1
|
Anderson M, Lopez J, Wyr M, Ramirez PW. Defining diverse spike-receptor interactions involved in SARS-CoV-2 entry: Mechanisms and therapeutic opportunities. Virology 2025; 607:110507. [PMID: 40157321 DOI: 10.1016/j.virol.2025.110507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped RNA virus that caused the Coronavirus Disease 2019 (COVID-19) pandemic. The SARS-CoV-2 Spike glycoprotein binds to angiotensin converting enzyme 2 (ACE2) on host cells to facilitate viral entry. However, the presence of SARS-CoV-2 in nearly all human organs - including those with little or no ACE2 expression - suggests the involvement of alternative receptors. Recent studies have identified several cellular proteins and molecules that influence SARS-CoV-2 entry through ACE2-dependent, ACE2-independent, or inhibitory mechanisms. In this review, we explore how these alternative receptors were identified, their expression patterns and roles in viral entry, and their impact on SARS-CoV-2 infection. Additionally, we discuss therapeutic strategies aimed at disrupting these virus-receptor interactions to mitigate COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Michael Anderson
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Julian Lopez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Maya Wyr
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Peter W Ramirez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| |
Collapse
|
2
|
Shah K, Gopal K, Kumar S, Saha S. Emerging AXL Inhibitors in Oncology: Chemical and Biological Advances in Targeted Cancer Therapy. Anticancer Agents Med Chem 2025; 25:460-467. [PMID: 39679460 DOI: 10.2174/0118715206351185241209053053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
AXL, a receptor tyrosine kinase, has emerged as a critical player in tumorigenesis, metastasis, and resistance to conventional therapies. Its aberrant activation drives cell proliferation, survival, and angiogenesis, making it an attractive target for cancer treatment. In recent years, significant progress has been made in the development of AXL inhibitors. Chemical approaches have led to the discovery of small molecules that selectively bind to and inhibit AXL, disrupting its downstream signaling pathways. These inhibitors exhibit diverse structural features, including ATP-competitive and allosteric binding modes, offering potential advantages in terms of selectivity and potency. In addition to chemical approaches, biological strategies have also been explored to target AXL. These include the use of monoclonal antibodies, which can neutralize AXL ligands or induce receptor internalization and degradation. Furthermore, gene therapy techniques have been investigated to downregulate AXL expression or disrupt its signaling pathways. Despite these advancements, challenges remain in the development of AXL inhibitors. Selectivity is a critical concern, as AXL shares homology with other receptor tyrosine kinases. Drug resistance is another obstacle, as cancer cells can develop mechanisms to evade AXL inhibition. Furthermore, to address these challenges, combination therapies are being explored, such as combining AXL inhibitors with other targeted agents or conventional treatments. In conclusion, developing AXL inhibitors represents a promising avenue for improving cancer treatment outcomes. Continued research efforts are essential to overcome the existing challenges and translate these compounds into effective clinical therapies.
Collapse
Affiliation(s)
- Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Krishan Gopal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Shivendra Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Sunam Saha
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| |
Collapse
|
3
|
Saeedi BJ, Carr HE, Higgins PDR, Steiner CA. AXL: A novel therapeutic target in IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:141-157. [PMID: 39521598 DOI: 10.1016/bs.apha.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel diseases (IBD) and their sequela (colitis-associate carcinoma and fibrostenotic complications) remain a significant clinical challenge and novel therapeutic targets are desperately needed. AXL, a receptor tyrosine kinase, has been implicated in myriad cellular functions central to the pathogenesis of IBD. These include facilitating epithelial-to-mesenchymal transition, dampening of Toll-like receptor and natural killer cell mediated immune responses, driving proliferation, and propagating fibrogenic signaling. The vast majority of preclinical research on AXL has focused on its role in cancer. As such, pharmacologic AXL inhibitors are currently in clinical trials, but the indications remain limited to malignancy. In this chapter, we summarize the current preclinical data of AXL in IBD, colitis associated carcinoma, and fibrostenotic disease, and highlight its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Bejan J Saeedi
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States.
| | - Hannah E Carr
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter D R Higgins
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, United States
| | - Calen A Steiner
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Repici A, Ardizzone A, De Luca F, Colarossi L, Prestifilippo A, Pizzino G, Paterniti I, Esposito E, Capra AP. Signaling Pathways of AXL Receptor Tyrosine Kinase Contribute to the Pathogenetic Mechanisms of Glioblastoma. Cells 2024; 13:361. [PMID: 38391974 PMCID: PMC10886920 DOI: 10.3390/cells13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Brain tumors are a diverse collection of neoplasms affecting the brain with a high prevalence rate in people of all ages around the globe. In this pathological context, glioblastoma, a form of glioma that belongs to the IV-grade astrocytoma group, is the most common and most aggressive form of the primary brain tumors. Indeed, despite the best treatments available including surgery, radiotherapy or a pharmacological approach with Temozolomide, glioblastoma patients' mortality is still high, within a few months of diagnosis. Therefore, to increase the chances of these patients surviving, it is critical to keep finding novel treatment opportunities. In the past, efforts to treat glioblastoma have mostly concentrated on customized treatment plans that target specific mutations such as epidermal growth factor receptor (EGFR) mutations, Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions, or multiple receptors using multi-kinase inhibitors like Sunitinib and Regorafenib, with varying degrees of success. Here, we focused on the receptor tyrosine kinase AXL that has been identified as a mediator for tumor progression and therapy resistance in various cancer types, including squamous cell tumors, small cell lung cancer, and breast cancer. Activated AXL leads to a significant increase in tumor proliferation, tumor cell migration, and angiogenesis in different in vitro and in vivo models of cancer since this receptor regulates interplay with apoptotic, angiogenic and inflammatory pathways. Based on these premises, in this review we mainly focused on the role of AXL in the course of glioblastoma, considering its primary biological mechanisms and as a possible target for the application of the most recent treatments.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Angela Prestifilippo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Gabriele Pizzino
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| |
Collapse
|
5
|
Pidkovka N, Belkhiri A. Altered expression of AXL receptor tyrosine kinase in gastrointestinal cancers: a promising therapeutic target. Front Oncol 2023; 13:1079041. [PMID: 37469409 PMCID: PMC10353021 DOI: 10.3389/fonc.2023.1079041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Gastrointestinal (GI) cancers that include all cancers of the digestive tract organs are generally associated with obesity, lack of exercising, smoking, poor diet, and heavy alcohol consumption. Treatment of GI cancers typically involves surgery followed by chemotherapy and/or radiation. Unfortunately, intrinsic or acquired resistance to these therapies underscore the need for more effective targeted therapies that have been proven in other malignancies. The aggressive features of GI cancers share distinct signaling pathways that are connected to each other by the overexpression and activation of AXL receptor tyrosine kinase. Several preclinical and clinical studies involving anti-AXL antibodies and small molecule AXL kinase inhibitors to test their efficacy in solid tumors, including GI cancers, have been recently carried out. Therefore, AXL may be a promising therapeutic target for overcoming the shortcomings of standard therapies in GI cancers.
Collapse
Affiliation(s)
- Nataliya Pidkovka
- Department of Health Science, South College, Nashville, TN, United States
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Mohammadzadeh P, Amberg GC. AXL/Gas6 signaling mechanisms in the hypothalamic-pituitary-gonadal axis. Front Endocrinol (Lausanne) 2023; 14:1212104. [PMID: 37396176 PMCID: PMC10310921 DOI: 10.3389/fendo.2023.1212104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
AXL is a receptor tyrosine kinase commonly associated with a variety of human cancers. Along with its ligand Gas6 (growth arrest-specific protein 6), AXL is emerging as an important regulator of neuroendocrine development and function. AXL signaling in response to Gas6 binding impacts neuroendocrine structure and function at the level of the brain, pituitary, and gonads. During development, AXL has been identified as an upstream inhibitor of gonadotropin receptor hormone (GnRH) production and also plays a key role in the migration of GnRH neurons from the olfactory placode to the forebrain. AXL is implicated in reproductive diseases including some forms of idiopathic hypogonadotropic hypogonadism and evidence suggests that AXL is required for normal spermatogenesis. Here, we highlight research describing AXL/Gas6 signaling mechanisms with a focus on the molecular pathways related to neuroendocrine function in health and disease. In doing so, we aim to present a concise account of known AXL/Gas6 signaling mechanisms to identify current knowledge gaps and inspire future research.
Collapse
|
7
|
Bhadresha K, Mirza S, Penny C, Mughal MJ. Targeting AXL in Mesothelioma: from functional characterization to clinical implication. Crit Rev Oncol Hematol 2023:104043. [PMID: 37268175 DOI: 10.1016/j.critrevonc.2023.104043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Malignant pleural mesothelioma (MM) is a highly aggressive and lethal cancer with a poor survival rate. Current treatment approaches primarily rely on chemotherapy and radiation, but their effectiveness is limited. Consequently, there is an urgent need for alternative treatment strategies, a comprehensive understanding of the molecular mechanisms underlying MM, and the identification of potential therapeutic targets. Extensive studies over the past decade have emphasized the role of Axl in driving tumor development and metastasis, while high levels of Axl expression have been associated with immune evasion, drug resistance, and reduced patient survival in various cancer types. Ongoing clinical trials are investigating the efficacy of Axl inhibitors for different cancers. However, the precise role of Axl in MM progression, development, and metastasis, as well as its regulatory mechanisms within MM, remain inadequately understood. This review aims to comprehensively investigate the involvement of Axl in MM. We discuss Axl role in MM progression, development, and metastasis, along with its specific regulatory mechanisms. Additionally, we examined the Axl associated signaling pathways, the relationship between Axl and immune evasion, and the clinical implications of Axl for MM treatment. Furthermore, we discussed the potential utility of liquid biopsy as a non-invasive diagnostic technique for early detection of Axl in MM. Lastly, we evaluated the potential of a microRNA signature that targets Axl. By consolidating existing knowledge and identifying research gaps, this review contributes to a better understanding of Axl's role in MM and sets the stage for future investigations and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Kinjal Bhadresha
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheefa Mirza
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington DC, United States of America.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The AXL signaling pathway is associated with tumor growth as well as poor prognosis in cancer. Here, we highlight recent strategies for targeting AXL in the treatment of solid and hematological malignancies. RECENT FINDINGS AXL is a key player in survival, metastasis, and therapeutic resistance in many cancers. A range of AXL-targeted therapies, including tyrosine kinase inhibitors, monoclonal antibodies, antibody-drug conjugates, and soluble receptors, have entered clinical development. Notably, AXL inhibitors in combination with immune checkpoint inhibitors demonstrate early promise; however, further understanding of predictive biomarkers and treatment sequencing is necessary. Based on its role in tumor growth and drug resistance, AXL represents a promising therapeutic target in oncology. Results from ongoing clinical trials will provide valuable insights into the role of AXL inhibitors, both as single agents and in combination with other therapies.
Collapse
Affiliation(s)
- Sheena Bhalla
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Division of Hematology-Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - David E Gerber
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Wang Z, Liu D, Yan Q, Liu F, Zhan M, Qi S, Fang Q, Yao L, Wang W, Zhang R, Du J, Chen L. Activated AXL Protects Against Hepatic Ischemia-reperfusion Injury by Upregulating SOCS-1 Expression. Transplantation 2022; 106:1351-1364. [PMID: 35546091 PMCID: PMC9213082 DOI: 10.1097/tp.0000000000004156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is the main factor affecting the morbidity and mortality associated with perioperative complications of liver transplantation and major hepatectomy. AXL is a member of the TYRO3, AXL, MERTK family and is involved in immune and apoptosis processes in multiple organs. However, the role of AXL in hepatic I/R injury remains to be elucidated. METHODS Mice pretreated with rmGas6 or R428 and mice tail vein injected with adeno-associated virus knockdown suppressor of cytokine signaling protein-1 (SOCS-1) underwent liver I/R surgery to detect the function of activated AXL in vivo. Primary hepatocytes undergo hypoxic reoxygenation injury in vitro. RESULTS AXL expression was significantly upregulated, and phosphorylated-AXL was substantially downregulated in liver transplantation patients and hepatic I/R surgery mice. A mouse model of hepatic I/R injury showed that AXL activation reduced liver inflammation and liver cells apoptosis. The inhibition of AXL activation (AXL-specific inhibitor R428) aggravated hepatic I/R injury, resulted in larger areas of liver injury, aggravated inflammatory response, and increased apoptosis of liver cells. In addition, activated AXL promotes the expression level of SOCS-1 and inhibits toll-like receptor 4 and its downstream signaling pathways. Finally, SOCS-1 was knocked down with an adeno-associated virus, and activated AXL failed to protect against hepatic I/R injury. CONCLUSIONS AXL activation protects the liver from I/R injury by upregulating SOCS-1 and inhibiting the toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa-B signaling axis. Targeting AXL may be a new therapeutic option for ameliorating hepatic I/R injury.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Deng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mengting Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shunli Qi
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lei Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weizhi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Ruixin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Infectious Disease Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Engelsen AST, Lotsberg ML, Abou Khouzam R, Thiery JP, Lorens JB, Chouaib S, Terry S. Dissecting the Role of AXL in Cancer Immune Escape and Resistance to Immune Checkpoint Inhibition. Front Immunol 2022; 13:869676. [PMID: 35572601 PMCID: PMC9092944 DOI: 10.3389/fimmu.2022.869676] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical oncology have significantly improved the survival of a subset of cancer patients with metastatic disease previously considered uniformly lethal. However, the low response rates and the low number of patients with durable clinical responses remain major concerns and underscore the limited understanding of mechanisms regulating anti-tumor immunity and tumor immune resistance. There is an urgent unmet need for novel approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can accurately predict ICI responders based on the composition of their tumor microenvironment. The receptor tyrosine kinase (RTK) AXL has been associated with poor prognosis in numerous malignancies and the emergence of therapy resistance. AXL is a member of the TYRO3-AXL-MERTK (TAM) kinase family. Upon binding to its ligand GAS6, AXL regulates cell signaling cascades and cellular communication between various components of the tumor microenvironment, including cancer cells, endothelial cells, and immune cells. Converging evidence points to AXL as an attractive molecular target to overcome therapy resistance and immunosuppression, supported by the potential of AXL inhibitors to improve ICI efficacy. Here, we review the current literature on the prominent role of AXL in regulating cancer progression, with particular attention to its effects on anti-tumor immune response and resistance to ICI. We discuss future directions with the aim to understand better the complex role of AXL and TAM receptors in cancer and the potential value of this knowledge and targeted inhibition for the benefit of cancer patients.
Collapse
Affiliation(s)
- Agnete S. T. Engelsen
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria L. Lotsberg
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jean-Paul Thiery
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
- Guangzhou Laboratory, Guangzhou, China
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
| | - James B. Lorens
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
| | - Stéphane Terry
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
- Research Department, Inovarion, Paris, France
| |
Collapse
|
11
|
Nagamalla L, Shanmukha Kumar J, Sanjay C, Alsamhan AM, Shaik MR. In-silico study of seaweed secondary metabolites as AXL kinase inhibitors. Saudi J Biol Sci 2022; 29:689-701. [PMID: 35197734 PMCID: PMC8848138 DOI: 10.1016/j.sjbs.2021.11.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
AXL kinase is an attractive cancer target for drug design and it is involved in different cancers. A set of molecule databases with 1072 secondary metabolites from seaweeds were screened against the AXL kinase active site and eight molecules were shortlisted for further studies. From the docking analysis of the complexes, four molecules GA011, BE005, BC010, and BC005 are showing prominent binging. From the 100 ns of molecular dynamics simulations and ligand-bound complex MM-PBSA free energy analysis, two molecules BC010 (ΔG = −135.38 kJ/mol) and BE005 (ΔG = −141.72 kJ/mol) are showing molecule stability in the active site also showing very strong binding free energies. It suggests these molecules could be the potent molecules for AXL kinase.
Collapse
Affiliation(s)
- Lavanya Nagamalla
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., India
| | - J.V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., India
- Corresponding authors.
| | - Chintakindi Sanjay
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box. 800, Riyadh 11451, Saudi Arabia
| | - Ali M Alsamhan
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box. 800, Riyadh 11451, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| |
Collapse
|
12
|
Lotsberg ML, Davidsen KT, D’Mello Peters S, Haaland GS, Rayford A, Lorens JB, Engelsen AST. The Role of AXL Receptor Tyrosine Kinase in Cancer Cell Plasticity and Therapy Resistance. BIOMARKERS OF THE TUMOR MICROENVIRONMENT 2022:307-327. [DOI: 10.1007/978-3-030-98950-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Wang Y, Tian Y, Liu S, Wang Z, Xing Q. Prognostic value and immunological role of AXL gene in clear cell renal cell carcinoma associated with identifying LncRNA/RBP/AXL mRNA networks. Cancer Cell Int 2021; 21:625. [PMID: 34838035 PMCID: PMC8626946 DOI: 10.1186/s12935-021-02322-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/09/2021] [Indexed: 01/10/2023] Open
Abstract
Backgrounds This article aimed to explore the prognostic and immunological roles of AXL gene in clear cell renal cell carcinoma (ccRCC) for overall survival (OS) and to identify the LncRNA/RBP/AXL mRNA networks. Methods AXL-related gene expression matrix and clinical data were obtained from The Cancer Genome Atlas (TCGA) dataset and AXL-related pathways were identified by gene set enrichment analysis (GSEA). We performed univariate/multivariate Cox regression analysis to evaluate independent prognostic factors and the relationships between AXL and immunity were also investigated. Results The outcomes of us indicated that the AXL mRNA expression was up-regulated in ccRCC samples and high expression of AXL was associated with worse OS in TCGA dataset (P < 0.01). Further external verification results from HPA, UALCAN, ICGC dataset, GSE6344, GSE14994, and qRT-PCR remained consistent (all P < 0.05). AXL was also identified as an independent prognostic factor for ccRCC by univariate/multivariate Cox regression analysis (both P < 0.05). A nomogram including AXL expression and clinicopathological factors was established by us and GSEA results found that elevated AXL expression was associated with the JAK-STAT, P53, WNT, VEGF and MAPK signaling pathways. In terms of immunity, AXL was dramatically linked to tumor microenvironment, immune cells, immune infiltration, immune checkpoint molecules and tumor mutational burden (TMB). As for its potential mechanisms, we also identified several LncRNA/RBP/AXL mRNA axes. Conclusions AXL was revealed to play prognostic and immunological roles in ccRCC and LncRNA/RBP/AXL mRNA axes were also identified by us for its potential mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02322-y.
Collapse
Affiliation(s)
- Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu Province, China
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
14
|
Zhang S, Liu Y, Wang X, An N, Ouyang X. STAT1/SOCS1/3 Are Involved in the Inflammation-Regulating Effect of GAS6/AXL in Periodontal Ligament Cells Induced by Porphyromonas gingivalis Lipopolysaccharide In Vitro. J Immunol Res 2021; 2021:9577695. [PMID: 34734092 PMCID: PMC8560282 DOI: 10.1155/2021/9577695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Periodontitis involves chronic inflammation of the tissues around the teeth caused by plaque and the corresponding immune response. Growth arrest-specific protein 6 (GAS6) and AXL receptor tyrosine kinase (AXL) are known to be involved in inflammatory diseases, while signal transducer and activator of transcription-1 (STAT1) and suppressor of cytokine signaling (SOCS) are related to inflammatory processes. Moreover, miRNA34a directly targets AXL to regulate the AXL expression. However, the specific roles of GAS6 and AXL in periodontitis remain unclear. This study was designed to explore the effect and mechanism of AXL on the expression of inflammatory cytokines induced by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) in human periodontal ligament cells (hPDLCs). The effects of different concentrations of P. gingivalis LPS on the expression of GAS6/AXL in hPDLCs were observed. Additionally, the effect of LPS on AXL was investigated by transfection of the miRNA34a inhibitor. AXL was knocked down or overexpressed to observe the release of inflammatory cytokines interleukin- (IL-) 8 and IL-6. The results showed that the expression levels of GAS6 and AXL decreased after P. gingivalis LPS infection. Transfection of a miR-34a inhibitor to hPDLCs demonstrated a role of miR-34a in the downregulation of AXL expression induced by LPS. Moreover, AXL knockdown or overexpression influencing the expression of IL-8 and IL-6 was investigated under LPS stimulation. AXL knockdown decreased the expression of STAT1 and SOCS1/3. Overall, these results demonstrate that AXL inhibits the expression of LPS-induced inflammatory cytokines in hPDLCs and that STAT1 and SOCS1/3 are involved in the regulation of inflammation by GAS6/AXL.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yingjun Liu
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xuekui Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Na An
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
15
|
Dillon M, Lopez A, Lin E, Sales D, Perets R, Jain P. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers. Cancers (Basel) 2021; 13:cancers13205059. [PMID: 34680208 PMCID: PMC8534156 DOI: 10.3390/cancers13205059] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The Ras-Raf-MEK-ERK signaling pathway is responsible for regulating cell proliferation, differentiation, and survival. Overexpression and overactivation of members within the signaling cascade have been observed in many solid and blood cancers. Research often focuses on targeting the pathway to disrupt cancer initiation and progression. We aimed to provide an overview of the pathway’s physiologic role and regulation, interactions with other pathways involved in cancer development, and mutations that lead to malignancy. Several blood and solid cancers are analyzed to illustrate the impact of the pathway’s dysregulation, stemming from mutation or viral induction. Finally, we summarized different approaches to targeting the pathway and the associated novel treatments being researched or having recently achieved approval. Abstract The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.
Collapse
|
16
|
Therapeutic Targeting of the Gas6/Axl Signaling Pathway in Cancer. Int J Mol Sci 2021; 22:ijms22189953. [PMID: 34576116 PMCID: PMC8469858 DOI: 10.3390/ijms22189953] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many signaling pathways are dysregulated in cancer cells and the host tumor microenvironment. Aberrant receptor tyrosine kinase (RTK) pathways promote cancer development, progression, and metastasis. Hence, numerous therapeutic interventions targeting RTKs have been actively pursued. Axl is an RTK that belongs to the Tyro3, Axl, MerTK (TAM) subfamily. Axl binds to a high affinity ligand growth arrest specific 6 (Gas6) that belongs to the vitamin K-dependent family of proteins. The Gas6/Axl signaling pathway has been implicated to promote progression, metastasis, immune evasion, and therapeutic resistance in many cancer types. Therapeutic agents targeting Gas6 and Axl have been developed, and promising results have been observed in both preclinical and clinical settings when such agents are used alone or in combination therapy. This review examines the current state of therapeutics targeting the Gas6/Axl pathway in cancer and discusses Gas6- and Axl-targeting agents that have been evaluated preclinically and clinically.
Collapse
|
17
|
Fatima M, Kakar SJ, Adnan F, Khan K, Mian AA, Khan D. AXL receptor tyrosine kinase: a possible therapeutic target in acute promyelocytic leukemia. BMC Cancer 2021; 21:713. [PMID: 34140003 PMCID: PMC8210361 DOI: 10.1186/s12885-021-08450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute promyelocytic leukemia (APL) is a subset of acute myeloid leukemia (AML) which is characterized by the fusion of promyelocytic leukemia PML and retinoic acid receptor- alpha (RAR-alpha) genes. All-trans retinoic acid (ATRA) and/or arsenic trioxide (ATO) have resulted in durable cytogenetic and molecular remissions in most APL patients and have altered the natural history of the disease. Most APL patients treated with ATRA and/or ATO are now anticipated to have a nearly normal life expectancy. Unfortunately, relapse and resistance to the current treatment occur in APL patients and the outcome remains dismal in these refractory patients. AXL receptor tyrosine kinase (AXL-RTK) has been shown to increase tumour burden, provide resistance to therapy and is critical to maintain cancer stem cells (CSCs) in chronic myeloid leukemia (CML) by stabilizing β-catenin in the Wnt/β-catenin signalling pathway. However, the role of AXL-RTK has not been explored in PML/RARα-positive APL. This study aimed to explore the role of AXL-RTK receptor in PML/RARα-positive APL. METHODS AND RESULTS By using biochemical and pharmacological approaches, here we report that targeting of AXL-RTK is related to the down-regulation of β-catenin target genes including c-myc (p < 0.001), AXIN2 (p < 0.001), and HIF1α (p < 0.01) and induction of apoptosis in PML/RARα-positive APL cell line. Resistance to all-trans retinoic acid (ATRA) was also overcomed by targeting AXL-RTK with R428 in APL (p < 0.05). CONCLUSION Our results provide clear evidence of the involvement of AXL-RTK in leukemogenic potential of PML/RARα-positive APL and suggest targeting of AXL-RTK in the treatment of therapy resistant APL patients.
Collapse
Affiliation(s)
- Mariam Fatima
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12, Campus, Islamabad, Pakistan
| | - Salik Javed Kakar
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12, Campus, Islamabad, Pakistan
| | - Fazal Adnan
- grid.412117.00000 0001 2234 2376Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khalid Khan
- grid.258164.c0000 0004 1790 3548Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Afsar Ali Mian
- grid.7147.50000 0001 0633 6224Center for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| | - Dilawar Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12, Campus, Islamabad, Pakistan
| |
Collapse
|
18
|
Zhou L, Matsushima GK. Tyro3, Axl, Mertk receptor-mediated efferocytosis and immune regulation in the tumor environment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:165-210. [PMID: 34074493 DOI: 10.1016/bs.ircmb.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three structurally related tyrosine receptor cell surface kinases, Tyro3, Axl, and Mertk (TAM) have been recognized to modulate immune function, tissue homeostasis, cardiovasculature, and cancer. The TAM receptor family appears to operate in adult mammals across multiple cell types, suggesting both widespread and specific regulation of cell functions and immune niches. TAM family members regulate tissue homeostasis by monitoring the presence of phosphatidylserine expressed on stressed or apoptotic cells. The detection of phosphatidylserine on apoptotic cells requires intermediary molecules that opsonize the dying cells and tether them to TAM receptors on phagocytes. This complex promotes the engulfment of apoptotic cells, also known as efferocytosis, that leads to the resolution of inflammation and tissue healing. The immune mechanisms dictating these processes appear to fall upon specific family members or may involve a complex of different receptors acting cooperatively to resolve and repair damaged tissues. Here, we focus on the role of TAM receptors in triggering efferocytosis and its consequences in the regulation of immune responses in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Liwen Zhou
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States
| | - Glenn K Matsushima
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Department of Microbiology & Immunology, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Integrative Program for Biological & Genome Sciences, University of North Carolina-CH, Chapel Hill, NC, United States.
| |
Collapse
|
19
|
Yılmaz Y, Batur T, Korhan P, Öztürk M, Atabey N. Targeting c-Met and AXL Crosstalk for the Treatment of Hepatocellular Carcinoma. LIVER CANCER IN THE MIDDLE EAST 2021:333-364. [DOI: 10.1007/978-3-030-78737-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Recent advancements in role of TAM receptors on efferocytosis, viral infection, autoimmunity, and tissue repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 357:1-19. [PMID: 33234241 DOI: 10.1016/bs.ircmb.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evolutionarily conserved highly regulated process of apoptosis has been a major physiological process throughout the entire evolutionary history of living beings that has impacted the process of evolution itself. One of the key features of this highly researched field of science is the process of phosphatidylserine (PS) externalization by the different membrane bound enzymes. The process is a result of series of biological events and is associated with various biological outcomes depending on the proper recognition of this ligand. In this review, we will briefly summarize the recent advancement in the field pertaining to the set of receptors, known as TAM (Tyro3, Axl and Mertk) receptors, for their influence in the recognition of various PS externalization events and mediation of pathological outcomes such as autoimmunity, cancer, and tissue repair.
Collapse
|
21
|
Wang KH, Ding DC. Dual targeting of TAM receptors Tyro3, Axl, and MerTK: Role in tumors and the tumor immune microenvironment. Tzu Chi Med J 2020; 33:250-256. [PMID: 34386362 PMCID: PMC8323642 DOI: 10.4103/tcmj.tcmj_129_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/06/2022] Open
Abstract
In both normal and tumor tissues, receptor tyrosine kinases (RTKs) may be pleiotropically expressed. The RTKs not only regulate ordinary cellular processes, including proliferation, survival, adhesion, and migration, but also have a critical role in the development of many types of cancer. The Tyro3, Axl, and MerTK (TAM) family of RTKs (Tyro3, Axl, and MerTK) plays a pleiotropic role in phagocytosis, inflammation, and normal cellular processes. In this article, we highlight the cellular activities of TAM receptors and discuss their roles in cancer and immune cells. We also discuss cancer therapies that target TAM receptors. Further research is needed to elucidate the function of TAM receptors in immune cells toward the development of new targeted immunotherapies for cancer.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
22
|
Di Stasi R, De Rosa L, D'Andrea LD. Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discov Today 2020; 25:2130-2148. [PMID: 33002607 DOI: 10.1016/j.drudis.2020.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Axl receptor tyrosine kinase (RTK) and its ligand, growth arrest-specific protein 6 (Gas6), are involved in several biological functions and participate in the development and progression of a range of malignancies and autoimmune disorders. In this review, we present this molecular system from a drug discovery perspective, highlighting its therapeutic implications and challenges that need to be addressed. We provide an update on Axl/Gas6 axis biology, exploring its role in fields ranging from angiogenesis, cancer development and metastasis, immune response and inflammation to viral infection. Finally, we summarize the molecules that have been developed to date to target the Axl/Gas6 molecular system for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
23
|
Gas6/Axl Signaling Pathway in the Tumor Immune Microenvironment. Cancers (Basel) 2020; 12:cancers12071850. [PMID: 32660000 PMCID: PMC7408754 DOI: 10.3390/cancers12071850] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/19/2023] Open
Abstract
Receptor tyrosine kinases have been shown to dysregulate a number of pathways associated with tumor development, progression, and metastasis. Axl is a receptor tyrosine kinase expressed in many cancer types and has been associated with therapy resistance and poor clinical prognosis and outcomes. In addition, Axl and its ligand growth arrest specific 6 (Gas6) protein are expressed by a number of host cells. The Gas6/Axl signaling pathway has been implicated in the promotion of tumor cell proliferation, survival, migration, invasion, angiogenesis, and immune evasion. As a result, Axl is an attractive, novel therapeutic target to impair multiple stages of tumor progression from both neoplastic and host cell axes. This review focuses on the role of the Gas6/Axl signaling pathway in promoting the immunosuppressive tumor microenvironment, as immune evasion is considered one of the hallmarks of cancer. The review discusses the structure and activation of the Gas6/Axl signaling pathway, GAS6 and AXL expression patterns in the tumor microenvironment, mechanisms of Axl-mediated tumor immune response, and the role of Gas6/Axl signaling in immune cell recruitment.
Collapse
|
24
|
AXL as a Target in Breast Cancer Therapy. JOURNAL OF ONCOLOGY 2020; 2020:5291952. [PMID: 32148495 PMCID: PMC7042526 DOI: 10.1155/2020/5291952] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
AXL is a receptor tyrosine kinase (RTK) that has been implicated in diverse tumor-promoting processes such as proliferation, migration, invasion, survival, and apoptosis. AXL therefore plays a role in cancer progression, and AXL has been implicated in a wide variety of malignancies from solid tumors to hematopoietic cancers where it is often associated with poor prognosis. In cancer, AXL has been shown to promote epithelial to mesenchymal transition (EMT), metastasis formation, drug resistance, and a role for AXL in modulation of the tumor microenvironment and immune response has been identified. In light of these activities multiple AXL inhibitors have been developed, and several of these have entered clinical trials in the U.S. In breast cancer, high levels of AXL expression have been observed. The role of AXL in cancer with a focus on therapeutic implications for breast cancer is discussed.
Collapse
|
25
|
Namiki K, Wongsirisin P, Yokoyama S, Sato M, Rawangkan A, Sakai R, Iida K, Suganuma M. (-)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci Rep 2020; 10:2444. [PMID: 32051483 PMCID: PMC7016176 DOI: 10.1038/s41598-020-59281-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
Cancer stem cells (H1299-sdCSCs) were obtained from tumour spheres of H1299 human lung cancer cells. We studied low stiffness, a unique biophysical property of cancer cells, in H1299-sdCSCs and parental H1299. Atomic force microscopy revealed an average Young’s modulus value of 1.52 kPa for H1299-sdCSCs, which showed low stiffness compared with that of H1299 cells, with a Young’s modulus value of 2.24 kPa. (−)-Epigallocatechin gallate (EGCG) reversed the average Young’s modulus value of H1299-sdCSCs to that of H1299 cells. EGCG treatment inhibited tumour sphere formation and ALDH1A1 and SNAI2 (Slug) expression. AXL receptor tyrosine kinase is highly expressed in H1299-sdCSCs and AXL knockdown with siAXLs significantly reduced tumour sphere formation and ALDH1A1 and SNAI2 (Slug) expression. An AXL-high population of H1299-sdCSCs was similarly reduced by treatment with EGCG and siAXLs. Transplantation of an AXL-high clone isolated from H1299 cells into SCID/Beige mice induced faster development of bigger tumour than bulk H1299 cells, whereas transplantation of the AXL-low clone yielded no tumours. Oral administration of EGCG and green tea extract (GTE) inhibited tumour growth in mice and reduced p-AXL, ALDH1A1, and SLUG in tumours. Thus, EGCG inhibits the stemness and tumourigenicity of human lung cancer cells by inhibiting AXL.
Collapse
Affiliation(s)
- Kozue Namiki
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Pattama Wongsirisin
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Shota Yokoyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Motoi Sato
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.,School of Medical Science, University of Phayao, Phayao, Thailand, 56000
| | - Ryo Sakai
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Keisuke Iida
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.,Molecular Chirality Research Center and Department of Chemistry, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan. .,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.
| |
Collapse
|
26
|
AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18:153. [PMID: 31684958 PMCID: PMC6827209 DOI: 10.1186/s12943-019-1090-3] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023] Open
Abstract
Molecular targeted therapy for cancer has been a research hotspot for decades. AXL is a member of the TAM family with the high-affinity ligand growth arrest-specific protein 6 (GAS6). The Gas6/AXL signalling pathway is associated with tumour cell growth, metastasis, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance, immune regulation and stem cell maintenance. Different therapeutic agents targeting AXL have been developed, typically including small molecule inhibitors, monoclonal antibodies (mAbs), nucleotide aptamers, soluble receptors, and several natural compounds. In this review, we first provide a comprehensive discussion of the structure, function, regulation, and signalling pathways of AXL. Then, we highlight recent strategies for targeting AXL in the treatment of cancer.AXL-targeted drugs, either as single agents or in combination with conventional chemotherapy or other small molecule inhibitors, are likely to improve the survival of many patients. However, future investigations into AXL molecular signalling networks and robust predictive biomarkers are warranted to select patients who could receive clinical benefit and to avoid potential toxicities.
Collapse
|
27
|
Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Mol Cancer 2019; 18:94. [PMID: 31088471 PMCID: PMC6515593 DOI: 10.1186/s12943-019-1022-2] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages are an abundant cell type in the tumor microenvironment. These macrophages serve as a promising target for treatment of cancer due to their roles in promoting cancer progression and simultaneous immunosuppression. The TAM receptors (Tyro3, Axl and MerTK) are promising therapeutic targets on tumor-associated macrophages. The TAM receptors are a family of receptor tyrosine kinases with shared ligands Gas6 and Protein S that skew macrophage polarization towards a pro-tumor M2-like phenotype. In macrophages, the TAM receptors also promote apoptotic cell clearance, a tumor-promoting process called efferocytosis. The TAM receptors bind the "eat-me" signal phosphatidylserine on apoptotic cell membranes using Gas6 and Protein S as bridging ligands. Post-efferocytosis, macrophages are further polarized to a pro-tumor M2-like phenotype and secrete increased levels of immunosuppressive cytokines. Since M2 polarization and efferocytosis are tumor-promoting processes, the TAM receptors on macrophages serve as exciting targets for cancer therapy. Current TAM receptor-directed therapies in preclinical development and clinical trials may have anti-cancer effects though impacting macrophage phenotype and function in addition to the cancer cells.
Collapse
Affiliation(s)
- Kayla V. Myers
- 0000 0001 2171 9311grid.21107.35Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Sarah R. Amend
- 0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Kenneth J. Pienta
- 0000 0001 2171 9311grid.21107.35Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
28
|
Quinolone antibiotic derivatives as new selective Axl kinase inhibitors. Eur J Med Chem 2019; 166:318-327. [DOI: 10.1016/j.ejmech.2019.01.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/27/2019] [Accepted: 01/27/2019] [Indexed: 12/25/2022]
|
29
|
Zhang G, Wang M, Zhao H, Cui W. Function of Axl receptor tyrosine kinase in non-small cell lung cancer. Oncol Lett 2017; 15:2726-2734. [PMID: 29434997 DOI: 10.3892/ol.2017.7694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Axl receptor tyrosine kinase (hereafter Axl) is a member of the tyrosine-protein kinase receptor Tyro3, Axl and proto-oncogene tyrosine-protein kinase Mer family of receptor tyrosine kinases, possessing multiple different functions in normal cells. Axl is overexpressed and activated in numerous different human cancer types, triggering several signaling pathways and enhancing tumor progression. The present review assesses previous studies on the function of Axl in non-small cell lung cancer (NSCLC). Axl is overexpressed in the tumor tissues of a number of patients with NSCLC and is associated with poorer clinical outcomes; it promotes NSCLC tumor growth, invasion/metastasis, drug resistance and the epithelial-mesenchymal transition, thus providing a survival advantage to tumor cells. Therefore, Axl may be a promising target in NSCLC treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Cancer Pathology Research Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Meng Wang
- Department of Oncology, Shandong Jining First People's Hospital, Jining, Shandong 272111, P.R. China
| | - Hongli Zhao
- Department of Gastroenterology, Shandong Control Center for Digestive Diseases, Jining, Shandong 272033, P.R. China
| | - Wen Cui
- Cancer Pathology Research Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
30
|
Wu G, Ma Z, Hu W, Wang D, Gong B, Fan C, Jiang S, Li T, Gao J, Yang Y. Molecular insights of Gas6/TAM in cancer development and therapy. Cell Death Dis 2017; 8:e2700. [PMID: 28333143 PMCID: PMC5386520 DOI: 10.1038/cddis.2017.113] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/09/2017] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
Since growth arrest-specific gene 6 (Gas6) was discovered in 1988, numerous studies have highlighted the role of the Gas6 protein and its receptors Tyro3, Axl and Mer (collectively referred to as TAM), in proliferation, apoptosis, efferocytosis, leukocyte migration, sequestration and platelet aggregation. Gas6 has a critical role in the development of multiple types of cancers, including pancreatic, prostate, oral, ovarian and renal cancers. Acute myelocytic leukaemia (AML) is a Gas6-dependent cancer, and Gas6 expression predicts poor prognosis in AML. Interestingly, Gas6 also has a role in establishing tumour dormancy in the bone marrow microenvironment and in suppressing intestinal tumorigenesis. Numerous studies regarding cancer therapy have targeted Gas6 and TAM receptors with good results. However, some findings have suggested that Gas6 is associated with the development of resistance to cancer therapies. Concerning these significant effects of Gas6 in numerous cancers, we discuss the roles of Gas6 in cancer development in this review. First, we introduce basic knowledge on Gas6 and TAM receptors. Next, we describe and discuss the involvement of Gas6 and TAM receptors in cancers from different organ systems. Finally, we highlight the progress in therapies targeting Gas6 and TAM receptors. This review presents the significant roles of Gas6 in cancers from different systems and may contribute to the continued promotion of Gas6 as a therapeutic target.
Collapse
Affiliation(s)
- Guiling Wu
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Chongxi Fan
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| |
Collapse
|
31
|
Gay CM, Balaji K, Byers LA. Giving AXL the axe: targeting AXL in human malignancy. Br J Cancer 2017; 116:415-423. [PMID: 28072762 PMCID: PMC5318970 DOI: 10.1038/bjc.2016.428] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The receptor tyrosine kinase AXL, activated by a complex interaction between its ligand growth arrest-specific protein 6 and phosphatidylserine, regulates various vital cellular processes, including proliferation, survival, motility, and immunologic response. Although not implicated as an oncogenic driver itself, AXL, a member of the TYRO3, AXL, and MERTK family of receptor tyrosine kinases, is overexpressed in several haematologic and solid malignancies, including acute myeloid leukaemia, non-small cell lung cancer, gastric and colorectal adenocarcinomas, and breast and prostate cancers. In the context of malignancy, evidence suggests that AXL overexpression drives wide-ranging processes, including epithelial to mesenchymal transition, tumour angiogenesis, resistance to chemotherapeutic and targeted agents, and decreased antitumor immune response. As a result, AXL is an attractive candidate not only as a prognostic biomarker in malignancy but also as a target for anticancer therapies. Several AXL inhibitors are currently in preclinical and clinical development. This article reviews the structure, regulation, and function of AXL; the role of AXL in the tumour microenvironment; the development of AXL as a therapeutic target; and areas of ongoing and future investigation.
Collapse
Affiliation(s)
- Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Kavitha Balaji
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
32
|
Davidsen KT, Haaland GS, Lie MK, Lorens JB, Engelsen AST. The Role of Axl Receptor Tyrosine Kinase in Tumor Cell Plasticity and Therapy Resistance. BIOMARKERS OF THE TUMOR MICROENVIRONMENT 2017:351-376. [DOI: 10.1007/978-3-319-39147-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Ahmed L, Nalwoga H, Arnes JB, Wabinga H, Micklem DR, Akslen LA. Increased tumor cell expression of Axl is a marker of aggressive features in breast cancer among African women. APMIS 2015; 123:688-96. [DOI: 10.1111/apm.12403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Lavina Ahmed
- Centre for Cancer Biomarkers CCBIO; Department of Clinical Medicine; University of Bergen; Bergen Norway
- BerGenBio AS; Bergen Norway
| | - Hawa Nalwoga
- Centre for Cancer Biomarkers CCBIO; Department of Clinical Medicine; University of Bergen; Bergen Norway
| | - Jarle B. Arnes
- Department of Pathology; Haukeland University Hospital; Bergen Norway
| | - Henry Wabinga
- Department of Pathology; Makerere University College of Health Sciences; Kampala Uganda
| | | | - Lars A. Akslen
- Centre for Cancer Biomarkers CCBIO; Department of Clinical Medicine; University of Bergen; Bergen Norway
- Department of Pathology; Haukeland University Hospital; Bergen Norway
| |
Collapse
|
34
|
Mir R, Ah I, Javid J, Zuberi M, Guru S, Mirza M, Farooq S, Yadav P, Ray PC, Gupta N, Saxena A. Polymorphism T81C in H-RAS Oncogene Is Associated With Disease Progression in Imatinib (TKI) Treated Chronic Myeloid Leukemia Patients. World J Oncol 2015; 6:321-328. [PMID: 29147425 PMCID: PMC5649720 DOI: 10.14740/wjon912e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 12/30/2022] Open
Abstract
Background Mammalian cells contain three functional RAS proto-oncogenes, known as H-RAS, K-RAS, and N-RAS, which encode small GTP-binding proteins in terms of p21rass. RAS genes have been elucidated as major participants in the development and progression of cancer. A single nucleotide polymorphism (SNP) at H-RAS cDNA position 81 T→C (rs12628) has been found to be associated with the risk of many human cancers like gastrointestinal, oral, colon, bladder and thyroid carcinomas. Therefore, we hypothesized that this polymorphisms in H-RAS could influence susceptibility to chronic myeloid leukemia as well, and we conducted this study to test the hypothesis in Indian population. Method H-RAS polymorphism was studied in 100 chronic myeloid leukemia (CML) patients and 100 healthy controls by restriction fragmentation length polymorphism (RFLP-PCR). Associations between polymorphism and clinicopathological features of CML patients were investigated. Results In CML patients, the TT, TC and CC genotype frequency was 38%, 61% and 1% respectively, compared to 92%, 8% and 0% in healthy controls respectively. Compared to TT genotype, CT was significantly associated with increased risk of CML (odds ratio (OR): 8.4, P < 0.00001). There was a statistically significant correlation of H-RAS polymorphism with phases (P < 0.0003), molecular response (P < 0.0001), hematological response (P < 0.04) and thrombocytopenia (P < 0.003). However, there was no correlation of this polymorphism found with other clinical parameters. Conclusion H-RAS T81C polymorphism was found to be associated with CML risk and prognosis of CML. These results suggest that C heterozygosis may be considered a potential risk factor for CML development in the North Indian population.
Collapse
Affiliation(s)
- Rashid Mir
- Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia.,These authors contributed equally to this paper
| | - Imtiyaz Ah
- Cancer Genetics Lab, Department of Biochemistry and Associated Hospitals, New Delhi, India.,These authors contributed equally to this paper
| | - Jamsheed Javid
- Cancer Genetics Lab, Department of Biochemistry and Associated Hospitals, New Delhi, India
| | - Mariyam Zuberi
- Cancer Genetics Lab, Department of Biochemistry and Associated Hospitals, New Delhi, India
| | - Sameer Guru
- Cancer Genetics Lab, Department of Biochemistry and Associated Hospitals, New Delhi, India
| | - Masroor Mirza
- Cancer Genetics Lab, Department of Biochemistry and Associated Hospitals, New Delhi, India
| | - Shazia Farooq
- Cancer Genetics Lab, Department of Biochemistry and Associated Hospitals, New Delhi, India
| | - Prasant Yadav
- Cancer Genetics Lab, Department of Biochemistry and Associated Hospitals, New Delhi, India
| | - Prakash C Ray
- Cancer Genetics Lab, Department of Biochemistry and Associated Hospitals, New Delhi, India
| | - Naresh Gupta
- Department of Medicine, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Alpana Saxena
- Cancer Genetics Lab, Department of Biochemistry and Associated Hospitals, New Delhi, India
| |
Collapse
|
35
|
Li D, Liu S, Liu R, Park R, Yu H, Krasnoperov V, Gill PS, Li Z, Shan H, Conti PS. Axl-targeted cancer imaging with humanized antibody h173. Mol Imaging Biol 2015; 16:511-8. [PMID: 24424460 DOI: 10.1007/s11307-013-0714-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE The tyrosine kinase receptor Axl is overexpressed in various types of cancer and correlated with cancer malignancy. Selective Axl blockade reduces tumor growth and metastasis. The purpose of this study was to examine whether the humanized anti-Axl antibody humanized 173 (h173) labeled with near-infrared fluorescence (NIRF) dye Cy5.5 could be applied as a molecular imaging probe for NIRF imaging of Axl expression in tumor models. PROCEDURES NIRF dye Cy5.5 was conjugated to h173 or human normal immunoglobulin G (hIgG) control through amino groups. The resulting probes were evaluated in both A549 (Axl positive) and NCI-H249 (Axl negative) lung cancer xenografts through in vivo NIRF imaging. Ex vivo imaging and probe distribution assay were also carried out to confirm the in vivo imaging results. RESULTS After conjugation, binding activity of h173-Cy5.5 was determined to be 97.75 % ± 2.09 % of the unmodified h173. In vitro fluorescence-activated cell sorting (FACS) and fluorescence microscopy analysis validated the specific binding of h173 toward Axl-positive A549 cells. h173-Cy5.5 was then applied to image Axl expression in vivo. In A549 (Axl positive) cancer xenografts, the tumor uptake of h173-Cy5.5 was significantly higher than that of the hIgG-Cy5.5 control (P < 0.05) at late time points (1, 2, 3, 4, and 7 days). On the contrary, in NCI-H249 (Axl negative) cancer xenografts, the tumor uptake of both hIgG-Cy5.5 and h173-Cy5.5 was low and showed no significant difference (P > 0.05) at all time points examined. Ex vivo imaging and immunofluorescence staining analysis further validated the in vivo imaging results. CONCLUSIONS Collectively, all in vitro, in vivo, and ex vivo data suggested that h173-Cy5.5 could serve as a valid probe for Axl-targeted cancer imaging, which could therefore aid in tumor diagnosis, prognosis, and treatment monitoring.
Collapse
Affiliation(s)
- Dan Li
- Molecular Imaging Center, Department of Radiology, University of Southern California, 2250 Alcazar St. CSC103, Los Angeles, CA, 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Collapse
|
37
|
Messoussi A, Peyronnet L, Feneyrolles C, Chevé G, Bougrin K, Yasri A. Structural elucidation of the DFG-Asp in and DFG-Asp out states of TAM kinases and insight into the selectivity of their inhibitors. Molecules 2014; 19:16223-39. [PMID: 25310149 PMCID: PMC6271404 DOI: 10.3390/molecules191016223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 01/24/2023] Open
Abstract
Structural elucidation of the active (DFG-Asp in) and inactive (DFG-Asp out) states of the TAM family of receptor tyrosine kinases is required for future development of TAM inhibitors as drugs. Herein we report a computational study on each of the three TAM members Tyro-3, Axl and Mer. DFG-Asp in and DFG-Asp out homology models of each one were built based on the X-ray structure of c-Met kinase, an enzyme with a closely related sequence. Structural validation and in silico screening enabled identification of critical amino acids for ligand binding within the active site of each DFG-Asp in and DFG-Asp out model. The position and nature of amino acids that differ among Tyro-3, Axl and Mer, and the potential role of these residues in the design of selective TAM ligands, are discussed.
Collapse
Affiliation(s)
- Abdellah Messoussi
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Lucile Peyronnet
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Clémence Feneyrolles
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Gwénaël Chevé
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Université Mohammed V, Faculté des Sciences B.P., 1014 Rabat, Morocco.
| | - Aziz Yasri
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| |
Collapse
|
38
|
Tang H, Yang J, Shen DR, Calambur D, Witmer M, Wu S, Carpenter B, Zhang Y, Gao M, Constantine K, Zhang L, Cvijic ME. High-throughput high-content imaging assays for identification and characterization of selective AXL pathway inhibitors. Assay Drug Dev Technol 2014; 12:80-6. [PMID: 24547742 DOI: 10.1089/adt.2013.540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate a wide range of important biological activities, including cell proliferation, differentiation, migration, and apoptosis. Abnormalities in RTKs are involved in numerous diseases, including cancer and other proliferative disorders. AXL belongs to the TAM (Tyso3, AXL, and Mer) family of RTKs. The AXL signaling pathway represents an attractive target for the treatment of diseases, such as cancer. Using phospho-AKT as readout, a high-throughput 384-well cell-based assay was established in the NCI-H1299 human non-small cell lung carcinoma cell line to evaluate compound potency in inhibiting AXL pathway activation. In addition, a counter screen assay was established in the same cellular background to differentiate AXL kinase inhibitors from AXL receptor antagonists, which block the interaction of AXL and its natural ligand GAS6. These cell-based functional assays are useful tools in the identification and optimization of small molecules and biological reagents for potential therapeutics for the treatment of GAS6/AXL-related diseases.
Collapse
Affiliation(s)
- Huaping Tang
- 1 Department of Leads Discovery and Optimization, Bristol-Myers Squibb , Princeton, New Jersey
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Feneyrolles C, Spenlinhauer A, Guiet L, Fauvel B, Daydé-Cazals B, Warnault P, Chevé G, Yasri A. Axl kinase as a key target for oncology: focus on small molecule inhibitors. Mol Cancer Ther 2014; 13:2141-8. [PMID: 25139999 DOI: 10.1158/1535-7163.mct-13-1083] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are transmembrane receptors that regulate signal transduction in cells. As a member of the TAM (Tyro-3, Axl, Mer) RTK subfamily, Axl regulates key processes such as cell growth, migration, aggregation, and apoptosis through several pathways. Its overexpression/overactivation has been underlined in several conditions, especially cancers, and in both chemotherapy and targeted therapy sensitivity loss. In this review, we propose to highlight the therapeutic implication of Axl, starting with the pathways it regulates, validating its interest as a therapeutic target, and defining the tools available to develop strategies for its inhibition. We especially focus on small molecule inhibitors, their structure, inhibition profile, and development stages.
Collapse
Affiliation(s)
| | | | - Léa Guiet
- OriBase Pharma, Cap Gamma, Montpellier, France
| | | | | | | | | | - Aziz Yasri
- OriBase Pharma, Cap Gamma, Montpellier, France
| |
Collapse
|
40
|
Kim KC, Choi EH, Lee C. Axl receptor tyrosine kinase is a novel target of apigenin for the inhibition of cell proliferation. Int J Mol Med 2014; 34:592-8. [PMID: 24926787 DOI: 10.3892/ijmm.2014.1804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/03/2014] [Indexed: 12/14/2022] Open
Abstract
The Axl receptor tyrosine kinase (RTK), along with Tyro 3 and Mer, belongs to the TAM subfamily that promotes survival, stimulates proliferation and/or inhibits apoptosis. In various types of human cancer, including breast, lung and prostate cancer, Axl expression is increased and correlates with an advanced clinical stage. In this study, we examined whether apigenin has an effect on Axl expression, which in turn can affect cell proliferation. The treatment of the non‑small cell lung cancer (NSCLC) cells, A549 and H460, with apigenin decreased Axl mRNA and protein expression in a dose‑dependent manner. Axl promoter activity was also inhibited by apigenin, indicating that apigenin suppressed Axl expression at the transcriptional level. Upon treatment with apigenin, the viability of both the A549 and H460 cells was gradually decreased and the anti-proliferative effects were further confirmed by the dose‑dependent decrease in the clonogenic ability of the apigenin‑treated cells. Subsequently, we found that the viability and clonogenic ability of the cells treated with apigenin was less or more affected by transfection of the cells with a Axl-expressing plasmid or Axl targeting siRNA, compared to transfection with the empty vector or control siRNA, respectively. In addition, apigenin increased the expression of p21, a cyclin-dependent kinase inhibitor, but reduced the expression of X-linked inhibitor of apoptosis protein (XIAP). These cell cycle arrest and pro-apoptotic effects of apigenin were also attenuated or augmented by the up- or downregulation of Axl expression, respectively, which suggests that Axl is a novel target of apigenin through which it exerts its inhibitory effects on cell proliferation. Taken together, our data indicate that apigenin downregulates Axl expression, which subsequently results in the inhibition of NSCLC cell proliferation through the increase and decrease of p21 and XIAP expression, respectively.
Collapse
Affiliation(s)
- Kyung-Chan Kim
- Department of Internal Medicine, College of Medicine, Catholic University of Daegu, Daegu 705-718, Republic of Korea
| | - Eun-Ha Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | - Chuhee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| |
Collapse
|
41
|
Leconet W, Larbouret C, Chardès T, Thomas G, Neiveyans M, Busson M, Jarlier M, Radosevic-Robin N, Pugnière M, Bernex F, Penault-Llorca F, Pasquet JM, Pèlegrin A, Robert B. Preclinical validation of AXL receptor as a target for antibody-based pancreatic cancer immunotherapy. Oncogene 2013; 33:5405-14. [PMID: 24240689 DOI: 10.1038/onc.2013.487] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/22/2013] [Accepted: 09/20/2013] [Indexed: 01/16/2023]
Abstract
AXL receptor tyrosine kinase (RTK) is implicated in proliferation and invasion of many cancers, particularly in pancreatic ductal adenocarcinoma (PDAC), for which new therapeutic options are urgently required. We investigated whether inhibition of AXL activity by specific monoclonal antibodies (mAbs) is efficient in limiting proliferation and migration of pancreatic cancer cells. Expression of AXL was evaluated by immunohistochemistry in 42 PDAC. The AXL role in oncogenesis was studied using the short hairpin RNA approach in a pancreatic carcinoma cell line. We further generated antihuman AXL mAbs and evaluated their inhibitory effects and the AXL downstream signaling pathways first in vitro, in a panel of pancreatic cancer cell lines and then in vivo, using subcutaneous or orthotopic pancreatic tumor xenografts. AXL receptor was found expressed in 76% (32/42) of PDAC and was predominantly present in invasive cells. The AXL-knockdown Panc-1 cells decreased in vitro cell migration, survival and proliferation, and reduced in vivo tumor growth. Two selected anti-AXL mAbs (D9 and E8), which inhibited phosphorylation of AXL and of its downstream target AKT without affecting growth arrest-specific factor 6 (GAS6) binding, induced downexpression of AXL by internalization, leading to an inhibition of proliferation and migration in the four pancreatic cancer cell lines studied. In vivo, treatment by anti-AXL mAbs significantly reduced growth of both subcutaneous and orthotopic pancreatic tumor xenografts independently of their KRAS mutation status. Our in vitro and preclinical in vivo data demonstrate that anti-human AXL mAbs could represent a new approach to the pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- W Leconet
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - C Larbouret
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - T Chardès
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - G Thomas
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - M Neiveyans
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - M Busson
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - M Jarlier
- Unité de Biostatistiques, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - N Radosevic-Robin
- Département de biopathologie Centre Jean-Perrin 63011 Clermont-Ferrand Cedex 1; ERTICa EA4677, Université d'Auvergne, Clermont-Ferrand, France
| | - M Pugnière
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - F Bernex
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - F Penault-Llorca
- Département de biopathologie Centre Jean-Perrin 63011 Clermont-Ferrand Cedex 1; ERTICa EA4677, Université d'Auvergne, Clermont-Ferrand, France
| | - J-M Pasquet
- INSERM-U876, Hématopoïèse Leucémique et Cible Thérapeutique, Université Victor Ségalen, Laboratoire d'hématologie CHU de Bordeaux, Bordeaux Cedex, France
| | - A Pèlegrin
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - B Robert
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| |
Collapse
|
42
|
Pierce AM, Keating AK. TAM receptor tyrosine kinases: expression, disease and oncogenesis in the central nervous system. Brain Res 2013; 1542:206-20. [PMID: 24184575 DOI: 10.1016/j.brainres.2013.10.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface proteins that tightly regulate a variety of downstream intra-cellular processes; ligand-receptor interactions result in cascades of signaling events leading to growth, proliferation, differentiation and migration. There are 58 described RTKs, which are further categorized into 20 different RTK families. When dysregulated or overexpressed, these RTKs are implicated in disordered growth, development, and oncogenesis. The TAM family of RTKs, consisting of Tyro3, Axl, and MerTK, is prominently expressed during the development and function of the central nervous system (CNS). Aberrant expression and dysregulated activation of TAM family members has been demonstrated in a variety of CNS-related disorders and diseases, including the most common but least treatable brain cancer in children and adults: glioblastoma multiforme.
Collapse
Affiliation(s)
- Angela M Pierce
- University of Colorado School of Medicine, Department of Pediatrics, 12800 E. 19th Avenue, P18-4105, MS 8302 Aurora, CO 80045, USA.
| | - Amy K Keating
- University of Colorado School of Medicine, Department of Pediatrics, 12800 E. 19th Avenue, P18-4105, MS 8302 Aurora, CO 80045, USA.
| |
Collapse
|
43
|
Mishra A, Wang J, Shiozawa Y, McGee S, Kim J, Jung Y, Joseph J, Berry JE, Havens A, Pienta KJ, Taichman RS. Hypoxia stabilizes GAS6/Axl signaling in metastatic prostate cancer. Mol Cancer Res 2012; 10:703-12. [PMID: 22516347 DOI: 10.1158/1541-7786.mcr-11-0569] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase Axl is overexpressed in a variety of cancers and is known to play a role in proliferation and invasion. Previous data from our laboratory indicate that Axl and its ligand growth arrest-specific 6 (GAS6) may play a role in establishing metastatic dormancy in the bone marrow microenvironment. In the current study, we found that Axl is highly expressed in metastatic prostate cancer cell lines PC3 and DU145 and has negligible levels of expression in a nonmetastatic cancer cell line LNCaP. Knockdown of Axl in PC3 and DU145 cells resulted in decreased expression of several mesenchymal markers including Snail, Slug, and N-cadherin, and enhanced expression of the epithelial marker E-cadherin, suggesting that Axl is involved in the epithelial-mesenchymal transition in prostate cancer cells. The Axl-knockdown PC3 and DU145 cells also displayed decreased in vitro migration and invasion. Interestingly, when PC3 and DU145 cells were treated with GAS6, Axl protein levels were downregulated. Moreover, CoCl(2), a hypoxia mimicking agent, prevented GAS6-mediated downregulation of Axl in these cell lines. Immunochemical staining of human prostate cancer tissue microarrays showed that Axl, GAS6, and hypoxia-inducible factor-1α (Hif-1α; indicator of hypoxia) were all coexpressed in prostate cancer and in bone metastases compared with normal tissues. Together, our studies indicate that Axl plays a crucial role in prostate cancer metastasis and that GAS6 regulates the expression of Axl. Importantly, in a hypoxic tumor microenvironment Axl expression is maintained leading to enhanced signaling.
Collapse
Affiliation(s)
- Anjali Mishra
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mollard A, Warner SL, Call LT, Wade ML, Bearss JJ, Verma A, Sharma S, Vankayalapati H, Bearss DJ. Design, Synthesis and Biological Evaluation of a Series of Novel Axl Kinase Inhibitors. ACS Med Chem Lett 2011; 2:907-912. [PMID: 22247788 DOI: 10.1021/ml200198x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The receptor tyrosine kinase AXL has emerged in recent years as an potential oncology target due to its over expression in several types of cancers coupled with its ability to promote tumor growth and metastasis. In order to identify small molecule inhibitors of AXL, we built a homology model of its catalytic domain to virtually screen and identify scaffolds displaying an affinity for AXL. Further computational and structure-based design resulted in the synthesis of a series of 2,4,5-trisubstitued pyrimidines which demonstrated potent inhibition of AXL in vitro (IC(50) 19 nM) and strongly inhibited the growth of several pancreatic cell lines.
Collapse
Affiliation(s)
- Alexis Mollard
- Center for Investigational Therapeutics, Huntsman Cancer Institute, 2000 Circle of Hope, Salt
Lake City, Utah 84112, United States
| | - Steven L. Warner
- Center for Investigational Therapeutics, Huntsman Cancer Institute, 2000 Circle of Hope, Salt
Lake City, Utah 84112, United States
| | - Lee T. Call
- Center for Investigational Therapeutics, Huntsman Cancer Institute, 2000 Circle of Hope, Salt
Lake City, Utah 84112, United States
| | - Mark L. Wade
- Center for Investigational Therapeutics, Huntsman Cancer Institute, 2000 Circle of Hope, Salt
Lake City, Utah 84112, United States
| | - Jared J. Bearss
- Center for Investigational Therapeutics, Huntsman Cancer Institute, 2000 Circle of Hope, Salt
Lake City, Utah 84112, United States
| | - Anupam Verma
- Center for Investigational Therapeutics, Huntsman Cancer Institute, 2000 Circle of Hope, Salt
Lake City, Utah 84112, United States
| | - Sunil Sharma
- Center for Investigational Therapeutics, Huntsman Cancer Institute, 2000 Circle of Hope, Salt
Lake City, Utah 84112, United States
| | - Hariprasad Vankayalapati
- Center for Investigational Therapeutics, Huntsman Cancer Institute, 2000 Circle of Hope, Salt
Lake City, Utah 84112, United States
| | - David J. Bearss
- Center for Investigational Therapeutics, Huntsman Cancer Institute, 2000 Circle of Hope, Salt
Lake City, Utah 84112, United States
| |
Collapse
|
45
|
Abstract
Receptor tyrosine kinases (RTKs) play key roles in the initiation and progression of human skin cancers, yet the importance of some RTKs remains poorly understood. In this issue, Sensi et al. provide new insights into the expression and function of the RTK, Axl, in melanoma. The investigators show that Axl is frequently expressed in melanoma cell lines, particularly mutant NRAS-harboring lines, and that Axl activation by its ligand, Gas6, probably occurs via both autocrine and paracrine mechanisms. Gene signatures from Axl-expressing cell lines are similar to published signatures from poorly differentiated tumors displaying high metastatic potential. Functionally, Axl was required for the invasive and migratory properties of Axl-expressing melanoma cell lines. These data emphasize that targeting the Gas6-Axl signaling axis should be investigated as a strategy to inhibit prometastatic properties in poorly differentiated melanomas.
Collapse
|
46
|
Keating AK, Kim GK, Jones AE, Donson AM, Ware K, Mulcahy JM, Salzberg DB, Foreman NK, Liang X, Thorburn A, Graham DK. Inhibition of Mer and Axl receptor tyrosine kinases in astrocytoma cells leads to increased apoptosis and improved chemosensitivity. Mol Cancer Ther 2010; 9:1298-307. [PMID: 20423999 PMCID: PMC3138539 DOI: 10.1158/1535-7163.mct-09-0707] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astrocytomas account for the majority of malignant brain tumors diagnosed in both adult and pediatric patients. The therapies available to treat these neoplasms are limited, and the prognosis associated with high-grade lesions is extremely poor. Mer (MerTK) and Axl receptor tyrosine kinases (RTK) are expressed at abnormally high levels in a variety of malignancies, and these receptors are known to activate strong antiapoptotic signaling pathways that promote oncogenesis. In this study, we found that Mer and Axl mRNA transcript and protein expression were elevated in astrocytic patient samples and cell lines. shRNA-mediated knockdown of Mer and Axl RTK expression led to an increase in apoptosis in astrocytoma cells. Apoptotic signaling pathways including Akt and extracellular signal-regulated kinase 1/2, which have been shown to be activated in resistant astrocytomas, were downregulated with Mer and Axl inhibition whereas poly(ADP-ribose) polymerase cleavage was increased. Furthermore, Mer and Axl shRNA knockdown led to a profound decrease of astrocytoma cell proliferation in soft agar and a significant increase in chemosensitivity in response to temozolomide, carboplatin, and vincristine treatment. Our results suggest Mer and Axl RTK inhibition as a novel method to improve apoptotic response and chemosensitivity in astrocytoma and provide support for these oncogenes as attractive biological targets for astrocytoma drug development.
Collapse
Affiliation(s)
- Amy K Keating
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pao-Chun L, Chan PM, Chan W, Manser E. Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2: an analysis of ACK1 effects on Axl signaling. J Biol Chem 2009; 284:34954-63. [PMID: 19815557 DOI: 10.1074/jbc.m109.072660] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ACK1 (activated Cdc42-associated kinase 1), a cytoplsmic tyrosine kinase, is implicated in metastatic behavior, cell spreading and migration, and epidermal growth factor receptor (EGFR) signaling. The function of ACK1 in the regulation of receptor tyrosine kinases requires a C-terminal region that demonstrates a significant homology to the EGFR binding domain of MIG6. In this study, we have identified additional receptor tyrosine kinases, including Axl, leukocyte tyrosine kinase, and anaplastic lymphoma kinase, that can bind to the ACK1/MIG6 homology region. Unlike the interaction between MIG6 and EGFR, our data suggest that these receptor tyrosine kinases require the adaptor protein Grb2 for efficient binding, which interacts with highly conserved proline-rich regions that are conserved between ACK1 and MIG6. We have focused on Axl and compared how ACK1/Axl differs from the ACK1/EGFR axis by investigating effects of knockdown of endogenous ACK1. Although EGFR activation promotes ACK1 turnover, Axl activation by GAS6 does not; interestingly, the reciprocal down-regulation of GAS6-stimulated Axl is blocked by removing ACK1. Thus, ACK1 functions in part to control Axl receptor levels. Silencing of ACK1 also leads to diminished ruffling and migration in DU145 and COS7 cells upon GAS6-Axl signaling. The ability of ACK1 to modulate Axl and perhaps anaplastic lymphoma kinase (altered in anaplastic large cell lymphomas) might explain why ACK1 can promote metastatic and transformed behavior in a number of cancers.
Collapse
Affiliation(s)
- Lin Pao-Chun
- sGSK Group, Astar-Neuroscience Research Partnership, and Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | | | | | | |
Collapse
|
48
|
Gustafsson A, Martuszewska D, Johansson M, Ekman C, Hafizi S, Ljungberg B, Dahlbäck B. Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement and survival. Clin Cancer Res 2009; 15:4742-9. [PMID: 19567592 DOI: 10.1158/1078-0432.ccr-08-2514] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Overexpression of the receptor tyrosine kinase Axl is implicated in several cancers. Therefore, we conducted this study to determine the expression of Axl and its ligand Gas6 in various renal cell carcinoma (RCC) types and in oncocytoma. EXPERIMENTAL DESIGN Real-time quantitative reverse transcription-PCR was used to quantify tumor mRNA levels for Axl and Gas6 in a cohort (n = 221) of RCC patients. Serum levels of soluble sAxl and Gas6 proteins were measured using specific ELISA assays (n = 282). The presence of Axl protein in tumor tissue was evaluated by immunohistochemistry (n = 294). Results were correlated to tumor-associated variables, clinical biochemical tests, and patient survival. RESULTS Tumor Axl mRNA levels correlated independently to survival when assessed against tumor stage and grade. In the study group, the median cancer-specific survival of all RCC patients during 307 months of follow-up was 55 months (confidence interval, +/-40.4). The 25% of patients with lowest tumor Axl mRNA levels had significantly better survival than the rest (P = 0.0005), with 70% of the patients still alive at the end of follow-up. In contrast, in patients with medium-high Axl mRNA, only 25% were alive at the end of follow-up. Tumor Gas6 mRNA levels correlated to survival, tumor-associated variables, and disease severity as did serum levels of soluble sAxl and Gas6 protein. However, no correlation between Axl protein in tumor tissue and survival was found. CONCLUSIONS Axl and Gas6 expression in RCC are associated with tumor advancement and patient survival. In particular, low tumor Axl mRNA levels independently correlated with improved survival.
Collapse
Affiliation(s)
- Anna Gustafsson
- Lund University, Department of Laboratory Medicine, Sections for Clinical Chemistry, University Hospital Malmö, Malmö SE-205 02, Sweden
| | | | | | | | | | | | | |
Collapse
|
49
|
Aceves-Luquero CI, Agarwal A, Callejas-Valera JL, Arias-González L, Esparís-Ogando A, del Peso Ovalle L, Bellón-Echeverria I, de la Cruz-Morcillo MA, Galán Moya EM, Gimeno IM, Gómez JC, Deininger MW, Pandiella A, Prieto RS. ERK2, but not ERK1, mediates acquired and "de novo" resistance to imatinib mesylate: implication for CML therapy. PLoS One 2009; 4:e6124. [PMID: 19568437 PMCID: PMC2699476 DOI: 10.1371/journal.pone.0006124] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/29/2009] [Indexed: 11/20/2022] Open
Abstract
Resistance to Imatinib Mesylate (IM) is a major problem in Chronic Myelogenous Leukaemia management. Most of the studies about resistance have focused on point mutations on BCR/ABL. However, other types of resistance that do not imply mutations in BCR/ABL have been also described. In the present report we aim to study the role of several MAPK in IM resistance not associate to BCR/ABL mutations. Therefore we used an experimental system of resistant cell lines generated by co-culturing with IM (K562, Lama 84) as well as primary material from resistant and responder patient without BCR/ABL mutations. Here we demonstrate that Erk5 and p38MAPK signaling pathways are not implicated in the acquired resistance phenotype. However, Erk2, but not Erk1, is critical for the acquired resistance to IM. In fact, Bcr/Abl activates preferentially Erk2 in transient transfection in a dose dependent fashion through the c-Abl part of the chimeric protein. Finally, we present evidences demonstrating how constitutive activation of Erk2 is a de novo mechanism of resistance to IM. In summary our data support the use of therapeutic approaches based on Erk2 inhibition, which could be added to the therapeutic armamentarium to fight CML, especially when IM resistance develops secondary to Erk2 activation.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Benzamides
- Blotting, Western
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Enzyme Activation
- Genes, abl
- Humans
- Imatinib Mesylate
- Immunohistochemistry
- Immunoprecipitation
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Point Mutation
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
| | - Anupriya Agarwal
- Division of Hematology and Medical Oncology, Oregon Health and Science University Cancer Institute, Portland, Oregon, United States of America
| | | | | | | | - Luis del Peso Ovalle
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | - Michael W. Deininger
- Division of Hematology and Medical Oncology, Oregon Health and Science University Cancer Institute, Portland, Oregon, United States of America
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain
| | | |
Collapse
|
50
|
Futaki M, Inokuchi K, Dan K, Nomura T. Activation ofBcr-ablFusion Gene andRasOncogenes in Chronic Myelogenous Leukemia. Leuk Lymphoma 2009; 5:163-9. [DOI: 10.3109/10428199109068121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|