1
|
Pullarkat V, Chen LS, Palmer J, Zhang J, Synold TW, Buettner R, Nguyen LXT, Marcucci G, Tsai NC, Wang Y, O’Hearn J, Gandhi V, Rosen ST. A phase 1 trial of 8-chloro-adenosine in relapsed/refractory acute myeloid leukemia: An evaluation of safety and pharmacokinetics. Cancer 2024; 130:727-739. [PMID: 37897709 PMCID: PMC11687610 DOI: 10.1002/cncr.35077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND This study evaluated the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of 8-chloro-adenosine (8-Cl-Ado) in patients with relapsed/refractory acute myeloid leukemia (AML). METHODS 8-Cl-Ado was administered daily for 5 days; the starting dose was 100 mg/m2 , the highest dose tested was 800 mg/m2 . The end points were toxicity, disease response, and PK/PD measurements. RESULTS The predominant nonhematologic toxicity was cardiac with grade ≥3 toxicity. Plasma PK in all patients suggested heterogeneity among patients, yet, some dose-dependency for the accumulation of 8-Cl-Ado. Two 8-Cl-Ado metabolites accumulated at similar levels to 8-Cl-Ado. Cellular PK in eight patients indicated accumulation of 8-Cl-ATP, which was associated with AML blast cytoreduction in peripheral blood. The authors determined the RP2D of 8-Cl-Ado to be 400 mg/m2 . CONCLUSIONS Given the cardiac adverse events observed, patients require monitoring for arrhythmias and QT interval during infusion. Although peripheral blood cytoreduction was observed, responses were transient, suggesting combination strategies will be required.
Collapse
Affiliation(s)
- Vinod Pullarkat
- Department of Hematology/Hematopoietic Cell Transplantation; City of Hope National Medical Center, Duarte, CA
| | - Lisa S. Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joycelynne Palmer
- Department of Hematology/Hematopoietic Cell Transplantation; City of Hope National Medical Center, Duarte, CA
- Division of Biostatistics; City of Hope National Medical Center, Duarte, CA
- Beckman Research Institute; City of Hope National Medical Center, Duarte, CA
| | - Jianying Zhang
- Division of Biostatistics; City of Hope National Medical Center, Duarte, CA
- Beckman Research Institute; City of Hope National Medical Center, Duarte, CA
| | - Timothy W. Synold
- Beckman Research Institute; City of Hope National Medical Center, Duarte, CA
| | - Ralf Buettner
- Beckman Research Institute; City of Hope National Medical Center, Duarte, CA
| | - Le Xuan Truong Nguyen
- Department of Hematology/Hematopoietic Cell Transplantation; City of Hope National Medical Center, Duarte, CA
| | - Guido Marcucci
- Department of Hematology/Hematopoietic Cell Transplantation; City of Hope National Medical Center, Duarte, CA
| | - Ni-Chun Tsai
- Division of Biostatistics; City of Hope National Medical Center, Duarte, CA
| | - Yan Wang
- Division of Biostatistics; City of Hope National Medical Center, Duarte, CA
| | - James O’Hearn
- Department of Clinical and Translational Project Development; City of Hope National Medical Center, Duarte, CA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven T. Rosen
- Department of Hematology/Hematopoietic Cell Transplantation; City of Hope National Medical Center, Duarte, CA
- Beckman Research Institute; City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
2
|
Wang D, Qi J, Han W, Gao JM, Horsman GP. Kanamycin-induced production of 2',3'-cyclic AMP in Escherichia coli. Biochem Biophys Res Commun 2020; 527:854-860. [PMID: 32430174 DOI: 10.1016/j.bbrc.2020.04.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
In contrast to the well-characterized second messenger adenosine 3',5'-cyclic monophosphate (3',5'-cAMP), the biological roles of its isomer 2',3'-cAMP remain largely unknown, especially in bacteria. Recent work reported that RNase I-dependent elevation of 2',3'-cNMP levels in Escherichia coli correlated with reduced biofilm production, and separate studies demonstrated E. coli ribonuclease activation in response to aminoglycoside antibiotics. Here we report that E. coli produced 2',3'-cAMP in response to kanamycin at sub-inhibitory levels. Surprisingly, other aminoglycosides like streptomycin or gentamicin did not generate levels of 2',3'-cAMP detectable by 31P NMR. Interestingly, because 2',3'-cAMP is also produced in E. coli strains expressing a plasmid-encoded kanamycin resistance gene but not by other ribosome-targeting antibiotics, this kanamycin-specific production may not reflect disrupted protein synthesis. Overall, this finding provides a link between aminoglycoside-induced ribonuclease activity and 2',3'-cAMP production in E. coli.
Collapse
Affiliation(s)
- Dacheng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Wenbo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Geoff P Horsman
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
3
|
Grassi ES, Dicitore A, Negri I, Borghi MO, Vitale G, Persani L. 8-Cl-cAMP and PKA I-selective cAMP analogs effectively inhibit undifferentiated thyroid cancer cell growth. Endocrine 2017; 56:388-398. [PMID: 27460006 DOI: 10.1007/s12020-016-1057-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022]
Abstract
The main purpose of our work was to evaluate the effects of different cyclic adenosine monophosphate analogs on thyroid cancer-derived cell lines. In particular we studied 8-chloroadenosine-3',5'-cyclic monophosphate, the most powerful cyclic adenosine monophosphate analog, and the protein kinase A I-selective combination of 8-hexylaminoadenosine-3',5'cyclic monophosphate and 8-piperidinoadenosine-3',5'-cyclic monophosphate. The cyclic adenosine monophosphate/protein kinase A pathway plays a fundamental role in the regulation of thyroid cells growth. Site-selective cyclic adenosine monophosphate analogs are a class of cyclic adenosine monophosphate-derivate molecules that has been synthesized to modulate protein kinase A activity. Although the cyclic adenosine monophosphate/protein kinase A pathway plays a fundamental role in the regulation of thyroid cells proliferation, there are currently no studies exploring the role of cyclic adenosine monophosphate analogs in thyroid cancer. We evaluated the effects on cell proliferation, apoptosis activation and alterations of different intracellular pathways using 3-(4,5-dimetylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytofluorimetry, western blotting, and kinase inhibitors. Our results show that both compounds have antiproliferative potential. Both treatments were able to modify protein kinase A RI/RII ratio, thus negatively influencing cancer cells growth. Moreover, the two treatments differentially modulated various signaling pathways that regulate cell proliferation and apoptosis. Both treatments demonstrated interesting characteristics that prompt further studies aiming to understand the intimate interaction between different intracellular pathways and possibly develop novel anticancer therapies for undifferentiated thyroid cancer.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Irene Negri
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy.
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy.
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy.
| |
Collapse
|
4
|
Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem Rev 2016; 116:14379-14455. [PMID: 27960273 DOI: 10.1021/acs.chemrev.6b00209] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleoside, nucleotide, and base analogs have been in the clinic for decades to treat both viral pathogens and neoplasms. More than 20% of patients on anticancer chemotherapy have been treated with one or more of these analogs. This review focuses on the chemical synthesis and biology of anticancer nucleoside, nucleotide, and base analogs that are FDA-approved and in clinical development since 2000. We highlight the cellular biology and clinical biology of analogs, drug resistance mechanisms, and compound specificity towards different cancer types. Furthermore, we explore analog syntheses as well as improved and scale-up syntheses. We conclude with a discussion on what might lie ahead for medicinal chemists, biologists, and physicians as they try to improve analog efficacy through prodrug strategies and drug combinations.
Collapse
Affiliation(s)
- Jadd Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Xiao Lu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Joseph A Hollenbaugh
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Robinson-White AJ, Bossis I, Hsiao HP, Nesterova M, Leitner WW, Stratakis CA. 8-Cl-adenosine inhibits proliferation and causes apoptosis in B-lymphocytes via protein kinase A-dependent and independent effects: implications for treatment of Carney complex-associated tumors. J Clin Endocrinol Metab 2009; 94:4061-9. [PMID: 19773399 PMCID: PMC2758728 DOI: 10.1210/jc.2009-0759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CONTEXT Carney complex, a multiple neoplasia syndrome, characterized primarily by spotty skin pigmentation and a variety of endocrine and other tumors, is caused by mutations in PRKAR1A, the gene that codes for the RIalpha subunit of protein kinase A (PKA). PKA controls cell proliferation in many cell types. The cAMP analogue 8-Cl-adenosine (8-Cl-ADO) is thought to inhibit cancer cell proliferation. OBJECTIVE The objective of the study was to study the antiproliferative effects of 8-Cl-ADO on growth and proliferation in B-lymphocytes of Carney complex patients that have PKA defects and to determine whether 8-CL-ADO could be used as a therapeutic agent in the treatment of Carney complex-associated tumors. DESIGN We used a multiparametric approach (i.e. growth and proliferation assays, PKA, and PKA subunit assays, cAMP and (3)H-cAMP binding assays, and apoptosis assays) to understand the growth and proliferative effects of 8-Cl-ADO on human B-lymphocytes. RESULTS 8-Cl-ADO inhibited proliferation, mainly through its intracellular transport and metabolism, which induced apoptosis. PKA activity, cAMP levels, and (3)H-cAMP binding were increased or decreased, respectively, by 8-Cl-ADO, whereas PKA subunit levels were differentially affected. 8-Cl-ADO also inhibited proliferation induced by G protein-coupled receptors for isoproterenol and adenosine, as well as proliferation induced by tyrosine kinase receptors. CONCLUSIONS 8-Cl-ADO in addition to unambiguously inhibiting proliferation and inducing apoptosis in a PKA-independent manner also has PKA-dependent effects that are unmasked by a mutant PRKAR1A. Thus, 8-Cl-ADO could serve as a therapeutic agent in patients with Carney complex-related tumors.
Collapse
Affiliation(s)
- Audrey J Robinson-White
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Sang Cho-Chung Y. Overview: Oncologic, Endocrine & Metabolic Antisense oligonucleotides for the treatment of cancer. ACTA ACUST UNITED AC 2008. [DOI: 10.1517/13543776.3.12.1737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Robinson-White AJ, Hsiao HP, Leitner WW, Greene E, Bauer A, Krett NL, Nesterova M, Stratakis CA. Protein kinase A-independent inhibition of proliferation and induction of apoptosis in human thyroid cancer cells by 8-Cl-adenosine. J Clin Endocrinol Metab 2008; 93:1020-9. [PMID: 18073299 PMCID: PMC2266951 DOI: 10.1210/jc.2007-2331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Protein kinase A (PKA) affects cell proliferation in many cell types and is a potential target for cancer treatment. PKA activity is stimulated by cAMP and cAMP analogs. One such substance, 8-Cl-cAMP, and its metabolite 8-Cl-adenosine (8-Cl-ADO) are known inhibitors of cancer cell proliferation; however, their mechanism of action is controversial. We have investigated the antiproliferative effects of 8-Cl-cAMP and 8-CL-ADO on human thyroid cancer cells and determined PKA's involvement. EXPERIMENTAL DESIGN We employed proliferation and apoptosis assays and PKA activity and cell cycle analysis to understand the effect of 8-Cl-ADO and 8-Cl-cAMP on human thyroid cancer and HeLa cell lines. RESULTS 8-Cl-ADO inhibited proliferation of all cells, an effect that lasted for at least 4 d. Proliferation was also inhibited by 8-Cl-cAMP, but this inhibition was reduced by 3-isobutyl-1-methylxanthine; both drugs stimulated apoptosis, and 3-isobutyl-1-methylxanthine drastically reduced 8-Cl-cAMP-induced cell death. 8-Cl-ADO induced cell accumulation in G1/S or G2/M cell cycle phases and differentially altered PKA activity and subunit levels. PKA stimulation or inhibition and adenosine receptor agonists or antagonists did not significantly affect proliferation. CONCLUSIONS 8-Cl-ADO and 8-Cl-cAMP inhibit proliferation, induce cell cycle phase accumulation, and stimulate apoptosis in thyroid cancer cells. The effect of 8-Cl-cAMP is likely due to its metabolite 8-Cl-ADO, and PKA does not appear to have direct involvement in the inhibition of proliferation by 8-Cl-ADO. 8-Cl-ADO may be a useful therapeutic agent to be explored in aggressive thyroid cancer.
Collapse
Affiliation(s)
- Audrey J Robinson-White
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu J, Barrio JR, Satyamurthy N. Kinetics and mechanism of the defluorination of 8-fluoropurine nucleosides in basic and acidic media. J Fluor Chem 2006. [DOI: 10.1016/j.jfluchem.2006.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Janković D, Pesić M, Marković J, Kanazir S, Marković I, Rakić L, Ruzdijić S. The combination of sulfinosine and 8-Cl-cAMP induces synergistic cell growth inhibition of the human neuroblastoma cell line in vitro. Invest New Drugs 2006; 24:15-25. [PMID: 16379041 DOI: 10.1007/s10637-005-4539-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To identify purine analogs that could be effective in treating neuroblastomas, we tested the anticancer properties of sulfinosine, 8-Cl-cAMP and 8-Cl-adenosine in the SK-N-SH cell line. First we examined the effects of these three agents on cell growth inhibition and cell viability by the BrdU and Sulforhodamine B assay. Treatment of SK-N-SH cells with increasing concentrations of these compounds led to a significant inhibition of cell proliferation and decrease of cell viability in a time- and dose-dependent manner at micromolar concentration (<10 microm). Treatment with a combination of sulfinosine and 8-Cl-cAMP resulted in synergistic effects on growth inhibition, cell cycle arrest and induction of apoptosis. Flow-cytometric analysis showed that 8-Cl-cAMP arrested the cells in the G0/G1 phase and sulfinosine blocked cell cycle progression at the G2/M stage, in contrast to the combined effects of both agents that did not arrest growth at any particular phase of the cell cycle. Further analysis of apoptosis induction demonstrated an increase from 17 to 24% of both early and late apoptotic cells and a very low percentage of necrotic cells. These results indicate that apoptosis was the predominant type of cell death after treatment of SK-N-SH cells with both substances, as well as with their combinations.
Collapse
Affiliation(s)
- Dragana Janković
- Department of Neurobiology and Immunology, Institute for Biological Research, Belgrade, 11060, Serbia & Montenegro
| | | | | | | | | | | | | |
Collapse
|
10
|
Elliott MR, Shanks RA, Khan IU, Brooks JW, Burkett PJ, Nelson BJ, Kyttaris V, Juang YT, Tsokos GC, Kammer GM. Down-Regulation of IL-2 Production in T Lymphocytes by Phosphorylated Protein Kinase A-RIIβ. THE JOURNAL OF IMMUNOLOGY 2004; 172:7804-12. [PMID: 15187164 DOI: 10.4049/jimmunol.172.12.7804] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The beta isoform of the type II regulatory subunit (RIIbeta) of protein kinase A suppresses CREB transcriptional activity and c-Fos production in T cells following activation via the TCR. Because CREB is an integral nuclear transcription factor for IL-2 production by T cells, we tested the hypothesis that RIIbeta down-regulates IL-2 expression and IL-2 production in T cells. Stable transfection of RIIbeta in Jurkat T cells led to an approximately 90% reduction in IL-2 mRNA and IL-2 protein following T cell activation. The inhibition of IL-2 production was associated with phosphorylation of the RIIbeta subunit at serine 114 (pRIIbeta) and localization of pRIIbeta in intranuclear clusters. A serine 114 phosphorylation-defective mutant, RIIbeta(S114A), did not form these intranuclear clusters as well as wild-type RIIbeta, and did not inhibit IL-2 mRNA and protein synthesis, indicating that serine 114 phosphorylation is required for both nuclear localization and down-regulation of IL-2 production by RIIbeta. In contrast to its effect on IL-2, RIIbeta induced constitutive up-regulation of CD154 mRNA and cell surface expression. Thus, pRIIbeta differentially regulates gene expression following T cell activation. Unexpectedly, we also found that stable overexpression of another protein kinase A regulatory subunit, RIalpha, had the opposite effect on IL-2 expression, causing a 3- to 4-fold increase in IL-2 production following stimulation. In summary, our data demonstrate a novel mechanism by which serine 114 phosphorylation and nuclear localization of RIIbeta controls the regulation of gene expression in T cells.
Collapse
Affiliation(s)
- Michael R Elliott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Elliott MR, Tolnay M, Tsokos GC, Kammer GM. Protein kinase A regulatory subunit type II beta directly interacts with and suppresses CREB transcriptional activity in activated T cells. THE JOURNAL OF IMMUNOLOGY 2004; 171:3636-44. [PMID: 14500661 DOI: 10.4049/jimmunol.171.7.3636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Levels of the type IIbeta regulatory subunit (RIIbeta) of protein kinase A are abnormally high in the nuclei of T cells of some subjects with the autoimmune disorder systemic lupus erythematosus (SLE). However, the role of nuclear RIIbeta in the regulation of T cell function is unknown. Based on previous studies demonstrating that nuclear protein kinase A-RII subunits can modify cAMP response element (CRE)-dependent transcription, we tested the hypothesis that nuclear RIIbeta can alter CRE-directed gene expression in T cells through interaction with the nuclear transcription factor CRE-binding protein CREB. To test this hypothesis, we used the RIIbeta-deficient S49 and the Jurkat T cell lines. In both cell lines, transient transfection of RIIbeta resulted in nuclear localization of a portion of the ectopically expressed RIIbeta. In vitro and in vivo analyses revealed a novel, specific interaction between RIIbeta and CREB that mapped to the N-terminal 135 aa of RIIbeta. In functional studies, RIIbeta inhibited the transcriptional activity of a GAL4-CREB fusion protein by 67% in Jurkat T cells following activation with anti-CD3 and anti-CD28 mAbs. Importantly, deletion of the CREB-binding region of RIIbeta completely abrogated inhibition. Additionally, RIIbeta suppressed CRE-directed reporter gene expression and substantially reduced induction of promoter activity and endogenous protein levels of the CREB-dependent gene, c-fos, in activated T cells. We conclude that nuclear RIIbeta can act as a repressor of CREB transcriptional activity in T cells, providing a potential functional significance for aberrant levels of nuclear RIIbeta in systemic lupus erythematosus T cells.
Collapse
Affiliation(s)
- Michael R Elliott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
12
|
|
13
|
Lamb D, Steinberg RA. Anti-proliferative effects of 8-chloro-cAMP and other cAMP analogs are unrelated to their effects on protein kinase A regulatory subunit expression. J Cell Physiol 2002; 192:216-24. [PMID: 12115728 DOI: 10.1002/jcp.10131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Conflicting reports have attributed 8-chloro-cAMP (Cl-cAMP)-mediated inhibition of tumor cell growth to either a toxic 8-chloro-adenosine (Cl-AdR) breakdown product or a Cl-cAMP-mediated decrease in ratio of Type I to Type II regulatory (R) subunits of protein kinase A (PKA). Using the MCF-7 human breast cancer and S49 mouse lymphoma cell lines as models, we show that the effects of Cl-cAMP and other cAMP analogs on growth and R subunit expression are unrelated. MCF-7 cell growth was insensitive to most analogs and inducers of cAMP, but was potently inhibited by Cl-cAMP acting through uptake and phosphorylation of its Cl-AdR breakdown product. Possible roles of adenosine receptors or P(2) purinoceptors in these Cl-cAMP-mediated growth effects were ruled out by studies with agonists and antagonists. Cholera toxin markedly decreased the ratio of Type I to Type II R subunits in MCF-7 cells without affecting growth, while growth inhibitory concentrations of Cl-cAMP or Cl-AdR had insignificant effects on this ratio. In S49 cells, where PKA activation is known to inhibit cell growth, PKA-deficient mutants retained sensitivity to both Cl-cAMP and the related 8-bromo-cAMP. Adenosine kinase (AK)-deficient S49 cells were inhibited only by higher concentrations of these 8-halogenated cAMP analogs. Of the commonly used cAMP analogs, only 8-(4-chlorophenylthio)-cAMP acted purely as a cyclic nucleotide-having no effect on PKA-deficient cells, but strongly inhibiting both wild-type and AK-deficient cells. Where growth inhibitory concentrations of most cAMP analogs reduced RI expression in the AK-deficient mutant, a functionally equivalent concentration of (N(6), O(2'))dibutyryl-cAMP maintained or increased this expression.
Collapse
Affiliation(s)
- Darija Lamb
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | |
Collapse
|
14
|
Cho-Chung YS, Nesterova M, Becker KG, Srivastava R, Park YG, Lee YN, Cho YS, Kim MK, Neary C, Cheadle C. Dissecting the circuitry of protein kinase A and cAMP signaling in cancer genesis: antisense, microarray, gene overexpression, and transcription factor decoy. Ann N Y Acad Sci 2002; 968:22-36. [PMID: 12119265 DOI: 10.1111/j.1749-6632.2002.tb04324.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of the RI alpha subunit of the cAMP-dependent protein kinase type I (PKA-I) is enhanced in human cancer cell lines, in primary tumors, in transformed cells, and in cells upon stimulation of growth. Signaling via the cAMP pathway may be complex, and the biological effects of the pathway in normal cells may depend upon the physiological state of the cells. However, results of different experimental approaches such as antisense exposure, 8-Cl-cAMP treatment, and gene overexpression have shown that the inhibition of RI alpha/PKA-I exerts antitumor activity in a wide variety of tumor-derived cell lines examined in vitro and in vivo. cDNA microarrays have further shown that in a sequence-specific manner, RI alpha antisense induces alterations in the gene expression profile of cancer cells and tumors. The cluster of genes that define the "proliferation-transformation" signature are down-regulated, and those that define the "differentiation-reverse transformation" signature are up-regulated in antisense-treated cancer cells and tumors, but not in host livers, exhibiting the molecular portrait of the reverted (flat) phenotype of tumor cells. These results reveal a remarkable cellular regulation, elicited by the antisense RI alpha, superimposed on the regulation arising from the Watson-Crick base-pairing mechanism of action. Importantly, the blockade of both the PKA and PKC signaling pathways achieved with the CRE-transcription factor decoy inhibits tumor cell growth without harming normal cell growth. Thus, a complex circuitry of cAMP signaling comprises cAMP growth regulatory function, and deregulation of the effector molecule by this circuitry may underlie cancer genesis and tumor progression.
Collapse
Affiliation(s)
- Yoon S Cho-Chung
- Cellular Biochemistry Section, BRL, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1750, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Drabek K, Pesić M, Piperski V, Ruzdijić S, Medić-Mijacević L, Pietrzkowski Z, Rakić L. 8-Cl-cAMP and tiazofurin affect vascular endothelial growth factor production and glial fibrillary acidic protein expression in human glioblastoma cells. Anticancer Drugs 2000; 11:765-70. [PMID: 11129740 DOI: 10.1097/00001813-200010000-00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Compounds that could block tumor angiogenesis and induce tumor cell differentiation in malignant gliomas represent a very valuable tool in anticancer treatments. In this paper, we demonstrate that more selective drugs, which interfere with specific cellular targets, could treat glioma more effectively. 8-Cl-cAMP and tiazofurin (TR) are site-specific analogs that selectively inhibit PKAI and IMP dehydrogenase, are directly involved in cell proliferation and apoptosis, and mediate the mitogenic effects of different oncogenes and growth factors. In this study, we have examined influence of 8-Cl-cAMP and TR on the production of an angiogenic factor [vascular endothelial growth factor (VEGF)] by human glioblastoma U251 MG cells, as well as their influence on the expression of a differentiating marker [glial fibrillary acidic protein (GFAP)]. Using a cell proliferation assay, VEGF enzyme-linked immunoassay and GFAP immunocytochemistry we demonstrated the effects of these compounds. Our results demonstrate that 8-Cl-cAMP and TR decrease VEGF production by U251 MG cells, and that under the influence of both agents these cells increase GFAP expression and change their morphology, becoming more differentiated. These findings also suggest that 8-Cl-cAMP and TR may have potential for further investigation of their antiangiogenic and differentiational role in malignant disease such as human gliomas.
Collapse
Affiliation(s)
- K Drabek
- Institute for Biological Research, Department of Neurobiology and Immunology, Belgrade, Yugoslavia
| | | | | | | | | | | | | |
Collapse
|
16
|
Schwede F, Maronde E, Genieser H, Jastorff B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 2000; 87:199-226. [PMID: 11008001 DOI: 10.1016/s0163-7258(00)00051-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclic AMP (cAMP) and cyclic GMP (cGMP) are key second messengers involved in a multitude of cellular events. From the wealth of synthetic analogs of cAMP and cGMP, only a few have been explored with regard to their therapeutic potential. Some of the first-generation cyclic nucleotide analogs were promising enough to be tested as drugs, for instance N(6),O(2)'-dibutyryl-cAMP and 8-chloro-cAMP (currently in clinical Phase II trials as an anticancer agent). Moreover, 8-bromo and dibutyryl analogs of cAMP and cGMP have become standard tools for investigations of biochemical and physiological signal transduction pathways. The discovery of the Rp-diastereomers of adenosine 3',5'-cyclic monophosphorothioate and guanosine 3',5'-cyclic monophosphorothioate as competitive inhibitors of cAMP- and cGMP-dependent protein kinases, as well as subsequent development of related analogs, has proven very useful for studying the molecular basis of signal transduction. These analogs exhibit a higher membrane permeability, increased resistance against degradation, and improved target specificity. Furthermore, better understanding of signaling pathways and ligand/protein interactions has led to new therapeutic strategies. For instance, Rp-8-bromo-adenosine 3',5'-cyclic monophosphorothioate is employed against diseases of the immune system. This review will focus mainly on recent developments in cyclic nucleotide-related biochemical and pharmacological research, but also highlights some historical findings in the field.
Collapse
Affiliation(s)
- F Schwede
- Center for Environmental Research and Environmental Technology, Department of Bioorganic Chemistry, University of Bremen, Leobener Strasse, D-28359, Bremen, Germany
| | | | | | | |
Collapse
|
17
|
Kim SN, Kim SG, Park JH, Lee MA, Park SD, Cho-Chung YS, Hong SH. Dual anticancer activity of 8-Cl-cAMP: inhibition of cell proliferation and induction of apoptotic cell death. Biochem Biophys Res Commun 2000; 273:404-10. [PMID: 10873618 DOI: 10.1006/bbrc.2000.2949] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
8-Cl-cAMP induces apoptotic cell death in human cancer cells. To look at this more closely, we examined the changes in the levels of Bcl-2 family proteins during 8-Cl-cAMP-induced apoptosis of SH-SY5Y human neuroblastoma cells. Following the treatment with 8-Cl-cAMP, Bcl-2 was transiently down-regulated and Bad was increased continuously up to day 5. In addition, overexpression of Bcl-2 efficiently blocked the 8-Cl-cAMP-induced apoptosis, suggesting Bcl-2 family proteins may be involved in the 8-Cl-cAMP-induced apoptosis. The contribution of the apoptotic cell death and the inhibition of cell proliferation in the 8-Cl-cAMP-induced growth inhibition was closely monitored in the Bcl-2-overexpressing cells. Though the apoptosis was reduced significantly, no significant difference was observed in the inhibition of cell proliferation up to day 2 of 8-Cl-cAMP treatment. These results suggest that 8-Cl-cAMP exerts anticancer activity by two distinct mechanisms, i.e. , through the inhibition of cell proliferation as well as the induction of apoptosis. Supporting this notion was the observations that (1) suppression of apoptosis by zVAD did not abrogate 8-Cl-cAMP-induced inhibition of cell proliferation, and (2) 8-Cl-cAMP did not show additive inhibition of cell proliferation in RIIbeta-overexpressing cells.
Collapse
Affiliation(s)
- S N Kim
- School of Biological Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Indolfi C, Di Lorenzo E, Rapacciuolo A, Stingone AM, Stabile E, Leccia A, Torella D, Caputo R, Ciardiello F, Tortora G, Chiariello M. 8-chloro-cAMP inhibits smooth muscle cell proliferation in vitro and neointima formation induced by balloon injury in vivo. J Am Coll Cardiol 2000; 36:288-93. [PMID: 10898448 DOI: 10.1016/s0735-1097(00)00679-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The aims of the present study were to assess 1) the effect of 8-C1-cAMP (cyclic-3'-5'-adenosine monophosphate) on vascular smooth muscle cell (VSMC) proliferation in vitro and 2) the efficacy of systemic administration of 8-C1-cAMP on neointimal formation after balloon injury in vivo. BACKGROUND Neointimal formation after vascular injury is responsible for restenosis after arterial stenting. Recently, 8-C1-cAMP, a cAMP analogue that induces growth arrest, has been safely administered in phase I studies in humans. METHODS The effect of 8-C1-cAMP on cell proliferation was first assessed on SMCs in vitro. To study the effects of cAMP in vivo, balloon injury was performed in 67 rats using a 2F Fogarty balloon catheter. RESULTS The 8-C1-cAMP markedly inhibited VSMC proliferation in vitro, reduced protein kinase A (PKA) RIalpha subunit expression, and induced PKA RIIbeta subunit expression. In addition, 8-C1-cAMP reduced, in a dose-dependent manner, neointimal area and neointima/media ratio after balloon injury. The proliferative activity, assessed by proliferating nuclear cell antigen immunostaining, revealed a reduction of proliferative activity of VSMCs in vivo in the 8-C1-cAMP group. Moreover, the systemic administration of 8-C1-cAMP did not affect renal function, blood pressure and heart rate. CONCLUSIONS We conclude that 8-C1-cAMP potently inhibits VSMC proliferation in vitro and reduces neointima formation by balloon injury in vivo after systemic administration. These data may have a clinical relevance in designing future strategies to prevent restenosis after arterial stenting and perhaps after percutaneous transluminal coronary angioplasty.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/administration & dosage
- 8-Bromo Cyclic Adenosine Monophosphate/analogs & derivatives
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Aorta, Thoracic/injuries
- Aorta, Thoracic/pathology
- Arterial Occlusive Diseases/enzymology
- Arterial Occlusive Diseases/metabolism
- Arterial Occlusive Diseases/prevention & control
- Blood Pressure/drug effects
- Catheterization/adverse effects
- Cell Division/drug effects
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit
- Cyclic AMP-Dependent Protein Kinase RIalpha Subunit
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Down-Regulation/drug effects
- Heart Rate/drug effects
- Injections, Intraperitoneal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Rats
- Rats, Wistar
- Tunica Intima/cytology
- Tunica Intima/drug effects
- Tunica Intima/enzymology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- C Indolfi
- Department of Molecular and Clinical Endocrinology and Oncology, University Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pesic M, Drabek K, Esler C, Ruzdijic S, Pejanovic V, Pietrzkowski Z. Inhibition of cell growth and proliferation in human glioma cells and normal human astrocytes induced by 8-Cl-cAMP and tiazofurin. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:963-75. [PMID: 10893715 DOI: 10.1080/15257770008033036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
8-Cl-cAMP and tiazofurin (TR) are anti-tumor agents that besides their antiproliferative effect, also induce differentiation of tumor cells. Although, these agents exert a profound effect on the same events of tumor cell life, it is thought that 8-Cl-cAMP and TR act by modulating the signal transduction pathway through distinct mechanisms. We have compared their effect on two human glioma cell lines (U87 MG and U251 MG) and examined if there is selectivity in their action toward normal human astrocytes.
Collapse
Affiliation(s)
- M Pesic
- Institute for Biological Research, Department of Neurobiology and Immunology, Belgrade, Yugoslavia
| | | | | | | | | | | |
Collapse
|
20
|
Sakorafas GH, Tsiotou AG, Tsiotos GG. Molecular biology of pancreatic cancer; oncogenes, tumour suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat Rev 2000; 26:29-52. [PMID: 10660490 DOI: 10.1053/ctrv.1999.0144] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pancreatic cancer represents the fourth leading cause of cancer death in men and the fifth in women. Prognosis remains dismal, mainly because the diagnosis is made late in the clinical course of the disease. The need to improve the diagnosis, detection, and treatment of pancreatic cancer is great. It is in this type of cancer, in which the mortality is so great and the clinical detection so difficult that the recent advances of molecular biology may have a significant impact. Genetic alterations can be detected at different levels. These alterations include oncogene mutations (most commonly, K-ras mutations, which occur in 75% to more than 95% of pancreatic cancer tissues), tumour suppressor genes alterations (mainly, p53, p16, DCC, etc.), overexpression of growth factors (such as EGF, TGF alpha, TGF beta 1-3, aFGF, bTGF, etc.) and their receptors (i.e., EGF receptor, TGF beta receptor I-III, etc.). Insights into the molecular genetics of pancreatic carcinogenesis are beginning to form a genetic model for pancreatic cancer and its precursors. These improvements in our understanding of the molecular biology of pancreatic cancer are not simply of research interest, but may have clinical implications, such as risk assessment, early diagnosis, treatment, and prognosis evaluation.
Collapse
Affiliation(s)
- G H Sakorafas
- Department of Surgery, 251 Hellenic Air Force (HAF) Hospital, Messogion and Katehaki, Athens, 115 25 (Papagos), Greece
| | | | | |
Collapse
|
21
|
Lee GR, Kim SN, Noguchi K, Park SD, Hong SH, Cho-Chung YS. Ala99ser mutation in RI alpha regulatory subunit of protein kinase A causes reduced kinase activation by cAMP and arrest of hormone-dependent breast cancer cell growth. Mol Cell Biochem 1999; 195:77-86. [PMID: 10395071 DOI: 10.1023/a:1006934113439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Expression of the RIalpha regulatory subunit of protein kinase A type I is increased in human cancer cell lines, in primary tumors, in cells after transformation, and in cells upon stimulation of growth. Ala99 (the pseudophosphorylation site) of human RIalpha was replaced with Ser (RIalpha-p) for the structure-function analysis of RIalpha. MCF-7 hormone-dependent breast cancer cells were transfected with an expression vector for the wild-type RIalpha or mutant RIalpha-p. Overexpression of RIalpha-P resulted in suppression of protein kinase A type II, the isozyme of type I kinase, production of kinase exhibiting reduced cAMP activation, and inhibition of cell growth showing an increase in G0/G1 phase of the cell cycle and apoptosis. The wild-type RIalpha overexpression had no effect on protein kinase A isozyme distribution or cell growth. Overexpression of protein kinase A type II regulatory subunit, RIIbeta, suppressed RIalpha and protein kinase A type I and inhibited cell growth. These results show that the growth of hormone-dependent breast cancer cells is dependent on the functional protein kinase A type I.
Collapse
Affiliation(s)
- G R Lee
- Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, MD 20892-1750, USA
| | | | | | | | | | | |
Collapse
|
22
|
Qi Z, Hao CM, Salter K, Redha R, Breyer MD. Type II cAMP-dependent protein kinase regulates electrogenic ion transport in rabbit collecting duct. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F622-8. [PMID: 10198423 DOI: 10.1152/ajprenal.1999.276.4.f622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cAMP mediates many of the effects of vasopressin, prostaglandin E2, and beta-adrenergic agents upon salt and water transport in the renal collecting duct. The present studies examined the role of cAMP-dependent protein kinase (PKA) in mediating these effects. PKA is a heterotetramer comprised of two regulatory (R) subunits and two catalytic (C) subunits. The four PKA isoforms may be distinguished by their R subunits that have been designated RIalpha, RIbeta, RIIalpha, and RIIbeta. Three regulatory subunits, RIalpha, RIIalpha, and RIIbeta, were detected by immunoblot and ribonuclease protection in both primary cultures and fresh isolates of rabbit cortical collecting ducts (CCDs). Monolayers of cultured CCDs grown on semipermeable supports were mounted in an Ussing chamber, and combinations of cAMP analogs that selectively activate PKA type I vs. PKA type II were tested for their effect on electrogenic ion transport. Short-circuit current (Isc) was significantly increased by the PKA type II-selective analog pairs N6-monobutyryl-cAMP plus 8-(4-chlorophenylthio)-cAMP or N6-monobutyryl-cAMP plus 8-chloro-cAMP. In contrast the PKA type I-selective cAMP analog pair [N6-monobutyryl-cAMP plus 8-(6-aminohexyl)-amino-cAMP] had no effect on Isc. These results suggest PKA type II is the major isozyme regulating electrogenic ion transport in the rabbit collecting duct.
Collapse
Affiliation(s)
- Z Qi
- Division of Nephrology, Departments of Medicine and Molecular Physiology and Biophysics, Veterans Affairs Medical Center, and Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | | | | | | | | |
Collapse
|
23
|
Pfeifer A, Ruth P, Dostmann W, Sausbier M, Klatt P, Hofmann F. Structure and function of cGMP-dependent protein kinases. Rev Physiol Biochem Pharmacol 1999; 135:105-49. [PMID: 9932482 DOI: 10.1007/bfb0033671] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- A Pfeifer
- Institut für Pharmakologie und Toxikologie der TU, München, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Noguchi K, Murata T, Cho-Chung YS. 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP) selectively eliminates protein kinase A type I to induce growth inhibition in c-ras-transformed fibroblasts. Eur J Cancer 1998; 34:1260-7. [PMID: 9849489 DOI: 10.1016/s0959-8049(98)00051-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
8-Chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), a site-selective cyclic adenosine 3',5'-monophosphate (cAMP) analogue, exhibits growth inhibition in a broad spectrum of cancer cell lines. We investigated the effect of 8-Cl-cAMP on c-ras-transformed mouse fibroblasts (MP3/3T3) which were established by transfection of Balb3T3 cells (Balb3T3) with the point-mutated c-ras gene [G12-->V12]. 8-Cl-cAMP (2-5 microM) exerted over 80% growth inhibition by day 4 on MP3/3T3, while inhibiting parental Balb3T3 cell growth less than 40%. In order to distinguish the effect of 8-Cl-cAMP from that of 8-chloroadenosine (8-Cl-adenosine), we examined the effect of 8-Cl-cAMP in serum-free medium. 8-Cl-cAMP demonstrated a potent growth inhibition of MP3/3T3 cells cultured in serum-free medium, suggesting that the growth inhibitory effect of 8-Cl-cAMP was not due to its hydrolysed product, 8-Cl-adenosine. In addition, both Balb3T3 and MP3/3T3 contained cAMP phosphodiesterases mainly composed of isozyme IV which has previously been reported to be insensitive towards the hydrolysis of 8-Cl-cAMP. Non-transformed Balb3T3 cells contained only type II cAMP-dependent protein kinase (PKA), whereas transformed MP3/3T3 exhibited a marked increase in type I PKA. The growth inhibition of MP3/3T3 by 8-Cl-cAMP accompanied almost complete elimination of type I PKA without affecting type II PKA. Moreover, 8-Cl-cAMP induced an arrest in the G0/G1-phase of the cell cycle in MP3/3T3. 8-Cl-adenosine had little or no effect on the cell cycle kinetics of MP3/3T3 cells. These results show that 8-Cl-cAMP is a novel cAMP analogue which selectively eliminates type I PKA to induce growth inhibition in transformed fibroblasts.
Collapse
Affiliation(s)
- K Noguchi
- Cellular Biochemistry Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1750, USA
| | | | | |
Collapse
|
25
|
Liapi C, Takahashi N, Raynaud F, Evain-Brion D, Anderson WB. Effects of [D-Ala1] peptide T-NH2 and HIV envelope glycoprotein gp120 on cyclic AMP dependent protein kinases in normal and psoriatic human fibroblasts. J Invest Dermatol 1998; 110:332-7. [PMID: 9540970 DOI: 10.1046/j.1523-1747.1998.00149.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to acquired immunodeficiency syndrome (AIDS), persons infected with human immunodeficiency virus often develop cutaneous manifestations, including severe psoriasis. In previous studies, we have established that psoriatic fibroblasts and erythrocytes obtained from psoriatic patients exhibit decreased levels of cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) activity and of 8-azido-[32P]cAMP binding to the RI and RII regulatory subunits of PKA. Because treatment of patients with peptide T (an octapeptide sequence found in the human immunodeficiency virus envelope glycoprotein gp120) has been observed to result in an improvement in the psoriatic condition, studies were initiated to determine if peptide T and gp120 protein treatment of normal and psoriatic human fibroblasts resulted in any changes in PKA. Exposure of psoriatic fibroblasts to peptide T resulted in a time (4 h to 6 d) and dose [10(-14)-10(-8) M] dependent increase in the levels of 8-azido-[32P]cAMP binding to the RI and RII regulatory subunits of PKA, along with a corresponding increase in PKA activity. Peptide T exhibited a biphasic dose dependent response, with maximal effects on PKA noted at 10(-12)M peptide T. Treatment of normal human fibroblasts with peptide T did not result in any change in PKA levels. Conversely, treatment of normal human fibroblasts for 18 h with gp120 protein [10(-13) M] resulted in a significant decrease in the levels of 8-azido-[32P]cAMP binding to RI and RII and in PKA activity. The presence of peptide T blocked this effect of the gp120 protein. These results indicate that peptide T and gp120 protein may inversely alter the intracellular levels of 8-azido-[32P]cAMP binding to RI and RII, and of PKA activity in susceptible cells. These observed changes in the cyclic AMP-PKA signaling pathway, a biochemical marker for psoriasis, may offer some mechanistic insight into the noted beneficial effects of peptide T treatment, including an improvement in psoriatic lesions.
Collapse
Affiliation(s)
- C Liapi
- Laboratory of Cellular Oncology, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
26
|
Nesterova M, Yokozaki H, McDuffie E, Cho-Chung YS. Overexpression of RII beta regulatory subunit of protein kinase A in human colon carcinoma cell induces growth arrest and phenotypic changes that are abolished by site-directed mutation of RII beta. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:486-94. [PMID: 8654392 DOI: 10.1111/j.1432-1033.1996.00486.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
LS-174T human colon carcinoma cells that contain approximately equal amounts of cAMP-dependent protein kinase (PKA) isozymes, PKA-I and PKA-II, were infected with retroviral vectors coding for regulatory (R) and catalytic (C) subunits of human PKA. In cells overexpressing RII alpha, RII beta and RII beta-P (a RII beta mutant at the autophosphorylation site), PKA-II levels increased while PK-A levels decreased. PKA-I was almost completely eliminated in cells overexpressing RII beta or RII beta-P. In contrast, overexpression of either RI alpha or C alpha had little or no effect on PKA isozyme levels. Although all infectants expressed high levels of PKA subunit mRNAs in accordance with gene introduction, the R subunit protein expression was reflected in PKA isozyme levels rather than in subunit mRNA levels. Only RII beta infectants demonstrated marked growth inhibition in monolayer culture, reduced thymidine incorporation into DNA, and inability to grow in semisolid medium or in serum-free medium. Conversely, all other infectants displayed growth properties similar to uninfected parental cells. The growth-retardation properties of RII beta infectants were reflected in their altered phenotypic appearances. Our findings that the mutant RII beta-P could not mimic the growth-inhibitory effect of RII beta suggest the functional importance of the authophosphorylation site in RII beta. Our results suggest a role for RII beta in the suppression of neoplastic cell growth, and thus abnormal expression of R subunit isoforms of PKA may be involved in neoplastic transformation.
Collapse
Affiliation(s)
- M Nesterova
- Celluar Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
27
|
Budillon A, Cereseto A, Kondrashin A, Nesterova M, Merlo G, Clair T, Cho-Chung YS. Point mutation of the autophosphorylation site or in the nuclear location signal causes protein kinase A RII beta regulatory subunit to lose its ability to revert transformed fibroblasts. Proc Natl Acad Sci U S A 1995; 92:10634-8. [PMID: 7479855 PMCID: PMC40666 DOI: 10.1073/pnas.92.23.10634] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The RII beta regulatory subunit of cAMP-dependent protein kinase (PKA) contains an autophosphorylation site and a nuclear location signal, KKRK. We approached the structure-function analysis of RII beta by using site-directed mutagenesis. Ser114 (the autophosphorylation site) of human RII beta was replaced with Ala (RII beta-P) or Arg264 of KKRK was replaced with Met (RII beta-K). ras-transformed NIH 3T3 (DT) cells were transfected with expression vectors for RII beta, RII beta-P, and RII beta-K, and the effects on PKA isozyme distribution and transformation properties were analyzed. DT cells contained PKA-I and PKA-II isozymes in a 1:2 ratio. Over-expression of wild-type or mutant RII beta resulted in an increase in PKA-II and the elimination of PKA-I. Only wild-type RII beta cells demonstrated inhibition of both anchorage-dependent and -independent growth and phenotypic change. The growth inhibitory effect of RII beta overexpression was not due to suppression of ras expression but was correlated with nuclear accumulation of RII beta. DT cells demonstrated growth inhibition and phenotypic change upon treatment with 8-Cl-cAMP. RII beta-P or RII beta-K cells failed to respond to 8-Cl-cAMP. These data suggest that autophosphorylation and nuclear location signal sequences are integral parts of the growth regulatory mechanism of RII beta.
Collapse
Affiliation(s)
- A Budillon
- Cellular Biochemistry Section, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bøe R, Gjertsen BT, Døskeland SO, Vintermyr OK. 8-Chloro-cAMP induces apoptotic cell death in a human mammary carcinoma cell (MCF-7) line. Br J Cancer 1995; 72:1151-9. [PMID: 7577461 PMCID: PMC2033955 DOI: 10.1038/bjc.1995.479] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
8-Cl-cAMP and 8-NH2-cAMP induced MCF-7 cell death. The type(s) of cell death were studied in more detail and compared with the cell death type (apoptosis) induced by okadaic acid, an inhibitor of serine/threonine phosphatases. By morphological criteria dying cells showed loss of cell-cell interactions and microvilli, condensation of nuclear chromatin and segregation of cytoplasmic organelles. By in situ nick end-labelling, using digoxigenin-conjugated dUTP as probe, a large fraction of 8-Cl-cAMP, 8-NH2-cAMP and 8-Cl-adenosine-exposed cells stained positively in the advanced stages of death. In the early phase of chromatin condensation the cells stained negatively. Specific (internucleosomal) DNA fragmentation was not observed. The MCF-7 cell death induced by 8-Cl-cAMP and 8-NH2-cAMP was not mediated by activation of the cAMP kinase since more stable cAMP analogues (8-CPT-cAMP and N6-benzoyl-cAMP) or forskolin failed to induce death. Furthermore, 8-Cl-cAMP action was counteracted by adenosine deaminase and 3-isobutyl-1-methylxanthine, and mimicked by 8-Cl-adenosine, a major metabolite of 8-Cl-cAMP. It is concluded that 8-Cl- and 8-NH2-cAMP can induce morphological and biochemical effects resembling apoptotic cell death in MCF-7 cells through their conversion into potent cytotoxic metabolite(s).
Collapse
Affiliation(s)
- R Bøe
- Department of Anatomy and Cell Biology, University of Bergen, Norway
| | | | | | | |
Collapse
|
29
|
Eichholtz-Wirth H. Reversal of radiation-induced cisplatin resistance in murine fibrosarcoma cells by selective modulation of the cyclic GMP-dependent transduction pathway. Br J Cancer 1995; 72:287-92. [PMID: 7640207 PMCID: PMC2033992 DOI: 10.1038/bjc.1995.326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cisplatin resistance, induced in murine fibrosarcoma cells (SSK) in vitro or in vivo by low-dose irradiation, can be overcome by activation of the cyclic GMP(cGMP)-dependent transduction pathway. This is mediated either by stimulating cGMP formation with sodium nitroprusside or by replacing cGMP with a selective activator of the cGMP-dependent protein kinase, 8-bromo-cGMP. The cyclic AMP-dependent transduction pathway is not involved in cisplatin resistance. Instead, activation of cAMP sensitises both parental and resistant SSK cells equally to the action of cisplatin. There is a 1.8 to 2.5-fold increase in drug toxicity, depending on the activating agent. Enhancement of cisplatin sensitivity is induced by specific inhibition of cAMP hydrolysis, increase in cAMP formation or by increasing the activation potential to cAMP-dependent protein kinase by specific cAMP analogues. Cells that have lost cisplatin resistance respond to cGMP- or cAMP-elevating agents in the same way as the parental SSK cells. The radiation sensitivity is unchanged in all cell lines, even after activation of cAMP or cGMP. These results suggest that specific DNA repair pathways are altered by radiation but affected only in cisplatin damage repair, which is regulated by cGMP. Although there is ample cooperativity and interaction between the cAMP- and the cGMP-dependent transduction pathways, specific substrate binding by cGMP appears to play an important role in radiation-induced cisplatin resistance.
Collapse
|
30
|
Scala S, Budillon A, Zhan Z, Cho-Chung YS, Jefferson J, Tsokos M, Bates SE. Downregulation of mdr-1 expression by 8-Cl-cAMP in multidrug resistant MCF-7 human breast cancer cells. J Clin Invest 1995; 96:1026-34. [PMID: 7543490 PMCID: PMC286382 DOI: 10.1172/jci118088] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
8-Cl-cAMP, a site-selective analogue of cAMP, decreased mdr-1 expression in multidrug-resistant human breast cancer cells. A sixfold reduction of mdr-1 mRNA expression by 8-Cl-cAMP began within 8 h of treatment and was associated with a decrease in the synthesis of P-glycoprotein and with an increase in vinblastine accumulation. A reduction in mdr-1 expression after 8-Cl-cAMP treatment was also observed in multidrug-resistant human ovarian cancer cell lines. 8-Cl-cAMP is known to change the ratio between the two regulatory subunits, RI and RII, of protein kinase A (PKA). We observed that RI alpha decreased within 24 h of 8-Cl-cAMP treatment, that RII beta increased after as few as 3 h of treatment, and that PKA catalytic activity remained unchanged during 48 h of 8-Cl-cAMP treatment. The results are consistent with the hypothesis that mdr-1 expression is regulated in part by changes in PKA isoenzyme levels. Although 8-Cl-cAMP has been used to differentiate cells in other model systems, the only differentiating effect that could be detected after 8-Cl-cAMP treatment in the MCF-7TH cells was an increase in cytokeratin expression. Evidence that the reduction of mdr-1 mRNA occurred at the level of gene transcription was obtained by measuring chloramphenicol acetyltransferase (CAT) mRNA in MCF-7TH cells transfected with an mdr-1 promoter-CAT construct prior to 8-Cl-cAMP treatment. Thus, 8-Cl-cAMP is able to downregulate mdr-1 expression and suggests a new approach to reversal of drug resistance in human breast cancer.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/analogs & derivatives
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Adenocarcinoma/pathology
- Base Sequence
- Breast Neoplasms/pathology
- Cell Differentiation
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit
- Cyclic AMP-Dependent Protein Kinase RIalpha Subunit
- Cyclic AMP-Dependent Protein Kinases/physiology
- Drug Resistance, Multiple/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter
- Humans
- Isoenzymes/physiology
- Keratins/biosynthesis
- Molecular Sequence Data
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Recombinant Fusion Proteins/biosynthesis
- Tumor Cells, Cultured/drug effects
- Vinblastine/metabolism
Collapse
Affiliation(s)
- S Scala
- Medicine Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Ramage AD, Langdon SP, Ritchie AA, Burns DJ, Miller WR. Growth inhibition by 8-chloro cyclic AMP of human HT29 colorectal and ZR-75-1 breast carcinoma xenografts is associated with selective modulation of protein kinase A isoenzymes. Eur J Cancer 1995; 31A:969-73. [PMID: 7646930 DOI: 10.1016/0959-8049(95)00190-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Significant dose-related inhibition of growth of HT29 human colorectal cancer xenografts and ZR-75-1 breast cancer xenografts in immune-suppressed mice was induced by the cyclic AMP analogue, 8-chloroadenosine 3',5'-cyclic monophosphate (8-Cl-cyclic AMP) when given by alzet mini-pumps over a 7-day period at doses of either 50 or 100 mg/kg/day. Levels and types of cyclic AMP binding proteins were measured by ligand binding and photoaffinity labelling, respectively, in tumours harvested at the end of the treatment period. Compared with levels in tumours from control animals, values of tumour cyclic AMP binding proteins from treated animals were significantly reduced. These effects were associated with an apparent modulation of the types of cyclic AMP binding proteins, 8-Cl-cyclic AMP-treated xenografts displaying a reduced ratio of RI/RII isoforms compared with untreated control tumours.
Collapse
Affiliation(s)
- A D Ramage
- ICRF Medical Oncology Unit, Western General Hospital, Edinburgh, U.K
| | | | | | | | | |
Collapse
|
32
|
Greene RM, Lloyd MR, Uberti M, Nugent P, Pisano MM. Patterns of cyclic AMP-dependent protein kinase gene expression during ontogeny of the murine palate. J Cell Physiol 1995; 163:431-40. [PMID: 7775586 DOI: 10.1002/jcp.1041630302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Normal growth and differentiation of embryonic palatal tissue depends on regulated levels of intracellular cAMP. Cyclic AMP-dependent protein kinases (PKA) act to mediate the biological activities of cAMP. PKA isozyme protein profiles demonstrate a clear pattern of temporal alterations in embryonic palatal tissue during its development. In order to ascertain the molecular basis for changing PKA isozyme profiles during palatal ontogeny, the spatial and temporal expression of mRNAs for regulatory (RI alpha, RII alpha, and RII beta) and catalytic (C alpha) subunits of PKA was examined. RNA extracted from murine embryonic palatal tissue (days 12-14 of gestation) was examined by Northern blot analysis. Significant levels of constitutively expressed RI alpha and C alpha mRNA were seen on all days of gestation examined. RI alpha transcripts were substantially less abundant in palate mesenchymal cells in vitro than in palatal tissue in vivo. Levels of RII alpha and RII beta mRNA were highest on gestational day (GD) 12, a period characterized by pronounced palatal tissue growth. In addition, patterns of tissue distribution of RII beta, not previously described, were examined in the developing embryonic palate. A dramatic developmental shift in tissue distribution of RII beta was seen. The isozyme was evenly distributed between palatal epithelial and mesenchymal cells on GD 12 but by GD 14, RII beta was predominantly localized to palatal epithelial cells. Direct activation of adenylate cyclase with forskolin in murine embryonic palate mesenchymal (MEPM) cells resulted in an increase in RII alpha mRNA levels but had no effect on steady state levels of RII beta or C alpha mRNA. In addition, elevation of intracellular levels of cAMP resulted in a shift in the transcriptional profile of RI alpha mRNAs. Results of this study document specific patterns of expression for the genes encoding the various cAMP-dependent protein kinase regulatory and C alpha subunits in murine embryonic palatal tissue. In addition, we have demonstrated adaptational changes of this kinase in MEPM cells in response to conditions of increased intracellular levels of cAMP.
Collapse
Affiliation(s)
- R M Greene
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
33
|
Roger PP, Reuse S, Maenhaut C, Dumont JE. Multiple facets of the modulation of growth by cAMP. VITAMINS AND HORMONES 1995; 51:59-191. [PMID: 7483330 DOI: 10.1016/s0083-6729(08)61038-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P P Roger
- Institute of Interdisciplinary Research, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
34
|
Buraczewska I, Szumiel I, Zagórski S, Afanasjev GG. Effects of 8-chloroadenosine-3',5'-monophosphate in combination with irradiation in L5178Y mouse lymphoblasts. Acta Oncol 1994; 33:671-5. [PMID: 7946447 DOI: 10.3109/02841869409121781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of a new anticancer drug, 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP-), a site selective cAMP analog, that inhibits growth of cancer cells in vitro, was examined in L5178Y (LY) murine lymphoma cells. Two LY sublines were used, grown in full Fisher's medium: LY-R, radiation resistant and LY-S, radiation sensitive. The latter was also adapted to grow in simplified medium. In the full medium conversion of 8-Cl-cAMP to 8-chloroadenosine presumably was the case of cytotoxicity. In the simplified medium this conversion was limited and the cytotoxic effect much less pronounced. Cytotoxicity was equal in LY-R and LY-S cells and it was not related to changes in the cell cycle distribution; the latter were observed in LY-S, but not in LY-R cells. There was no interaction of the drug with x-rays in LY cells grown either in full or simplified medium.
Collapse
Affiliation(s)
- I Buraczewska
- Department of Radiobiology and Health Protection, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | | | | | | |
Collapse
|
35
|
Traub P, Shoeman RL. Intermediate filament proteins: cytoskeletal elements with gene-regulatory function? INTERNATIONAL REVIEW OF CYTOLOGY 1994; 154:1-103. [PMID: 8083030 DOI: 10.1016/s0074-7696(08)62198-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- P Traub
- Max-Planck-Institut für Zellbiologie, Ladenburg/Heidelberg, Germany
| | | |
Collapse
|
36
|
8-Cl-cAMP induces truncation and down-regulation of the RI alpha subunit and up-regulation of the RII beta subunit of cAMP-dependent protein kinase leading to type II holoenzyme-dependent growth inhibition and differentiation of HL-60 leukemia cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53386-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Ohmura E, Wakai K, Isozaki O, Murakami H, Onoda N, Emoto N, Shizume K, Tsushima T, Demura H, Robins RK. Inhibition of human pancreatic cancer cell (MIA PaCa-2) growth by cholera toxin and 8-chloro-cAMP in vitro. Br J Cancer 1993; 67:279-83. [PMID: 8381655 PMCID: PMC1968158 DOI: 10.1038/bjc.1993.53] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The effects of cholera toxin (CT) and 8-chloro-cAMP (8-Cl-cAMP) on cell growth were investigated using two human pancreatic carcinoma cell lines (MIA PaCa-2, Panc-1). CT, which catalyses the ADP ribosylation of Gs, suppresses the proliferation of MIA PaCa-2(PC) cells. CT at the low dose of 0.1 pg ml-1 was inhibitory of PC cell growth, and the maximum suppression (70%) was achieved at a CT concentration of 100 pg ml-1. This phenomenon was reversible. The production of cAMP by CT (100 pg ml-1) in PC cells was enhanced 320-fold compared with the control. In addition, cAMP analogues (8-Cl-cAMP, 8-Br-cAMP) and forskolin decreased the growth rate of PC cells in a dose-dependent manner. These results support the view that CT suppresses PC cell growth by stimulating cAMP production. Conversely, Panc-1 cells were far less sensitive to CT in cell growth and cAMP production. 8-Cl-cAMP was also less effective on Panc-1 cell growth. The binding of an insulin-like growth factor (IGF)-I and transforming growth factor (TGF)-alpha, which has been shown to stimulate PC cell growth in an autocrine manner, to PC cells was not modified in cells treated with CT or 8-Cl-cAMP. The results suggest that the inhibitory actions of these substances do not occur at the level of the receptor for IGF-I or EGF/TGF-alpha. We have previously shown that phorbol esters, which decrease the binding of TGF-alpha to PC cells, has an anti-proliferative activity on these tumour cells. Inhibited cell growth by maximum suppressive dose of CT or 8-Cl-cAMP was further inhibited by TPA. In addition, an oncogene product of K-ras which is commonly activated in pancreatic cancer, was increased by CT and 8-Cl-cAMP. It is concluded that CT and 8-Cl-cAMP inhibit PC cell growth, presumably in a similar manner, and their mechanism(s) of action may be different from that of TPA. The anti-proliferative effect of CT or 8-Cl-cAMP was enhanced by TPA, implying that the combination of these substances results in increased inhibition of the PC cell growth.
Collapse
Affiliation(s)
- E Ohmura
- Department of Medicine, Tokyo Women's Medical College, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Greene RM, Lloyd MR, Pisano MM. Cyclic AMP-dependent protein kinase in human embryonic palate mesenchymal cells. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1992; 28A:755-62. [PMID: 1282915 DOI: 10.1007/bf02631064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Growth and differentiation of cells derived from the embryonic palate are critically dependent on the intracellular cAMP-mediated signal transduction pathway. Human embryonic palate mesenchymal (HEPM) cells have been widely used to examine the effect of teratogens on palatal tissue growth and differentiation, as well as a prescreen for environmental teratogens. This study examined responsiveness of HEPM cells to agents known to stimulate adenylate cyclase, characterized cAMP-dependent protein kinases (cAMP-dPK) (EC 2.7.1.37) and investigated to what extent HEPM cells reveal adaptational responses to cAMP at the level of cAMP-dependent protein kinase. HEPM cells exhibited a total cell cycle transit time of approximately 22 h and responded maximally, when confluent, to prostacyclin (PGI2), prostaglandin E2 (PGE2), and isoproterenol with time- and dose-dependent increases in intracellular levels of cAMP. The order of sensitivity to hormonal activation of adenylate cyclase was PGE2 > isoproterenol > PGI2. Basal cAMP-dependent protein kinases activity was 0.184 fmol phosphate transferred from ATP to histone per microgram protein per minute under conditions where endogenous phosphatases did not significantly affect protein phosphorylation. Regulatory subunits of cAMP-dPK in HEPM cells were characterized by the binding of [3H]cAMP to cytosolic fractions. Specific binding was saturable at approximately 50 nM indicating the presence of binding sites that are finite in number. Calculation of half-maximal binding yielded an estimated Kd of 25 nM indicating the presence of high affinity binding sites. Cyclic AMP-dPK regulatory subunits were also photoaffinity labeled with 8-N3-[32P]-cAMP, subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and radiolabeled bands visualized by autoradiography. Photoactivated incorporation of 8-N3-[32P]cAMP was detected into two proteins of molecular weight (M(r)) 45,000 and M(r) 51,000 representing, respectively, the RI alpha and RII beta subunits of cAMP-dPK. Binding of [32P]8-azido cAMP to proteins of M(r) 45,000 (RI alpha) and M(r) 51,000 (RII beta) was increased in response to elevation of intracellular cAMP via inhibition of its breakdown with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, or by direct activation of adenylate cyclase with forskolin. HEPM cells thus revealed adaptational responses to cAMP at the level of cAMP-dependent protein kinase. Characterization of the cAMP signal transduction pathway in HEPM cells, derived from embryonic palatal tissue which is critically dependent on this pathway for normal development, may provide information fundamental to a clear understanding of cellular events involved in palatal ontogeny. These results highlight several important differences between HEPM cells and murine embryonic palate mesenchymal cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R M Greene
- Department of Anatomy and Developmental Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | |
Collapse
|
39
|
Pinto A, Aldinucci D, Gattei V, Zagonel V, Tortora G, Budillon A, Cho-Chung YS. Inhibition of the self-renewal capacity of blast progenitors from acute myeloblastic leukemia patients by site-selective 8-chloroadenosine 3',5'-cyclic monophosphate. Proc Natl Acad Sci U S A 1992; 89:8884-8. [PMID: 1329084 PMCID: PMC50028 DOI: 10.1073/pnas.89.19.8884] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiologic balance between the two regulatory subunit isoforms, RI and RII, of cAMP-dependent protein kinase is disrupted in cancer cells; growth arrest and differentiation of malignant cells can be achieved when the normal ratio of these intracellular signal transducers of cAMP is restored by the use of site-selective cAMP analogs. In this study we evaluated the effects of the site-selective cAMP analog 8-chloroadenosine 3',5'-cyclic monophosphate (8-Cl-cAMP) on clonogenic growth of blast progenitors from 15 patients with acute myeloblastic leukemia and 3 patients affected by advanced myelodysplastic syndrome. Leukemic blast progenitors undergo terminal divisions, giving rise to colonies in methylcellulose. The self-renewal capacity of blast progenitors is conversely reflected in a secondary methylcellulose assay after exponential growth of clonogenic cells in suspension cultures. In all the samples tested, 8-Cl-cAMP, at micromolar concentrations (0.1-50 microM), suppressed in a dose-dependent manner both primary colony formation in methylcellulose and the recovery of clonogenic cells from suspension culture. Strikingly, in the samples from the entire group of patients, 8-Cl-cAMP was more effective in inhibiting the self-renewing clonogenic cells than the terminally dividing blast cells (P = 0.005). In addition, in four out of six cases studied, 8-Cl-cAMP was able to induce a morphologic and/or immunophenotypic maturation of leukemic blasts. An evident reduction of RI levels in fresh leukemic cells after exposure to 8-Cl-cAMP was also detected. Our results showing that 8-Cl-cAMP is a powerful inhibitor of clonogenic growth of leukemic blast progenitors by primarily suppressing their self-renewal capacity indicate that this site-selective cAMP analog represents a promising biological agent for acute myeloblastic leukemia therapy in humans.
Collapse
Affiliation(s)
- A Pinto
- Leukemia Unit, Istituti Nazionali di Ricerca e Cura a Carattere Scientifico, Aviano, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Nishio K, Morikage T, Kubota N, Ohmori T, Takeda Y, Fujiwara Y, Miki K, Abe K, Saijo N. Alteration of type II regulatory subunit of cAMP-dependent protein kinase in human cisplatin-resistant cells as a basis of collateral sensitivity to 8-chloro-cAMP. Jpn J Cancer Res 1992; 83:754-60. [PMID: 1325432 PMCID: PMC5918934 DOI: 10.1111/j.1349-7006.1992.tb01976.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A cyclic adenosine 3',5'-monophosphate (cAMP) analogue, 8-chloro-cAMP (8-Cl-cAMP), had a collateral growth-inhibitory effect on a cis-diamminedichloroplatinum(II) (CDDP)-resistant human cancer cell lines (PC-14/CDDP). The non-selective analogues dibutyryl-cAMP, 8-bromo-cAMP and forskolin, which are cAMP agonists, showed far less cytotoxicity than 8-Cl-cAMP in both cell lines. There was no significant difference in cAMP content between PC-14 and PC-14/CDDP. Because 8-Cl-cAMP has been shown to bind selectively to the site I receptor of the type II regulatory subunit (RII) of cAMP-dependent protein kinase, we determined the level of expression of regulatory subunits in PC-14 and PC-14/CDDP cells by photoaffinity labeling. PC-14/CDDP cells had a higher RII level, low site I receptor of type I regulatory subunit (RI) level, and a lower RI/RII ratio than the parental PC-14 cells. Exposure to 8-Cl-cAMP increased the RI and RII level in PC-14/CDDP cells in dose- and time-dependent manners. On the other hand, in parental PC-14 cells, RII was not detected and the levels of RI and RII were not increased by exposure to 8-Cl-cAMP. These results suggested that the change in RI and/or RII levels caused by 8-Cl-cAMP was correlated with 8-Cl-cAMP-induced growth inhibition and that the collateral sensitivity to 8-Cl-cAMP in CDDP-resistant cells was due to the increased RII level. Our results suggest that 8-Cl-cAMP can be used in combination with CDDP and that measurement of RI and RII levels and/or the RI/RII ratio is a useful tool to predict CDDP sensitivity.
Collapse
Affiliation(s)
- K Nishio
- Pharmacology Division, National Cancer Center Research Institute, Tokyo
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- S Garattini
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
42
|
Lange-Carter CA, Malkinson AM. Alterations in the cAMP signal transduction pathway in mouse lung tumorigenesis. Exp Lung Res 1991; 17:341-57. [PMID: 1646708 DOI: 10.3109/01902149109064423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alterations in the cAMP signal transduction pathway are associated with mouse lung neoplasia, cAMP effects are mediated by activating cAMP-dependent protein kinase isozymes, PKA I and PKA II. E9, a tumorigenic cell line, exhibited decreased PKA I levels compared to C10 cells, a nontumorigenic cell line of similar epithelial origin. Western immunoblots of PKA subunit proteins demonstrated low concentrations of both the catalytic (C) and regulatory (RI) PKA I subunits. Although RII (regulatory subunit of PKA II) concentrations were similar in both cell lines, RII from E9 cells was more highly phosphorylated than in C10 cells. RII phosphorylation status regulates cAMP activation of PKA II. Northern-blot analysis of mRNA content indicated diminished expression of both C and RI mRNA in E9 relative to C10 cells. Several endogenous PKA substrate proteins present in C10 cells were minimally phosphorylated by PKA in E9 cells. Forskolin, which raises cellular cAMP content, increased phosphorylation of a protein doublet in intact C10 cells, but not in E9 cells. Decreased PKA I expression and alterations in RII phosphorylation in lung neoplasia may contribute to anomalous regulation by cAMP, thereby diminishing cAMP-mediated growth inhibitory effects.
Collapse
Affiliation(s)
- C A Lange-Carter
- Molecular and Environmental Toxicology Program, School of Pharmacy, University of Colorado, Boulder 80309-0297
| | | |
Collapse
|
43
|
Takanashi A, Yasui W, Yoshida K, Yokozaki H, Saito D, Abe K, Urakami K, Miki K, Tahara E. Inhibitory effect of 8-chloro-cyclic adenosine 3',5'-monophosphate on cell growth of gastric carcinoma cell lines. Jpn J Cancer Res 1991; 82:325-31. [PMID: 1850725 PMCID: PMC5918396 DOI: 10.1111/j.1349-7006.1991.tb01849.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A cAMP analogue, 8-chloro-cAMP (8-Cl-cAMP), selectively binds to site 1 receptor of type II regulatory subunit (RII) of cAMP-dependent protein kinase. The effects of 8-Cl-cAMP on human gastric carcinoma cell lines were studied. Twenty microM 8-Cl-cAMP clearly inhibited cell growth in six cell lines (TMK-1, KATO-III, MKN-7, -28, -45, and -74) but not in MKN-1. Cell population in the G1 phase was increased in KATO III cells, which were more responsive to 8-Cl-cAMP, while cell cycle progression in TMK-1 and MKN-1 cells was apparently not influenced by 8-Cl-cAMP. The various changes induced by 8-Cl-cAMP were further analyzed in TMK-1 cells. Decrease of type I regulatory subunit (RI) of cAMP-dependent protein kinase and translocation of RII from cytosol to nucleus were induced by 8-Cl-cAMP treatment. 8-Cl-cAMP increased the level of cAMP-response element (CRE) binding protein in addition to inducing FOS mRNA, whose promoter contains CRE. 8-Cl-cAMP decreased the expression of mRNA for transforming growth factor-alpha (TGF-alpha), while the expression of epidermal growth factor receptor was not changed. Expression of HRAS and MYC mRNAs was slightly increased, whereas the amounts of HRAS and MYC proteins remained unchanged. Our results overall suggest that 8-Cl-cAMP might be a useful tool for antitumor therapy of gastric cancers and that cell growth inhibition by 8-Cl-cAMP might account for the decrease of TGF-alpha expression by tumor cells.
Collapse
Affiliation(s)
- A Takanashi
- First Department of Pathology, Hiroshima University School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bradbury AW, Miller WR, Carter DC. Cyclic adenosine 3',5'-monophosphate binding proteins in human colorectal cancer and mucosa. Br J Cancer 1991; 63:201-4. [PMID: 1847645 PMCID: PMC1971789 DOI: 10.1038/bjc.1991.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cyclic AMP Binding Proteins (cAMP-BP) levels have been measured by means of a competitive binding assay in the cytosols of 50 human colorectal cancers. These levels have been related to those in mucosa both adjacent to and distant from the tumour in the same patients. Cyclic AMP-BP were higher in tumour than in either adjacent (P less than 0.000001) or distant mucosa (P less than 0.00001). Binding of cAMP in adjacent mucosa was lower than that in distant mucosa (P less than 0.0001). There was no significant difference in the level of binding between tumours arising from different sites in the colon and binding was not related to age or sex of the patient. However, binding was higher in Dukes' B than Dukes' C cancers (P less than 0.005). There was also a trend for cAMP binding levels to be higher in moderately differentiated than in poorly differentiated cancers (P = 0.07). Thus cAMP-BP appear to be over-expressed in human colorectal cancers and levels are related to the stage and grade.
Collapse
Affiliation(s)
- A W Bradbury
- University Department of Clinical Surgery, Royal Infirmary, Edinburgh, UK
| | | | | |
Collapse
|
45
|
Type II regulatory subunit of protein kinase restores cAMP-dependent transcription in a cAMP-unresponsive cell line. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44714-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Decreased expression of the type I isozyme of cAMP-dependent protein kinase in tumor cell lines of lung epithelial origin. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39002-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Gross RE, Lu XY, Rubin CS. Regulation of the expression of the regulatory subunit of cAMP-dependent protein kinase II beta in Friend erythroleukemic cells. Evidence for posttranscriptional control and a central role for the C subunit. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39050-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Van Lookeren Campagne MM, Diaz FV, Jastorff B, Winkler E, Genieser HG, Kessin RH. Characterization of the yeast low Km cAMP-phosphodiesterase with cAMP analogues. Applications in mammalian cells that express the yeast PDE2 gene. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39440-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Tortora G, Clair T, Cho-Chung YS. An antisense oligodeoxynucleotide targeted against the type II beta regulatory subunit mRNA of protein kinase inhibits cAMP-induced differentiation in HL-60 leukemia cells without affecting phorbol ester effects. Proc Natl Acad Sci U S A 1990; 87:705-8. [PMID: 1689049 PMCID: PMC53334 DOI: 10.1073/pnas.87.2.705] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The type II beta regulatory subunit of cAMP-dependent protein kinase (RII beta) has been hypothesized to play an important role in the growth inhibition and differentiation induced by site-selective cAMP analogs in human cancer cells, but direct proof of this function has been lacking. To address this issue, HL-60 human promyelocytic leukemia cells were exposed to RII beta antisense synthetic oligodeoxynucleotide, and the effects on cAMP-induced growth regulation were examined. Exposure of these cells to RII beta antisense oligodeoxynucleotide resulted in a decrease in cAMP analog-induced growth inhibition and differentiation without apparent effect on differentiation induced by phorbol esters. This loss in cAMP growth regulatory function correlated with a decrease in basal and induced levels of RII beta protein. Exposure to RII beta sense, RI alpha and RII alpha antisense, or irrelevant oligodeoxynucleotides had no such effect. These results show that the RII beta regulatory subunit of protein kinase plays a critical role in the cAMP-induced growth regulation of HL-60 leukemia cells.
Collapse
Affiliation(s)
- G Tortora
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
50
|
8-Chloro-cAMP inhibits transforming growth factor alpha transformation of mammary epithelial cells by restoration of the normal mRNA patterns for cAMP-dependent protein kinase regulatory subunit isoforms which show disruption upon transformation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40152-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|