1
|
Yun HS, Kramp TR, Palanichamy K, Tofilon PJ, Camphausen K. MGMT inhibition regulates radioresponse in GBM, GSC, and melanoma. Sci Rep 2024; 14:12363. [PMID: 38811596 PMCID: PMC11136993 DOI: 10.1038/s41598-024-61240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Radiotherapy is the standard treatment for glioblastoma (GBM), but the overall survival rate for radiotherapy treated GBM patients is poor. The use of adjuvant and concomitant temozolomide (TMZ) improves the outcome; however, the effectiveness of this treatment varies according to MGMT levels. Herein, we evaluated whether MGMT expression affected the radioresponse of human GBM, GBM stem-like cells (GSCs), and melanoma. Our results indicated a correlation between MGMT promoter methylation status and MGMT expression. MGMT-producing cell lines ACPK1, GBMJ1, A375, and MM415 displayed enhanced radiosensitivity when MGMT was silenced using siRNA or when inhibited by lomeguatrib, whereas the OSU61, NSC11, WM852, and WM266-4 cell lines, which do not normally produce MGMT, displayed reduced radiosensitivity when MGMT was overexpressed. Mechanistically lomeguatrib prolonged radiation-induced γH2AX retention in MGMT-producing cells without specific cell cycle changes, suggesting that lomeguatrib-induced radiosensitization in these cells is due to radiation-induced DNA double-stranded break (DSB) repair inhibition. The DNA-DSB repair inhibition resulted in cell death via mitotic catastrophe in MGMT-producing cells. Overall, our results demonstrate that MGMT expression regulates radioresponse in GBM, GSC, and melanoma, implying a role for MGMT as a target for radiosensitization.
Collapse
Affiliation(s)
- Hong Shik Yun
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA
| | - Tamalee R Kramp
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA
| | - Kamalakannan Palanichamy
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Sousa N, Geiß C, Bindila L, Lieberwirth I, Kim E, Régnier-Vigouroux A. Targeting sphingolipid metabolism with the sphingosine kinase inhibitor SKI-II overcomes hypoxia-induced chemotherapy resistance in glioblastoma cells: effects on cell death, self-renewal, and invasion. BMC Cancer 2023; 23:762. [PMID: 37587449 PMCID: PMC10433583 DOI: 10.1186/s12885-023-11271-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs. METHODS Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model. RESULTS Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids. CONCLUSIONS This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.
Collapse
Affiliation(s)
- Nadia Sousa
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Geiß
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, Medical University Mainz, Mainz, Germany
| | | | - Ella Kim
- Department of Neurosurgery, Medical University of Mainz, Mainz, Germany
| | - Anne Régnier-Vigouroux
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Kirstein A, Schilling D, Combs SE, Schmid TE. Lomeguatrib Increases the Radiosensitivity of MGMT Unmethylated Human Glioblastoma Multiforme Cell Lines. Int J Mol Sci 2021; 22:ijms22136781. [PMID: 34202589 PMCID: PMC8268804 DOI: 10.3390/ijms22136781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Treatment resistance of glioblastoma multiforme to chemo- and radiotherapy remains a challenge yet to overcome. In particular, the O6-methylguanine-DNA-methyltransferase (MGMT) promoter unmethylated patients have only little benefit from chemotherapy treatment using temozolomide since MGMT counteracts its therapeutic efficacy. Therefore, new treatment options in radiotherapy need to be developed to inhibit MGMT and increase radiotherapy response. Methods: Lomeguatrib, a highly specific MGMT inhibitor, was used to inactivate MGMT protein in vitro. Radiosensitivity of established human glioblastoma multiforme cell lines in combination with lomeguatrib was investigated using the clonogenic survival assay. Inhibition of MGMT was analyzed using Western Blot. Cell cycle distribution and apoptosis were investigated to determine the effects of lomeguatrib alone as well as in combination with ionizing radiation. Results: Lomeguatrib significantly decreased MGMT protein and reduced radiation-induced G2/M arrest. A radiosensitizing effect of lomeguatrib was observed when administered at 1 µM and increased radioresistance at 20 µM. Conclusion: Low concentrations of lomeguatrib elicit radiosensitization, while high concentrations mediate a radioprotective effect.
Collapse
Affiliation(s)
- Anna Kirstein
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.K.); (D.S.); (S.E.C.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Daniela Schilling
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.K.); (D.S.); (S.E.C.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Stephanie E. Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.K.); (D.S.); (S.E.C.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.K.); (D.S.); (S.E.C.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-3187-43040
| |
Collapse
|
4
|
Nie C, Chu X, Pan Q, Zhang J, Hu Y, Yi J, He M, He M, Chen T, Chu X. Engineering a Biodegradable Nanocarrier for Enhancing the Response of T98G Cells to Temozolomide. ACS APPLIED BIO MATERIALS 2020; 3:3337-3344. [PMID: 35025376 DOI: 10.1021/acsabm.0c00253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Temozolomide (TMZ), the most common DNA alkylating agent, is predominantly mediated by O6-methylguanine DNA lesions for the treatment of glioblastoma (GBM). When O6-methylguanine-DNA methyltransferase (MGMT) is present, TMZ-induced O6-methylguanine lesions are repaired, resulting in the emergence of resistance to chemotherapy. Herein, we attempted to enhance the response of T98G cells to TMZ by gene silencing of MGMT. In this work, we developed transition metal manganese (Mn)-doped mesoporous silica nanoparticles (MSNs) as a carrier system for the co-delivery of TMZ and 10-23 DNAzyme, and realized gene silencing to enhance the TMZ sensitivity in T98G cells. The intelligent theranostic platform based on manganese-doped mesoporous silica nanoparticles (Mn-MSNs) can be decomposed and release chemotherapy drugs under acidic pH and reducing conditions. Meanwhile, the produced Mn2+ could act as a cofactor of 10-23 DNAzyme to effectively cleave MGMT mRNA, knock down MGMT protein, and sensitize T98G cells to TMZ-induced apoptosis. By co-delivering TMZ and 10-23 DNAzyme employing Mn-MSNs, the concentrations of TMZ that needed to inhibit cell growth by 50% (IC50 values) decreased (by more than 3.8-fold) compared with free TMZ. This work shows that the designed platform holds great promise for advancing the treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ximing Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qingshan Pan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanlei Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jintao Yi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Manman He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
5
|
Kirstein A, Schmid TE, Combs SE. The Role of miRNA for the Treatment of MGMT Unmethylated Glioblastoma Multiforme. Cancers (Basel) 2020; 12:cancers12051099. [PMID: 32354046 PMCID: PMC7281574 DOI: 10.3390/cancers12051099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common high-grade intracranial tumor in adults. It is characterized by uncontrolled proliferation, diffuse infiltration due to high invasive and migratory capacities, as well as intense resistance to chemo- and radiotherapy. With a five-year survival of less than 3% and an average survival rate of 12 months after diagnosis, GBM has become a focus of current research to urgently develop new therapeutic approaches in order to prolong survival of GBM patients. The methylation status of the promoter region of the O6-methylguanine–DNA methyltransferase (MGMT) is nowadays routinely analyzed since a methylated promoter region is beneficial for an effective response to temozolomide-based chemotherapy. Furthermore, several miRNAs were identified regulating MGMT expression, apart from promoter methylation, by degrading MGMT mRNA before protein translation. These miRNAs could be a promising innovative treatment approach to enhance Temozolomide (TMZ) sensitivity in MGMT unmethylated patients and to increase progression-free survival as well as long-term survival. In this review, the relevant miRNAs are systematically reviewed.
Collapse
Affiliation(s)
- Anna Kirstein
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Stephanie E. Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4501
| |
Collapse
|
6
|
Li Z, Xia Y, Bu X, Yang D, Yuan Y, Guo X, Zhang G, Wang Z, Jiao J. Effects of valproic acid on the susceptibility of human glioma stem cells for TMZ and ACNU. Oncol Lett 2018; 15:9877-9883. [PMID: 29805689 PMCID: PMC5958707 DOI: 10.3892/ol.2018.8551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 02/23/2018] [Indexed: 11/27/2022] Open
Abstract
To investigate the effect of valproic acid (VPA) on the susceptibility of glioma stem cells to temozolomide (TMZ) and nimustine (ACNU), the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and its expression of MGMT were examined. A total of 3 glioma cell populations were isolated from human glioma tissues, and immunocytochemistry was used to detect the expression of MGMT. VPA inhibition on the growth of the 3 glioma cell populations exposed to various concentrations of TMZ and ACNU was evaluated. Flow cytometry was applied to detect the apoptosis of glioma cells, and a methylation-specific polymerase chain reaction was used to identify methylation of MGMT promoter. Immunocytochemistry results indicated that MGMT was negatively expressed in the G1 population, but positively expressed in the G2 and G3 populations. Cell growth inhibition assays demonstrated that the survival rate in the VPA + TMZ or ACNU groups was decreased compared with that of the TMZ or ACNU alone groups (P<0.05). As for the apoptotic rate, those in the VPA alone group were increased compared with the control group (P<0.05), and the rates in the VPA + TMZ or ACNU groups were increased compared with TMZ or ACNU alone groups (P<0.05). The expression of MGMT remained negative in the G1 population following treatment with VPA, but MGMT expression became negative in the 2 MGMT-positive cell populations (G2 and G3) following VPA treatment. The MGMT promoter in the G1 population was partially methylated in the control group, but was fully methylated following VPA treatment, while the promoters of G2, G3 were unmethylated in the control group and became partially methylated in the VPA treatment group. Taken together, TMZ and ACNU may suppress the growth of glioma stem cells in vitro in a dose-dependent manner. VPA may enhance the inhibitory effects of various concentrations of TMZ and ACNU on the growth of MGMT-negative/positive cells, particularly on MGMT-positive cell populations. VPA itself may induce the apoptosis of glioma cells, and VPA combined with TMZ or ACNU may enhance TMZ/ACNU-induced apoptosis of glioma stem cells. Furthermore, VPA may also promote the methylation of the MGMT promoter to silence MGMT expression in glioma cells, which may be an important mechanism through which VPA enhances the efficacy of TMZ and ACNU in targeting glioma stem cells.
Collapse
Affiliation(s)
- Zhiying Li
- Department of Neurosurgery, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Yun Xia
- Department of Microbiology and Immunology, Zhengzhou Health School, Zhengzhou, Henan 450000, P.R. China
| | - Xingyao Bu
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Dongyi Yang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yiqiang Yuan
- Department of Neurosurgery, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Xiaohe Guo
- Department of Neurosurgery, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Gangzhong Zhang
- Department of Neurosurgery, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Zhanwei Wang
- Department of Neurosurgery, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Jichao Jiao
- Department of Neurosurgery, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
7
|
Programming of Cell Resistance to Genotoxic and Oxidative Stress. Biomedicines 2018; 6:biomedicines6010005. [PMID: 29301323 PMCID: PMC5874662 DOI: 10.3390/biomedicines6010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022] Open
Abstract
Different organisms, cell types, and even similar cell lines can dramatically differ in resistance to genotoxic stress. This testifies to the wide opportunities for genetic and epigenetic regulation of stress resistance. These opportunities could be used to increase the effectiveness of cancer therapy, develop new varieties of plants and animals, and search for new pharmacological targets to enhance human radioresistance, which can be used for manned deep space expeditions. Based on the comparison of transcriptomic studies in cancer cells, in this review, we propose that there is a high diversity of genetic mechanisms of development of genotoxic stress resistance. This review focused on possibilities and limitations of the regulation of the resistance of normal cells and whole organisms to genotoxic and oxidative stress by the overexpressing of stress-response genes. Moreover, the existing experimental data on the effect of such overexpression on the resistance of cells and organisms to various genotoxic agents has been analyzed and systematized. We suggest that the recent advances in the development of multiplex and highly customizable gene overexpression technology that utilizes the mutant Cas9 protein and the abundance of available data on gene functions and their signal networks open new opportunities for research in this field.
Collapse
|
8
|
Liu JK, Patel J, Eloy JA. The role of temozolomide in the treatment of aggressive pituitary tumors. J Clin Neurosci 2015; 22:923-9. [PMID: 25772801 DOI: 10.1016/j.jocn.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 01/09/2023]
Abstract
Pituitary tumors are amongst the most common intracranial neoplasms and are generally benign. However, some pituitary tumors exhibit clinically aggressive behavior that is characterized by tumor recurrence and continued progression despite repeated treatments with conventional surgical, radiation and medical therapies. More recently, temozolomide, a second generation oral alkylating agent, has shown therapeutic promise for aggressive pituitary adenomas and carcinomas with favorable clinical and radiographic responses. Temozolomide causes DNA damage by methylation of the O(6) position of guanine, which results in potent cytotoxic DNA adducts and consequently, tumor cell apoptosis. The degree of MGMT expression appears to be inversely related to therapeutic responsiveness to temozolomide with a significant number of temozolomide-sensitive pituitary tumors exhibiting low MGMT expression. The presence of high MGMT expression appears to mitigate the effectiveness of temozolomide and this has been used as a marker in several studies to predict the efficacy of temozolomide. Recent evidence also suggests that mutations in mismatch repair proteins such as MSH6 could render pituitary tumors resistant to temozolomide. In this article, the authors review the development of temozolomide, its biochemistry and interaction with O(6)-methylguanine-DNA methyltransferase (MGMT), its role in adjuvant treatment of aggressive pituitary neoplasms, and future works that could influence the efficacy of temozolomide therapy.
Collapse
Affiliation(s)
- James K Liu
- Center for Skull Base and Pituitary Surgery, Neurological Institute of New Jersey, Department of Neurological Surgery, Rutgers University, New Jersey Medical School, Suite 8100, 90 Bergen Street, Newark, NJ 07103, USA; Department of Neurological Surgery, Rutgers University, New Jersey Medical School, Newark, NJ, USA; Department of Otolaryngology-Head and Neck Surgery, Rutgers University, New Jersey Medical School, Newark, NJ, USA.
| | - Jimmy Patel
- Department of Neurological Surgery, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Jean Anderson Eloy
- Center for Skull Base and Pituitary Surgery, Neurological Institute of New Jersey, Department of Neurological Surgery, Rutgers University, New Jersey Medical School, Suite 8100, 90 Bergen Street, Newark, NJ 07103, USA; Department of Neurological Surgery, Rutgers University, New Jersey Medical School, Newark, NJ, USA; Department of Otolaryngology-Head and Neck Surgery, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
9
|
Hosein AN, Lim YC, Day B, Stringer B, Rose S, Head R, Cosgrove L, Sminia P, Fay M, Martin JH. The effect of valproic acid in combination with irradiation and temozolomide on primary human glioblastoma cells. J Neurooncol 2015; 122:263-71. [DOI: 10.1007/s11060-014-1713-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/28/2014] [Indexed: 12/11/2022]
|
10
|
FRANKEN NICOLAASA, OEI ARLENEL, KOK HPETRA, RODERMOND HANSM, SMINIA PETER, CREZEE JOHANNES, STALPERS LUKASJ, BARENDSEN GERRITW. Cell survival and radiosensitisation: Modulation of the linear and quadratic parameters of the LQ model. Int J Oncol 2013; 42:1501-15. [DOI: 10.3892/ijo.2013.1857] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/21/2012] [Indexed: 11/05/2022] Open
|
11
|
Melguizo C, Prados J, González B, Ortiz R, Concha A, Alvarez PJ, Madeddu R, Perazzoli G, Oliver JA, López R, Rodríguez-Serrano F, Aránega A. MGMT promoter methylation status and MGMT and CD133 immunohistochemical expression as prognostic markers in glioblastoma patients treated with temozolomide plus radiotherapy. J Transl Med 2012; 10:250. [PMID: 23245659 PMCID: PMC3551841 DOI: 10.1186/1479-5876-10-250] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The CD133 antigen is a marker of radio- and chemo-resistant stem cell populations in glioblastoma (GBM). The O6-methylguanine DNA methyltransferase (MGMT) enzyme is related with temozolomide (TMZ) resistance. Our propose is to analyze the prognostic significance of the CD133 antigen and promoter methylation and protein expression of MGMT in a homogenous group of GBM patients uniformly treated with radiotherapy and TMZ. The possible connection between these GBM markers was also investigated. METHODS Seventy-eight patients with GBM treated with radiotherapy combined with concomitant and adjuvant TMZ were analyzed for MGMT and CD133. MGMT gene promoter methylation was determined by methylation-specific polymerase chain reaction after bisulfite treatment. MGMT and CD133 expression was assessed immunohistochemically using an automatic quantification system. Overall and progression-free survival was calculated according to the Kaplan-Meier method. RESULTS The MGMT gene promoter was found to be methylated in 34 patients (44.7%) and unmethylated in 42 patients (55.3%). A significant correlation was observed between MGMT promoter methylation and patients' survival. Among the unmethylated tumors, 52.4% showed low expression of MGMT and 47.6% showed high-expression. Among methylated tumors, 58.8% showed low-expression of MGMT and 41.2% showed high-expression. No correlation was found between MGMT promoter methylation and MGMT expression, or MGMT expression and survival. In contrast with recent results, CD133 expression was not a predictive marker in GBM patients. Analyses of possible correlation between CD133 expression and MGMT protein expression or MGMT promoter methylation were negative. CONCLUSIONS Our results support the hypothesis that MGMT promoter methylation status but not MGMT expression may be a predictive biomarker in the treatment of patients with GBM. In addition, CD133 should not be used for prognostic evaluation of these patients. Future studies will be necessary to determine its clinical utility.
Collapse
Affiliation(s)
- Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada 18100, Spain
- Department of Anatomy and Embriology, University of Granada, Granada 18012, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada 18100, Spain
- Department of Anatomy and Embriology, University of Granada, Granada 18012, Spain
| | - Beatriz González
- Service of Medical Oncology, Virgen de las Nieves Hospital, Granada, 18014, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada 18100, Spain
- Department of Health Science, University of Jaén, Jaén, 23071, Spain
| | - Angel Concha
- Anatomopathological Service, Virgen de las Nieves Hospital, Granada, 18014, Spain
| | - Pablo Juan Alvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada 18100, Spain
| | - Roberto Madeddu
- Departament of Biomedical Science - Histology, University of Sassari, Sassari, Italy
- National Institute of Biostructures and Biosystems, INBB, Sassari, Italy
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada 18100, Spain
| | - Jaime Antonio Oliver
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada 18100, Spain
| | - Rodrigo López
- Anatomopathological Service, Virgen de las Nieves Hospital, Granada, 18014, Spain
| | - Fernando Rodríguez-Serrano
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada 18100, Spain
- Department of Anatomy and Embriology, University of Granada, Granada 18012, Spain
| | - Antonia Aránega
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada 18100, Spain
- Department of Anatomy and Embriology, University of Granada, Granada 18012, Spain
| |
Collapse
|
12
|
Valproic acid sensitizes human glioma cells for temozolomide and γ-radiation. J Neurooncol 2011; 107:61-7. [PMID: 22037799 DOI: 10.1007/s11060-011-0725-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 09/17/2011] [Indexed: 12/30/2022]
Abstract
Temozolomide (TMZ) is given in addition to radiotherapy in glioma patients, but its interaction with the commonly prescribed antiepileptic drug valproic acid (VPA) is largely unknown. Induction of DNA demethylation by VPA could potentially induce expression of the O(6)-methylguanine-DNA-methyltransferase (MGMT) protein, causing resistance to TMZ and thereby antagonizing its effect. Therefore, this study investigates the interaction between VPA, TMZ, and γ-radiation. Two glioma cell lines were used that differ in TMZ sensitivity caused by the absence (D384) or presence (T98) of the MGMT protein. VPA was administered before (24/48 h) or after (24 h) single doses of γ-radiation; or, after 24 h, VPA treatment was accompanied by a single dose of TMZ for another 24 h. For trimodal treatment the combination of VPA and TMZ was followed by single doses of γ-radiation. In both cell lines VPA caused enhancement of the radiation response after preincubation (DMF(0.2) 1.4 and 1.5) but not after postirradiation (DMF(0.2) 1.1 and 1.0). The combination of VPA and TMZ caused enhanced cytotoxicity (DMF(0.2) 1.7) in both the TMZ-sensitive cell line (D384) and the TMZ-resistant cell line (T98). The combination of VPA and TMZ caused a significant radiation enhancement (DMF(0.2) 1.9 and 1.6) that was slightly more effective than that of VPA alone. VPA does not antagonize the cytotoxic effects of TMZ. Preincubation with VPA enhances the effect of both γ-radiation and TMZ, in both a TMZ-sensitive and a TMZ-resistant human glioma cell line. VPA combined with TMZ may lead to further enhancement of the radiation response.
Collapse
|
13
|
Van Nifterik KA, Van Den Berg J, Slotman BJ, Van Rijn J. Anti-tumour effects by a trimodal combination of temozolomide, meloxicam and X-rays in cultures of human glioma cells. Int J Radiat Biol 2010; 87:192-201. [DOI: 10.3109/09553002.2010.519423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide. Br J Cancer 2010; 103:29-35. [PMID: 20517307 PMCID: PMC2905289 DOI: 10.1038/sj.bjc.6605712] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) can cause resistance to the alkylating drug temozolomide (TMZ). The purpose of this study was to determine the relationship between the MGMT status, determined by means of several techniques and methods, and the cytotoxic response to TMZ in 11 glioblastoma multiforme (GBM) cell lines and 5 human tumour cell lines of other origins. Methods: Cell survival was analysed by clonogenic assay. The MGMT protein levels were assessed by western blot analysis. The MGMT promoter methylation levels were determined using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and quantitative real-time methylation-specific PCR (qMSP). On the basis of the results of these techniques, six GBM cell lines were selected and subjected to bisulphite sequencing. Results: The MGMT protein was detected in all TMZ-resistant cell lines, whereas no MGMT protein could be detected in cell lines that were TMZ sensitive. The MS-MLPA results were able to predict TMZ sensitivity in 9 out of 16 cell lines (56%). The qMSP results matched well with TMZ sensitivity in 11 out of 12 (92%) glioma cell lines. In addition, methylation as detected by bisulphite sequencing seemed to be predictive of TMZ sensitivity in all six cell lines analysed (100%). Conclusion: The MGMT protein expression more than MGMT promoter methylation status predicts the response to TMZ in human tumour cell lines.
Collapse
|
15
|
O(6)-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib. Br J Cancer 2009; 100:1250-6. [PMID: 19367283 PMCID: PMC2676560 DOI: 10.1038/sj.bjc.6605015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We evaluated the pharmacodynamic effects of the O6-methylguanine-DNA methyltransferase (MGMT) inactivator lomeguatrib (LM) on patients with melanoma in two clinical trials. Patients received temozolomide (TMZ) for 5 days either alone or with LM for 5, 10 or 14 days. Peripheral blood mononuclear cells (PBMCs) were isolated before treatment and during cycle 1. Where available, tumour biopsies were obtained after the last drug dose in cycle 1. Samples were assayed for MGMT activity, total MGMT protein, and O6-methylguanine (O6-meG) and N7-methylguanine levels in DNA. MGMT was completely inactivated in PBMC from patients receiving LM, but detectable in those on TMZ alone. Tumours biopsied on the last day of treatment showed complete inactivation of MGMT but there was recovery of activity in tumours sampled later. Significantly more O6-meG was present in the PBMC DNA of LM/TMZ patients than those on TMZ alone. LM/TMZ leads to greater MGMT inactivation, and higher levels of O6-meG than TMZ alone. Early recovery of MGMT activity in tumours suggested that more protracted dosing with LM is required. Extended dosing of LM completely inactivated PBMC MGMT, and resulted in persistent levels of O6-meG in PBMC DNA during treatment.
Collapse
|
16
|
Rooney JP, George AD, Patil A, Begley U, Bessette E, Zappala MR, Huang X, Conklin DA, Cunningham RP, Begley TJ. Systems based mapping demonstrates that recovery from alkylation damage requires DNA repair, RNA processing, and translation associated networks. Genomics 2009; 93:42-51. [PMID: 18824089 PMCID: PMC2633870 DOI: 10.1016/j.ygeno.2008.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 12/31/2022]
Abstract
The identification of cellular responses to damage can promote mechanistic insight into stress signalling. We have screened a library of 3968 Escherichia coli gene-deletion mutants to identify 99 gene products that modulate the toxicity of the alkylating agent methyl methanesulfonate (MMS). We have developed an ontology mapping approach to identify functional categories over-represented with MMS-toxicity modulating proteins and demonstrate that, in addition to DNA re-synthesis (replication, recombination, and repair), proteins involved in mRNA processing and translation influence viability after MMS damage. We have also mapped our MMS-toxicity modulating proteins onto an E. coli protein interactome and identified a sub-network consisting of 32 proteins functioning in DNA repair, mRNA processing, and translation. Clustering coefficient analysis identified seven highly connected MMS-toxicity modulating proteins associated with translation and mRNA processing, with the high connectivity suggestive of a coordinated response. Corresponding results from reporter assays support the idea that the SOS response is influenced by activities associated with the mRNA-translation interface.
Collapse
Affiliation(s)
- John P. Rooney
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Ajish D. George
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Ashish Patil
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Ulrike Begley
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Erin Bessette
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Maria R. Zappala
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Department of Biological Sciences, University at Albany, State University of New York, Albany NY 12222
| | - Xin Huang
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Department of Biological Sciences, University at Albany, State University of New York, Albany NY 12222
| | - Douglas A. Conklin
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Richard P. Cunningham
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Department of Biological Sciences, University at Albany, State University of New York, Albany NY 12222
| | - Thomas J. Begley
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| |
Collapse
|
17
|
van Nifterik KA, van den Berg J, Stalpers LJA, Lafleur MVM, Leenstra S, Slotman BJ, Hulsebos TJM, Sminia P. Differential radiosensitizing potential of temozolomide in MGMT promoter methylated glioblastoma multiforme cell lines. Int J Radiat Oncol Biol Phys 2007; 69:1246-53. [PMID: 17967314 DOI: 10.1016/j.ijrobp.2007.07.2366] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/28/2007] [Accepted: 07/30/2007] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated gamma-irradiation. METHODS AND MATERIALS Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of gamma-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. RESULTS All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 micromol/L (AMC-3046), 3 micromol/L (VU-109), and 2.5 micromol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. CONCLUSIONS This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to gamma-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gene.
Collapse
Affiliation(s)
- Krista A van Nifterik
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Brozmanová J, Vlcková V, Chovanec M. How heterologously expressed Escherichia coli genes contribute to understanding DNA repair processes in Saccharomyces cerevisiae. Curr Genet 2004; 46:317-30. [PMID: 15614491 DOI: 10.1007/s00294-004-0536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/13/2004] [Accepted: 09/18/2004] [Indexed: 10/26/2022]
Abstract
DNA-damaging agents constantly challenge cellular DNA; and efficient DNA repair is therefore essential to maintain genome stability and cell viability. Several DNA repair mechanisms have evolved and these have been shown to be highly conserved from bacteria to man. DNA repair studies were originally initiated in very simple organisms such as Escherichia coli and Saccharomyces cerevisiae, bacteria being the best understood organism to date. As a consequence, bacterial DNA repair genes encoding proteins with well characterized functions have been transferred into higher organisms in order to increase repair capacity, or to complement repair defects, in heterologous cells. While indicating the contribution of these repair functions to protection against the genotoxic effects of DNA-damaging agents, heterologous expression studies also highlighted the role of the DNA lesions that are substrates for such processes. In addition, bacterial DNA repair-like functions could be identified in higher organisms using this approach. We heterologously expressed three well characterized E. coli repair genes in S. cerevisiae cells of different genetic backgrounds: (1) the ada gene encoding O(6)-methylguanine DNA-methyltransferase, a protein involved in the repair of alkylation damage to DNA, (2) the recA gene encoding the main recombinase in E. coli and (3) the nth gene, the product of which (endonuclease III) is responsible for the repair of oxidative base damage. Here, we summarize our results and indicate the possible implications they have for a better understanding of particular DNA repair processes in S. cerevisiae.
Collapse
Affiliation(s)
- Jela Brozmanová
- Laboratory of Molecular Genetics, Cancer Research Institute, Vlárska 7, 83391 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
19
|
Roos W, Baumgartner M, Kaina B. Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1. Oncogene 2004; 23:359-67. [PMID: 14724564 DOI: 10.1038/sj.onc.1207080] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Various tumor-therapeutic drugs and environmental carcinogens alkylate DNA inducing O(6)-methylguanine (O(6)MeG) that provokes cell death by apoptosis. In rodent fibroblasts, apoptosis triggered by O(6)MeG is executed via the mitochondrial damage pathway. Conversion of O(6)MeG into critical downstream lesions requires mismatch repair (MMR). This is thought to signal apoptosis upon binding to O(6)MeG lesions mispaired with thymine. Alternatively, O(6)MeG lesions might be processed by MMR giving rise to DNA double-strand breaks (DSBs) during replication that finally provoke apoptosis. To test this, we examined apoptosis triggered by O(6)MeG in human peripheral lymphocytes in which O(6)-methylguanine-DNA methyltransferase (MGMT) had been inactivated by O(6)-benzylguanine (O(6)BG) and which were not proliferating or proliferating upon CD3/CD28 stimulation. Treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or the anticancer drug temozolomide induced apoptosis only in proliferating, but not resting cells. With exceptional high alkylation doses (>/=15 microM of MNNG), apoptosis was also observed in resting lymphocytes, albeit at a lower level than in proliferating cells. This response was not affected by O(6)BG, suggesting that replication-independent apoptosis at high dose levels is caused by lesions other than O(6)MeG. O(6)MeG-triggered apoptosis in proliferating lymphocytes was preceded by a wave of DSBs, which coincided with p53 and Fas receptor upregulation, while Fas ligand, Bax and Bcl-2 expression was not altered. Treatment with anti-Fas neutralizing antibody attenuated MNNG-induced apoptosis in MGMT-depleted proliferating lymphocytes. The data suggest that O(6)MeG is converted by MMR and DNA replication into DSBs that trigger apoptosis by p53 stabilization and Fas/CD95/Apo-1 upregulation. This is supported by the finding that ionizing radiation, inducing DSBs on its own, provokes apoptosis in lymphocytes in a replication-independent way. The strict proliferation dependence of apoptosis triggered by O(6)MeG may explain the specific killing response of MGMT-deficient proliferating cells, including tumors, to O(6)MeG generating anticancer drugs and suggests that tumor proliferation rate, Fas responsiveness, MGMT and MMR status are important prognosis parameters.
Collapse
Affiliation(s)
- Wynand Roos
- Division of Applied Toxicology, Institute of Toxicology, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | |
Collapse
|
20
|
Karakoula A, Evans MD, Podmore ID, Hutchinson PE, Lunec J, Cooke MS. Quantification of UVR-induced DNA damage: global- versus gene-specific levels of thymine dimers. J Immunol Methods 2003; 277:27-37. [PMID: 12799037 DOI: 10.1016/s0022-1759(03)00122-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The induction and repair of DNA damage has been shown to occur heterogeneously throughout the mammalian genome. As a consequence, analysis of these parameters at a global genome level may not reflect important gene-level events. Few techniques have been established to explore quantitatively gene-specific DNA damage and repair. Most of these are polymerase chain reaction (PCR)-based assays and are relatively insensitive, relying on decreased PCR amplification arising from damage in template DNA. We have developed a quantitative assay that combines specific immunocapture of damaged DNA by an antiserum specific for thymine dimers (IgG479), with PCR amplification of a 149 bp fragment of the human H-ras proto-oncogene. Quantification of DNA damage was based upon proportionality between the amount of the PCR product and the initial amount of damage. Detection of thymine dimers was possible with nanogram amounts of genomic DNA and increased in a linear, dose-responsive manner. Using this assay, gene-level induction of thymine dimers was shown to be directly proportional to levels induced in the global genome of ultraviolet radiation (UVR)-exposed, extracted DNA as measured by gas chromatography-mass spectrometry (GC-MS). This result suggests that global damage assessments do indeed reflect gene-level events although we predict that this relationship may not be maintained when applied to a cellular system. These findings demonstrate the suitability of this approach to the detection of UVR-induced DNA damage at the level of individual genes.
Collapse
Affiliation(s)
- Aikaterini Karakoula
- Oxidative Stress Group, Department of Clinical Biochemistry, University of Leicester, RKCSB, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, PO Box 65, LE2 7LX, Leicester, UK
| | | | | | | | | | | |
Collapse
|
21
|
Horton JK, Joyce-Gray DF, Pachkowski BF, Swenberg JA, Wilson SH. Hypersensitivity of DNA polymerase beta null mouse fibroblasts reflects accumulation of cytotoxic repair intermediates from site-specific alkyl DNA lesions. DNA Repair (Amst) 2003; 2:27-48. [PMID: 12509266 DOI: 10.1016/s1568-7864(02)00184-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monofunctional alkylating agents react with DNA by S(N)1 or S(N)2 mechanisms resulting in formation of a wide spectrum of cytotoxic base adducts. DNA polymerase beta (beta-pol) is required for efficient base excision repair of N-alkyl adducts, and we make use of the hypersensitivity of beta-pol null mouse fibroblasts to investigate such alkylating agents with a view towards understanding the DNA lesions responsible for the cellular phenotype. The inability of O(6)-benzylguanine to sensitize wild-type or beta-pol null cells to S(N)1-type methylating agents indicates that the observed hypersensitivity is not due to differential repair of cytotoxic O-alkyl adducts. Using a 3-methyladenine-specific agent and an inhibitor of such methylation, we find that inefficient repair of 3-methyladenine is not the reason for the hypersensitivity of beta-pol null cells to methylating agents, and further that 3-methyladenine is not the adduct primarily responsible for methyl methanesulfonate (MMS)- and methyl nitrosourea-induced cytotoxicity in wild-type cells. Relating the expected spectrum of DNA adducts and the relative sensitivity of cells to monofunctional alkylating agents, we propose that the hypersensitivity of beta-pol null cells reflects accumulation of cytotoxic repair intermediates, such as the 5'-deoxyribose phosphate group, following removal of 7-alkylguanine from DNA. In support of this conclusion, beta-pol null cells are also hypersensitive to the thymidine analog 5-hydroxymethyl-2'-deoxyuridine (hmdUrd). This agent is incorporated into cellular DNA and elicits cytotoxicity only when removed by glycosylase-initiated base excision repair. Consistent with the hypothesis that there is a common repair intermediate resulting in cytotoxicity following treatment with both types of agents, both MMS and hmdUrd-initiated cell death are preceded by a similar rapid concentration-dependent suppression of DNA synthesis and a later cell cycle arrest in G(0)/G(1) and G(2)M phases.
Collapse
Affiliation(s)
- Julie K Horton
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
22
|
O'Connor PJ, Manning FC, Gordon AT, Billett MA, Cooper DP, Elder RH, Margison GP. DNA repair: kinetics and thresholds. Toxicol Pathol 2000; 28:375-81. [PMID: 10862553 DOI: 10.1177/019262330002800304] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
DNA damage is a critical factor in the initiation of chemically induced toxicities (including cancer), and the repair of this damage represents the cell's first line of defense against the deleterious effects of these agents. The various mechanisms of DNA repair are reviewed briefly and the actions of the DNA repair protein O6-alkylguanine DNA alkyltransferase (ATase) are used to illustrate how DNA repair can protect cells against alkylating agent-induced toxicities, mutagenesis, clastogenesis, and carcinogenesis. The effectiveness of this repair protein can be measured based on its ability to deplete levels of its promutagenic substrate O6-methylguanine (O6-meG) in the DNA of cells. These studies reveal that the repair of O6-meG from DNA occurs heterogeneously, both intra- and intercellularly. Even in cells that repair O6-meG hyperefficiently, certain regions of chromatin DNA are repaired with difficulty, and in other regions they are not repaired at all; most likely this lack of repair is a result of the location of the lesion in the DNA sequence. When individual cells are compared within a tissue, some cells are clearly repair deficient, because the O6-meG can persist in DNA for many weeks, whereas in other cells, it is removed within a matter of hours. The role of these repair-deficient cells as targets for alkylating agent induced carcinogenesis is considered. The mechanisms of the homeostatic control of DNA repair function in mammalian cells are not yet well understood. Because there are now indications of the mechanisms by which the level of DNA damage may be sensed (and so influence the activity of the ATase repair protein), this is an important area for future study.
Collapse
Affiliation(s)
- P J O'Connor
- Paterson Institute for Cancer Research, Christie Hospital (NHS) Trust, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Alkylating agents represent a highly cytotoxic class of chemotherapeutic compounds that are extremely effective anti-tumor agents. Unfortunately, alkylating agents damage both malignant and non-malignant tissues. Bone marrow is especially sensitive to damage by alkylating agent chemotherapy, and is a dose-limiting tissue when treating cancer patients. One strategy to overcome bone marrow sensitivity to alkylating agent exposure involves gene transfer of the DNA repair protein O(6)-methylguanine DNA methyltransferase (O(6)MeG DNA MTase) into bone marrow cells. O(6)MeG DNA MTase is of particular interest because it functions to protect against the mutagenic, clastogenic and cytotoxic effects of many chemotherapeutic alkylating agents. By increasing the O(6)MeG DNA MTase repair capacity of bone marrow cells, it is hoped that this tissue will become alkylation resistant, thereby increasing the therapeutic window for the selective destruction of malignant tissue. In this review, the field of O(6)MeG DNA MTase gene transfer into bone marrow cells will be summarized with an emphasis placed on strategies used for suppressing the deleterious side effects of chemotherapeutic alkylating agent treatment.
Collapse
Affiliation(s)
- R B Roth
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | | |
Collapse
|
24
|
Frosina G. Overexpression of enzymes that repair endogenous damage to DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2135-49. [PMID: 10759836 DOI: 10.1046/j.1432-1327.2000.01266.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A significant contribution to human mutagenesis and carcinogenesis may come from DNA damage of endogenous, rather than exogenous, origin. Efficient repair mechanisms have evolved to cope with this. The main repair pathway involved in repair of endogenous damage is DNA base excision repair. In addition, an important contribution is given by O6-alkylguanine DNA alkyltranferase, that repairs specifically the miscoding base O6-alkylguanine. In recent years, several attempts have been carried out to enhance the efficiency of repair of endogenous damage by overexpressing in mammalian cells single enzymatic activities. In some cases (e.g. O6-alkylguanine DNA alkyltransferase or yeast AP endonuclease) this approach has been successful in improving cellular protection from endogenous and exogenous mutagens, while overexpression of other enzymatic activities (e.g. alkyl N-purine glycosylase or DNA polymerase beta) were detrimental and even produced a genome instability phenotype. The reasons for these different outcomes are analyzed and alternative enzymatic activities whose overexpression may improve the efficiency of repair of endogenous damage in human cells are proposed.
Collapse
Affiliation(s)
- G Frosina
- DNA Repair Unit, Mutagenesis laboratory, Istituto Nazionale Ricerca Cancro, Genova, Italy.
| |
Collapse
|
25
|
Bignami M, O'Driscoll M, Aquilina G, Karran P. Unmasking a killer: DNA O(6)-methylguanine and the cytotoxicity of methylating agents. Mutat Res 2000; 462:71-82. [PMID: 10767619 DOI: 10.1016/s1383-5742(00)00016-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Methylating agents are potent carcinogens that are mutagenic and cytotoxic towards bacteria and mammalian cells. Their effects can be ascribed to an ability to modify DNA covalently. Pioneering studies of the chemical reactivity of methylating agents towards DNA components and their effectiveness as animal carcinogens identified O(6)-methylguanine (O(6)meG) as a potentially important DNA lesion. Subsequent analysis of the effects of methylating carcinogens in bacteria and cultured mammalian cells - including the discovery of the inducible adaptive response to alkylating agents in Escherichia coli - have defined the contributions of O(6)meG and other methylated DNA bases to the biological effects of these chemicals. More recently, the role of O(6)meG in killing mammalian cells has been revealed by the lethal interaction between persistent DNA O(6)meG and the mismatch repair pathway. Here, we briefly review the results which led to the identification of the biological consequences of persistent DNA O(6)meG. We consider the possible consequences for a human cell of chronic exposure to low levels of a methylating agent. Such exposure may increase the probability that the cell's mismatch repair pathway becomes inactive. Loss of mismatch repair predisposes the cell to mutation induction, not only through uncorrected replication errors but also by methylating agents and other mutagens.
Collapse
Affiliation(s)
- M Bignami
- Istituto Superiore di Sanitá, Viale Regina Elena, 00161, Rome, Italy
| | | | | | | |
Collapse
|
26
|
Hour TC, Shiau SY, Lin JK. Suppression of N-methyl-N'-nitro-N-nitrosoguanidine- and S-nitrosoglutathione-induced apoptosis by Bcl-2 through inhibiting glutathione-S-transferase pi in NIH3T3 cells. Toxicol Lett 1999; 110:191-202. [PMID: 10597028 DOI: 10.1016/s0378-4274(99)00158-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, both NIH3T3 and Bcl-2 transfected NIH3T3 cells were examined for their propensity to undergo nitroso compound-induced apoptosis. Bcl-2-expressing NIH3T3 prevented N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)- and S-nitrosoglutathione (GSNO)-induced apoptosis as compared with the control NIH3T3 cells. Flow cytometry revealed that NIH3T3 cells treated with MNNG undergo apoptotic death, which occurred after G2-M arrest in the second cycle of cell proliferation. The mechanism of MNNG-induced NIH3T3 cells apoptosis was observed throughout the activation of caspase-3 protease, PARP degradation and cytochrome c release; it was independent of p53 activation. Glutathione-S-transferanse pi (GST pi) is activated through the transcription activation of antioxidant response element (ARE) during MNNG- and GSNO-induced cell apoptosis. Moreover, overexpression of Bcl-2 in NIH3T3 cells can prevent these features of cell death. Furthermore, both MNNG- and GSNO-induced apoptosis of NIH3T3 cells were accompanied with a decrease in the level of glutathione (GSH); whereas Bcl-2 overexpression led to an increase in total cellular glutathione. MNNG was metabolized rapidly to nitric oxide that reacted with glutathione under the catalysis of GSH transferase in NIH3T3 cell to form GSNO. In short, the production of GSNO in cells was found capable of apoptosis initiation while the overexpression of Bcl-2 can prevent MNNG-mediated cell apoptosis through the elevation of glutathione levels.
Collapse
Affiliation(s)
- T C Hour
- Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei, ROC
| | | | | |
Collapse
|
27
|
Berardini M, Foster PL, Loechler EL. DNA polymerase II (polB) is involved in a new DNA repair pathway for DNA interstrand cross-links in Escherichia coli. J Bacteriol 1999; 181:2878-82. [PMID: 10217781 PMCID: PMC93732 DOI: 10.1128/jb.181.9.2878-2882.1999] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA-DNA interstrand cross-links are the cytotoxic lesions for many chemotherapeutic agents. A plasmid with a single nitrogen mustard (HN2) interstrand cross-link (inter-HN2-pTZSV28) was constructed and transformed into Escherichia coli, and its replication efficiency (RE = [number of transformants from inter-HN2-pTZSV28]/[number of transformants from control]) was determined to be approximately 0.6. Previous work showed that RE was high because the cross-link was repaired by a pathway involving nucleotide excision repair (NER) but not recombination. (In fact, recombination was precluded because the cells do not receive lesion-free homologous DNA.) Herein, DNA polymerase II is shown to be in this new pathway, since the replication efficiency (RE) is higher in a polB+ ( approximately 0. 6) than in a DeltapolB (approximately 0.1) strain. Complementation with a polB+-containing plasmid restores RE to wild-type levels, which corroborates this conclusion. In separate experiments, E. coli was treated with HN2, and the relative sensitivity to killing was found to be as follows: wild type < polB < recA < polB recA approximately uvrA. Because cells deficient in either recombination (recA) or DNA polymerase II (polB) are hypersensitive to nitrogen mustard killing, E. coli appears to have two pathways for cross-link repair: an NER/recombination pathway (which is possible when the cross-links are formed in cells where recombination can occur because there are multiple copies of the genome) and an NER/DNA polymerase II pathway. Furthermore, these results show that some cross-links are uniquely repaired by each pathway. This represents one of the first clearly defined pathway in which DNA polymerase II plays a role in E. coli. It remains to be determined why this new pathway prefers DNA polymerase II and why there are two pathways to repair cross-links.
Collapse
Affiliation(s)
- M Berardini
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
28
|
Berardini M, Foster PL, Loechler EL. DNA polymerase II (polB) is involved in a new DNA repair pathway for DNA interstrand cross-links in Escherichia coli. J Bacteriol 1999; 181:2878-2882. [PMID: 10217781 PMCID: PMC93732 DOI: 10.1093/gao/9781884446054.article.t031385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1998] [Accepted: 02/22/1999] [Indexed: 05/23/2023] Open
Abstract
DNA-DNA interstrand cross-links are the cytotoxic lesions for many chemotherapeutic agents. A plasmid with a single nitrogen mustard (HN2) interstrand cross-link (inter-HN2-pTZSV28) was constructed and transformed into Escherichia coli, and its replication efficiency (RE = [number of transformants from inter-HN2-pTZSV28]/[number of transformants from control]) was determined to be approximately 0.6. Previous work showed that RE was high because the cross-link was repaired by a pathway involving nucleotide excision repair (NER) but not recombination. (In fact, recombination was precluded because the cells do not receive lesion-free homologous DNA.) Herein, DNA polymerase II is shown to be in this new pathway, since the replication efficiency (RE) is higher in a polB+ ( approximately 0. 6) than in a DeltapolB (approximately 0.1) strain. Complementation with a polB+-containing plasmid restores RE to wild-type levels, which corroborates this conclusion. In separate experiments, E. coli was treated with HN2, and the relative sensitivity to killing was found to be as follows: wild type < polB < recA < polB recA approximately uvrA. Because cells deficient in either recombination (recA) or DNA polymerase II (polB) are hypersensitive to nitrogen mustard killing, E. coli appears to have two pathways for cross-link repair: an NER/recombination pathway (which is possible when the cross-links are formed in cells where recombination can occur because there are multiple copies of the genome) and an NER/DNA polymerase II pathway. Furthermore, these results show that some cross-links are uniquely repaired by each pathway. This represents one of the first clearly defined pathway in which DNA polymerase II plays a role in E. coli. It remains to be determined why this new pathway prefers DNA polymerase II and why there are two pathways to repair cross-links.
Collapse
Affiliation(s)
- M Berardini
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
29
|
Bibby MC, Thompson MJ, Rafferty JA, Margison GP, McElhinney RS. Influence of O6-benzylguanine on the anti-tumour activity and normal tissue toxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea and molecular combinations of 5-fluorouracil and 2-chloroethyl-1-nitrosourea in mice. Br J Cancer 1999; 79:1332-9. [PMID: 10188873 PMCID: PMC2362701 DOI: 10.1038/sj.bjc.6690215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Previous studies have demonstrated that novel molecular combinations of 5-fluorouracil (5FU) and 2-chloroethyl-1-nitrosourea (CNU) have good preclinical activity and may exert less myelotoxicity than the clinically used nitrosoureas such as 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). This study examined the effect of O6-alkylguanine-DNA-alkyltransferase (ATase) depletion by the pseudosubstrate O6-benzylguanine (BG) on the anti-tumour activity and normal tissue toxicity in mice of three such molecular combinations, in comparison with BCNU. When used as single agents at their maximum tolerated dose, all three novel compounds produced a significant growth retardation of BCNU-resistant murine colon and human breast xenografts. This in vivo anti-tumour effect was potentiated by BG, but was accompanied by severe myelotoxicity as judged by spleen colony forming assays. However, while tumour resistance to BCNU was overcome using BG, this was at the expense of enhanced bone marrow, gut and liver toxicity. Therefore, although this ATase-depletion approach resulted in improved anti-tumour activity for all three 5-FU:CNU molecular combinations, the potentiated toxicities in already dose-limiting tissues indicate that these types of agents offer no therapeutic advantage over BCNU when they are used together with BG.
Collapse
Affiliation(s)
- M C Bibby
- Clinical Oncology Unit, University of Bradford, UK
| | | | | | | | | |
Collapse
|
30
|
Chinnasamy N, Fairbairn LJ, Laher J, Willington MA, Rafferty JA. Modulation of O6-alkylating agent induced clastogenicity by enhanced DNA repair capacity of bone marrow cells. Mutat Res 1998; 416:1-10. [PMID: 9725988 DOI: 10.1016/s1383-5718(98)00087-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The murine bone marrow micronucleus assay has been used to examine (1) the potentiation of fotemustine and streptozotocin induced-clastogenicity by the O6-alkylguanine-DNA alkyltransferase (ATase) inactivator O6-benzylguanine (O6-beG) and (2) the level of protection afforded against this potentiation by retrovirus-mediated expression of an O6-beG-resistant mutant of human ATase (haTPA/GA) in mouse bone marrow. Both fotemustine and streptozotocin induced significantly higher levels of micronucleated polychromatic erythrocytes (p < 0.001 for the highest doses studied) compared to those seen in vehicle-treated animals. The number of micronuclei produced by either agent was dramatically elevated by pretreatment with O6-beG (p < 0.001). Furthermore, in myeloablated mice reconstituted with bone marrow expressing the O6-beG-resistant hATPA/GA as a result of retroviral gene transfer, the frequency of micronucleus formation following exposure of mice to otherwise clastogenic doses of fotemustine or streptozotocin, in the presence of O6-beG, wash highly significantly reduced (p < 0.001 for both agents) relative to that in mock transduced controls. These data clearly implicate O6-chloroethyl- and O6-methylguanine as clastogenic lesions in vivo and establish ATase as a major protective mechanism operating to reduce the frequency of such damage. The potentiation of drug induced clastogenicity by O6-beG suggests that the clinical use of this inactivator in combination with O6-alkylating agents, could substantially increase the risk of therapy related malignancy. Nevertheless the use of hATPA/GA as a protective mechanism via gene therapy may overcome this risk.
Collapse
Affiliation(s)
- N Chinnasamy
- CRC Section of Haemopoietic Cell, Paterson Institute for Cancer Research, Christine Hospital NHS Trust, Mancester M20 4BX, UK
| | | | | | | | | |
Collapse
|
31
|
Protection of Hematopoietic Progenitor Cells from Chemotherapy Toxicity by Transfer of Drug Resistance Genes. Gene Ther 1998. [DOI: 10.1007/978-3-662-03577-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Kaina B, Ziouta A, Ochs K, Coquerelle T. Chromosomal instability, reproductive cell death and apoptosis induced by O6-methylguanine in Mex-, Mex+ and methylation-tolerant mismatch repair compromised cells: facts and models. Mutat Res 1997; 381:227-41. [PMID: 9434879 DOI: 10.1016/s0027-5107(97)00187-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
O6-Methylguanine (O6-MeG) is induced in DNA by methylating environmental carcinogens and various cytostatic drugs. It is repaired by O6-methylguanine-DNA methyltransferase (MGMT). If not repaired prior to replication, the lesion generates gene mutations and leads to cell death, sister chromatid exchanges (SCEs), chromosomal aberrations and malignant transformation. To address the question of how O6-MeG is transformed into genotoxic effects, isogenic Chinese hamster cell lines either not expressing MGMT (phenotypically Mex-), expressing MGMT (Mex+) or exhibiting the tolerance phenotype (Mex-, methylation resistant) were compared as to their clastogenic response. Mex- cells were more sensitive than Mex+ cells to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced chromosomal breakage, with marked differences in sensitivity depending on recovery time. At early recovery time, when cells out of the first post-treatment mitosis were scored, aberration frequency was about 40% reduced in Mex+ as compared to Mex- cells. At later stages of recovery when cells out of the second post-treatment mitosis were analyzed, the frequency of aberrations increased strongly in Mex- cells whereas it dropped to nearly control level in Mex+ cells. From this we conclude that, in the first post-treatment replication cycle of Mex- cells, only a minor part of aberrations (< 40%) was due to O6-MeG whereas, in the second post-treatment replication cycle, the major part of aberrations (> 90%) was caused by the lesion. Thus, O6-MeG is a potent clastogenic DNA damage that needs two DNA replication cycles in order to be transformed with high efficiency into aberrations. The same holds true for sister chromatid exchanges (SCEs). MNNG is highly potent in inducing SCEs in Mex- cells in the second replication cycle after alkylation. Under these conditions, SCE induction is nearly completely prevented by the expression of MGMT. This is opposed to SCE induction in the first post-treatment replication cycle, where higher doses of MNNG were required to induce SCEs and no protective effect of MGMT was observed. This indicates that SCEs induced in the first replication cycle after alkylation are due to other lesions than O6-MeG. In methylation tolerant cells, which are characterized by impaired G-T mismatch binding and MSH2 expression, aberration frequency induced by MNNG was weakly reduced in the first and strongly reduced in the second post-treatment mitoses, as compared to CHO wild-type cells. The results indicate that mismatch repair of O6-MeG-T mispairs is decisively involved in O6-MeG born chromosomal instability and recombination. We also show that Mex+ and methylation tolerant cells are more resistant than Mex- cells with regard to induction of apoptosis, indicating O6-MeG to be also an apoptosis-inducing lesion. The data are discussed as to the mechanism of cytotoxicity, aberration and SCE formation in cells treated with a methylating agent.
Collapse
Affiliation(s)
- B Kaina
- Division of Applied Toxicology, University of Mainz, Germany
| | | | | | | |
Collapse
|
33
|
Musarrat J, Arezina-Wilson J, Venkatachalam S, Wani AA. Repair analysis of promutagenic (+)-anti-BPDE DNA adduct in transcriptionally active sequences of plasmid DNA in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1351:203-12. [PMID: 9116034 DOI: 10.1016/s0167-4781(96)00198-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The extent of formation and repair of promutagenic (+)-anti-BPDE-N2-dG in transcriptionally active thymidine kinase (tk) gene insert and vector DNA fragments was assessed in the (+)-anti-BPDE treated plasmid p220-tk within the Escherichia coli hosts of varying repair potential. Polyclonal antibody (BP1), specific for (+)-anti-BPDE DNA adduct, was utilized for quantitative estimation of this bulky lesion in nanograms amounts of membrane transblotted DNA fragments. A carcinogen dose-dependent quantitative antibody binding response, due to selective recognition of the major (+)-anti-BPDE adduct, was seen with various DNA fragments separated by gel electrophoresis. The sensitivity of the immunodetection at 0.2 fmol (+)-anti-BPDE DNA adduct, allowed a linear detection in the range of modification level of 0.64 x 10(-7) to 86 x 10(-7) adducts per nucleotide in plasmid DNA. Based on this sensitivity, detection of 0.07 and 0.46 (+)-anti-BPDE DNA adducts in respective tk and vector DNA fragments was achieved upon immunoanalysis of the in vitro modified DNA. Adduct concentration dependent antibody binding was independent of size of the vector or insert fragments. Antibody binding response, to DNA modified in vivo, was dependent upon the dose of (+/-)-anti-BPDE to plasmid DNA replicating within bacterial hosts. The repair of (+)-anti-BPDE DNA adducts was determined as the loss of antibody binding sites in the specific fragments of plasmid DNA within host E. coli. About 50% of the initial DNA damage was repaired from the individual fragments during 15 min post-incubation in the repair-proficient (wild-type) E. coli cells. Complete adduct removal occurred in approx. 60 min of post-incubation period. A significant (91%) decrease in the survival of mutant (uvrA- recA-) cells was observed at 4 microM (+/-)-anti-BPDE treatment without any reduction in the colony forming units in the wild-type cells. On the contrary, no repair was seen in the excision repair-deficient (uvrA-) E. coli cells. The results indicate (1) the selectivity of the immunological method and the unique ability of the (+)-anti-BPDE specific antibodies to monitor the direct loss of this promutagenic base lesion from the in vivo modified DNA (2) the role of host excision repair pathway in efficient removal of adducts from bacterial genome determines the survival of the bacterial cells and (3) the repair of (+)-anti-BPDE DNA adducts in episomally replicating, transcriptionally active sequences occur at a rapid rate presumably due to the ease of accessibility of repair enzymes to lesions within DNA.
Collapse
Affiliation(s)
- J Musarrat
- Department of Radiobiology, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Our genetic information is constantly challenged by exposure to endogenous and exogenous DNA-damaging agents, by DNA polymerase errors, and thereby inherent instability of the DNA molecule itself. The integrity of our genetic information is maintained by numerous DNA repair pathways, and the importance of these pathways is underscored by their remarkable structural and functional conservation across the evolutionary spectrum. Because of the highly conserved nature of DNA repair, the enzymes involved in this crucial function are often able to function in heterologous cells; as an example, the E. coli Ada DNA repair methyltransferase functions efficiently in yeast, in cultured rodent and human cells, in transgenic mice, and in ex vivo-modified mouse bone marrow cells. The heterologous expression of DNA repair functions has not only been used as a powerful cloning strategy, but also for the exploration of the biological and biochemical features of numerous enzymes involved in DNA repair pathways. In this review we highlight examples where the expression of DNA repair enzymes in heterologous cells was used to address fundamental questions about DNA repair processes in many different organisms.
Collapse
Affiliation(s)
- A Memisoglu
- Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
35
|
Rafferty JA, Hickson I, Chinnasamy N, Lashford LS, Margison GP, Dexter TM, Fairbairn LJ. Chemoprotection of normal tissues by transfer of drug resistance genes. Cancer Metastasis Rev 1996; 15:365-83. [PMID: 9034597 DOI: 10.1007/bf00046348] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effectiveness of many types of antitumour agent is limited by (i) acute dose limiting cytotoxicity, principally myelosuppression but also lung, liver and gastrointestinal tract toxicity, (ii) the risk of therapy related secondary malignancy and (iii) the inherent or acquired drug-resistance of tumour cells. As the management of the acute toxic effects improve, the more insidious effects, and particularly haematological malignancies, are anticipated to increase. Furthermore, attempts to overcome tumour cell resistance to treatment can lead to increased collateral damage in normal tissues. One approach to circumventing both the acute toxic and chronic carcinogenic effects of chemotherapy would be to use gene therapy to achieve high levels of expression of drug resistance proteins in otherwise drug-sensitive tissues. To date the products of the multi-drug resistance (MDR-1) and the human O6-alkylguanine-DNA-alkyltransferase (ATase) gene have been used in preclinical experiments to demonstrate proof of principle, and the former of these is now being tested in a clinical situation. Here we discuss the potential of drug-resistance gene therapy to provide chemoprotection to normal tissues and examine the prospects for a dual approach which combines this with pharmacological sensitisation of tumours to chemotherapeutic agents.
Collapse
Affiliation(s)
- J A Rafferty
- CRC Department of Carcinogenesis, Paterson Institute for Cancer Research, Christie Hospital (NHS)-Trust, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Bobola MS, Blank A, Berger MS, Silber JR. Contribution of O6-methylguanine-DNA methyltransferase to monofunctional alkylating-agent resistance in human brain tumor-derived cell lines. Mol Carcinog 1995; 13:70-80. [PMID: 7605582 DOI: 10.1002/mc.2940130203] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) has been implicated in resistance of human brain tumors to alkylating agents. We observed that 14 human medulloblastoma- and glioma-derived cell lines differ in sensitivity to the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), as shown by their 28-fold range in 10% survival dose (LD10). By using the substrate analogue inhibitor O6-benzylguanine (O6-BG), we showed that the contribution of MGMT to resistance varies widely, as evidenced by 3- to 30-fold reductions in LD10 among the lines, and varies up to 20-fold among subpopulations of individual lines. Importantly, variability in resistance, manifested as a 20-fold range in LD10, persists after measurable MGMT is eliminated, disclosing differential contributions of other resistance mechanisms to survival. Cells exposed to MNNG while suspended in growth medium are more resistant than cells alkylated as subconfluent monolayers, and MGMT accounts for a smaller proportion of their resistance. Notably, the MGMT content of the lines is not statistically correlated with MNNG resistance or with potentiation of killing by O6-BG, even though MGMT is a biochemically demonstrated determinant of resistance. In contrast, the same lines vary less in resistance to the ethylating agent N-ethylnitrosourea (ENU), and MGMT makes only a small contribution to resistance. Our results strongly indicate that resistance to both MNNG and ENU is multifactorial.
Collapse
Affiliation(s)
- M S Bobola
- Department of Neurological Surgery, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
37
|
D'Atri S, Piccioni D, Castellano A, Tuorto V, Franchi A, Lu K, Christiansen N, Frankel S, Rustum YM, Papa G. Chemosensitivity to triazene compounds and O6-alkylguanine-DNA alkyltransferase levels: studies with blasts of leukaemic patients. Ann Oncol 1995; 6:389-93. [PMID: 7619755 DOI: 10.1093/oxfordjournals.annonc.a059189] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND A clinical pilot study performed by our group showed that dacarbazine can induce a marked reduction of blast cells in patients with acute myelogenous leukaemia (AML). Leukaemic blasts (LB) from responsive patients showed low levels of O6-alkylguanine-DNA alkyltransferase (OGAT). DESIGN An in vitro study was performed to evaluate OGAT levels and sensitivity to temozolomide (a triazene compound that spontaneously decomposes into the active metabolite of dacarbazine) in a relatively large number of LB samples. RESULTS OGAT levels varied widely among the LB of different patients, with a mean value higher in acute lymphoblastic leukaemias than in AML. About 25% of LB obtained from patients with AML showed low OGAT activity, in the range corresponding to that observed in leukaemic patients responsive to dacarbazine in vivo. A reasonable inverse correlation was found between OGAT levels and LB sensitivity to temozolomide. CONCLUSIONS Triazenes could have a therapeutic potential in human leukaemias. Moreover, OGAT determination could provide rapid and reliable information about a patient's susceptibility to these antitumor agents.
Collapse
Affiliation(s)
- S D'Atri
- Istituto Dermopatico dell'Immacolata (IDI), University of Rome, Tor Vergata, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen BJ, Carroll P, Samson L. The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity. J Bacteriol 1994; 176:6255-61. [PMID: 7928996 PMCID: PMC196966 DOI: 10.1128/jb.176.20.6255-6261.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli can ameliorate the toxic effects of alkylating agents either by preventing DNA alkylation or by repairing DNA alkylation damage. The alkylation-sensitive phenotype of E. coli alkB mutants marks the alkB pathway as an extremely effective defense mechanism against the cytotoxic effects of the SN2, but not the SN1, alkylating agents. Although it is clear that AlkB helps cells to better handle alkylated DNA, no DNA alkylation repair function could be assigned to the purified AlkB protein, suggesting that AlkB either acts as part of a complex or acts to regulate the expression of other genes whose products are directly responsible for alkylation resistance. However, here we present evidence that the provision of alkylation resistance is an intrinsic function of the AlkB protein per se. We expressed the E. coli AlkB protein in two human cell lines and found that it confers the same characteristic alkylation-resistant phenotype in this foreign environment as it does in E. coli. AlkB expression rendered human cells extremely resistant to cell killing by the SN2 but not the SN1 alkylating agents but did not affect the ability of dimethyl sulfate (an SN2 agent) to alkylate the genome. We infer that SN2 agents produce a class of DNA damage that is not efficiently produced by SN1 agents and that AlkB somehow prevents this damage from killing the cell.
Collapse
Affiliation(s)
- B J Chen
- Harvard School of Public Health, Boston, Massachusetts 02115
| | | | | |
Collapse
|
39
|
Lee SM, Thatcher N, Crowther D, Margison GP. Inactivation of O6-alkylguanine-DNA alkyltransferase in human peripheral blood mononuclear cells by temozolomide. Br J Cancer 1994; 69:452-6. [PMID: 8123472 PMCID: PMC1968858 DOI: 10.1038/bjc.1994.82] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
O6-alkylguanine-DNA-alkyltransferase (ATase) activity was measured in extracts of peripheral blood mononuclear cells (PMCs) taken from eight patients at various times during 5 days of oral treatment with temozolomide (150 mg m-2, days 1-5). Pretreatment ATase levels ranged from approximately 70 to 600 fmol per mg of protein. Depletion of PMC ATase was seen within 4 h of the first dose of temozolomide and had a median nadir of 52.9% and values ranging from 44.4% to 71.0% of pretreatment levels. There was a correlation between the extent of ATase depletion (pretreatment minus nadir level) and the pretreatment ATase level (r = 0.97). A progressive depletion of ATase was observed during the 5 days of continuous temozolomide therapy with median ATase activities of 66.3%, 52.5%, 39.5%, 30.5% and 28.9% of the pretreatment values at days 2, 3, 4, 5 and 6 respectively. This suggests that the schedule-dependent anti-tumour activity of temozolomide seen in experimental models and clinics may be related to a cumulative depletion of ATase.
Collapse
Affiliation(s)
- S M Lee
- CRC Department of Carcinogenesis, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK
| | | | | | | |
Collapse
|
40
|
Ceccotti S, Dogliotti E, Gannon J, Karran P, Bignami M. O6-methylguanine in DNA inhibits replication in vitro by human cell extracts. Biochemistry 1993; 32:13664-72. [PMID: 8257700 DOI: 10.1021/bi00212a035] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To study the effects of methylation damage on DNA replication in vitro, the plasmid pSVori containing the SV40 origin of replication was reacted with N-methyl-N-nitrosourea and used as a substrate for SV40 T antigen dependent replication by HeLa cell extracts. The plasmid was methylated with a range of N-methyl-N-nitrosourea concentrations that introduced an average of 0.3-2.5 O6-methylguanine and equal amounts of 3-methyladenine lesions per DNA molecule. When methylated plasmid was incubated with extract of Mex-HeLaMR cells under conditions favoring DNA replication, an impairment of replication was observed as the accumulation of incompletely replicated form II plasmid molecules. These extracts simultaneously performed a T antigen independent, DpnI-sensitive DNA repair synthesis that increased with increasing DNA damage. Subtraction of this repair DNA synthesis revealed that methylation inhibited overall replication. At low levels of methylation (< or = 1 O6-methylguanine and < or = 1 3-methyladenine lesion per plasmid), inhibition was transient, while more extensive damage resulted in apparently irreversible inhibition of replication. Removal of O6-methylguanine by pretreatment of the methylated plasmid with purified human O6-methylguanine-DNA methyltransferase restored replication to almost normal levels. When the methylated plasmid was replicated by extracts of Mex+ HeLaS3 cells proficient in the repair of O6-methylguanine, a lower level of inhibition and less repair DNA synthesis was observed. The inhibition of DNA synthesis and the stimulation of repair DNA synthesis are thus both largely due to the presence of O6-methylguanine in DNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Ceccotti
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
41
|
Molecular and cellular characterization of Mex-/methylation-resistant phenotype. Gene and cDNA cloning, serum dependence, and tumor suppression of transfectant strains. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36899-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Harris LC, Margison GP. Expression in mammalian cells of the Escherichia coli O6 alkylguanine-DNA-alkyltransferase gene ogt reduces the toxicity of alkylnitrosoureas. Br J Cancer 1993; 67:1196-202. [PMID: 8512805 PMCID: PMC1968496 DOI: 10.1038/bjc.1993.225] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
V79 Chinese hamster cells expressing either the O6-alkylguanine-DNA-alkyltransferase (ATase) encoded by the E. coli ogt gene or a truncated version of the E. coli ada gene have been exposed to various alkylnitrosoureas to investigate the contribution of ATase repairable lesions to the toxicity of these compounds. Both ATases are able to repair O6-alkylguanine (O6-AlkG) and O4-alkylthymine (O4-AlkT) but the ogt ATase is more efficient in the repair of O4-methylthymine (O4-MeT) and higher alkyl derivatives of O6-AlkG than is the ada ATase. Expression of the ogt ATase provided greater protection against the toxic effects of the alkylating agents then the ada ATase particularly with N-ethyl-N-nitrosourea (ENU) and N-butyl-N-nitrosourea (BNU) to which the ada ATase expressing cells were as sensitive as parent vector transfected cells. Although ogt was expressed at slightly higher levels than the truncated ada in the transfected cells, this could not account for the differential protection observed. For-N-methyl-N-nitrosourea (MNU) the increased protection in ogt-transfected cells is consistent with O4-MeT acting as a toxic lesion. For the longer chain alkylating agents and chloroethylating agents, the protection afforded by the ogt protein may be a consequence of the more efficient repair of O6-AlkG, O4-AlkT or both of these lesions in comparison with the ada-encoded ATase.
Collapse
Affiliation(s)
- L C Harris
- CRC Department of Carcinogenesis, Paterson Institute for Cancer Research, Christie Hospital, Manchester, UK
| | | |
Collapse
|
43
|
Bjelland S, Bjørås M, Seeberg E. Excision of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli. Nucleic Acids Res 1993; 21:2045-9. [PMID: 8502545 PMCID: PMC309463 DOI: 10.1093/nar/21.9.2045] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli has two DNA glycosylases for repair of DNA damage caused by simple alkylating agents. The inducible AlkA DNA glycosylase (3-methyladenine [m3A] DNA glycosylase II) removes several different alkylated bases including m3A and 3-methylguanine (m3G) from DNA, whereas the constitutively expressed Tag enzyme (m3A DNA glycosylase I) has appeared to be specific for excision of m3A. In this communication we have reexamined the substrate specificity of Tag by using synthetic DNA rich in GC base pairs to facilitate detection of any possible methyl-G removal. In such DNA alkylated with [3H]dimethyl sulphate, we found that m3G was excised from double-stranded DNA by both glycosylases, although more efficiently by AlkA than by Tag. This was further confirmed using both N-[3H]methyl-N-nitrosourea- and [3H]dimethyl sulphate-treated native DNA, from which Tag excised m3G with an efficiency that was about 70 times lower than for AlkA. These results can explain the previous observation that high levels of Tag expression will suppress the alkylation sensitivity of alkA mutant cells, further implying that m3G is formed in quantity sufficient to represent an important cytotoxic lesion if left unrepaired in cells exposed to alkylating agents.
Collapse
Affiliation(s)
- S Bjelland
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, Kjeller
| | | | | |
Collapse
|
44
|
Dosanjh MK, Loechler EL, Singer B. Evidence from in vitro replication that O6-methylguanine can adopt multiple conformations. Proc Natl Acad Sci U S A 1993; 90:3983-7. [PMID: 8483914 PMCID: PMC46430 DOI: 10.1073/pnas.90.9.3983] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The effect of O6-methylguanine (m6G) on replication, in a partially double-stranded defined 25-base oligonucleotide, has been studied under nonlimiting conditions of unmodified dNTPs and over an extended time period, using the Klenow fragment of Escherichia coli DNA polymerase I. The sequence surrounding m6G has flanking cytosines (C-m6G-C), and the initial steady-state kinetics have been reported. When the primer was annealed so that the first base to be replicated was m6G, replication was virtually complete in approximately 5 min, although the reaction appears biphasic. When annealed with a primer where thymine or cytosine is paired opposite template m6G, about half the molecules were replicated in the first 15 sec, and no significant further replication was seen over a 1-hr period. When m6G was dealkylated by DNA-O6-methylguanine-methyltransferase, replication was rapid with no blockage. These data suggest that there can be two (or more) conformations of m6G. In these studies the term syn refers to conformers interfering with base-pairing, whereas anti refers to those allowing such base-pairing. Previous physical studies by others indicate that syn- and anti-conformers of the methyl group relative to the N1 of guanine are possible. Here molecular modeling/computational studies are described, suggesting that syn- and anti-m6G can be of similar energy in DNA, and, therefore, these two conformers may explain the two types of species observed during in vitro replication. An alternative explanation could be the possibility that the different species may manifest differential interactions of m6G with Klenow fragment. These results may provide a rationale for why m6G lesions in vivo have been reported to be lethal as well as mutagenic.
Collapse
Affiliation(s)
- M K Dosanjh
- Life Sciences Division, Donner Laboratory, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | |
Collapse
|
45
|
Lee SM, Thatcher N, Dougal M, Margison GP. Dosage and cycle effects of dacarbazine (DTIC) and fotemustine on O6-alkylguanine-DNA alkyltransferase in human peripheral blood mononuclear cells. Br J Cancer 1993; 67:216-21. [PMID: 8431354 PMCID: PMC1968172 DOI: 10.1038/bjc.1993.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
There is increasing experimental evidence to suggest that endogenous expression of O6-alkylguanine-DNA-alkyltransferase (ATase) is a major factor in cellular resistance to certain chemotherapeutic agents including dacarbazine (DTIC). We have recently shown wide interindividual variation in the depletion and subsequent regeneration of ATase in peripheral blood mononuclear cells (PMCs) following DTIC and this has now been extended to ascertain whether or not depletion is related to dosage of DTIC used and repeated treatment cycles of chemotherapy. ATase levels were measured in three groups of 25 patients (pts) up to 24 h after receiving DTIC at 400 mg m-2, 500 mg m-2 or 800 mg m-2. Each group also received fotemustine (100 mg m-2), 4 h after DTIC. The lowest extent of ATase depletion (highest nadir ATase) was seen in patients receiving 400 mg m-2. The mean nadir ATase, expressed as a percentage of pre-treatment ATase, was respectively 56.3%, 26.4% and 23.9% for 400 mg m-2, 500 mg m-2 and 800 mg m-2. The median nadir of ATase activity for pts receiving 800 mg m-2 pts was at 4-6 h and for pts given lower doses it was at 2-3 h. In addition, repeated measures analysis of variance of observations before chemotherapy, then at 2, 3, 4, 6 and 18 h after chemotherapy provides some evidence that ATase was depleted to a lesser extent after cycle 1 than after subsequent cycles (P = 0.025). It also provides evidence that the change in ATase activity over time varied with dose and cycle. The findings can be interpreted on the basis of a dosage-dependent metabolism of DTIC to an agent capable of methylation of DNA and subsequent depletion of PMC ATase: with higher DTIC doses, the extent of ATase depletion may be limited by the pharmacokinetics of DTIC metabolism. PMC ATase was measured in another group of 8 pts at various times after receiving only fotemustine (100 mg m-2) and in contrast to DTIC, no ATase depletion was seen suggesting that insufficient concentrations of fotemustine and/or its metabolites were available to react with DNA to produce a depletion of PMC ATase activity.
Collapse
Affiliation(s)
- S M Lee
- CRC Dept of Carcinogenesis, Paterson Institute for Cancer Research, Manchester, UK
| | | | | | | |
Collapse
|
46
|
von Hofe E, Fairbairn L, Margison GP. Relationship between O6-alkylguanine-DNA alkyltransferase activity and N-methyl-N'-nitro-N-nitrosoguanidine-induced mutation, transformation, and cytotoxicity in C3H/10T1/2 cells expressing exogenous alkyltransferase genes. Proc Natl Acad Sci U S A 1992; 89:11199-203. [PMID: 1454799 PMCID: PMC50517 DOI: 10.1073/pnas.89.23.11199] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
While a great deal of evidence has directly implicated the importance of O6-alkylation of guanine in the mutagenicity of alkylating agents, evidence demonstrating the oncogenic potential of this lesion has been largely indirect. We have combined a well-studied in vitro neoplastic transformation system (using C3H/10T1/2 mouse cells) with a proven method of gene transfection for expressing the bacterial O6-alkylguanine-DNA alkyltransferase (AT; EC 2.1.1.63) repair genes ada and ogt to generate subclones which possess augmented repair capability toward specific DNA lesions. The products of these genes specifically and differentially repair O6-methylguanine (O6-MeGua), O4-methylthymine (O4-MeThy), and methylphosphotriesters. We show that the level of expression of either the ada or the ogt AT gene in C3H/10T1/2 cells directly correlates with protection against mutation to ouabain resistance by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Subclones expressing 70 fmol of AT per 10(6) cells exhibited a mutation frequency approximately 1/40th of that of clones expressing 15 fmol of AT per 10(6) cells when treated with MNNG at 0.4 micrograms/ml. Protection against mutagenesis by MNNG at 0.8 micrograms/ml, however, did not exceed 12-fold even in subclones expressing greater than 100 fmol of AT per 10(6) cells. As an MNNG dose of 0.6 micrograms/ml was sufficient to saturate more than 95% of the AT activity in any of the clones, the residual mutation frequency may have been caused by unrepaired O6MeGua lesions. In contrast to mutagenesis, protection against neoplastic transformation in vitro, in cells expressing high levels of AT, was most pronounced in cells treated with the highest dose of MNNG used (1.2 micrograms/ml). Low levels of transformation caused by MNNG at 0.4 and 0.8 micrograms/ml were not consistently inhibited in those clones. These data suggest that O6-MeGua formation is of major but not unique significance in the neoplastic transformation of C3H/10T1/2 cells by MNNG.
Collapse
Affiliation(s)
- E von Hofe
- Department of Pharmacology, University of Massachusetts Medical Center, Worcester 01655
| | | | | |
Collapse
|
47
|
Lee SM, Crowther D, Scarffe JH, Dougal M, Elder RH, Rafferty JA, Margison GP. Cyclophosphamide decreases O6-alkylguanine-DNA alkyltransferase activity in peripheral lymphocytes of patients undergoing bone marrow transplantation. Br J Cancer 1992; 66:331-6. [PMID: 1387001 PMCID: PMC1977821 DOI: 10.1038/bjc.1992.265] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
O6-alkylguanine-DNA-alkyltransferase (ATase) levels were measured in extracts of peripheral blood lymphocytes taken at various times during chemotherapy from 19 patients with various haematological malignancies. Seven patients with advanced Hodgkin's disease received preparative treatment consisting of cyclophosphamide (1.5 g m-2, daily) administered on days 1 to 4 and BCNU (600 mg m-2) on day 5 prior to autologous bone marrow rescue (ABMR) delivered on day 7. Treatment in the remaining 12 patients consisted of cyclophosphamide (1.8 g m-2, daily) given on days 1 and 2 followed at day 4 with total body irradiation (TBI) administered in six fractions over the subsequent 3 days to a total dose of 1200 cGy prior to bone marrow transplantation. In the Hodgkin's group, significant decreases in ATase activity were seen during the cyclophosphamide treatment, and the median ATase nadir was 32% (range 0% to 57%) of pretreatment levels following 4 days of cyclophosphamide. In one patient, no ATase activity was detectable following the 4th cyclophosphamide treatment. ATase activities decreased further after BCNU administration to a median of 19% (range 0% to 32%) of pretreatment levels. Extensive cyclophosphamide-induced reduction of lymphocyte ATase levels was also seen in the other group of 12 patients treated with cyclophosphamide/TBI: postcyclophosphamide median ATase nadir was 35% (range 12% to 78%) of the pretreatment levels. No ATase depletion was seen when cyclophosphamide (up to 10 mM) was incubated for 2 h with pure recombinant human ATase in vitro whereas ATase activity was reduced by 90% on preincubation with 100 microns acrolein or with greater than 1 mM phosphoramide mustard. This suggests that a cyclophosphamide-induced decrease in ATase levels in human peripheral lymphocytes in vivo may be due to depletion mediated by the production of intracellular acrolein. Since ATase appears to be a principal mechanism in cellular resistance to the cytotoxic effects of BCNU and related alkylating agents, these observations suggest that a cyclophosphamide-induced reduction in ATase activity may be an additional factor in the effectiveness of the combined sequential therapy.
Collapse
Affiliation(s)
- S M Lee
- CRC Department of Carcinogenesis, Paterson Institute for Cancer Research, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Coccia P, Bertini R, Pagani P, Marinello C, Taverna P, Villa P, D'Incalci M. O6-alkylguanine DNA alkyltransferase is induced by human recombinant interferon-alpha A/D in mouse liver. JOURNAL OF INTERFERON RESEARCH 1992; 12:173-6. [PMID: 1640118 DOI: 10.1089/jir.1992.12.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment of C57Bl or BALB/C mice with human interferon-alpha A/D (HuIFN-alpha A/D) significantly increased hepatic levels of the DNA repair enzyme O6-alkylguanine DNA alkyltransferase (AT). The maximum induction was seen 24 h after a single dose of 50-100 micrograms/kg IFN-alpha A/D. No induction was observed in rat liver hepatocytes cultured in vitro. Liver AT was also induced by poly(I:C), which is a potent IFN inducer. By increasing AT levels, IFN could protect against the potentially mutagenic alkylation at guanine O6 position caused by some carcinogens. Moreover this finding suggests a link between immune response and the DNA repair system, possibly acting in concert to defend the body from potentially toxic compounds.
Collapse
Affiliation(s)
- P Coccia
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Lee SM, Thatcher N, Crowther D, Margison GP. In vivo depletion of O6-alkylguanine-DNA-alkyltransferase in lymphocytes and melanoma of patients treated with CB 10-277, a new DTIC analogue. Cancer Chemother Pharmacol 1992; 31:240-6. [PMID: 1464162 DOI: 10.1007/bf00685554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is increasing evidence to suggest that alkylation of guanine residues in DNA at the O6 position is the critical cytotoxic event following treatment with dacarbazine (DTIC) and related drugs and that endogenous O6-alkylguanine-DNA alkyltransferase (ATase) gene expression may be a major factor in resistance to such agents. 1-p-Carboxyl-3,3-dimethylphenyltriazene (CB10-277) was recently selected for clinical evaluation as a DTIC analogue with improved solubility, stability and (possibly) metabolic activation. Serial ATase levels were measured in peripheral blood lymphocytes of nine patients and in biopsied melanoma samples of two patients undergoing treatment with 24-h continuous infusion of CB10-277 (12 g/m2). Wide individual variations in pre-treatment levels as well as in the post-treatment depletion of lymphocyte ATase were seen. Progressive depletion of lymphocyte ATase was seen during continuous infusion of CB10-277 in all patients. Complete suppression of lymphocyte ATase activity occurred in two patients whose pre-treatment ATase levels were low. Immediately following completion of the CB10-277 infusion, the median ATase activity was 17% of pre-treatment levels (range, 0-67%). At 24 h after the end of the infusion, no recovery of lymphocyte ATase activity was observed in six patients, but significant recovery to 50%, 100% and 102% of pre-treatment activity occurred in the other three. In three patients who returned for subsequent cycles of chemotherapy at 4 weeks after the first dose, pre-treatment ATase levels showed a 3- to 4-fold increase relative to the original pre-treatment values. A significant correlation was found between the extent of ATase depletion and the initial lymphocyte ATase levels (r = 0.725, P < 0.05). Haematological toxicity developed in two patients and was associated with low pre-treatment ATase activity. Depletion of tumour ATase activity was noted in these patients, with residual activity amounting to 8% and 11% of pre-treatment levels, respectively, in the biopsies melanoma tissues. These results indicate extensive metabolism of CB10-277 to a methylating agent capable of mediating alkylation of DNA and subsequent depletion of lymphocyte and tumour ATase levels and further indicate that the effects on lymphocytes may reflect effects on the target tumour.
Collapse
Affiliation(s)
- S M Lee
- CRC Department of Medical Oncology, Christie Hospital NHS Trust, Manchester, U.K
| | | | | | | |
Collapse
|
50
|
Brozmanová J, Cernáková L, Vlcková V, Duraj J, Fridrichová I. The Escherichia coli recA gene increases resistance of the yeast Saccharomyces cerevisiae to ionizing and ultraviolet radiation. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:473-80. [PMID: 1865881 DOI: 10.1007/bf00273940] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Escherichia coli recA protein coding region was ligated into an extrachromosomally replicating yeast expression vector downstream of the yeast alcohol dehydrogenase promoter region to produce plasmid pADHrecA. Transformation of the wild-type yeast strains YNN-27 and 7799-4B, as well as the recombination-deficient rad52-1 C5-6 mutant, with this shuttle plasmid resulted in the expression of the bacterial 38 kDa RecA protein in exponential phase cells. The wild-type YNN27 and 7799-4B transformants expressing the bacterial recA gene showed increased resistance to the toxic effects of both ionizing and ultraviolet radiation. RecA moderately stimulated the UV-induced mutagenic response of 7799-4B cells. Transformation of the rad52-1 mutant with plasmid pADHrecA did not result in the complementation of sensitivity to ionizing radiation. Thus, the RecA protein endows the yeast cells with additional activities, which were shown to be error-prone and dependent on the RAD52 gene.
Collapse
Affiliation(s)
- J Brozmanová
- Department of Molecular Genetics, Slovak Academy of Sciences, Bratislava, Czechoslovakia
| | | | | | | | | |
Collapse
|