epitope in the M protein of avian infectious bronchitis coronaviruses. J Microbiol 2009; 47:589-99. [PMID: 19851732 PMCID: PMC7090873 DOI: 10.1007/s12275-009-0104-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/05/2009] [Indexed: 12/29/2022]
Abstract
This report describes the identification of a novel linear B-cell epitope at the C-terminus of the membrane (M) protein of avian infectious bronchitis virus (IBV). A monoclonal antibody (MAb) (designated as 15E2) against the IBV M protein was prepared and a series of 14 partially-overlapping fragments of the IBV M gene were expressed with a GST tag. These peptides were subjected to enzyme-linked immunosorbent assay (ELISA) and western blotting analysis using MAb 15E2 to identify the epitope. A linear motif, 199FATFVYAK206, which was located at the C-terminus of the M protein, was identified by MAb 15E2. ELISA and western blotting also showed that this epitope could be recognized by IBV-positive serum from chicken. Given that 15E2 showed reactivity with the 199FATFVYAK206 motif, expressed as a GST fusion protein, in both western blotting and in an ELISA, we proposed that this motif represented a linear B-cell epitope of the M protein. The 199FATFVYAK206 motif was the minimal requirement for reactivity as demonstrated by analysis of the reactivity of 15E2 with several truncated peptides that were derived from the motif. Alignment and comparison of the 15E2-defined epitope sequence with the sequences of other corona-viruses indicated that the epitope is well conserved among chicken and turkey coronaviruses. The identified epitope should be useful in clinical applications and as a tool for the further study of the structure and function of the M protein of IBV.
Collapse
|
12
|
Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proc Natl Acad Sci U S A 2009; 106:582-7. [PMID: 19124777 DOI: 10.1073/pnas.0805270106] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are enveloped viruses containing the largest reported RNA genomes. As a result of their pleomorphic nature, our structural insight into the coronavirion is still rudimentary, and it is based mainly on 2D electron microscopy. Here we report the 3D virion structure of coronaviruses obtained by cryo-electron tomography. Our study focused primarily on the coronavirus prototype murine hepatitis virus (MHV). MHV particles have a distinctly spherical shape and a relatively homogenous size ( approximately 85 nm envelope diameter). The viral envelope exhibits an unusual thickness (7.8 +/- 0.7 nm), almost twice that of a typical biological membrane. Focal pairs revealed the existence of an extra internal layer, most likely formed by the C-terminal domains of the major envelope protein M. In the interior of the particles, coiled structures and tubular shapes are observed, consistent with a helical nucleocapsid model. Our reconstructions provide no evidence of a shelled core. Instead, the ribonucleoprotein seems to be extensively folded onto itself, assuming a compact structure that tends to closely follow the envelope at a distance of approximately 4 nm. Focal contact points and thread-like densities connecting the envelope and the ribonucleoprotein are revealed in the tomograms. Transmissible gastroenteritis coronavirion tomograms confirm all the general features and global architecture observed for MHV. We propose a general model for the structure of the coronavirion in which our own and published observations are combined.
Collapse
|
13
|
Perlman S, Holmes KV. Genetic and molecular biological analysis of protein-protein interactions in coronavirus assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:163-73. [PMID: 17037525 PMCID: PMC7123481 DOI: 10.1007/978-0-387-33012-9_29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
14
|
Jiang W, Jiang P, Li Y, Tang J, Wang X, Ma S. Recombinant adenovirus expressing GP5 and M fusion proteins of porcine reproductive and respiratory syndrome virus induce both humoral and cell-mediated immune responses in mice. Vet Immunol Immunopathol 2006; 113:169-80. [PMID: 16777236 DOI: 10.1016/j.vetimm.2006.05.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/01/2006] [Indexed: 11/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important contagious agents of swine in the world. PRRSV infection poses a challenge to current vaccination strategies. In this study, three replication-defective adenovirus recombinants were developed as potential vaccine against PRRSV in a mouse model. Three groups of BALB/c mice (24 mice per group) were inoculated subcutaneously twice at 2-week intervals with the recombinants expressing PRRSV GP5 (rAd-GP5), M (rAd-M), and M-GP5 fusion protein (rAd-M-GP5). Two additional groups were injected with wild-type adenovirus (wtAd) or PBS as control. The results showed that the mice inoculated with recombinant adenoviruses developed PRRSV-specific antibodies, cellular immune response by 2 weeks post second inoculation. However, only mice immunized with recombinant adenovirus rAd-M-GP5 developed significantly higher titers of neutralizing antibodies to PRRSV and produced stronger lymphocyte proliferation responses compared to mice immunized with rAd-M or rAd-GP5 alone. It was also found that mice immunized with rAd-M-GP5 were primed for significant higher levels of anti-PRRSV CTL responses than mice immunized with rAd-M. Mice receiving rAd-GP5 also mounted PRRSV-specific response, but levels were lower. It suggested that the recombinant adenovirus expressing M-GP5 fusion protein might be an attractive candidate vaccine to be tested for preventing PRRSV infection.
Collapse
Affiliation(s)
- Wenming Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
16
|
Oostra M, de Haan CAM, de Groot RJ, Rottier PJM. Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M. J Virol 2006; 80:2326-36. [PMID: 16474139 PMCID: PMC1395384 DOI: 10.1128/jvi.80.5.2326-2336.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) open reading frame 3a protein has recently been shown to be a structural protein. The protein is encoded by one of the so-called group-specific genes and has no sequence homology with any of the known structural or group-specific proteins of coronaviruses. It does, however, have several similarities to the coronavirus M proteins; (i) they are triple membrane spanning with the same topology, (ii) they have similar intracellular localizations (predominantly Golgi), (iii) both are viral structural proteins, and (iv) they appear to interact with the E and S proteins, as well as with each other. The M protein plays a crucial role in coronavirus assembly and is glycosylated in all coronaviruses, either by N-linked or by O-linked oligosaccharides. The conserved glycosylation of the coronavirus M proteins and the resemblance of the 3a protein to them led us to investigate the glycosylation of these two SARS-CoV membrane proteins. The proteins were expressed separately using the vaccinia virus T7 expression system, followed by metabolic labeling. Pulse-chase analysis showed that both proteins were modified, although in different ways. While the M protein acquired cotranslationally oligosaccharides that could be removed by PNGaseF, the 3a protein acquired its modifications posttranslationally, and they were not sensitive to the N-glycosidase enzyme. The SARS-CoV 3a protein, however, was demonstrated to contain sialic acids, indicating the presence of oligosaccharides. O-glycosylation of the 3a protein was indeed confirmed using an in situ O-glycosylation assay of endoplasmic reticulum-retained mutants. In addition, we showed that substitution of serine and threonine residues in the ectodomain of the 3a protein abolished the addition of the O-linked sugars. Thus, the SARS-CoV 3a protein is an O-glycosylated glycoprotein, like the group 2 coronavirus M proteins but unlike the SARS-CoV M protein, which is N glycosylated.
Collapse
Affiliation(s)
- M Oostra
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
17
|
Abstract
This chapter describes the interactions between the different structural components of the viruses and discusses their relevance for the process of virion formation. Two key factors determine the efficiency of the assembly process: intracellular transport and molecular interactions. Many viruses have evolved elaborate strategies to ensure the swift and accurate delivery of the virion components to the cellular compartment(s) where they must meet and form (sub) structures. Assembly of viruses starts in the nucleus by the encapsidation of viral DNA, using cytoplasmically synthesized capsid proteins; nucleocapsids then migrate to the cytosol, by budding at the inner nuclear membrane followed by deenvelopment, to pick up the tegument proteins.
Collapse
Affiliation(s)
- Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | |
Collapse
|
18
|
Popova R, Zhang X. The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection. Virology 2002; 294:222-36. [PMID: 11886280 PMCID: PMC7131450 DOI: 10.1006/viro.2001.1307] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike (S) and hemagglutinin/esterase (HE) of bovine coronavirus (BCV) are the two envelope proteins that recognize the same receptor-determinant of 9-O-acetylneuraminic acid on host cells. However, the precise and relative roles of the two proteins in BCV infectivity remain elusive. To unequivocally determine their roles in viral cytopathogenicity, we developed a system in which phenotypically chimeric viruses were generated by infecting a closely related mouse hepatitis virus (MHV) in cells that stably express an individual BCV protein (S or HE). The chimeric viruses were then used to infect human rectal tumor (HRT)-18 cells that are permissive to BCV but are nonsusceptible to MHV. Using this approach, we found that the chimeric virus containing the BCV S protein on the virion surface entered and replicated in HRT-18 cells; this was specifically blocked by prior treatment of the virus with a neutralizing antibody specific to the BCV S protein, indicating that the BCV S protein is responsible for initiating chimeric virus infection. In contrast, chimeric viruses that contain biologically active and functional BCV HE protein on the surface failed to enter HRT-18 cells, indicating that the BCV HE protein alone is not sufficient for BCV infection. Taken together, these results demonstrate that the S protein but not the HE protein of BCV is necessary and sufficient for infection of the chimeric viruses in HRT-18 cells, suggesting that BCV likely uses the S protein as a primary vehicle to infect permissive cells.
Collapse
Affiliation(s)
- Rada Popova
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | |
Collapse
|
19
|
Abstract
Coronavirus small envelope protein E has two known biological functions: it plays a pivotal role in virus envelope formation, and the murine coronavirus E protein induces apoptosis in E protein-expressing cultured cells. The E protein is an integral membrane protein. Its C-terminal region extends cytoplasmically in the infected cell and in the virion toward the interior. The N-terminal two-thirds of the E protein is hydrophobic and lies buried within the membrane, but its orientation in the lipid membrane is not known. Immunofluorescent analyses of cells expressing biologically active murine coronavirus E protein with a hydrophilic short epitope tag at the N-terminus showed that the epitope tag was exposed cytoplasmically. Immunoprecipitation analyses of the purified microsomal membrane vesicles that contain the same tagged E protein revealed the N-terminal epitope tag outside the microsomal membrane vesicles. These analyses demonstrated that the epitope tag at the N-terminus of the E protein was exposed cytoplasmically. Our data were consistent with an E protein topology model, in which the N-terminal two-thirds of the transmembrane domain spans the lipid bilayer twice, exposing the C-terminal region to the cytoplasm or virion interior.
Collapse
Affiliation(s)
- J Maeda
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
20
|
Raamsman MJ, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, Rottier PJ. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol 2000; 74:2333-42. [PMID: 10666264 PMCID: PMC111715 DOI: 10.1128/jvi.74.5.2333-2342.2000] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1999] [Accepted: 12/02/1999] [Indexed: 02/07/2023] Open
Abstract
The small envelope (E) protein has recently been shown to play an essential role in the assembly of coronaviruses. Expression studies revealed that for formation of the viral envelope, actually only the E protein and the membrane (M) protein are required. Since little is known about this generally low-abundance virion component, we have characterized the E protein of mouse hepatitis virus strain A59 (MHV-A59), an 83-residue polypeptide. Using an antiserum to the hydrophilic carboxy terminus of this otherwise hydrophobic protein, we found that the E protein was synthesized in infected cells with similar kinetics as the other viral structural proteins. The protein appeared to be quite stable both during infection and when expressed individually using a vaccinia virus expression system. Consistent with the lack of a predicted cleavage site, the protein was found to become integrated in membranes without involvement of a cleaved signal peptide, nor were any other modifications of the polypeptide observed. Immunofluorescence analysis of cells expressing the E protein demonstrated that the hydrophilic tail is exposed on the cytoplasmic side. Accordingly, this domain of the protein could not be detected on the outside of virions but appeared to be inside, where it was protected from proteolytic degradation. The results lead to a topological model in which the polypeptide is buried within the membrane, spanning the lipid bilayer once, possibly twice, and exposing only its carboxy-terminal domain. Finally, electron microscopic studies demonstrated that expression of the E protein in cells induced the formation of characteristic membrane structures also observed in MHV-A59-infected cells, apparently consisting of masses of tubular, smooth, convoluted membranes. As judged by their colabeling with antibodies to E and to Rab-1, a marker for the intermediate compartment and endoplasmic reticulum, the E protein accumulates in and induces curvature into these pre-Golgi membranes where coronaviruses have been shown earlier to assemble by budding.
Collapse
Affiliation(s)
- M J Raamsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Institute of Virology, and Institute of Biomembranes, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Integral Membrane Proteins. JOURNAL OF CHROMATOGRAPHY LIBRARY 2000. [PMCID: PMC7147869 DOI: 10.1016/s0301-4770(08)60540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
de Haan CA, Roestenberg P, de Wit M, de Vries AA, Nilsson T, Vennema H, Rottier PJ. Structural requirements for O-glycosylation of the mouse hepatitis virus membrane protein. J Biol Chem 1998; 273:29905-14. [PMID: 9792708 DOI: 10.1074/jbc.273.45.29905] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse hepatitis virus (MHV) membrane (M) protein contains only O-linked oligosaccharides. We have used this protein as a model to study the structural requirements for O-glycosylation. We show that MHV M is modified by the addition of a single oligosaccharide side chain at the cluster of 4 hydroxylamino acids present at its extreme amino terminus and identified Thr at position 5 as the functional acceptor site. The hydroxylamino acid cluster, which is quite conserved among O-glycosylated coronavirus M proteins, is not in itself sufficient for O-glycosylation. Downstream amino acids are required to introduce a functional O-glycosylation site into a foreign protein. In a mutagenic analysis O-glycosylation was found to be sensitive to some particular changes but no unique sequence motif for O-glycosylation could be identified. Expression of mutant M proteins in cells revealed that substitution of any 1 residue was tolerated, conceivably due to the occurrence of multiple UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc transferases). Indeed, MHV M served as a substrate for GalNac-T1, -T2, and -T3, as was demonstrated using an in situ glycosylation assay based on the co-expression of endoplasmic reticulum-retained forms of the GalNAc transferases with endoplasmic reticulum-resident MHV M mutants. The GalNAc transferases were found to have largely overlapping, but distinct substrate specificities. The requirement for a threonine as acceptor rather than a serine residue and the requirement for a proline residue three positions downstream of the acceptor site were found to be distinctive features.
Collapse
Affiliation(s)
- C A de Haan
- Institute of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, and the Institute of Biomembranes, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
de Haan CA, Vennema H, Rottier PJ. Coronavirus envelope assembly is sensitive to changes in the terminal regions of the viral M protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:367-75. [PMID: 9782305 DOI: 10.1007/978-1-4615-5331-1_48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently we demonstrated that the co-expressed coronavirus membrane proteins have the capacity to assemble viral envelopes which are similar to normal virus particles in dimensions and appearance, and which can form independent of a nucleocapsid (Vennema et al., 1996). For the formation of these particles only the M and the E protein are required; the S protein is dispensable but is incorporated when present. As we illustrate here, this virus-like particle assembly system is an ideal tool to study the interactions between the essential assembly partners M and E in molecular detail. Taking a mutagenetic approach we demonstrate that envelope assembly is critically sensitive to changes in the primary structure of both terminal domains of the M protein. The effects were most dramatically observed after mutation of the carboxy-terminal domain where the deletion of just one single amino acid at the extreme terminus abolished particle formation almost completely. But also some subtle mutations in the amino-terminal domain were severely inhibitory to the assembly process. Interestingly, mutant M proteins that were themselves incompetent to support particle formation appeared to inhibit, in a concentration dependent manner, the assembly of particles by wild-type M and E protein.
Collapse
Affiliation(s)
- C A de Haan
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | |
Collapse
|
24
|
Mo C, Holland TC. Determination of the transmembrane topology of herpes simplex virus type 1 glycoprotein K. J Biol Chem 1997; 272:33305-11. [PMID: 9407122 DOI: 10.1074/jbc.272.52.33305] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus type 1 glycoprotein K (gK) plays an essential role in viral replication and cell fusion. gK is a very hydrophobic membrane protein that contains a signal sequence and several hydrophobic regions. It has been shown that mutations inducing cell fusion map to two distinct domains of gK, suggesting that these domains are functionally important. To understand the transmembrane topology of gK and the localization of these functional domains, we constructed a set of gK deletion, insertion, and truncation mutants and expressed these by in vitro translation in the presence of microsomal membranes. The transmembrane topology of gK was determined by examination of the post-translational processing and protease sensitivity of the mutant proteins. Our data demonstrate that gK contains three transmembrane domains (amino acids 125-139, 226-239, and 311-325). Another hydrophobic domain (amino acids 241-265), which is relatively less hydrophobic and much longer compared with the transmembrane sequences, is located in the extracellular loop. The analysis showed that the domains containing syncytial mutations are both ectodomains. They may interact with each other to form a complex tertiary structure that is critical for the biological function of gK.
Collapse
Affiliation(s)
- C Mo
- Department of Immunology and Microbiology, Wayne State University Medical School, Detroit, Michigan 48201, USA
| | | |
Collapse
|
25
|
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
26
|
Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997; 48:1-100. [PMID: 9233431 PMCID: PMC7130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
27
|
Krijnse-Locker J, Schleich S, Rodriguez D, Goud B, Snijder EJ, Griffiths G. The role of a 21-kDa viral membrane protein in the assembly of vaccinia virus from the intermediate compartment. J Biol Chem 1996; 271:14950-8. [PMID: 8662995 DOI: 10.1074/jbc.271.25.14950] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have recently provided morphological evidence that a key event in the assembly of vaccinia virus is the formation of a novel cisternal domain of the intermediate compartment (IC) between the endoplasmic reticulum and the Golgi complex (Sodeik, B., Doms, R. W., Ericsson, M., Hiller, G., Machamer, C. E., van't Hof, W., van Meer, G., Moss, B., and Griffiths, G. (1993) J. Cell Biol. 121, 521-541). This tightly apposed cisternal domain incompletely surrounds the spherical immature virus that matures into the first of the two distinct infectious forms of vaccinia, the intracellular mature virus (IMV). In this study we describe the characterization of an abundant membrane protein of the IMV, the gene product of A17L, a 21-kDa protein that has recently been shown to be essential for the formation of the viral membranes (Rodriguez, D., Esteban, M., and Rodriguez, J. R. (1995) J. Virol. 69, 4640-4648). Upon translation in vitro, p21 associated with rough microsomal membranes in a co-translational manner. Using NH2- and COOH-terminal specific antibodies, we show that both in vitro as well as in vivo, p21 adopts a topology where the NH2 and COOH termini are cytoplasmically orientated. Immunocytochemical experiments demonstrated that p21 is a component of the inner of the two cisternal membranes of the immature virus as well as of membranes of the IC, identified using antibodies against Rab1. Taken together, these data provide the first molecular evidence in support of our assembly model; they show that an essential membrane protein of the IMV inserts into the rough endoplasmic reticulum, but gets efficiently targeted to the IC and membranes of the viral factory.
Collapse
Affiliation(s)
- J Krijnse-Locker
- European Molecular Biology Laboratory, Cell Biology Program, Meyerhofstrasse 1, 69118 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Faaberg KS, Plagemann PG. Membrane association of the C-terminal half of the open reading frame 1a protein of lactate dehydrogenase-elevating virus. Arch Virol 1996; 141:1337-48. [PMID: 8774692 PMCID: PMC7086564 DOI: 10.1007/bf01718835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1995] [Accepted: 02/17/1996] [Indexed: 02/02/2023]
Abstract
ORF 1a of lactate dehydrogenase-elevating virus, strain P (LDV-P), encodes a protein of 2206 amino acids. Eisenberg hydrophobic moment analysis of the protein predicted the presence of eleven transmembrane segments in the C-terminal half of the molecule (amino acids 980-1852) that flank the serine protease domain. cDNAs encoding ORF 1a protein segments encompassing transmembrane segments 5 to 11 and its amphipathic C-terminal end as well as the N-terminal 80 amino acids of the downstream ORF 1b protein were transcribed and the transcripts in vitro translated in the absence and presence of microsomal membranes. The synthesis of the protein products with putative transmembrane segments was enhanced by the presence of the microsomal membranes and the proteins became membrane associated. When synthesized in the absence of membranes they were recovered in the supernatant upon ultracentrifugation of the translation reaction mixtures, whereas they were recovered in the membrane pellet when synthesized in the presence of membranes. Furthermore, the latter proteins were not released from the membranes by disruption of the membrane vesicles in carbonate buffer, pH 11.5, and large portions of the proteins were resistant to digestion by trypsin, chymotrypsin and proteinase K. No N-glycosylation was observed and only little, if any, processing of the protein by the putative serine protease. The results indicate that the C-terminal half of the ORF 1a protein represents a non-glycosylated integral membrane protein. Potential modes of synthesis and function of the protein are discussed. In addition, the results showed that the synthesis of the ORF 1a protein was generally terminated at its termination codon, but that read-through into the ORF 1b gene occurred with low frequency.
Collapse
Affiliation(s)
- K S Faaberg
- Department of Microbiology, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|
29
|
Risco C, Antón IM, Suñé C, Pedregosa AM, Martín-Alonso JM, Parra F, Carrascosa JL, Enjuanes L. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion. J Virol 1995; 69:5269-77. [PMID: 7636969 PMCID: PMC189361 DOI: 10.1128/jvi.69.9.5269-5277.1995] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The binding domains of four monoclonal antibodies (MAbs) specific for the M protein of the PUR46-MAD strain of transmissible gastroenteritis coronavirus (TGEV) have been located in the 46 carboxy-terminal amino acids of the protein by studying the binding of MAbs to recombinant M protein fragments. Immunoelectron microscopy using these MAbs demonstrated that in a significant proportion of the M protein molecules, the carboxy terminus is exposed on the external surface both in purified viruses and in nascent TGEV virions that recently exited infected swine testis cells. The same MAbs specifically neutralized the infectivity of the PUR46-MAD strain, indicating that the C-terminal domain of M protein is exposed on infectious viruses. This topology of TGEV M protein probably coexists with the structure currently described for the M protein of coronaviruses, which consists of an exposed amino terminus and an intravirion carboxy-terminal domain. The presence of a detectable number of M protein molecules with their carboxy termini exposed on the surface of the virion has relevance for viral function, since it has been shown that the carboxy terminus of M protein is immunodominant and that antibodies specific for this domain both neutralize TGEV and mediate the complement-dependent lysis of TGEV-infected cells.
Collapse
Affiliation(s)
- C Risco
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Meulenberg JJ, Petersen-den Besten A, De Kluyver EP, Moormann RJ, Schaaper WM, Wensvoort G. Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology 1995; 206:155-63. [PMID: 7831770 PMCID: PMC7130653 DOI: 10.1016/s0042-6822(95)80030-1] [Citation(s) in RCA: 275] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genome of Lelystad virus (LV), a positive-strand RNA virus, is 15 kb in length and contains 8 open reading frames (ORFs) that encode putative viral proteins. ORFs 2 to 7 were cloned in plasmids downstream of the Sp6 RNA polymerase promoter, and the translation of transcripts generated in vitro yielded proteins that could be immunoprecipitated with porcine anti-LV serum. Synthetic polypeptides of 15 to 17 amino acids were selected from the amino acid sequences of ORFs 2 to 7 and antipeptide sera were raised in rabbits. Antisera that immunoprecipitated the in vitro translation products of ORFs 2 to 5 and 7 were obtained. Sera containing antibodies directed against peptides from ORFs 3 to 7 reacted positively with LV-infected alveolar lung macrophages in the immunoperoxidase monolayer assay. Using these antipeptide sera and porcine anti-LV serum, we identified three structural proteins and assigned their corresponding genes. Virions were found to contain a nucleocapsid protein of 15 kDa (N), an unglycosylated membrane protein of 18 kDa (M), and a glycosylated membrane protein of 25 kDa (E). The N protein is encoded by ORF7, the M protein is encoded by ORF6, and the E protein is encoded by ORF5. The E protein in virus particles contains one or two N-glycans that are resistant to endo-beta-N-acetyl-D-glucosaminidase H. This finding indicates that the high-mannose glycans are processed into complex glycans in the Golgi compartment. The protein composition of the LV virions further confirms that LV is evolutionarily related to equine arteritis virus, simian hemorrhagic fever virus, and lactate dehydrogenase-elevating virus.
Collapse
Affiliation(s)
- J J Meulenberg
- Department of Virology, Institute for Animal Science and Health (ID-DLO), Lelystad, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Meulenberg JJ, Petersen-den Besten A, de Kluyver EP, Moormann RJ, Schaaper WM, Wensvoort G. Characterization of structural proteins of Lelystad virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:271-6. [PMID: 8830491 DOI: 10.1007/978-1-4615-1899-0_43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genome of Lelystad virus (LV), a positive-strand RNA virus, is 15 kb in length and contains 8 open reading frames that encode putative viral proteins. Synthetic polypeptides of 15 to 17 amino acids were selected from the amino acid sequences of ORFs 2 to 7 and anti-peptide sera were raised in rabbits. Using these anti-peptide sera and porcine anti-LV serum, we identified three structural proteins and assigned their corresponding genes. Virions were found to contain a nucleocapsid protein of 15 kDa (N), an unglycosylated membrane protein of 18 kDa (M), and a glycosylated membrane protein of 25 kDa (E). The N protein is encoded by ORF7, the M protein is encoded by ORF6, and the E protein is encoded by ORF5.
Collapse
Affiliation(s)
- J J Meulenberg
- Institute for Animal Science and Health (ID-DLO), Department of Virology, Lelystad, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Locker JK, Klumperman J, Oorschot V, Horzinek MC, Geuze HJ, Rottier PJ. The cytoplasmic tail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46923-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
33
|
Shina R, Crain RC, Rosenberg P, Condrea E. The asymmetric distribution of phosphatidylcholine in rat brain synaptic plasma membranes. Neurochem Int 1993; 22:189-95. [PMID: 8439772 PMCID: PMC7135640 DOI: 10.1016/0197-0186(93)90012-t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The distribution of phosphatidylcholine between inner and outer monolayers of rat brain synaptic plasma membrane was investigated by means of a phosphatidylcholine specific exchange protein. About 70% of the total membranal phosphatidylcholine was in the outer leaflet, 33% of which was exposed and readily exchanged in intact synaptosomes while the remainder was exchangeable following osmotic shock. Permeabilization of the synaptic plasma membranes by overnight incubation in buffer or by saponin (< 0.08%) exposed an additional 30% of phosphatidylcholine to exchange, presumably from the inner cytoplasmic leaflet. Phosphatidylcholine is therefore asymmetrically distributed in the synaptosomal plasma membrane, as it is in other plasma membranes.
Collapse
Affiliation(s)
- R Shina
- Basil and Gerald Felsenstein Medical Research Center, Rogoff-Wellcome Medical Research Institute, Sackler School of Medicine, Tel Aviv University, Beilinson Medical Center, Petah Tikva, Israel
| | | | | | | |
Collapse
|
34
|
Abstract
We have recently shown that the genome of equine arteritis virus (EAV) contains seven open reading frames (ORFs). We now present data on the structural proteins of EAV and the assignment of their respective genes. Virions are composed of a 14-kDa nucleocapsid protein (N) and three membrane proteins designated M, GS, and GL. M is an unglycosylated protein of 16 kDa, and GS and GL are N-glycosylated proteins of 25 and 30 to 42 kDa, respectively. The broad size distribution of GL results from heterogeneous N-acetyllactosamine addition since it is susceptible to digestion by endo-beta-galactosidase. Using monospecific antisera as well as an antivirion serum, and by expression of individual ORFs, the genes for the structural proteins were identified: ORF 7 codes for N, ORF 6 for M, ORF 5 for GL, and ORF 2 for GS. With the exception of GS, the proteins are about equally abundant in EAV virions, being present at a molar ratio of 3 (N):2 (M):3 (GL). The GS protein, which is expressed at a level similar to that of M in infected cells, is strikingly underrepresented in virus particles (1 to 2%). Our data justify a distinct taxonomic position for EAV, together with lactate dehydrogenase-elevating virus and simian hemorrhagic fever virus; although coronavirus- and toroviruslike in features of transcription and translation, the virion architecture of EAV is fundamentally different.
Collapse
Affiliation(s)
- A A de Vries
- Department of Infectious Diseases and Immunology, Veterinary Faculty, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
35
|
Locker JK, Rose JK, Horzinek MC, Rottier PJ. Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J Biol Chem 1992; 267:21911-8. [PMID: 1400501 PMCID: PMC8740634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The M protein of mouse hepatitis virus strain A59 is a triple-spanning membrane protein which assembles with an uncleaved internal signal sequence, adopting an NexoCcyt orientation. To study the insertion mechanism of this protein, domains potentially involved in topogenesis were deleted and the effects analyzed in topogenesis were deleted and the effects analyzed in several ways. Mutant proteins were synthesized in a cell-free translation system in the presence of microsomal membranes, and their integration and topology were determined by alkaline extraction and by protease-protection experiments. By expression in COS-1 and Madin-Darby canine kidney-II cells, the topology of the mutant proteins was also analyzed in vivo. Glycosylation was used as a biochemical marker to assess the disposition of the NH2 terminus. An indirect immunofluorescence assay on semi-intact Madin-Darby canine kidney-II cells using domain-specific antibodies served to identify the cytoplasmically exposed domains. The results show that each membrane-spanning domain acts independently as an insertion and anchor signal and adopts an intrinsic preferred orientation in the lipid bilayer which corresponds to the disposition of the transmembrane domain in the wild-type assembled protein. These observations provide further insight into the mechanism of membrane integration of multispanning proteins. A model for the insertion of the coronavirus M protein is proposed.
Collapse
Affiliation(s)
- J K Locker
- Institute of Virology, Faculty of Veterinary Medicine, State University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
36
|
Locker JK, Rose JK, Horzinek MC, Rottier PJ. Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J Biol Chem 1992. [PMID: 1400501 PMCID: PMC8740634 DOI: 10.1016/s0021-9258(19)36699-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The M protein of mouse hepatitis virus strain A59 is a triple-spanning membrane protein which assembles with an uncleaved internal signal sequence, adopting an NexoCcyt orientation. To study the insertion mechanism of this protein, domains potentially involved in topogenesis were deleted and the effects analyzed in topogenesis were deleted and the effects analyzed in several ways. Mutant proteins were synthesized in a cell-free translation system in the presence of microsomal membranes, and their integration and topology were determined by alkaline extraction and by protease-protection experiments. By expression in COS-1 and Madin-Darby canine kidney-II cells, the topology of the mutant proteins was also analyzed in vivo. Glycosylation was used as a biochemical marker to assess the disposition of the NH2 terminus. An indirect immunofluorescence assay on semi-intact Madin-Darby canine kidney-II cells using domain-specific antibodies served to identify the cytoplasmically exposed domains. The results show that each membrane-spanning domain acts independently as an insertion and anchor signal and adopts an intrinsic preferred orientation in the lipid bilayer which corresponds to the disposition of the transmembrane domain in the wild-type assembled protein. These observations provide further insight into the mechanism of membrane integration of multispanning proteins. A model for the insertion of the coronavirus M protein is proposed.
Collapse
Affiliation(s)
- J K Locker
- Institute of Virology, Faculty of Veterinary Medicine, State University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
37
|
Griffiths G, Rottier P. Cell biology of viruses that assemble along the biosynthetic pathway. SEMINARS IN CELL BIOLOGY 1992; 3:367-81. [PMID: 1333835 PMCID: PMC7129301 DOI: 10.1016/1043-4682(92)90022-n] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this review we discuss five groups of viruses that bud into, or assemble from, different compartments along the biosynthetic pathway. These are herpes-, rota-, corona-, bunya- and pox-viruses. Our main emphasis will be on the virally-encoded membrane glycoproteins that are responsible for determining the site of virus assembly. In a number of cases these proteins have been well characterized and appear to serve as resident markers of the budding compartments. The assembly and dissemination of these viruses raises many questions of cell biological interest.
Collapse
|
38
|
Pease RJ, Harrison GB, Scott J. Cotranslocational insertion of apolipoprotein B into the inner leaflet of the endoplasmic reticulum. Nature 1991; 353:448-50. [PMID: 1896087 PMCID: PMC7095394 DOI: 10.1038/353448a0] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1991] [Accepted: 08/16/1991] [Indexed: 12/29/2022]
Abstract
Apolipoprotein (apo) B100 is required for the distribution of hepatic triglyceride to peripheral tissues as very-low-density lipoproteins. The translocation of apo B100 into the endoplasmic reticulum (ER) and its subsequent assembly into lipoprotein particles is of particular interest as the protein is both very large (relative molecular mass 512,000) and insoluble in water. It has been proposed that apo B translocation occurs in discrete stages and is completed post-translationally. Several sites of arrest of translocation were reported to be present in apo B15 (the N-terminal 15% of the protein). We have re-examined this question by in vitro translation coupled with translocation into microsomes, and find no evidence for transmembrane segments in truncated apo B proteins. Translocated apo B17 is strongly associated with the membrane of the ER, being only partially releasable with alkaline carbonate, and remaining bound to the microsomes following disruption with saponin. The efficient binding of short segments of apo B, despite the absence of transmembrane domains, suggests that apo B is cotranslationally inserted into the inner leaflet of the ER. This will obviate problems caused by the size and insolubility of apo B100, because the growing hydrophobic protein chains will never exist in a lipid-free form during translocation. From the inner leaflet, apo B in association with membrane-derived lipid can bud into the lumen of the ER to form nascent lipoprotein particles.
Collapse
Affiliation(s)
- R J Pease
- Division of Molecular Medicine, MRC Clinical Research Centre, Harrow, UK
| | | | | |
Collapse
|
39
|
Den Boon JA, Snijder EJ, Locker JK, Horzinek MC, Rottier PJ. Another triple-spanning envelope protein among intracellularly budding RNA viruses: the torovirus E protein. Virology 1991; 182:655-63. [PMID: 2024492 PMCID: PMC7130535 DOI: 10.1016/0042-6822(91)90606-c] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nucleotide sequence of the Berne virus envelope (E) protein gene was determined and its 26.5K translation product was identified by in vitro transcription and translation. Computer analysis of the protein sequence revealed the characteristics of a class III membrane protein lacking a cleaved signal sequence but containing three successive transmembrane alpha-helices in the N-terminal half, much the same as the coronavirus membrane (M) protein. The disposition of the E protein in the membrane was studied by in vitro translation in the presence of microsomes and by subsequent proteinase K digestion. Only small portions of either end of the polypeptide were found to be exposed on opposite sides of the vesicle membranes. Experiments with a hybrid E protein (EM) containing the C-terminal tail of a coronavirus M protein, to which an anti-peptide serum was available, showed that this C-terminus was present at the cytoplasmic side of the membrane, which is another similarity to the coronavirus M protein. Immunofluorescence experiments indicated that the EM protein, expressed by a recombinant vaccinia virus, accumulated in intracellular membranes, predominantly those of the endoplasmic reticulum. The common features of the torovirus E and the coronavirus M protein support our hypothesis that an evolutionary relationship exists between these groups of intracellularly budding viruses.
Collapse
Affiliation(s)
- J A Den Boon
- Institute of Virology, Veterinary Faculty, State University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Rijnboutt S, Aerts HM, Geuze HJ, Tager JM, Strous GJ. Mannose 6-phosphate-independent membrane association of cathepsin D, glucocerebrosidase, and sphingolipid-activating protein in HepG2 cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67728-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Pettersson RF. Protein localization and virus assembly at intracellular membranes. Curr Top Microbiol Immunol 1991; 170:67-106. [PMID: 1760931 DOI: 10.1007/978-3-642-76389-2_3] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R F Pettersson
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| |
Collapse
|
42
|
Banner LR, Keck JG, Lai MM. A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology 1990; 175:548-55. [PMID: 2158184 PMCID: PMC7130556 DOI: 10.1016/0042-6822(90)90439-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/1989] [Accepted: 12/12/1989] [Indexed: 12/30/2022]
Abstract
Coronaviruses undergo RNA recombination at a very high frequency. To understand the mechanism of recombination in murine coronavirus, we have performed RNA sequencing of viral genomic RNA to determine the precise sites of recombination in a series of recombinants which have crossovers within the gene encoding the peplomer protein. We found that all of the recombination sites are clustered within a region of 278 nucleotides in the 5'-half of the gene. This region in which all of the crossovers occurred represents a small fraction of the distance between the two selection markers used for the isolation of these recombinant viruses. This result suggests that this region may be a preferred site for RNA recombination. The crossover sites are located within and immediately adjacent to a hypervariable area of the gene. This area has undergone deletions of varying sizes in several virus strains which have been passaged either in vivo or in vitro. These results suggest that a similar RNA structure may be involved in the occurrence of both recombination and deletion events.
Collapse
Affiliation(s)
- L R Banner
- Department of Microbiology, University of Southern California School of Medicine, Los Angeles 90033
| | | | | |
Collapse
|
43
|
Hogue BG, Nayak DP. Expression of the porcine transmissible gastroenteritis coronavirus M protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 276:121-6. [PMID: 1966402 DOI: 10.1007/978-1-4684-5823-7_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cloned cDNA encoding the M protein of the porcine transmissible gastroenteritis coronavirus (TGEV) was introduced into a vaccinia virus to examine the function of the amino-terminal signal peptide. The M protein expressed by the recombinant virus was targeted to the Golgi region of infected cells, as is the M protein in cells infected with TGEV. The protein appeared not to undergo processing other than glycosylation. However, the vaccinia-expressed M protein was slightly larger than the protein found in TGEV-infected cells, suggesting that a difference in modification exists between the proteins.
Collapse
Affiliation(s)
- B G Hogue
- Department of Microbiology and Immunology, UCLA School of Medicine 90024
| | | |
Collapse
|
44
|
Rottier PJ, Locker JK, Horzinek MC, Spaan WJ. Expression of MHV-A59 M glycoprotein: effects of deletions on membrane integration and intracellular transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 276:127-35. [PMID: 1966403 DOI: 10.1007/978-1-4684-5823-7_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P J Rottier
- State University, Veterinary Faculty, Department of Infectious Diseases and Immunology, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
45
|
Yokomori K, La Monica N, Makino S, Shieh CK, Lai MM. Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus. Virology 1989; 173:683-91. [PMID: 2556847 PMCID: PMC7118923 DOI: 10.1016/0042-6822(89)90581-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously shown that gp65 (E3) is a virion structural protein which varies widely in quantity among different strains of mouse hepatitis virus (MHV). In this study, the biosynthetic pathway and possible biological activities of this protein were examined. The glycosylation of gp65 in virus-infected cells was inhibited by tunicamycin but not by monensin, suggesting that it contains an N-glycosidic linkage. Glycosylation is cotranslational and appears to be complete before the glycoprotein reaches the Golgi complex. Pulse-chase experiments showed that this protein decreased in size after 30 min of chase, suggesting that the carbohydrate chains of gp65 undergo trimming during its transport across the Golgi. This interpretation is supported by the endoglycosidase treatment of gp65, which showed that the peptide backbone of gp65 did not decrease in size after pulse-chase periods. This maturation pathway is distinct from that of the E1 or E2 glycoproteins. Partial endoglycosidase treatment indicated that gp65 contains 9 to 10 carbohydrate side chains; thus, almost all of the potential glycosylation sites of gp65 were glycosylated. In vitro translation studies coupled with protease digestion suggest that gp65 is an integral membrane protein. The presence of gp65 in the virion is correlated with the presence of an acetylesterase activity. No hemagglutinin activity was detected.
Collapse
Affiliation(s)
- K Yokomori
- Department of Microbiology, University of Southern California, School of Medicine, Los Angeles 90033
| | | | | | | | | |
Collapse
|
46
|
Strous GJ, Van Kerkhof P. Release of soluble resident as well as secretory proteins from HepG2 cells by partial permeabilization of rough-endoplasmic-reticulum membranes. Biochem J 1989; 257:159-63. [PMID: 2537621 PMCID: PMC1135550 DOI: 10.1042/bj2570159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Secretory proteins migrate from the rough endoplasmic reticulum (ER) to the Golgi complex at different rates. Selective retention of specific proteins to rough-ER membrane constituents could explain this phenomenon. We have permeabilized HepG2 cells with low concentrations of saponin. Release of newly synthesized proteins was studied after brief labelling in the presence of [35S]methionine. The efflux of several secretory proteins was studied at various saponin concentrations; a 2-fold higher saponin concentration was required to release transferrin compared with that required to release albumin and orosomucoid. Glucosidase II, a soluble resident protein of the ER, is released at the same saponin concentration as albumin. Saponin did not destroy the membrane skeleton structure; at the concentrations used, the integral membrane protein G of vesicular-stomatitis virus remained fully associated with the cells.
Collapse
Affiliation(s)
- G J Strous
- Laboratory of Cell Biology, University of Utrecht, Medical School, The Netherlands
| | | |
Collapse
|
47
|
Kapke PA, Tung FY, Hogue BG, Brian DA, Woods RD, Wesley R. The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology 1988; 165:367-76. [PMID: 2841792 PMCID: PMC7130869 DOI: 10.1016/0042-6822(88)90581-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
cDNA clones mapping within the first 2601 bases of the 3' end of the porcine transmissible gastroenteritis corona-virus (TGEV) genome were sequenced by the method of Maxam and Gilbert and an open reading frame yielding a protein having properties of the matrix (M or E1) protein was identified. It is positioned at the 5' side of the nucleocapsid (N) gene from which it is separated by an intergenic stretch of 12 bases. The deduced M protein comprises 262 amino acids, has a molecular weight of 29,544, is moderately hydrophobic, and has a net charge of +7 at neutral pH. Thirty-four percent of its amino acid sequence is homologous with the M protein of the bovine coronavirus (BCV), 32% with that of the mouse hepatitis coronavirus (MHV), and 19% with that of the avian infectious bronchitis coronavirus (IBV). Judging from alignment with the BCV, MHV, and IBV M proteins, the amino terminus of the TGEV M protein extends 54 amino acids from the virion envelope which compares with only 28 for BCV, 26 for MHV, and 21 for IBV. Eleven of the sixteen amino-terminal amino acids are hydrophobic and the positions of charged amino acids around this sequence suggest that the first 16 amino acids comprise a potentially cleavable signal peptide for membrane insertion. A similar sequence is not found in the M proteins of BCV, MHV, or IBV. When mRNA from infected cells, or RNA prepared by in vitro transcription of the reconstructed M gene, was translated in vitro in the presence of microsomes, the M protein became translocated and glycosylated. When a protein without the amino-terminal signal peptide was made by translating a truncated version of the M gene transcript, some translocation and glycosylation also occurred suggesting that the amino-terminal signal peptide on the TGEV M protein is not an absolute requirement for membrane translocation. Interestingly, the amino-terminal peptide did not appear to be cleaved during in vitro translation in the presence of microsomes suggesting that a step in virion assembly may be required for proper exposure of the cleavage site to the signal peptidase.
Collapse
Affiliation(s)
- P A Kapke
- U.S. Department of Agriculture, National Animal Disease Center, Ames, Iowa 50010
| | | | | | | | | | | |
Collapse
|
48
|
Transport of Proteins into and across the Endoplasmic Reticulum Membrane. PROTEIN TRANSFER AND ORGANELLE BIOGENESIS 1988. [PMCID: PMC7155617 DOI: 10.1016/b978-0-12-203460-2.50005-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Biosynthesis and Sorting of Proteins of the Endoplasmic Reticulum. PROTEIN TRANSFER AND ORGANELLE BIOGENESIS 1988. [PMCID: PMC7155527 DOI: 10.1016/b978-0-12-203460-2.50010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Wassler M, Jonasson I, Persson R, Fries E. Differential permeabilization of membranes by saponin treatment of isolated rat hepatocytes. Release of secretory proteins. Biochem J 1987; 247:407-15. [PMID: 3426543 PMCID: PMC1148424 DOI: 10.1042/bj2470407] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Monolayer cultures of rat hepatocytes were treated with increasing concentrations of saponin (prepared from Gypsophila plants) for 30 min at 6 degrees C. Differential permeabilization of the intracellular membranes could be demonstrated: at 0.040 mg of saponin/ml the plasma membrane was permeabilized, as assessed by the release of 50% of the total cellular amount of lactate dehydrogenase, and at 0.20 mg/ml the endoplasmic reticulum was permeabilized, as measured by the release of 50% of pulse-35S-labelled albumin. The Golgi complex was permeabilized at an intermediate saponin concentration, as indicated by the release of homogeneously 35S-labelled albumin; about half the intracellular albumin is located in this organelle. At 1.0 up to 5.0 mg of saponin/ml 90-95% of the radioactively labelled albumin was released. Even at 5.0 mg/ml less than 10% of the membrane of the endoplasmic reticulum was solubilized, as judged by the degree of release of a membrane-bound enzyme specific for this organelle. These results demonstrate the usefulness of saponin as a tool for investigating the interior of different intracellular compartments.
Collapse
Affiliation(s)
- M Wassler
- Department of Medical and Physiological Chemistry, University of Uppsala, Sweden
| | | | | | | |
Collapse
|