1
|
Zhao P, Gu L, Gao Y, Pan Z, Liu L, Li X, Zhou H, Yu D, Han X, Qian L, Liu GE, Fang L, Wang Z. Young SINEs in pig genomes impact gene regulation, genetic diversity, and complex traits. Commun Biol 2023; 6:894. [PMID: 37652983 PMCID: PMC10471783 DOI: 10.1038/s42003-023-05234-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Transposable elements (TEs) are a major source of genetic polymorphisms and play a role in chromatin architecture, gene regulatory networks, and genomic evolution. However, their functional role in pigs and contributions to complex traits are largely unknown. We created a catalog of TEs (n = 3,087,929) in pigs and found that young SINEs were predominantly silenced by histone modifications, DNA methylation, and decreased accessibility. However, some transcripts from active young SINEs showed high tissue-specificity, as confirmed by analyzing 3570 RNA-seq samples. We also detected 211,067 dimorphic SINEs in 374 individuals, including 340 population-specific ones associated with local adaptation. Mapping these dimorphic SINEs to genome-wide associations of 97 complex traits in pigs, we found 54 candidate genes (e.g., ANK2 and VRTN) that might be mediated by TEs. Our findings highlight the important roles of young SINEs and provide a supplement for genotype-to-phenotype associations and modern breeding in pigs.
Collapse
Affiliation(s)
- Pengju Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Lei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lichun Qian
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Zhengguang Wang
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Riddle MR, Aspiras A, Damen F, McGaugh S, Tabin JA, Tabin CJ. Genetic mapping of metabolic traits in the blind Mexican cavefish reveals sex-dependent quantitative trait loci associated with cave adaptation. BMC Ecol Evol 2021; 21:94. [PMID: 34020589 PMCID: PMC8139031 DOI: 10.1186/s12862-021-01823-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite a longstanding interest in understanding how animals adapt to environments with limited nutrients, we have incomplete knowledge of the genetic basis of metabolic evolution. The Mexican tetra, Astyanax mexicanus, is a species of fish that consists of two morphotypes; eyeless cavefish that have adapted to a low-nutrient cave environment, and ancestral river-dwelling surface fish with abundant access to nutrients. Cavefish have evolved altered blood sugar regulation, starvation tolerance, increased fat accumulation, and superior body condition. To investigate the genetic basis of cavefish metabolic evolution we carried out a quantitative trait loci (QTL) analysis in surface/cave F2 hybrids. We genetically mapped seven metabolism-associated traits in hybrids that were challenged with a nutrient restricted diet. RESULTS We found that female F2 hybrids are bigger than males and have a longer hindgut, bigger liver, and heavier gonad, even after correcting for fish size. Although there is no difference between male and female blood sugar level, we found that high blood sugar is associated with weight gain in females and lower body weight and fat level in males. We identified a significant QTL associated with 24-h-fasting blood glucose level with the same effect in males and females. Differently, we identified sex-independent and sex-dependent QTL associated with fish length, body condition, liver size, hindgut length, and gonad weight. We found that some of the genes within the metabolism QTL display evidence of non-neutral evolution and are likely to be under selection. Furthermore, we report predicted nonsynonymous changes to the cavefish coding sequence of these genes. CONCLUSIONS Our study reveals previously unappreciated genomic regions associated with blood glucose regulation, body condition, gonad size, and internal organ morphology. In addition, we find an interaction between sex and metabolism-related traits in A. mexicanus. We reveal coding changes in genes that are likely under selection in the low-nutrient cave environment, leading to a better understanding of the genetic basis of metabolic evolution.
Collapse
Affiliation(s)
- Misty R Riddle
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Ariel Aspiras
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Fleur Damen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Julius A Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Luo G, Yogeshwar S, Lin L, Mignot EJM. T cell reactivity to regulatory factor X4 in type 1 narcolepsy. Sci Rep 2021; 11:7841. [PMID: 33837283 PMCID: PMC8035403 DOI: 10.1038/s41598-021-87481-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 11/11/2022] Open
Abstract
Type 1 narcolepsy is strongly (98%) associated with human leukocyte antigen (HLA) class II DQA1*01:02/DQB1*06:02 (DQ0602) and highly associated with T cell receptor (TCR) alpha locus polymorphism as well as other immune regulatory loci. Increased incidence of narcolepsy was detected following the 2009 H1N1 pandemic and linked to Pandemrix vaccination, strongly supporting that narcolepsy is an autoimmune disorder. Although recent results suggest CD4+ T cell reactivity to neuropeptide hypocretin/orexin and cross-reactive flu peptide is involved, identification of other autoantigens has remained elusive. Here we study whether autoimmunity directed against Regulatory Factor X4 (RFX4), a protein co-localized with hypocretin, is involved in some cases of narcolepsy. Studying human serum, we found that autoantibodies against RFX4 were rare. Using RFX4 peptides bound to DQ0602 tetramers, antigen RFX4-86, -95, and -60 specific human CD4+ T cells were detected in 4/10 patients and 2 unaffected siblings, but not in others. Following culture with each cognate peptide, enriched autoreactive TCRαβ clones were isolated by single-cell sorting and TCR sequenced. Homologous clones bearing TRBV4-2 and recognizing RFX4-86 in patients and one twin control of patient were identified. These results suggest the involvement of RFX4 CD4+ T cell autoreactivity in some cases of narcolepsy, but also in healthy donors.
Collapse
Affiliation(s)
- Guo Luo
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Selina Yogeshwar
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Biosciences, Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Emmanuel Jean-Marie Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Rad53- and Chk1-Dependent DNA Damage Response Pathways Cooperatively Promote Fungal Pathogenesis and Modulate Antifungal Drug Susceptibility. mBio 2019; 10:mBio.01726-18. [PMID: 30602579 PMCID: PMC6315099 DOI: 10.1128/mbio.01726-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome instability is detrimental for living things because it induces genetic disorder diseases and transfers incorrect genome information to descendants. Therefore, living organisms have evolutionarily conserved signaling networks to sense and repair DNA damage. However, how the DNA damage response pathway is regulated for maintaining the genome integrity of fungal pathogens and how this contributes to their pathogenicity remain elusive. In this study, we investigated the DNA damage response pathway in the basidiomycete pathogen Cryptococcus neoformans, which causes life-threatening meningoencephalitis in immunocompromised individuals, with an average of 223,100 infections leading to 181,100 deaths reported annually. Here, we found that perturbation of Rad53- and Chk1-dependent DNA damage response pathways attenuated the virulence of C. neoformans and increased its susceptibility to certain antifungal drugs, such as amphotericin B and flucytosine. Therefore, our work paves the way to understanding the important role of human fungal DNA damage networks in pathogenesis and antifungal drug susceptibility. Living organisms are constantly exposed to DNA damage stress caused by endogenous and exogenous events. Eukaryotic cells have evolutionarily conserved DNA damage checkpoint surveillance systems. We previously reported that a unique transcription factor, Bdr1, whose expression is strongly induced by the protein kinase Rad53 governs DNA damage responses by controlling the expression of DNA repair genes in the basidiomycetous fungus Cryptococcus neoformans. However, the regulatory mechanism of the Rad53-dependent DNA damage signal cascade and its function in pathogenicity remain unclear. Here, we demonstrate that Rad53 is required for DNA damage response and is phosphorylated by two phosphatidylinositol 3-kinase (PI3K)-like kinases, Tel1 and Mec1, in response to DNA damage stress. Transcriptome analysis revealed that Rad53 regulates the expression of several DNA repair genes in response to gamma radiation. We found that expression of CHK1, another effector kinase involved in the DNA damage response, is regulated by Rad53 and that CHK1 deletion rendered cells highly susceptible to DNA damage stress. Nevertheless, BDR1 expression is regulated by Rad53, but not Chk1, indicating that DNA damage signal cascades mediated by Rad53 and Chk1 exhibit redundant and distinct functions. We found that perturbation of both RAD53 and CHK1 attenuated the virulence of C. neoformans, perhaps by promoting phagosome maturation within macrophage, reducing melanin production, and increasing susceptibility to oxidative stresses. Furthermore, deletion of both RAD53 and CHK1 increased susceptibility to certain antifungal drugs such as amphotericin B. This report provides insight into the regulatory mechanism of fungal DNA damage repair systems and their functional relationship with fungal virulence and antifungal drug susceptibility.
Collapse
|
5
|
Yamane S, Harada N, Inagaki N. Mechanisms of fat-induced gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide secretion from K cells. J Diabetes Investig 2016; 7 Suppl 1:20-6. [PMID: 27186351 PMCID: PMC4854500 DOI: 10.1111/jdi.12467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Gastric inhibitory polypeptide/glucose‐dependent insulinotropic polypeptide (GIP) is one of the incretins, which are gastrointestinal hormones released in response to nutrient ingestion and potentiate glucose‐stimulated insulin secretion. Single fat ingestion stimulates GIP secretion from enteroendocrine K cells; chronic high‐fat diet (HFD) loading enhances GIP secretion and induces obesity in mice in a GIP‐dependent manner. However, the mechanisms of GIP secretion from K cells in response to fat ingestion and GIP hypersecretion in HFD‐induced obesity are not well understood. We generated GIP‐green fluorescent protein knock‐in (GIPgfp/+) mice, in which K cells are labeled by enhanced GIP‐green fluorescent protein. Microarray analysis of isolated K cells from GIPgfp/+ mice showed that both fatty acid‐binding protein 5 and G protein‐coupled receptor 120 are highly expressed in K cells. Single oral administration of fat resulted in significant reduction of GIP secretion in both fatty acid‐binding protein 5‐ and G protein‐coupled receptor 120‐deficient mice, showing that fatty acid‐binding protein 5 and G protein‐coupled receptor 120 are involved in acute fat‐induced GIP secretion. Furthermore, the transcriptional factor, regulatory factor X6 (Rfx6), is highly expressed in K cells. In vitro experiments using the mouse enteroendocrine cell line, STC‐1, showed that GIP messenger ribonucleic acid levels are upregulated by Rfx6. Expression levels of Rfx6 messenger ribonucleic acid as well as that of GIP messenger ribonucleic acid were augmented in the K cells of HFD‐induced obese mice, in which GIP content in the small intestine is increased compared with that in lean mice fed a control diet. These results suggest that Rfx6 is involved in hypersecretion of GIP in HFD‐induced obese conditions by increasing GIP gene expression.
Collapse
Affiliation(s)
- Shunsuke Yamane
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| |
Collapse
|
6
|
Suzuki K, Harada N, Yamane S, Nakamura Y, Sasaki K, Nasteska D, Joo E, Shibue K, Harada T, Hamasaki A, Toyoda K, Nagashima K, Inagaki N. Transcriptional regulatory factor X6 (Rfx6) increases gastric inhibitory polypeptide (GIP) expression in enteroendocrine K-cells and is involved in GIP hypersecretion in high fat diet-induced obesity. J Biol Chem 2013; 288:1929-38. [PMID: 23192339 PMCID: PMC3548501 DOI: 10.1074/jbc.m112.423137] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/28/2012] [Indexed: 11/06/2022] Open
Abstract
Gastric inhibitory polypeptide (GIP) is an incretin released from enteroendocrine K-cells in response to nutrient ingestion. GIP potentiates glucose-stimulated insulin secretion and induces energy accumulation into adipose tissue, resulting in obesity. Plasma GIP levels are reported to be increased in the obese state. However, the molecular mechanisms of GIP secretion and high fat diet (HFD)-induced GIP hypersecretion remain unclear, primarily due to difficulties in separating K-cells from other intestinal epithelial cells in vivo. In this study, GIP-GFP knock-in mice that enable us to visualize K-cells by enhanced GFP were established. Microarray analysis of isolated K-cells from these mice revealed that transcriptional regulatory factor X6 (Rfx6) is expressed exclusively in K-cells. In vitro experiments using the mouse intestinal cell line STC-1 showed that knockdown of Rfx6 decreased mRNA expression, cellular content, and secretion of GIP. Rfx6 bound to the region in the gip promoter that regulates gip promoter activity, and overexpression of Rfx6 increased GIP mRNA expression. HFD induced obesity and GIP hypersecretion in GIP-GFP heterozygous mice in vivo. Immunohistochemical and flow cytometry analysis showed no significant difference in K-cell number between control fat diet-fed (CFD) and HFD-fed mice. However, GIP content in the upper small intestine and GIP mRNA expression in K-cells were significantly increased in HFD-fed mice compared with those in CFD-fed mice. Furthermore, expression levels of Rfx6 mRNA were increased in K-cells of HFD-fed mice. These results suggest that Rfx6 increases GIP expression and content in K-cells and is involved in GIP hypersecretion in HFD-induced obesity.
Collapse
Affiliation(s)
- Kazuyo Suzuki
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Norio Harada
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shunsuke Yamane
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Nakamura
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuki Sasaki
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daniela Nasteska
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Erina Joo
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kimitaka Shibue
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takanari Harada
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiro Hamasaki
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Toyoda
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuaki Nagashima
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- From the Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
Aftab S, Semenec L, Chu JSC, Chen N. Identification and characterization of novel human tissue-specific RFX transcription factors. BMC Evol Biol 2008; 8:226. [PMID: 18673564 PMCID: PMC2533330 DOI: 10.1186/1471-2148-8-226] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 08/01/2008] [Indexed: 02/06/2023] Open
Abstract
Background Five regulatory factor X (RFX) transcription factors (TFs)–RFX1-5–have been previously characterized in the human genome, which have been demonstrated to be critical for development and are associated with an expanding list of serious human disease conditions including major histocompatibility (MHC) class II deficiency and ciliaophathies. Results In this study, we have identified two additional RFX genes–RFX6 and RFX7–in the current human genome sequences. Both RFX6 and RFX7 are demonstrated to be winged-helix TFs and have well conserved RFX DNA binding domains (DBDs), which are also found in winged-helix TFs RFX1-5. Phylogenetic analysis suggests that the RFX family in the human genome has undergone at least three gene duplications in evolution and the seven human RFX genes can be clearly categorized into three subgroups: (1) RFX1-3, (2) RFX4 and RFX6, and (3) RFX5 and RFX7. Our functional genomics analysis suggests that RFX6 and RFX7 have distinct expression profiles. RFX6 is expressed almost exclusively in the pancreatic islets, while RFX7 has high ubiquitous expression in nearly all tissues examined, particularly in various brain tissues. Conclusion The identification and further characterization of these two novel RFX genes hold promise for gaining critical insight into development and many disease conditions in mammals, potentially leading to identification of disease genes and biomarkers.
Collapse
Affiliation(s)
- Syed Aftab
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | | | | | | |
Collapse
|
8
|
Wang KR, Nemoto T, Yokota Y. RFX1 mediates the serum-induced immediate early response of Id2 gene expression. J Biol Chem 2007; 282:26167-77. [PMID: 17630394 DOI: 10.1074/jbc.m703448200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Id2, a negative regulator of basic helix-loop-helix transcription factors, is involved in regulating cell differentiation and proliferation. To obtain insight into the role of Id2 in cell cycle control, we investigated the mechanisms underlying the immediate early response of Id2 expression to serum stimulation in NIH3T3 cells. Luciferase reporter analysis with deletion and point mutants demonstrated the serum response element of Id2 (Id2-SRE) to be a consensus binding site for RFX1 (regulatory factor for X-box 1) present 3.0 kb upstream of the transcription initiation site of Id2. Gel shift and chromatin immunoprecipitation assays confirmed the binding of RFX1 to Id2-SRE in vitro and in vivo, respectively. In both assays, RFX1 binding was observed not only in serum-stimulated cells, but also in serum-starved cells. Knockdown of RFX1 by RNA interference disturbed the immediate early response of Id2 expression in cells and abrogated the Id2-SRE-mediated induction of luciferase activity by serum. These alterations were rescued by the introduction of RNA interference-resistant RFX1 into cells. On the other hand, in the Id2-SRE-mediated reporter assay, RFX1 with an N-terminal deletion abrogated the serum response, whereas RFX1 with a C-terminal deletion enhanced the reporter activity in serum-starved cells. Furthermore, HDAC1 was recruited to Id2-SRE in serum-starved cells. These results demonstrate that RFX1 mediates the immediate early response of the Id2 gene by serum stimulation and suggest that the function of RFX1 is regulated intramolecularly in its suppression in growth-arrested cells. Our results unveil a novel transcriptional control of immediate early gene expression.
Collapse
Affiliation(s)
- Kui-Rong Wang
- Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, University of Fukui, Fukui, Japan
| | | | | |
Collapse
|
9
|
Ma K, Zheng S, Zuo Z. The transcription factor regulatory factor X1 increases the expression of neuronal glutamate transporter type 3. J Biol Chem 2006; 281:21250-21255. [PMID: 16723357 DOI: 10.1074/jbc.m600521200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate transporters (excitatory amino acid transporters, EAAT) play an important role in maintaining extracellular glutamate homeostasis and regulating glutamate neurotransmission. However, very few studies have investigated the regulation of EAAT expression. A binding sequence for the regulatory factor X1 (RFX1) exists in the promoter region of the gene encoding for EAAT3, a neuronal EAAT, but not in the promoter regions of the genes encoding for EAAT1 and EAAT2, two glial EAATs. RFX proteins are transcription factors binding to X-boxes of DNA sequences. Although RFX proteins are necessary for the normal function of sensory neurons in Caenorhabditis elegans, their roles in the mammalian brain are not known. We showed that RFX1 increased EAAT3 expression and activity in C6 glioma cells. RFX1 binding complexes were found in the nuclear extracts of C6 cells. The activity of EAAT3 promoter as measured by luciferase reporter activity was increased by RFX1 in C6 cells and the neuron-like SH-SY5Y cells. However, RFX1 did not change the expression of EAAT2 proteins in the NRK52E cells. RFX1 proteins were expressed in the neurons of rat brain. A high expression level of RFX1 proteins was found in the neurons of cerebral cortex and Purkinje cells. Knockdown of the RFX1 expression by RFX1 antisense oligonucleotides decreased EAAT3 expression in rat cortical neurons in culture. These results suggest that RFX1 enhances the activity of EAAT3 promoter to increase the expression of EAAT3 proteins. This study provides initial evidence for the regulation of gene expression in the nervous cells by RFX1.
Collapse
Affiliation(s)
- Kaiwen Ma
- Department of Anesthesiology and Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Shuqiu Zheng
- Department of Anesthesiology and Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Zhiyi Zuo
- Department of Anesthesiology and Neuroscience, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
10
|
Tramer F, Vetere A, Martinelli M, Paroni F, Marsich E, Boitani C, Sandri G, Panfili E. cAMP-response element modulator-tau activates a distinct promoter element for the expression of the phospholipid hydroperoxide/sperm nucleus glutathione peroxidase gene. Biochem J 2005; 383:179-85. [PMID: 15225122 PMCID: PMC1134057 DOI: 10.1042/bj20040974] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 06/24/2004] [Accepted: 06/30/2004] [Indexed: 11/17/2022]
Abstract
PHGPx (phospholipid hydroperoxide glutathione peroxidase) is a selenoprotein present in at least three isoforms in testis: cytosolic, mitochondrial and nuclear. All of these derive from the same gene and are structurally related with the exception of the snPHGPx (sperm nucleus-specific form), which differs from the others due to the presence of an arginine-rich N-terminus. It has been demonstrated recently that this N-terminus is encoded by an alternative exon located in the first intron of the PHGPx gene. The expression of snPHGPx has been attributed either to an alternative pre-mRNA splicing or to the presence of a distinct promoter region. Nevertheless, the exact molecular mechanism by which the expression of snPHGPx occurs has not been demonstrated so far. Preliminary sequence analysis of the region located upstream of the alternative exon revealed some potential DNA-binding sites, one of which is specific to the binding of CREM (cAMP-response element modulator) transcription factors. By using electrophoretic mobility-shift assays, we demonstrated that both nuclear protein extract from highly purified rat spermatid cells and recombinant CREM-tau protein can specifically bind to this element. Furthermore, we cloned a 1059 bp comprising the intron and the alternative exon for snPHGPx in the pCAT3 reporter vector. By transient transfection experiments, we demonstrated that the expression of the transcription factor CREM-tau can induce the activation of the reporter gene in NIH-3T3 cell line. These results were confirmed by chromatin immunoprecipitation experiments performed on highly purified rat spermatid cells. On the basis of these results, we demonstrate that snPHGPx expression is mediated by the transcription factor CREM-tau, which acts as a cis-acting element localized in the first intron of the PHGPx gene.
Collapse
Affiliation(s)
- Federica Tramer
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Amedeo Vetere
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- To whom correspondence should be addressed (email )
| | - Monica Martinelli
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Federico Paroni
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Eleonora Marsich
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Carla Boitani
- †Department of Histology and Medical Embryology, University of Rome ‘La Sapienza’, Rome, Italy
| | - Gabriella Sandri
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Enrico Panfili
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
11
|
Araki R, Takahashi H, Fukumura R, Sun F, Umeda N, Sujino M, Inouye SIT, Saito T, Abe M. Restricted expression and photic induction of a novel mouse regulatory factor X4 transcript in the suprachiasmatic nucleus. J Biol Chem 2003; 279:10237-42. [PMID: 14701801 DOI: 10.1074/jbc.m312761200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulatory factor X (RFX) family of transcription factors is characterized by a unique and highly conserved 76-amino acid residue DNA-binding domain. Mammals have five RFX genes, but the physiological functions of their products are unknown, with the exception of RFX5. Here a mouse RFX4 transcript was identified that encodes a peptide of 735 amino acids, including the DNA-binding domain. Its expression was localized in the suprachiasmatic nucleus, the central pacemaker site of the circadian clock. Also, light exposure was found to induce its gene expression in a subjective night-specific manner. Polyclonal antibodies were prepared, and an 80-kDa band was detected in the suprachiasmatic nucleus by Western hybridization. A histochemical study showed a localization of the products in the nucleus. This is the first report on mouse RFX4, which contains the RFX DNA-binding motif. Our investigation may provide clues to the physiological function of RFX4.
Collapse
Affiliation(s)
- Ryoko Araki
- Transcriptome Research Center, National Institute of Radiological Sciences, Chiba-shi, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Croce M, De Ambrosis A, Corrias MV, Pistoia V, Occhino M, Meazza R, Giron-Michel J, Azzarone B, Accolla RS, Ferrini S. Different levels of control prevent interferon-gamma-inducible HLA-class II expression in human neuroblastoma cells. Oncogene 2003; 22:7848-57. [PMID: 14586411 DOI: 10.1038/sj.onc.1207054] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The HLA class II expression is controlled by the transcriptional activator CIITA. The transcription of CIITA is controlled by different promoters, among which promoter-IV is inducible by IFN-gamma. We analysed the regulation of HLA class II molecules by IFN-gamma in a large series of human neuroblastoma cell lines. No induction of surface or intracellular HLA class II molecules and of specific mRNA was observed, in all neuroblastomas, with the exception of a nonprototypic cell line, ACN. In a large subset of neuroblastomas IFN-gamma induced expression of CIITA mRNA, derived from promoter-IV, which was not methylated. In contrast, in another subset of neuroblastomas, CIITA was not inducible by IFN-gamma and CIITA promoter-IV was either completely or partially methylated. Interestingly, the use of DNA demethylating agents restored CIITA gene transcriptional activation by IFN-gamma, but not HLA class II expression. The defect of HLA class II was not related to alterations in RFX or NF-Y transcription factors, as suggested by EMSA or RFX gene transfection experiments. In addition, the transfection of a functional CIITA cDNA failed to induce HLA class II expression in typical neuroblastoma cells. Confocal microscopy and Western blot analysis suggested a defective nuclear translocation and/or reduced protein synthesis in CIITA-transfected NB cells. Altogether, these data point to multiple mechanisms preventing HLA class II expression in the neuroblastoma, either involving CIITA promoter-IV silencing, or acting at the CIITA post-transcriptional level.
Collapse
Affiliation(s)
- Michela Croce
- Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hansen S, Holm D, Moeller V, Vitved L, Bendixen C, Skjoedt K, Holmskov U. Genomic and molecular characterization of CL-43 and its proximal promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:1-10. [PMID: 12527419 DOI: 10.1016/s0167-4781(02)00531-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Collectins are part of the innate immune system as they bind nonself glycoconjugates on the surface of microorganisms and inhibit infection by direct neutralization, agglutination or opsonization of the invaders. Conglutinin and CL-43 are serum proteins that have only been found and characterized in Bovidae. We have studied molecular and genomic characteristics of CL-43 to identify polymorphisms that might be associated with disease-susceptible phenotypes or other traits in cattle, and to elucidate how the Bovidae may benefit from possessing additional collectins. Screening a bovine cDNA library resulted in the isolation of two plasmid clones that encoded the entire translated sequence of CL-43. The 5'-untranslated end and start point of transcription were identified by 5'-RACE and showed that the mRNA transcript comprises either 1326 or 1241 nucleotides because of alternative splicing. Both transcripts encode a protein of 321 amino acids including a signal peptide of 20 residues. Characterization of two overlapping genomic lambda phage clones showed that the gene comprised seven exons spanning 8.5 kbp. The CL-43 gene, like the conglutinin gene, was mapped to Bos taurus chromosome 28 at q1.8. The CL-43 promoter has 96% identity with the conglutinin promoter recently described by us, and the assignment of potential cis-regulatory elements shows that several hepatic transcription factors may regulate transcription in the acute phase response and in response to metabolic changes.
Collapse
Affiliation(s)
- Soren Hansen
- Department of Immunology and Microbiology, University of Southern Denmark, Odense
| | | | | | | | | | | | | |
Collapse
|
14
|
Nakayama A, Murakami H, Maeyama N, Yamashiro N, Sakakibara A, Mori N, Takahashi M. Role for RFX transcription factors in non-neuronal cell-specific inactivation of the microtubule-associated protein MAP1A promoter. J Biol Chem 2003; 278:233-40. [PMID: 12411430 DOI: 10.1074/jbc.m209574200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule-associated protein MAP1A is expressed abundantly in mature neurons and is necessary for maintenance of neuronal morphology and localization of some molecules in association with the microtubule-based cytoskeleton. Previous studies indicated that its complementary expression together with MAP1B during nervous system development is regulated at the transcriptional level and that the mouse Map1A gene is transcribed under the control of 5' and intronic promoters. In this study, we investigated the regulatory mechanisms that govern the neuronal cell-specific activation of the MAP1A 5' promoter. We found that two regulatory factor for X box (RFX) binding sites in exon1 of both the mouse and human genes are important for effective transcriptional repression observed only in non-neuronal cells by reporter assays. Among RFX transcription factor family members, RFX1 and 3 mainly interact with repressive elements in vitro. Cotransfection studies indicated that RFX1, which is expressed ubiquitously, down-regulated the MAP1A 5' promoter activity in non-neuronal cells. Unexpectedly, RFX3, which is abundantly expressed in neuronal cells, down-regulated the transactivity as well, when it was expressed in non-neuronal cells. Both RFX1 and 3 did not down-regulate the transactivity in neuronal cells. These results suggest that RFX1 and 3 are pivotal factors in down-regulation of the MAP1A 5' promoter in non-neuronal cells. The cell type-specific down-regulation, however, does not depend simply on which RFX interacts with the elements, but seems to depend on underlying profound mechanisms.
Collapse
Affiliation(s)
- Atsuo Nakayama
- Department of Pathology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Morotomi-Yano K, Yano KI, Saito H, Sun Z, Iwama A, Miki Y. Human regulatory factor X 4 (RFX4) is a testis-specific dimeric DNA-binding protein that cooperates with other human RFX members. J Biol Chem 2002; 277:836-42. [PMID: 11682486 DOI: 10.1074/jbc.m108638200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulatory factor X (RFX) members are evolutionarily conserved transcription factors that share a highly conserved winged helix DNA-binding domain. Human RFX4 has been isolated from breast cancer as a partial cDNA encoding a short RFX-type DNA-binding domain fused to the estrogen receptor, but the entire structure of RFX4 has been unknown. Here, we report the molecular cloning and characterization of human RFX4. RFX4 contains evolutionarily conserved regions, including a RFX-type DNA-binding domain, a dimerization domain, and other conserved regions, and is closely related to RFX1, RFX2, and RFX3 in structure. The expression of RFX4 is restricted to testis. In vitro synthesized RFX4 protein bound to typical RFX binding sites in a sequence-dependent manner. Immunoprecipitation analyses showed that RFX4 interacts physically with RFX2, RFX3, and RFX4 itself but not with RFX1. In contrast to other mammalian RFX members that form dimers, RFX4 is revealed to have no distinct transcriptional activation domains. By using a chimeric protein of RFX1 and RFX4, the C-terminal domain of RFX4 was shown to be a possible transcriptional repression domain. Taken together, these results indicate that RFX4 is the first mammalian member of RFX family without transcriptional activation capacity and might function through selective interactions with other RFX members in transcriptional regulation.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- Department of Molecular Diagnosis, Cancer Institute, Japanese Foundation for Cancer Research, 1-37-1 Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Rakoff-Nahoum S, Chen H, Kraus T, George I, Oei E, Tyorkin M, Salik E, Beuria P, Sperber K. Regulation of class II expression in monocytic cells after HIV-1 infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2331-42. [PMID: 11490022 DOI: 10.4049/jimmunol.167.4.2331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human macrophage hybridoma cells were used to study HLA-DR expression after HIV-1 infection. HLA-DR surface expression was lost 2 wk after infection that was associated with decreased mRNA transcription. Transfecting HLA-DR-alpha and HLA-DR-beta cDNA driven by a nonphysiological CMV promoter restored expression, suggesting that regulatory DNA-binding proteins may be affected by HIV-1 infection. There was no protein binding to conserved class II DNA elements (W/Z/S box, X-1 and X-2 boxes, and Y box) in a HIV-1-infected human macrophage hybridoma cell line, 43(HIV), and in primary monocytes that lost HLA-DR expression after HIV-1(BaL) infection. PCR analysis of the HIV-1-infected cells that lost HLA-DR expression revealed mRNA for W/Z/S (RFX-5), X-1 (RFX-5), X-2 (hX-2BP), and one Y box DNA-binding protein (NF-YB), and CIITA, a non-DNA-binding protein necessary for class II transcription. There was no mRNA for the Y box-binding protein, NF-YA. However, HLA-DR expression could be restored by transfection with NF-YA driven by a CMV promoter, although HLA-DR failed to localize in either the late endosomes, lysosomes, or acidic compartments. This was associated with a loss of class II-associated invariant chain peptide and leupeptin-induced protein in the 43(HIV) cells. To address this further, non-HIV-1-infected 43 cells were infected with vaccinia virus containing HIV-1 gag, nef, pol, and env proteins. HLA-DR failed to localize in neither the late endosomes, lysosomes, or acidic compartments in the vaccinia-infected cells containing HIV-1 env protein. HIV-1 appears to have multiple effects on class II expression in monocytic cells that may contribute to the immune defects seen in HIV-1-infected patients.
Collapse
Affiliation(s)
- S Rakoff-Nahoum
- Division of Clinical Immunology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Singh H. Detection, Purification, and Characterization of c
DNA
Clones Encoding
DNA
‐Binding Proteins. ACTA ACUST UNITED AC 2001; Chapter 12:Unit 12.7. [DOI: 10.1002/0471142727.mb1207s13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Chen L, Smith L, Johnson MR, Wang K, Diasio RB, Smith JB. Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells. J Biol Chem 2000; 275:32227-33. [PMID: 10918054 DOI: 10.1074/jbc.m002645200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treatment of human promyelocytic leukemia cells (HL-60) with phorbol 12-myristate 13-acetate (PMA) is known to decrease c-myc mRNA by blocking transcription elongation at sites near the first exon/intron border. Treatment of HL-60 cells with either PMA or bryostatin 1, which acutely activates protein kinase C (PKC), decreased the levels of myc mRNA and Myc protein. The inhibition of Myc synthesis accounted for the drop in Myc protein, because PMA treatment had no effect on Myc turnover. Treatment with PMA or bryostatin 1 increased nuclear protein binding to MIE1, a c-myc intron 1 element that defines an RFX1-binding X box. RFX1 antiserum supershifted MIE1-protein complexes. Increased MIE1 binding was independent of protein synthesis and abolished by a selective PKC inhibitor, which also prevented the effect of PMA on myc mRNA and protein levels and Myc synthesis. PMA treatment increased RFX1 in the nuclear fraction and decreased it in the cytosol without affecting total RFX1. Transfection of HL-60 cells with myc reporter gene constructs showed that the RFX1-binding X box was required for the down-regulation of reporter gene expression by PMA. These findings suggest that nuclear translocation and binding of RFX1 to the X box cause the down-regulation of myc expression, which follows acute PKC activation in undifferentiated HL-60 cells.
Collapse
Affiliation(s)
- L Chen
- Department of Pharmacology and Toxicology and Comprehensive Cancer Center, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
19
|
Zajac-Kaye M, Ben-Baruch N, Kastanos E, Kaye FJ, Allegra C. Induction of Myc-intron-binding polypeptides MIBP1 and RFX1 during retinoic acid-mediated differentiation of haemopoietic cells. Biochem J 2000; 345 Pt 3:535-41. [PMID: 10642512 PMCID: PMC1220788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Retinoic acid-mediated differentiation of HL60 cells is associated with an alteration of chromatin structure that maps to protein-binding sequences within intron I of the c-myc gene and with down-regulation of c-myc expression. By using HeLa cell extracts, we previously identified two polypeptides, designated MIBP1 (for Myc-intron-binding peptide) and RFX1, that interact in vivo and bind to the intron I element; we showed that tandem repeats of an MIBP1/RFX1-binding site can exhibit silencer activity on a heterologous promoter. Here we demonstrate that p160 MIBP1 and p130 RFX1 are absent from undifferentiated HL60 cells. In addition, we show that treatment with retinoic acid induces both MIBP1 and RFX1 protein, as well as their DNA-binding activity, upon granulocytic differentiation of HL60 cells, with a gel mobility pattern identical to that of HeLa cells. In the absence of p160 MIBP1 and p130 RFX1, we observed that the altered gel mobility-shift pattern detected in undifferentiated HL60 cells reflects the binding of two novel polypeptides, p30 and p97, that can be cross-linked to the same recognition intron sequence. We also show that the time course of MIBP1 and RFX1 induction is inversely correlated with the down-regulation of c-myc levels during the treatment of HL60 cells with retinoic acid.
Collapse
Affiliation(s)
- M Zajac-Kaye
- Department of Developmental Therapeutics, Medicine Branch, Division of Clinical Sciences, National Cancer Institute, Bethesda, MD 20889, USA.
| | | | | | | | | |
Collapse
|
20
|
Inbal B, Shani G, Cohen O, Kissil JL, Kimchi A. Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol 2000; 20:1044-54. [PMID: 10629061 PMCID: PMC85221 DOI: 10.1128/mcb.20.3.1044-1054.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/1999] [Accepted: 11/04/1999] [Indexed: 11/20/2022] Open
Abstract
In this study we describe the identification and structure-function analysis of a novel death-associated protein (DAP) kinase-related protein, DRP-1. DRP-1 is a 42-kDa Ca(2+)/calmodulin (CaM)-regulated serine threonine kinase which shows high degree of homology to DAP kinase. The region of homology spans the catalytic domain and the CaM-regulatory region, whereas the remaining C-terminal part of the protein differs completely from DAP kinase and displays no homology to any known protein. The catalytic domain is also homologous to the recently identified ZIP kinase and to a lesser extent to the catalytic domains of DRAK1 and -2. Thus, DAP kinase DRP-1, ZIP kinase, and DRAK1/2 together form a novel subfamily of serine/threonine kinases. DRP-1 is localized to the cytoplasm, as shown by immunostaining and cellular fractionation assays. It binds to CaM, undergoes autophosphorylation, and phosphorylates an exogenous substrate, the myosin light chain, in a Ca(2+)/CaM-dependent manner. The truncated protein, deleted of the CaM-regulatory domain, was converted into a constitutively active kinase. Ectopically expressed DRP-1 induced apoptosis in various types of cells. Cell killing by DRP-1 was dependent on two features: the status of the catalytic activity, and the presence of the C-terminal 40 amino acids shown to be required for self-dimerization of the kinase. Interestingly, further deletion of the CaM-regulatory region could override the indispensable role of the C-terminal tail in apoptosis and generated a "superkiller" mutant. A dominant negative fragment of DAP kinase encompassing the death domain was found to block apoptosis induced by DRP-1. Conversely, a catalytically inactive mutant of DRP-1, which functioned in a dominant negative manner, was significantly less effective in blocking cell death induced by DAP kinase. Possible functional connections between DAP kinase and DRP-1 are discussed.
Collapse
Affiliation(s)
- B Inbal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
21
|
Brickey WJ, Wright KL, Zhu XS, P.-Y. Ting J. Analysis of the Defect in IFN-γ Induction of MHC Class II Genes in G1B Cells: Identification of a Novel and Functionally Critical Leucine-Rich Motif (62-LYLYLQL-68) in the Regulatory Factor X 5 Transcription Factor. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
MHC class II deficiency found in bare lymphocyte syndrome patients results from the absence or dysfunction of MHC class II transcriptional regulators, such as regulatory factor X (RFX) and class II transactivator (CIITA). Understanding the roles of these factors has been greatly facilitated by the study of genetic defects in cell lines of bare lymphocyte syndrome patients, as well as in cell lines that have been generated by chemical mutagenesis in vitro. The latter group includes MHC class II-deficient lines that are no longer responsive to induction by IFN-γ. Here, we show that the defect in G1B, one such cell line, is attributed to the lack of functional RFX5, the largest subunit of RFX. The RFX5 gene isolated from G1B cells contains two separate single-base pair mutations. One alteration does not exhibit a phenotype, whereas a leucine-to-histidine mutation eliminates DNA-binding and transactivating functions. This mutation lies outside of previously defined functional domains of RFX5 but within an unusual, leucine-rich region (62-LYLYLQL-68). To further investigate the significance of the leucine-rich region, we targeted all neighboring leucine residues for mutagenesis. These mutants were also unable to transactivate a MHC class II reporter gene, confirming that these leucine residues play an essential role in RFX activity and characterize a novel leucine-rich motif.
Collapse
Affiliation(s)
- W. June Brickey
- *UNC Lineberger Comprehensive Cancer Center and Department of Immunology and Microbiology and
| | - Kenneth L. Wright
- *UNC Lineberger Comprehensive Cancer Center and Department of Immunology and Microbiology and
| | - Xin-Sheng Zhu
- †Curriculum in Oral Biology, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599
| | - Jenny P.-Y. Ting
- *UNC Lineberger Comprehensive Cancer Center and Department of Immunology and Microbiology and
| |
Collapse
|
22
|
Katan-Khaykovich Y, Spiegel I, Shaul Y. The dimerization/repression domain of RFX1 is related to a conserved region of its yeast homologues Crt1 and Sak1: a new function for an ancient motif. J Mol Biol 1999; 294:121-37. [PMID: 10556033 DOI: 10.1006/jmbi.1999.3245] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RFX protein family includes members from yeast to humans, which function in various biological systems, and share a DNA-binding domain and a conserved C-terminal region. In the human transcription regulator RFX1, the conserved C terminus is an independent functional domain, which mediates dimerization and transcriptional repression. This dimerization domain has a unique ability to mediate the formation of two alternative homodimeric DNA-protein complexes, the upper of which has been linked to repression. Here, we localize the complex formation capacity to several different RFX1 C-terminal subregions, each of which can function independently to generate the upper complex and repress transcription, thus correlating complex formation with repression. To gain an evolutionary perspective, we have examined whether the different properties of the RFX1 C terminus exist in the two yeast RFX proteins, which are involved in signaling pathways. Replacement of the RFX1 C terminus with those of Sak1 and Crt1, its orthologues from Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively, and analysis of fusions with the Gal4 DNA-binding domain, revealed that the ability to generate the two alternative complexes is conserved in the RFX family, from S. cerevisiae to man. While sharing this unique biochemical property, the three C termini differed from each other in their ability to mediate dimerization and transcriptional repression. In both functions, RFX1, Sak1, and Crt1 showed high capacity, moderate capacity, and no capacity, respectively. This comparative analysis of the RFX proteins, representing different evolutionary stages, suggests a gradual development of the conserved C terminus, from the appearance of the ancestral motif (Crt1), to the later acquisition of the dimerization/repression functions (Sak1), and finally to the enhancement of these functions to generate a domain mediating highly stable protein-protein interactions and potent transcriptional repression (RFX1).
Collapse
Affiliation(s)
- Y Katan-Khaykovich
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
23
|
Yazawa T, Kamma H, Fujiwara M, Matsui M, Horiguchi H, Satoh H, Fujimoto M, Yokoyama K, Ogata T. Lack of class II transactivator causes severe deficiency of HLA-DR expression in small cell lung cancer. J Pathol 1999; 187:191-9. [PMID: 10365094 DOI: 10.1002/(sici)1096-9896(199901)187:2<191::aid-path206>3.0.co;2-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Small cell lung cancer (SCLC) is characteristically not associated with tumour-infiltrating lymphocytes. Since SCLC has been reported to show marked reduction of class I HLA, the reduced expression has been considered a means of escaping anti-cancer immunity. However, HLA-DR expressed in cancer cells is now known to contribute to anti-cancer immunity. To clarify the difference in HLA-DR expression between SCLC and non-small cell lung cancer (NSCLC), and the mechanism, the expression and the cis- and trans-acting factors involved were investigated. HLA-DR was not immunohistochemically detected in any SCLC and could not be induced by interferon gamma (IFN-gamma) in any SCLC cell line, whereas HLA-DR was expressed to varying degrees and was easily induced in NSCLC. SCLC cell lines lacked class II transactivator (CIITA) even after IFN-gamma induction, whereas NSCLC cell lines expressed CIITA. The other class II HLA-specific transcription factors were expressed and genomic DNA of HLA-DR, including the promoter, was conserved well both in SCLC and in NSCLC cell lines. CIITA transfection improved the expression of HLA-DR in SCLC. In conclusion, the lack of CIITA results in severe deficiency of HLA-DR expression in SCLC. Since CIITA has also been reported to induce class I HLA, CIITA transfection might make it possible to establish effective anti-cancer immunotherapy against SCLC through the up-regulation of class I and class II HLA.
Collapse
Affiliation(s)
- T Yazawa
- Department of Pathology, Kensei General Hospital, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gene Therapy for Severe Combined Immunodeficiencies. Gene Ther 1999. [DOI: 10.1007/978-3-0348-7011-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Shen Z, Jacobs-Lorena M. Nuclear factor recognition sites in the gut-specific enhancer region of an Anopheles gambiae trypsin gene. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1998; 28:1007-1012. [PMID: 9887516 DOI: 10.1016/s0965-1748(98)00089-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The major digestive enzyme of Anopheles gambiae is encoded by the trypsin 1 gene. This gene is expressed exclusively in the gut and its mRNA abundance increases after ingestion of a blood meal. Previous experiments with transgenic Drosophila have shown that the enhancer region, from nucleotide -360 bp to -150 bp upstream of the transcription initiation site, is necessary to drive the gut-specific expression of a reporter gene (Skavdis et al., 1996. EMBO J. 15, 344-350). In this study, we defined DNA sequences within this region that are capable of binding nuclear factors from either gut or non-gut tissues. By electrophoretic mobility shift assays, we determined that a gut-specific nuclear factor recognizes and binds to three sites in the enhancer region with a consensus sequence TYCAAGT. Another factor, found in many tissues, recognizes and binds to at least two additional sites with a consensus sequence ACGATA. This study defines for the first time for an insect gut-specific enhancer, specific sequences that interact with nuclear factors.
Collapse
Affiliation(s)
- Z Shen
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4955, USA
| | | |
Collapse
|
26
|
Indovina P, Megiorni F, Ferrante P, Apollonio I, Petronzelli F, Mazzilli MC. Different binding of NF-Y transcriptional factor to DQA1 promoter variants. Hum Immunol 1998; 59:758-67. [PMID: 9831131 DOI: 10.1016/s0198-8859(98)00082-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polymorphism in the HLA-DQA1 promoter (QAP) sequences could influence the gene expression through a differential binding of transcriptional factors. Considering the main role played by the Y-box in the transcription, we focused on the QAP4 variants differing for a G vs A transition from the QAP Y-box consensus sequence. Electrophoretic Mobility Shift Assay using the two Y-box sequences was performed to determine whether this mutation could be reflected in an allele-specific binding of transcriptional factors. Indeed, the NF-Y specific band, recognised by supershift experiments, was clearly observed using the Y-box consensus probe but it was barely detectable with the QAP4 one. On the contrary, two other complexes were found to more strongly interact with QAP4 Y-box in comparison to the consensus sequence. The analysis of a selected panel of HLA homozygous lymphoblastoid cell lines by competitive RT-PCR and by Northern blotting revealed that the DQA1 *0401, *0501,*0601 alleles regulated by the QAP4 promoters were less expressed at the mRNA level than the DQA1* 0201 allele regulated by the QAP2.1 variant. In conclusion, these results show an evident reduction of NF-Y binding to the mutated QAP4 Y-box and a decreased mRNA accumulation of the DQA1 alleles regulated by these variants.
Collapse
Affiliation(s)
- P Indovina
- Department of Experimental Medicine and Pathology, La Sapienza University of Rome, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Katan-Khaykovich Y, Shaul Y. RFX1, a single DNA-binding protein with a split dimerization domain, generates alternative complexes. J Biol Chem 1998; 273:24504-12. [PMID: 9733744 DOI: 10.1074/jbc.273.38.24504] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription of various viral and cellular genes is regulated by palindromic and nonpalindromic DNA sites resembling the EP element of the hepatitis B virus enhancer, which generate similar DNA-protein complexes. The upper EP complex contains homodimers of the transcription regulator RFX1. We show that RFX1 possesses a split, extended dimerization domain composed of several evolutionarily conserved boxes, one of which was previously shown to mediate dimerization. Such an unusually long and complex dimerization domain could potentially serve for generating multiple complexes. In addition to the previously characterized complex, RFX1 generated a novel DNA-protein complex of extremely low mobility, formed only with palindromic DNA sites. Different deletions within the dimerization domain altered the relative abundance of the two complexes, suggesting an interplay between them. Formation of the low mobility complex correlated with transcriptional repression, in that both activities were mediated by several portions of the conserved region. Our results propose a mechanism by which the extended dimerization domain mediates the formation of alternative homodimeric complexes, which differ in the nature of the intersubunit interaction. By participating in different types of interactions, this domain may regulate the relative abundance of the different complexes, thus affecting transcriptional activity.
Collapse
Affiliation(s)
- Y Katan-Khaykovich
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
28
|
Beilue Moore B, Cao ZA, McRae TL, Woo CH, Conley S, Jones PP. The Invariant Chain Gene Intronic Enhancer Shows Homology to Class II Promoter Elements. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Coordinate expression of MHC class II proteins and the class II-associated invariant chain (Ii) is important for proper MHC class II functioning in Ag processing and presentation. The coordinate regulation of these genes results, in part, from the sharing of transcriptional regulatory regions between MHC class II and Ii genes; the Ii has previously been shown to have an upstream enhancer closely related to the essential class II promoter elements. We report here the characterization of a second enhancer in the Ii gene, located within the first intron. This intronic enhancer is contained within a 155-bp region, enhances transcription from the Ii minimal promoter, and also contains elements that are homologous to class II promoter elements X1, X2, and Y boxes.
Collapse
Affiliation(s)
| | - Zhu Alexander Cao
- Department of Biological Sciences, Stanford University, Stanford, CA 94305
| | - Theresa L. McRae
- Department of Biological Sciences, Stanford University, Stanford, CA 94305
| | - Colleen H. Woo
- Department of Biological Sciences, Stanford University, Stanford, CA 94305
| | - Sarah Conley
- Department of Biological Sciences, Stanford University, Stanford, CA 94305
| | - Patricia P. Jones
- Department of Biological Sciences, Stanford University, Stanford, CA 94305
| |
Collapse
|
29
|
Katan Y, Agami R, Shaul Y. The transcriptional activation and repression domains of RFX1, a context-dependent regulator, can mutually neutralize their activities. Nucleic Acids Res 1997; 25:3621-8. [PMID: 9278482 PMCID: PMC146931 DOI: 10.1093/nar/25.18.3621] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
EP is a DNA element found in regulatory regions of viral and cellular genes. While being a key functional element in viral enhancers, EP has no intrinsic enhancer activity but can stimulate or silence transcription in a context-dependent manner. The EP element is bound by RFX1, which belongs to a novel, evolutionarily conserved protein family. In an attempt to decipher the mechanism by which EP regulates transcription, the intrinsic transcriptional activity of RFX1 was investigated. A functional dissection of RFX1, by analysis of deletion mutants and chimeric proteins, identified several regions with independent transcriptional activity. An activation domain containing a glutamine-rich region is found in the N-terminal half of RFX1, while a region with repressor activity overlaps the C-terminal dimerization domain. In RFX1 these activities were mutually neutralized, producing a nearly inactive transcription factor. This neutralization effect was reproduced by fusing RFX1 sequences to a heterologous DNA-binding domain. We propose that relief of self-neutralization may allow RFX1 to act as a dual-function regulator via its activation and repression domains, accounting for the context-dependent activity of EP.
Collapse
Affiliation(s)
- Y Katan
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
30
|
Murphy SP, Gollnick SO, Pazmany T, Maier P, Elkin G, Tomasi TB. Repression of MHC class II gene transcription in trophoblast cells by novel single-stranded DNA binding proteins. Mol Reprod Dev 1997; 47:390-403. [PMID: 9211423 PMCID: PMC2930210 DOI: 10.1002/(sici)1098-2795(199708)47:4<390::aid-mrd5>3.0.co;2-f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The maintenance of the fetus during pregnancy has been attributed to the absence of major histocompatibility complex (MHC) class II antigens on fetal trophoblastic cells that make contact with the maternal immune system. However, the mechanism(s) by which class II genes are regulated in trophoblast cells is unclear. We have identified a negative regulatory element (IA alpha NRE) in the promoter of the mouse class II gene IA alpha that represses IA alpha transcription in trophoblast cells. IA alpha NRE, located from-839 to -828, binds transacting factors from rat, mouse and human trophoblast cells, but not from 18 other cell lines tested. These results indicate that IA alpha NRE binding proteins (IA alpha NRE BPs) are conserved in species with hemochordial placentas, and suggest that IA alpha NRE binding activity is restricted primarily to trophoblast cells. Interestingly, the IA alpha NRE BPs bind to the IA alpha NRE antisense strand in a sequence-specific manner. IA alpha NRE represses transcription from the IA alpha promoter in a position-dependent manner, and has a minor down-regulatory effect on the activity of the SV40 promoter/enhancer. Our results demonstrate that MHC class II gene transcription is repressed in fetal trophoblast cells by sequence-specific, single-stranded DNA binding proteins, and suggest a possible mechanism by which the conceptus is protected from immune rejection during pregnancy.
Collapse
Affiliation(s)
- S P Murphy
- Department of Molecular Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
31
|
Scholl T, Mahanta SK, Strominger JL. Specific complex formation between the type II bare lymphocyte syndrome-associated transactivators CIITA and RFX5. Proc Natl Acad Sci U S A 1997; 94:6330-4. [PMID: 9177217 PMCID: PMC21049 DOI: 10.1073/pnas.94.12.6330] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two of the genes defective in the five complementation groups identified in the class II-negative bare lymphocyte syndrome or corresponding laboratory mutants have been cloned. One gene encodes a protein, RFX5, that is a member of the RFX family of DNA binding proteins. The other, CIITA, encodes a large protein with a defined acidic transcriptional activation domain; this protein does not interact with DNA. Expression plasmids encoding regions of RFX5 fused to the GAL4 DNA binding domain activated transcription from a reporter construct containing GAL4 sites in a cotransfection assay in the Raji human B cell line. However, these plasmids produced transcriptional activity in HeLa cells only in conjunction with interferon gamma stimulation, a condition in which expression of both CIITA and class II major histocompatibility complex surface proteins are induced. Furthermore, these plasmids were not active in RJ2.2.5, an in vitro mutagenized derivative of Raji in which both copies of CIITA are defective. Transcriptional activation by the RFX5 fusion protein could be restored in RJ2.2.5 by cotransfection with a CIITA expression plasmid. Finally, a direct interaction between RFX5 and CIITA was detected with the yeast two-hybrid and far-Western blot assays. Thus, RFX5 can activate transcription only in cooperation with CIITA. RFX5 and CIITA associate to form a complex capable of activating transcription from class II major histocompatibility complex promoters. In this complex, promoter specificity is determined by the DNA binding domain of RFX5 and the general transcription apparatus is recruited by the acidic activation domain of CIITA.
Collapse
Affiliation(s)
- T Scholl
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
32
|
Lim CS, Jabrane-Ferrat N, Fontes JD, Okamoto H, Garovoy MR, Peterlin BM, Hunt CA. Sequence-independent inhibition of RNA transcription by DNA dumbbells and other decoys. Nucleic Acids Res 1997; 25:575-81. [PMID: 9016598 PMCID: PMC146464 DOI: 10.1093/nar/25.3.575] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DNA dumbbells are stable, short segments of double-stranded DNA with closed nucleotide loops on each end, conferring resistance to exonucleases. Dumbbells may be designed to interact with transcription factors in a sequence-specific manner. The internal based paired sequence of DNA dumbbells in this study contains the X-box, a positive regulatory motif found in all MHC class II DRA promoters. In electrophoretic mobility shift assays (EMSAs), dumbbells and other oligonucleotides ('decoys') with the core X-box sequence were found to compete with the native strand for binding to X-box binding proteins (including RFX1). However, only the X-box dumbbell was capable of forming detectable complexes with such proteins using EMSA. In a model cell system, dumbbells were tested for their ability to block RFX1VP16 activation of a plasmid containing multiple repeats of the X-box linked to the CAT gene. While it appeared that dumbbells could block this activation, the effect was non-specific. This and further evidence suggests an inhibition of transcription, most likely via an interaction with the general transcriptional machinery.
Collapse
Affiliation(s)
- C S Lim
- Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94143-0446, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Jabrane-Ferrat N, Fontes JD, Boss JM, Peterlin BM. Complex architecture of major histocompatibility complex class II promoters: reiterated motifs and conserved protein-protein interactions. Mol Cell Biol 1996; 16:4683-90. [PMID: 8756625 PMCID: PMC231468 DOI: 10.1128/mcb.16.9.4683] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The S box (also known as at the H, W, or Z box) is the 5'-most element of the conserved upstream sequences in promoters of major histocompatibility complex class II genes. It is important for their B-cell-specific and interferon gamma-inducible expression. In this study, we demonstrate that the S box represents a duplication of the downstream X box. First, RFX, which is composed of the RFX5-p36 heterodimer that binds to the X box, also binds to the S box and its 5'-flanking sequence. Second, NF-Y, which binds to the Y box and increases interactions between RFX and the X box, also increases the binding of RFX to the S box. Third, RFXs bound to S and X boxes interact with each other in a spatially constrained manner. Finally, we confirmed these protein-protein and protein-DNA interactions by expressing a hybrid RFX5-VP16 protein in cells. We conclude that RFX binds to S and X boxes and that complex interactions between RFX and NF-Y direct B-cell-specific and interferon gamma-inducible expression or major histocompatibility complex class II genes.
Collapse
Affiliation(s)
- N Jabrane-Ferrat
- Howard Hughes Medical Institute, University of California San Francisco, 94143, USA
| | | | | | | |
Collapse
|
34
|
Blake M, Niklinski J, Zajac-Kaye M. Interactions of the transcription factors MIBP1 and RFX1 with the EP element of the hepatitis B virus enhancer. J Virol 1996; 70:6060-6. [PMID: 8709229 PMCID: PMC190627 DOI: 10.1128/jvi.70.9.6060-6066.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We previously demonstrated that MIBP1 and RFX1 polypeptides associate in vivo to form a complex that binds to the MIF-1 element in the c-myc gene and the major histocompatibility complex class II X-box recognition sequence. We now show that the EP element, a key regulatory sequence within hepatitis B virus enhancer I, also associates with MIBP1 and RFX1. Using polyclonal antisera directed against either oligonucleotide-purified MIBP1 or a peptide derived from the major histocompatibility complex class II promoter-binding protein RFX1, we showed that MIBP1 and RFX1 are both present in the DNA-protein complexes at the EP site. In addition, while the EP element can act cooperatively with several adjacent elements to transactivate hepatitis B virus expression, we demonstrated that the EP site alone can repress transcription of simian virus 40 promoter in a position- and orientation-independent manner, suggesting a silencer function in hepatocarcinoma cells.
Collapse
Affiliation(s)
- M Blake
- Laboratory of Biological Chemistry, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
35
|
Emery P, Strubin M, Hofmann K, Bucher P, Mach B, Reith W. A consensus motif in the RFX DNA binding domain and binding domain mutants with altered specificity. Mol Cell Biol 1996; 16:4486-94. [PMID: 8754849 PMCID: PMC231447 DOI: 10.1128/mcb.16.8.4486] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The RFX DNA binding domain is a novel motif that has been conserved in a growing number of dimeric DNA-binding proteins, having diverse regulatory functions, in eukaryotic organisms ranging from yeasts to humans. To characterize this novel motif, we have performed a detailed dissection of the site-specific DNA binding activity of RFX1, a prototypical member of the RFX family. First, we have performed a site selection procedure to define the consensus binding site of RFX1. Second, we have developed a new mutagenesis-selection procedure to derive a precise consensus motif, and to test the accuracy of a secondary structure prediction, for the RFX domain. Third, a modification of this procedure has allowed us to isolate altered-specificity RFX1 mutants. These results should facilitate the identification both of additional candidate genes controlled by RFX1 and of new members of the RFX family. Moreover, the altered-specificity RFX1 mutants represent valuable tools that will permit the function of RFX1 to be analyzed in vivo without interference from the ubiquitously expressed endogenous protein. Finally, the simplicity, efficiency, and versatility of the selection procedure we have developed make it of general value for the determination of consensus motifs, and for the isolation of mutants exhibiting altered functional properties, for large protein domains involved in protein-DNA as well as protein-protein interactions.
Collapse
Affiliation(s)
- P Emery
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Weinberg KI, Kohn DB. GENE THERAPY FOR CONGENITAL IMMUNODEFICIENCY DISEASES. Radiol Clin North Am 1996. [DOI: 10.1016/s0033-8389(22)00221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
|
38
|
Celada A, Gil P, McKercher SR, Maki RA. Identification of a transcription factor that binds to the S box of the I-A beta gene of the major histocompatibility complex. Biochem J 1996; 313 ( Pt 3):737-44. [PMID: 8611149 PMCID: PMC1216972 DOI: 10.1042/bj3130737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Class II genes of the MHC show a striking homology upstream of the transcription start site that is composed of three conserved sequences (S, X and Y boxes, each separated by 15-20 bp). The presence of the S-box sequence in the mouse MHC class II gene I-A Beta was examined for its influence on the expression of this gene. Deletion or mutation of the S box decreased the induction of chloramphenicol acetyltransferase (CAT) activity in B lymphocytes by 32%. In macrophages, deletion or mutation of the S box abolished interferon-gamma (IFN-gamma) inducibility of CAT activity. Using a gel-retardation assay, we have identified a nuclear factor whose binding site overlaps the 7-mer conserved sequence of the S box. This factor is present in lymphocytes, macrophages, mastocytes and fibroblasts. Surprisingly, binding of this nuclear factor to DNA was induced by IFN-gamma in bone-marrow-derived macrophages, but not in macrophage-like cell lines. The binding site for this factor was defined by DNase I footprinting and partially purified by using an affinity column containing double-stranded oligonucleotides containing a sequence of the S box. A prominent protein of 43 kDa was found that bound specifically to the S-box sequence.
Collapse
Affiliation(s)
- A Celada
- Department de Fisiologia (Immunologia), Facultad de Biologia, Universtat de Barcelona, Spain
| | | | | | | |
Collapse
|
39
|
Kalvakolanu DV, Borden EC. An overview of the interferon system: signal transduction and mechanisms of action. Cancer Invest 1996; 14:25-53. [PMID: 8597888 DOI: 10.3109/07357909609018435] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D V Kalvakolanu
- Department of Microbology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
40
|
Lin YH, Shin EJ, Campbell MJ, Niederhuber JE. Transcription of the blk gene in human B lymphocytes is controlled by two promoters. J Biol Chem 1995; 270:25968-75. [PMID: 7592787 DOI: 10.1074/jbc.270.43.25968] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genomic DNA containing the first exon and 5'-flanking region of the human protein tyrosine kinase, blk, was isolated. Sequence analysis identified a TG repeat element in this region with enhancer activity, but no TATA or CCAAT sequences were found. Two blk transcripts of 2.2 and 2.5 kilobases were identified in various B-cell lines by Northern blot analyses, and primer extension experiments demonstrated two clusters of multiple transcription start sites. Subsequent promoter analyses by transient transfection assays with a reporter gene identified two promoter elements in the human blk gene. Promoter P1 contains sequences that have been shown to regulate the expression of immunoglobulin genes and promoter P2 contains elements that are highly conserved in the promoter of major histocompatibility complex class II genes, as well as a B-cell-specific activator protein- (BSAP) binding site. Electrophoretic mobility shift assays demonstrated that the binding of a protein to the BSAP-binding site was correlated with the presence of the 2.5-kilobase blk transcript. These data suggest that the two human blk RNAs arise from the transcription of the blk gene by two distinct promoters and that these promoters may be subject to regulation by different trans-acting factors.
Collapse
Affiliation(s)
- Y H Lin
- Department of Surgery, Stanford University School of Medicine, California 94305-5408, USA
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- F S Rosen
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
42
|
Abdulkadir SA, Krishna S, Thanos D, Maniatis T, Strominger JL, Ono SJ. Functional roles of the transcription factor Oct-2A and the high mobility group protein I/Y in HLA-DRA gene expression. J Exp Med 1995; 182:487-500. [PMID: 7629508 PMCID: PMC2192141 DOI: 10.1084/jem.182.2.487] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The class II major histocompatibility complex gene HLA-DRA is expressed in B cells, activated T lymphocytes, and in antigen-presenting cells. In addition, HLA-DRA gene expression is inducible in a variety of cell types by interferon-gamma (IFN-gamma). Here we show that the lymphoid-specific transcription factor Oct-2A plays a critical role in HLA-DRA gene expression in class II-positive B cell lines, and that the high mobility group protein (HMG) I/Y binds to multiple sites within the DRA promoter, including the Oct-2A binding site. Coexpression of HMG I/Y and Oct-2 in cell lines lacking Oct-2 results in high levels of HLA-DRA gene expression, and in vitro DNA-binding studies reveal that HMG I/Y stimulates Oct-2A binding to the HLA-DRA promoter. Thus, Oct-2A and HMG I/Y may synergize to activate HLA-DRA expression in B cells. By contrast, Oct-2A is not involved in the IFN-gamma induction of the HLA-DRA gene in HeLa cells, but antisense HMG I/Y dramatically decreases the level of induction. We conclude that distinct sets of transcription factors are involved in the two modes of HLA-DRA expression, and that HMG I/Y may be important for B cell-specific expression, and is essential for IFN-gamma induction.
Collapse
Affiliation(s)
- S A Abdulkadir
- Department of Medicine, Lucille P. Markey Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore 21224, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sartoris S, Accolla RS. Transcriptional regulation of MHC class II genes. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1995; 25:71-8. [PMID: 7663008 DOI: 10.1007/bf02592360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
MHC class II molecules play a fundamental role in the homeostasis of the immune response, functioning as receptors for antigenic peptides to be presented to regulatory T cells. Both quantitative and qualitative alterations in the expression of these molecules on the cell surface dramatically affect the onset of the immune response, and may be the basis of a wide variety of disease states, such as autoimmunity, immunodeficiencies, and cancer. Most regulation of MHC class II molecule expression is under the control of transcription mechanisms which are both cell type and development specific. In the last few years classical genetics together with molecular biology have greatly contributed to the widening of our knowledge on the regulatory mechanisms operating in the control of class II gene expression. This review deals with the latest developments in this fundamental area of immunology.
Collapse
Affiliation(s)
- S Sartoris
- Istituto di Immunologia e Malattie Infettive, Università di Verona, Policlinico di Borgo Roma, Italy
| | | |
Collapse
|
44
|
Reinhold W, Emens L, Itkes A, Blake M, Ichinose I, Zajac-Kaye M. The myc intron-binding polypeptide associates with RFX1 in vivo and binds to the major histocompatibility complex class II promoter region, to the hepatitis B virus enhancer, and to regulatory regions of several distinct viral genes. Mol Cell Biol 1995; 15:3041-8. [PMID: 7760800 PMCID: PMC230535 DOI: 10.1128/mcb.15.6.3041] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We demonstrated that MIF-1, identified initially as a binding activity that associated with the intron I element of the c-myc gene, consists of two polypeptides, the myc intron-binding peptide (MIBP1) and the major histocompatibility class II promoter-binding protein, RFX1. Using a polyclonal antiserum directed against either oligonucleotide affinity-purified MIBP1 or a peptide derived from RFX1, we showed that MIBP1 and RFX1 are distinct molecules that associate in vivo and are both present in DNA-protein complexes at the c-myc (MIF-1) and major histocompatibility complex class II (RFX1) binding sites. We have also found that MIBP1 and RFX1 bind to a regulatory site (termed EP) required for enhancer activity of hepatitis B virus. In addition, we have identified MIF-1-like sequences within regulatory regions of several other viral genes and have shown that MIBP1 binds to these sites in cytomegalovirus, Epstein-Barr virus, and polyomavirus. We have also demonstrated that the MIF-1 and EP elements can function as silencers in the hepatocarcinoma HepG2 and the cervical carcinoma HeLa cell lines. These findings indicate that MIBP1 and EP/RFX1 can associate in vivo and may regulate the expression of several distinct cellular and viral genes.
Collapse
Affiliation(s)
- W Reinhold
- Laboratory of Biological Chemistry, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Steimle V, Durand B, Barras E, Zufferey M, Hadam MR, Mach B, Reith W. A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome). Genes Dev 1995; 9:1021-32. [PMID: 7744245 DOI: 10.1101/gad.9.9.1021] [Citation(s) in RCA: 260] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Regulation of MHC class II gene expression is an essential aspect of the control of the immune response. Primary MHC class II deficiency is a genetically heterogeneous disease of gene regulation that offers the unique opportunity of a genetic approach for the identification of the functionally relevant regulatory genes and factors. Most patients exhibit a characteristic defect in the binding of a nuclear complex, RFX, to the X box motif of MHC class II promoters. Genetic complementation of a B-lymphocyte cell line from such a patient with a cDNA expression library has allowed us to isolate RFX5, the regulatory gene responsible for the MHC class II deficiency. This gene encodes a novel DNA-binding protein that is indeed a subunit of the RFX complex. Mutations in the RFX5 gene have been characterized in two patients. Transfection of the patient's cells with the RFX5 cDNA repairs the binding defect and fully restores expression of all the endogenous MHC class II genes in vivo.
Collapse
Affiliation(s)
- V Steimle
- Jeantet Laboratory of Molecular Genetics, Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | |
Collapse
|
46
|
Ono SJ, Song Z. Mapping of the interaction site of the defective transcription factor in the class II major histocompatibility complex mutant cell line clone-13 to the divergent X2-box. J Biol Chem 1995; 270:6396-402. [PMID: 7890777 DOI: 10.1074/jbc.270.11.6396] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously described a mutant B lymphoblastoid cell line, Clone-13, that expresses HLA-DQ in the absence of HLA-DR and -DP. Several criteria indicated that the defect in this cell line influences the activity of an isotype-specific transcription factor. Indeed, transient transfection of HLA-DRA and DQB reporter constructs indicated that the affected factor operates via cis-elements located between -141 base pairs and the transcription initiation site. A series of hybrid DRA/DQB reporter constructs was generated to further map the relevant cis-elements in this system. Insertion of oligonucleotides spanning the DQB X-box (but not the DQB-W region or the DQB Y-box) upstream of -141 in a DRA reporter plasmid rescued expression to nearly wild-type levels. Substitution promoters were then generated where the entire X-box, or only the X1- or X2-boxes of HLA-DRA were replaced with the analogous regions of HLA-DQB. The DQB X2-box was able to restore expression to the silent DRA reporter construct. Moreover, replacement of the DQB X2-box with the DRA X2-box markedly diminished the activity of the DQB promoter in the mutant cell. None of the hybrid reporter constructs were defective when transfected into the wild-type, HLA-DR/-DQ positive parental cell line, Jijoye. These studies suggest that the divergent X2-box of the class II major histocompatibility complex promoters plays an important role in influencing differential expression of the human class II isotypes.
Collapse
Affiliation(s)
- S J Ono
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | | |
Collapse
|
47
|
Wu SY, McLeod M. The sak1+ gene of Schizosaccharomyces pombe encodes an RFX family DNA-binding protein that positively regulates cyclic AMP-dependent protein kinase-mediated exit from the mitotic cell cycle. Mol Cell Biol 1995; 15:1479-88. [PMID: 7862141 PMCID: PMC230372 DOI: 10.1128/mcb.15.3.1479] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Schizosaccharomyces pombe, meiosis is initiated by conditions of nutrient deprivation. Mutations in genes encoding elements of the cyclic AMP-dependent protein kinase (cAPK) pathway interfere with meiosis. Loss-of-function alleles of genes that stimulate the activity of cAPK allow cells to bypass the normal requirement of starvation for conjugation and meiosis. Alternatively, loss-of-function alleles of genes that inhibit cAPK lead to the inability to undergo sexual differentiation. The cgs1+ gene encodes the regulatory subunit of cAPK, and the cgs2+ gene encodes a cyclic AMP phosphodiesterase. Thus, both genes encode proteins which negatively regulate the activity of cAPK. Loss of either cgs1 or cgs2 prevents haploid cells from conjugating and diploid cells from undergoing meiosis. In addition to these defects, cells are unable to enter stationary phase. We describe a novel gene, sak1+, which when present on a plasmid overcomes the aberrant phenotypes associated with unregulated cAPK activity. Genetic analysis of sak1+ (suppressor of A-kinase) reveals that it functions downstream of cyclic AMP-dependent protein kinase to allow cells to exist the mitotic cycle and enter either stationary phase or the pathway leading to sexual differentiation. The sak1+ gene is essential for cell viability, and a null allele causes multiple defects in cell morphology and nuclear division. Thus, sak1+ is an important regulatory element in the life cycle of S. pombe. Sequence analysis shows that the predicted product of the sak1+ gene is an 87-kDa protein which shares homology to the RFX family of DNA-binding proteins identified in humans and mice. One member of this family, RFX1, is a transcription factor for a variety of viral and cellular genes.
Collapse
Affiliation(s)
- S Y Wu
- State University of New York Health Science Center at Brooklyn, 11203
| | | |
Collapse
|
48
|
Itoh-Lindstrom Y, Peterlin BM, Ting JP. Affinity enrichment and functional characterization of TRAX1, a novel transcription activator and X1-sequence-binding protein of HLA-DRA. Mol Cell Biol 1995; 15:282-9. [PMID: 7799935 PMCID: PMC231952 DOI: 10.1128/mcb.15.1.282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The promoters of all class II major histocompatibility (MHC) genes contain a positive regulatory motif, the X element. The DNA-binding proteins specific for this element are presumed to play a critical role in gene expression, although there is a paucity of functional studies supporting this role. In this study, the X-box-binding proteins of HLA-DRA were affinity purified from HeLa nuclear extracts. Fractions 46 to 48 contained an X-box-binding activity and were determined by electrophoretic mobility shift assays to be specific for the X1 element. This X1 sequence-binding-protein, transcriptional activator X1 (TRAX1), was shown to be a specific transcriptional activator of the HLA-DRA promoter in an in vitro transcription assay. By UV cross-linking analysis, the approximate molecular mass of TRAX1 including the bound DNA was determined to be 40 kDa. When the TRAX1 complex was incubated with antibodies against a known recombinant X-box-binding protein, RFX1, and tested in electrophoretic mobility shift assays, TRAX1 was neither shifted nor blocked by the antibody. Further analysis with methylation interference showed that TRAX1 bound to the 5' end of the X1 sequence at -109 and -108 and created hypersensitive sites at -114, -113, and -97. This methylation interference pattern is distinct from those of the known X1-binding proteins RFX1, RFX, NF-Xc, and NF-X. Taken together, our results indicate that TRAX1 is a novel X1-sequence-binding protein and transcription activator of HLA-DRA.
Collapse
Affiliation(s)
- Y Itoh-Lindstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295
| | | | | |
Collapse
|
49
|
A factor that regulates the class II major histocompatibility complex gene DPA is a member of a subfamily of zinc finger proteins that includes a Drosophila developmental control protein. Mol Cell Biol 1994. [PMID: 7969177 DOI: 10.1128/mcb.14.12.8438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel DNA sequence element termed the J element involved in the regulated expression of class II major histocompatibility complex genes was recently described. To study this element and its role in class II gene regulation further, a cDNA library was screened with oligonucleotide probes containing both the S element and the nearby J element of the human DPA gene. Several DNA clones were obtained by this procedure, one of which, clone 18, is reported and characterized here. It encodes a protein predicted to contain 688 amino acid residues, including 11 zinc finger motifs of the C2H2 type in the C-terminal region, that are Krüppel-like in the conservation of the H/C link sequence connecting them. The 160 N-terminal amino acids in the nonfinger region of clone 18 are highly homologous with similar regions of several other human, mouse, and Drosophila sequences, defining a subfamily of Krüppel-like zinc finger proteins termed TAB (tramtrack [ttk]-associated box) here. One of the Drosophila sequences, ttk, is a developmental control gene, while a second does not contain a zinc finger region but encodes a structure important in oocyte development. An acidic activation domain is located between the N-terminal conserved region of clone 18 and its zinc fingers. This protein appears to require both the S and J elements, which are separated by 10 bp for optimal binding. Antisense cDNA to clone 18 inhibited the expression of a reporter construct containing the DPA promoter, indicating its functional importance in the expression of this class II gene.
Collapse
|
50
|
Sugawara M, Scholl T, Ponath PD, Strominger JL. A factor that regulates the class II major histocompatibility complex gene DPA is a member of a subfamily of zinc finger proteins that includes a Drosophila developmental control protein. Mol Cell Biol 1994; 14:8438-50. [PMID: 7969177 PMCID: PMC359383 DOI: 10.1128/mcb.14.12.8438-8450.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A novel DNA sequence element termed the J element involved in the regulated expression of class II major histocompatibility complex genes was recently described. To study this element and its role in class II gene regulation further, a cDNA library was screened with oligonucleotide probes containing both the S element and the nearby J element of the human DPA gene. Several DNA clones were obtained by this procedure, one of which, clone 18, is reported and characterized here. It encodes a protein predicted to contain 688 amino acid residues, including 11 zinc finger motifs of the C2H2 type in the C-terminal region, that are Krüppel-like in the conservation of the H/C link sequence connecting them. The 160 N-terminal amino acids in the nonfinger region of clone 18 are highly homologous with similar regions of several other human, mouse, and Drosophila sequences, defining a subfamily of Krüppel-like zinc finger proteins termed TAB (tramtrack [ttk]-associated box) here. One of the Drosophila sequences, ttk, is a developmental control gene, while a second does not contain a zinc finger region but encodes a structure important in oocyte development. An acidic activation domain is located between the N-terminal conserved region of clone 18 and its zinc fingers. This protein appears to require both the S and J elements, which are separated by 10 bp for optimal binding. Antisense cDNA to clone 18 inhibited the expression of a reporter construct containing the DPA promoter, indicating its functional importance in the expression of this class II gene.
Collapse
Affiliation(s)
- M Sugawara
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | |
Collapse
|