1
|
Bhupana JN, Huang BT, Liou GG, Calkins MJ, Lin-Chao S. Gas7 knockout affects PINK1 expression and mitochondrial dynamics in mouse cortical neurons. FASEB Bioadv 2020; 2:166-181. [PMID: 32161906 PMCID: PMC7059628 DOI: 10.1096/fba.2019-00091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/21/2019] [Accepted: 12/31/2019] [Indexed: 11/11/2022] Open
Abstract
Dynamic fission and fusion events regulate mitochondrial shape, distribution, and rejuvenation, and proper control of these processes is essential for neuronal homeostasis. Here, we report that Gas7, a known cytoskeleton regulator, controls mitochondrial dynamics within neurons of the central nervous system. In this study, we generated an improved Gas7-knockout mouse and evaluated its mitochondrial phenotype. We first identified Gas7 in mitochondrial fractions from wild-type brain tissue, and observed Gas7 colocalization with mitochondria in primary cortical neurons. In Gas7-deficient brain tissue and neuronal cultures mitochondria were elongated with perinuclear clustering. These morphological abnormalities were associated with increased levels mitochondrial fusion proteins and increased PKA-dependent phosphorylation of Drp-1 in brain tissues, suggesting an imbalance of mitochondrial fusion and fission. Moreover, expression of mitochondrial quality control kinase, PINK1, and PINK1-specific phosphorylation of Mfn-2 (S442), Parkin (S65), and ubiquitin (S65) were all reduced in the knockout cells. Ectopic expression of Gas7 restored mitochondrial morphology and distribution, as well as PINK1 expression in Gas7-null cortical neurons. Collectively, our results introduce a novel role of mouse Gas7 in determining the dynamics, morphology, and intracellular distribution of neuronal mitochondria, which are expected to be required for normal neuronal function.
Collapse
Affiliation(s)
- Jagannatham Naidu Bhupana
- Molecular Cell Biology Taiwan International Graduate Program Institute of Molecular Biology Academia Sinica and Graduate Institute of Life Sciences National Defense Medical Center Taipei Taiwan.,Institute of Molecular Biology Academia Sinica Taipei Taiwan
| | - Bo-Tsang Huang
- Institute of Molecular Biology Academia Sinica Taipei Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology Academia Sinica Taipei Taiwan
| | - Marcus J Calkins
- Institute of Cellular and Organismic Biology Academia Sinica Taipei Taiwan
| | - Sue Lin-Chao
- Molecular Cell Biology Taiwan International Graduate Program Institute of Molecular Biology Academia Sinica and Graduate Institute of Life Sciences National Defense Medical Center Taipei Taiwan.,Institute of Molecular Biology Academia Sinica Taipei Taiwan
| |
Collapse
|
2
|
Nie Y, Zhu J, Ramelot TA, Kennedy MA, Liu M, He T, Yang Y. Solution NMR structure and ligand identification of human Gas7 SH3 domain reveal a typical SH3 fold but a non-canonical ligand-binding mode. Biochem Biophys Res Commun 2019; 516:1190-1195. [PMID: 31296381 DOI: 10.1016/j.bbrc.2019.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Growth arrest specific 7 (Gas7) protein is a cytoskeleton regulator playing a crucial role in neural cell development and function, and has been implicated in Alzheimer disease, schizophrenia and cancers. In human, three Gas7 isoforms can be expressed from a single Gas7 gene, while only the longest isoform, hGas7c, possesses an SH3 domain at the N-terminus. To date, the structure and function of hGas7 SH3 domain are still unclear. Here, we reported the solution NMR structure of hGas7 SH3 domain (hGas7-SH3), which displays a typical SH3 β-barrel fold comprising five β-strands and one 310-helix. Structural and sequence comparison showed that hGas7-SH3 shares high similarity with Abl SH3 domain, which binds to a high-affinity proline-rich peptide P41 in a canonical SH3-ligand binding mode through two hydrophobic pockets and a specificity site in the RT-loop. However, unlike Abl-SH3, only six residues in the RT-loop and two residues adjacent to but not in the two hydrophobic pockets of hGas7-SH3 showed significant chemical shift perturbations in NMR titrations, suggesting a low affinity and a non-canonical binding mode of hGas7-SH3 for P41. Furthermore, four peptides selected from phage-displayed libraries also bound weakly to hGas7-SH3, and the binding region of hGas7-SH3 was mainly located in the RT-loop as well. The ligand identifications through structural similarity searching and peptide library screening in this study imply that although hGas7-SH3 adopts a typical SH3 fold, it probably possesses distinctive ligand-binding specificity.
Collapse
Affiliation(s)
- Yao Nie
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, OH, 45056, United States
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, OH, 45056, United States
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Chang JW, Kuo WH, Lin CM, Chen WL, Chan SH, Chiu MF, Chang IS, Jiang SS, Tsai FY, Chen CH, Huang PH, Chang KJ, Lin KT, Lin SC, Wang MY, Uen YH, Tu CW, Hou MF, Tsai SF, Shen CY, Tung SL, Wang LH. Wild-type p53 upregulates an early onset breast cancer-associated gene GAS7 to suppress metastasis via GAS7-CYFIP1-mediated signaling pathway. Oncogene 2018; 37:4137-4150. [PMID: 29706651 PMCID: PMC6062498 DOI: 10.1038/s41388-018-0253-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/07/2018] [Accepted: 03/14/2018] [Indexed: 01/13/2023]
Abstract
The early onset breast cancer patients (age ≤ 40) often display higher incidence of axillary lymph node metastasis, and poorer five-year survival than the late-onset patients. To identify the genes and molecules associated with poor prognosis of early onset breast cancer, we examined gene expression profiles from paired breast normal/tumor tissues, and coupled with Gene Ontology and public data base analysis. Our data showed that the expression of GAS7b gene was lower in the early onset breast cancer patients as compared to the elder patients. We found that GAS7 was associated with CYFIP1 and WAVE2 complex to suppress breast cancer metastasis via blocking CYFIP1 and Rac1 protein interaction, actin polymerization, and β1-integrin/FAK/Src signaling. We further demonstrated that p53 directly regulated GAS7 gene expression, which was inversely correlated with p53 mutations in breast cancer specimens. Our study uncover a novel regulatory mechanism of p53 in early onset breast cancer progression through GAS7-CYFIP1-mediated signaling pathways.
Collapse
Affiliation(s)
- Jer-Wei Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Mei Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Wen-Ling Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Shih-Hsuan Chan
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan.,Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Meng-Fan Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Hsin Huang
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - King-Jen Chang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Taiwan Adventist Hospital, Taipei, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Chieh Lin
- College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Huei Uen
- Department of Surgery, Asia University Hospital, Taichung, Taiwan
| | - Chi-Wen Tu
- Department of General Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung, Taiwan.,Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shiao-Lin Tung
- Department of Hematology and Oncology, Ton-Yen General Hospital, Hsinchu, Taiwan
| | - Lu-Hai Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan. .,College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Li D, Zhang B, Hu C. Oxaliplatin inhibits proliferation and migration of human hepatocellular carcinoma cells via GAS7C and the N-WASP/FAK/F-actin pathway. Acta Biochim Biophys Sin (Shanghai) 2017; 49:581-587. [PMID: 28475688 DOI: 10.1093/abbs/gmx046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Indexed: 11/14/2022] Open
Abstract
The growth arrest-specific gene 7 (GAS7), a member of the growth-arrest-specific family, encodes three protein isoforms (GAS7A, GAS7B, and GAS7C) and plays a potential role in lung cancer as a tumor suppressor gene. In the present study, we found low endogenous expressions of GAS7C mRNA and protein in hepatocellular carcinoma (HCC) cell lines compared with normal liver cells, and that there was a distinct increase of GAS7C expression in HCC cells treated with oxaliplatin. CCK8, apoptosis, and Transwell migration assays showed that cell proliferation and motility of HepG2 and MHCC-97 H cells were inhibited by oxaliplatin, while apoptosis was increased. Interestingly, western blot analysis showed that treatment with oxaliplatin increased GAS7C and N-WASP protein levels and decreased the levels of proteins involved in the fibronectin/integrin/FAK pathway, such as FAK, in both HCC cell lines. In addition, ectopically overexpressed GAS7C obviously inhibited cell proliferation and cell motility. Flow cytometry results showed that overexpression of GAS7C induced apoptosis of HepG2 and MHCC-97 H cells. We further confirmed the correlation between GAS7C and the N-WASP/FAK/F-actin pathway by q-PCR and western blot analysis of in GAS7C-overexpressing HepG2 and MHCC-97 H cells. Inhibition of GAS7C substantially reversed the anti-cancer effect of oxaliplatin and blocked the activity of the N-WASP/FAK/F-actin pathway. Taken together, our results showed that oxaliplatin inhibits HCC cell proliferation and migration ability by up-regulating GAS7C and activating the N-WASP/FAK/F-actin pathway.
Collapse
Affiliation(s)
- Dan Li
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| | - Bin Zhang
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| | - Chao Hu
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Zhang Z, Zheng F, You Y, Ma Y, Lu T, Yue W, Zhang D. Growth arrest specific gene 7 is associated with schizophrenia and regulates neuronal migration and morphogenesis. Mol Brain 2016; 9:54. [PMID: 27189492 PMCID: PMC4870797 DOI: 10.1186/s13041-016-0238-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable chronic mental disorder with significant abnormalities in brain function. The neurodevelopmental hypothesis proposes that schizophrenia originates in the prenatal period due to impairments in neuronal developmental processes such as migration and arborization, leading to abnormal brain maturation. Previous studies have identified multiple promising candidate genes that drive functions in neurodevelopment and are associated with schizophrenia. However, the molecular mechanisms of how they exert effects on the pathophysiology of schizophrenia remain largely unknown. RESULTS In our research, we identified growth arrest specific gene 7 (GAS7) as a schizophrenia risk gene in two independent Han Chinese populations using a two-stage association study. Functional experiments were done to further explore the underlying mechanisms of the role of Gas7 in cortical development. In vitro, we discovered that Gas7 contributed to neurite outgrowth through the F-BAR domain. In vivo, overexpression of Gas7 arrested neuronal migration by increasing leading process branching, while suppression of Gas7 could inhibit neuronal migration by lengthening leading processes. Through a series of behavioral tests, we also found that Gas7-deficient mice showed sensorimotor gating deficits. CONCLUSIONS Our results demonstrate GAS7 as a susceptibility gene for schizophrenia. Gas7 might participate in the pathogenesis of schizophrenia by regulating neurite outgrowth and neuronal migration through its C-terminal F-BAR domain. The impaired pre-pulse inhibition (PPI) of Gas7-deficient mice might mirror the disease-related behavior in schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Fanfan Zheng
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhong Guan Cun East Road, Hai Dian District, Beijing, 100190, China.
| | - Yang You
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Yuanlin Ma
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Tianlan Lu
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Hung FC, Shih HY, Cheng YC, Chao CCK. Growth-Arrest-Specific 7 Gene Regulates Neural Crest Formation and Craniofacial Development in Zebrafish. Stem Cells Dev 2015; 24:2943-51. [PMID: 26414806 DOI: 10.1089/scd.2015.0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growth-arrest-specific 7 (Gas7) is preferentially expressed in the nervous system and plays an important role during neuritogenesis in vertebrates. We recently demonstrated that gas7 is highly expressed in zebrafish neurons, where it regulates neural development. The possibility that gas7 may also regulate the development of other tissues remains to be examined. In this study, we investigate the role of Gas7 in the development of craniofacial tissues. Knockdown of gas7 using morpholino oligomers produced abnormal phenotypes in neural crest (NC) cells and their derivatives. NC-derived cartilage maturation was altered in Gas7 morphants as revealed by aberrant sox9b and dlx2 expression, a phenotype that could be rescued by coinjection of gas7 mRNA. While rhombomere morphology remained normal in Gas7 morphants, we observed reduced expression of the prechondrogenic genes sox9b and dlx2 in cells populating the posterior pharyngeal arches, but the fundamental structure of pharyngeal arches was preserved. In addition, NC cell sublineages that migrate to form neurons, glial cells, and melanocytes were altered in Gas7 morphants as revealed by aberrant expression of neurod, foxd3, and mitfa, respectively. Development of NC progenitors was also examined in Gas7 morphants at 12 hpf, and we observed that the reduction of cell precursors in Gas7 morphants was due to increased apoptosis level. These results indicate that the formation of NC progenitors and derivatives depends on Gas7 expression. Our observations also suggest that Gas7 regulates the formation of NC derivatives constituting the internal tissues of pharyngeal arches, without affecting the fundamental structure of mesodermal-derived pharyngeal arches.
Collapse
Affiliation(s)
- Feng-Chun Hung
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China
| | - Hung-Yu Shih
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China .,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taiwan, Republic of China
| | - Yi-Chuan Cheng
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China .,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taiwan, Republic of China .,3 Chang Gung Memorial Hospital , Taiwan, Republic of China
| | - Chuck C-K Chao
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China .,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taiwan, Republic of China .,3 Chang Gung Memorial Hospital , Taiwan, Republic of China
| |
Collapse
|
7
|
Hung FC, Cheng YC, Sun NK, Chao CCK. Identification and functional characterization of zebrafish Gas7 gene in early development. J Neurosci Res 2012; 91:51-61. [PMID: 23086717 DOI: 10.1002/jnr.23145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022]
Abstract
Growth arrest-specific 7 (Gas7) is preferentially expressed in the nervous system and plays an important role during neuritogenesis in mammals. However, the structure and function of Gas7 homologs have not been studied in nonmammalian vertebrates used as models. In this report, we identify a Gas7 gene in zebrafish that we termed zfGas7. The transcript of this gene was produced by canonical splicing, and its protein product contained a Fes/CIP4 homology and a coiled-coil domain. In early zebrafish embryos, RT-PCR analyses revealed that zfGas7 was initially expressed at 5.3 hr postfertilization (hpf), followed by an increase of expression at 10 hpf and further accumulation during somitogenesis at 48 hpf. Spatiotemporal analyses further showed that Gas7 mRNA was detected in the brain, somite, and posterior presomitic mesoderm regions during somitogenesis. At 36 hpf, zfGas7 mRNA was detected in the brain and somite but was later found only in neuronal clusters of the brain at 52 hpf. Gas7 knockdown with morpholino antisense oligonucleotides (Gas7MO) reduced the number of HuC-positive neurons in the trigeminal and statoacoustic ganglions and produced deformed phenotypes, such as flattening of the top of the head. Notably, the neuron reduction and deformed phenotypes observed in Gas7MO embryos were partially rescued by ectopic expression of Gas7. Because altered somitogenesis and pigmentation were also found in the morphants, the neuronal phenotypes observed likely are due to a general developmental delay of embryogenesis. These results indicate that Gas7 is expressed in neuronal cells but is not specifically required for neuronal development in vertebrates.
Collapse
Affiliation(s)
- Feng-Chun Hung
- Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taiwan, Republic of China
| | | | | | | |
Collapse
|
8
|
Chithra C, Devaraj H. Purification and characterisation of a 48kDa protein involved in the molting cycle of Penaeus monodon. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Huang BT, Chang PY, Su CH, Chao CCK, Lin-Chao S. Gas7-deficient mouse reveals roles in motor function and muscle fiber composition during aging. PLoS One 2012; 7:e37702. [PMID: 22662195 PMCID: PMC3360064 DOI: 10.1371/journal.pone.0037702] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 04/23/2012] [Indexed: 11/25/2022] Open
Abstract
Background Growth arrest-specific gene 7 (Gas7) has previously been shown to be involved in neurite outgrowth in vitro; however, its actual role has yet to be determined. To investigate the physiological function of Gas7 in vivo, here we generated a Gas7-deficient mouse strain with a labile Gas7 mutant protein whose functions are similar to wild-type Gas7. Methodology/Principal Findings Our data show that aged Gas7-deficient mice have motor activity defects due to decreases in the number of spinal motor neurons and in muscle strength, of which the latter may be caused by changes in muscle fiber composition as shown in the soleus. In cross sections of the soleus of Gas7-deficient mice, gross morphological features and levels of myosin heavy chain I (MHC I) and MHC II markers revealed significantly fewer fast fibers. In addition, we found that nerve terminal sprouting, which may be associated with slow and fast muscle fiber composition, was considerably reduced at neuromuscular junctions (NMJ) during aging. Conclusions/Significance These findings indicate that Gas7 is involved in motor neuron function associated with muscle strength maintenance.
Collapse
Affiliation(s)
- Bo-Tsang Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pu-Yuan Chang
- Department of Biochemistry and Molecular Biology, Chang-Gung University, Taoyuan, Taiwan
| | - Ching-Hua Su
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuck C.-K. Chao
- Department of Biochemistry and Molecular Biology, Chang-Gung University, Taoyuan, Taiwan
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Hung FC, Chao CCK. Knockdown of growth-arrest-specific gene 7b (gas7b) using short-hairpin RNA desensitizes neuroblastoma cells to cisplatin: Implications for preventing apoptosis of neurons. J Neurosci Res 2010; 88:3578-87. [PMID: 20890993 DOI: 10.1002/jnr.22504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/19/2010] [Accepted: 07/29/2010] [Indexed: 11/06/2022]
Abstract
Efficient control of cell survival and cell proliferation is critical for the development of neuron cells. Earlier, we observed that growth arrest-specific gene 7 (Gas7) plays a role in controlling neuritogenesis in mammals. In the present study, we report that the Gas7b isoform is involved in controlling growth arrest and apoptosis of neuroblastoma cells in response to various stimuli. Accordingly, knockdown of Gas7b using small-hairpin RNA (shRNA) was shown to reduce apoptosis induced either by serum starvation or by the antineoplastic agents cisplatin and nocodazole in human neuroblastoma SH-SY5Y cells. Gas7b knockdown also enhanced the ability of the treated cells to form clones in response to cisplatin. On the other hand, forced expression of Gas7a or Gas7b isoform in mouse neuroblastoma Neuro2A cells, which express a defective Gas7 gene, rendered the cells proapoptotic and vulnerable to cisplatin-induced apoptosis. In addition, Neuro2A cells that overexpressed Gas7 showed a reduced ability to form clones. Overexpression of Gas7 produced similar but less extensive effects in nonneuronal HEK293 cells. Taken together, our observations suggest that Gas7b is involved not only in neuritogenesis but also in the regulation of neuronal cell death.
Collapse
Affiliation(s)
- Feng-Chun Hung
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China.
| | | |
Collapse
|
11
|
You JJ, Lin-Chao S. Gas7 functions with N-WASP to regulate the neurite outgrowth of hippocampal neurons. J Biol Chem 2010; 285:11652-66. [PMID: 20150425 PMCID: PMC3283256 DOI: 10.1074/jbc.m109.051094] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuritogenesis, or neurite outgrowth, is a critical process for neuronal differentiation and maturation in which growth cones are formed from highly dynamic actin structures. Gas7 (growth arrest-specific gene 7), a new member of the PCH (Pombe Cdc15 homology) protein family, is predominantly expressed in neurons and is required for the maturation of primary cultured Purkinje neurons as well as the neuron-like differentiation of PC12 cells upon nerve growth factor stimulation. We report that Gas7 co-localizes and physically interacts with N-WASP, a key regulator of Arp2/3 complex-mediated actin polymerization, in the cortical region of Gas7-transfected Neuro-2a cells and growth cones of hippocampal neurons. The interaction between Gas7 and N-WASP is mediated by WW-Pro domains, which is unique in the PCH protein family, where most interactions are of the SH3-Pro kind. The interaction contributes to the formation of membrane protrusions and processes by recruiting the Arp2/3 complex in a Cdc42-independent manner. Importantly, specific interaction between Gas7 and N-WASP is required for regular neurite outgrowth of hippocampal neurons. The data demonstrate an essential role of Gas7 through its interaction with N-WASP during neuronal maturation/differentiation.
Collapse
Affiliation(s)
- Jhong-Jhe You
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
12
|
Nishimura N, Araki K, Shinahara W, Nakano Y, Nishimura K, Higashio H, Sasaki T. Interaction of Rab3B with microtubule-binding protein Gas8 in NIH 3T3 cells. Arch Biochem Biophys 2008; 474:136-42. [PMID: 18396146 DOI: 10.1016/j.abb.2008.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/24/2008] [Accepted: 03/25/2008] [Indexed: 11/17/2022]
Abstract
Rab3 subfamily small G proteins (Rab3A, Rab3B, Rab3C, and Rab3D) control the regulated exocytosis in neuronal/secretory cells. Rab3B is also detected and upregulated in non-neuronal/non-secretory cells, whereas its function remains elusive. In the present study, we identified growth-arrest-specific gene 8 (Gas8), an evolutionally conserved microtubule-binding protein that is upregulated in growth-arrested NIH 3T3 cells and involved in the dynein motor regulation in flagellar/ciliary axoneme, as a novel Rab3B-binding protein using a yeast two-hybrid system. Rab3B as well as Gas8 was upregulated in growth-arrested NIH 3T3 cells and enriched in testis and lung with well-developed flagella/cilia. Gas8 was specifically interacted with the GTP-bound form of Rab3B and co-localized with Rab3B at the Golgi in NIH 3T3 cells. Furthermore, Rab3B was relocated upon expression of the Rab3B-binding domain of Gas8. These results suggest that Gas8 links Rab3B to microtubules in NIH 3T3 cells.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Department of Biochemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Yamamura KI, Araki K. Gene trap mutagenesis in mice: new perspectives and tools in cancer research. Cancer Sci 2008; 99:1-6. [PMID: 17877761 PMCID: PMC11159874 DOI: 10.1111/j.1349-7006.2007.00611.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 08/07/2007] [Indexed: 11/27/2022] Open
Abstract
The complete human DNA sequence of the human genome was published in 2004 and we entered the postgenomic era. However, many studies showed that gene function is much more complex than we expected, and that mutation of disease genes does not give any clue for molecular mechanisms for disease development. Since the first report on gene knockout mice in 1989, knockout mice have been shown to be a powerful tool for functional genomics and for the dissection of developmental processes in human diseases. In accordance with this successful application of knockout mice, three major mouse knockout programs are now underway worldwide, to mutate all protein-encoding genes in mouse embryonic stem cells using a combination of gene trapping and gene targeting. We developed the exchangeable gene trap method suitable for large scale mutagenesis in mice. In this method we can produce null mutation and post-insertional modification, enabling replacement of the marker gene with a gene of interest and conditional knockout. We herein discuss the effect of this gene-driven type approach for cancer research, especially for finding the genes that are related to cancer, but are paid little attention in hypothesis-driven cancer research.
Collapse
Affiliation(s)
- Ken-ichi Yamamura
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| | | |
Collapse
|
14
|
Joyner AL, Auerbach A, Skarnes WC. The gene trap approach in embryonic stem cells: the potential for genetic screens in mice. CIBA FOUNDATION SYMPOSIUM 2007; 165:277-88; discussion 288-97. [PMID: 1516474 DOI: 10.1002/9780470514221.ch16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene trap approach in embryonic stem cells was developed as a means to screen for genes expressed during early postimplantation development in the mouse. We have validated the approach by showing that lacZ from the integrated vector is activated by splicing to endogenous exons and expressed in embryos in patterns that mimic those of the endogenous genes. These insertions can produce developmental defects in homozygous mice. The results indicate that a large screen of gene trap cell lines on the basis of embryonic lacZ expression is feasible and should provide a new source of genes, mouse mutants and mouse strains that express lacZ in particular domains and lineages. The gene trap approach could be extended to a smaller screen for genes based on mutant phenotypes.
Collapse
Affiliation(s)
- A L Joyner
- Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | |
Collapse
|
15
|
Colantonio JR, Bekker JM, Kim SJ, Morrissey KM, Crosbie RH, Hill KL. Expanding the Role of the Dynein Regulatory Complex to Non-Axonemal Functions: Association of GAS11 with the Golgi Apparatus. Traffic 2006; 7:538-48. [PMID: 16643277 DOI: 10.1111/j.1600-0854.2006.00411.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mammalian GAS11 gene is a candidate tumor suppressor of unknown function that was previously identified as one of several genes upregulated upon growth arrest. Interestingly, although GAS11 homologs in Trypanosoma brucei (trypanin) and Chlamydomonas reinhardtii (PF2) are integral components of the flagellar axoneme and are necessary for regulating flagellar beat, the GAS11 gene was discovered based on its expression in cells that do not assemble a motile cilium. This suggests that GAS11 function might not be restricted to the cilium. To investigate this possibility, we generated GAS11-specific antibodies and demonstrate here that GAS11 is expressed in a variety of mammalian cells that lack a motile cilium. In COS7 cells, GAS11 is associated with the detergent-insoluble cytoskeleton and exhibits a juxtanuclear localization that overlaps with the pericentrosomal Golgi apparatus. This localization is dependent upon intact microtubules and is cell-cycle regulated, such that GAS11 is dispersed throughout the cytoplasm as cells progress through mitosis. GAS11 remains associated with Golgi fragments following depolymerization of cytoplasmic microtubules but is dispersed upon disruption of the Golgi with brefeldin A. These data suggest that GAS11 is associated with the Golgi apparatus. In support of this, recombinant GAS11 binds Golgi membranes in vitro. In growth-arrested mIMCD3 cells, GAS11 co-localizes with gamma-tubulin at the base of the primary cilium. The pericentrosomal Golgi apparatus and base of the cilium both represent convergence points for microtubule minus ends and correspond to sites where dynein regulation is required. The algal GAS11 homolog functions as part of a dynein regulatory complex (DRC) in the axoneme (Rupp and Porter. J Cell Biol 2003;162:47-57) and our findings suggest that components of this axonemal dynein regulatory system have been adapted in mammalian cells to participate in non-axonemal functions.
Collapse
Affiliation(s)
- Jessica R Colantonio
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
16
|
Chao CCK, Chang PY, Lu HHP. Human Gas7 isoforms homologous to mouse transcripts differentially induce neurite outgrowth. J Neurosci Res 2005; 81:153-62. [PMID: 15948147 DOI: 10.1002/jnr.20552] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gas7, a growth-arrest-specific protein, is expressed preferentially in the brain and is required for neurite outgrowth in cultured cerebellar and peripheral murine neurons. Gas7 interacts with F-actin and colocalizes with the terminal part of actin microfilament in cells in which membrane outgrowth is present. Gas7 isoforms were discovered in murine brain by alternative splicing. This work reports the identification of two human Gas7 cDNA: hGas7-a with 2,427 nucleotides, which encodes 330 amino acids, and hGas7-b with 2,610 nucleotides, which encodes 412 amino acids according to predicted open-reading-frames. The predicted hGas7-b protein is 97% homologous to murine homologues, whereas the hGas7-a is homologous to the mouse Gas7-cb form that is expressed preferentially in cerebellum. Alignment analysis of the Gas7 protein sequences revealed a high homology to that in humans: 99% for the monkey, 97% in murine, and around 75% for the puffer fish and chicken. The hGas7-b protein comprises a WW domain, which often associates with other domains that are typically present in proteins in signal transduction processes, and an FCH domain, which participates in rearranging the cytoskeleton. The hGas7-a comprises only the FCH domain. Analysis of the human Gas7 sequences using the DNA database revealed that the two forms resulted from the canonical alternative splicing of a Gas7 genomic sequence. The abundance of both hGas7 mRNA levels, determined by quantitative PCR in tissues including brain, breast cancer, placenta, and head-neck cancer, revealed that the level of hGas7-a was 14 times that of hGas7-b in these tissues. Transfection of cells with hGas7-a or hGas7-b cDNA yielded the predicted 38-kDa or 50-kDa protein, respectively. The ectopic expression of hGas7 caused neurite-like cell processes in both mouse Neuro-2a and human SH-SY5Y neuroblastoma cells. Interestingly, the hGas7-a preferentially elicited the small lamellipodia, whereas the hGas7-b elicited the small filopodia phenotype. These findings reveal the evolutionary conservation of the structure and function of Gas7. They also suggest that the FCH domain in Gas7 may participate in the development of lamellipodia, and the WW domain may participate in the fine-tuning of the filopodia.
Collapse
Affiliation(s)
- Chuck C-K Chao
- Tumor Biology Laboratory, Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan, Republic of China.
| | | | | |
Collapse
|
17
|
Lortie K, Huang D, Chakravarthy B, Comas T, Hou ST, Lin-Chao S, Morley P. The gas7 protein potentiates NGF-mediated differentiation of PC12 cells. Brain Res 2005; 1036:27-34. [PMID: 15725398 DOI: 10.1016/j.brainres.2004.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/27/2004] [Accepted: 12/04/2004] [Indexed: 12/26/2022]
Abstract
The growth-arrest-specific protein gas7 is required for morphological differentiation of cultured mouse cerebellar neurons and PC12 cells. Moreover, its overexpression in various cell types induces neurite-like outgrowth. The role of gas7 in neuronal differentiation was further characterized by adenovirus-mediated overexpression in PC12 cells and quantification of the expression of various neuronal markers, in the absence and presence of different concentrations of nerve growth factor (NGF). The potential neuroprotective activity of gas7 against various neurotoxic insults was also assessed. In addition to promoting the formation of neurite-like extensions, overexpression of gas7 potentiated NGF-mediated neuronal differentiation of PC12 cells, as shown by the enhanced expression of the neuronal proteins betaIII-tubulin, synaptotagmin, alpha7 subunit of the acetylcholine receptor, and dihydropyrimidinase related protein-3. This effect was exerted independently of cell cycle progression, as gas7 did not affect proliferation of PC12 cells. While some differentiation enhancers protect PC12 cells against lethal insults, gas7 overexpression in PC12 cells did not protect against oxygen-glucose deprivation, the calcium ionophore A23187, or the nitric oxide donor sodium nitroprusside, suggesting that gas7 is not neuroprotective. The ability of gas7 to potentiate neuronal differentiation makes it a potential therapeutic target to promote re-establishment of neuronal connections in the injured or diseased brain, such as following stroke.
Collapse
Affiliation(s)
- Karine Lortie
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Chang PY, Kuo JT, Lin-Chao S, Chao CCK. Identification of rat Gas7 isoforms differentially expressed in brain and regulated following kainate-induced neuronal injury. J Neurosci Res 2005; 79:788-97. [PMID: 15657892 DOI: 10.1002/jnr.20409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The growth arrest-specific gene 7 (Gas7) is expressed primarily in the brain and is necessary for the formation of neurite in cultured cerebellar preneurons. The endogenous rat Gas7 (rGas7) is transiently elevated before nerve growth factor-promoted neurite outgrowths emerge in cultured PC12 cells. We report three Gas7 isoforms (a, b, and c) in rat tissues. Peptide microsequencing identified two Gas7 forms, rGas7-a (38 kDa) and rGas7-b (47 kDa). rGas7-c can be predicted from a transcription variant by alternative splicing. Although two open reading frames were predicted, a cloned rGas7 cDNA encoded mostly rGas7-a in mammalian cells. The overexpression of the rGas7 cDNA in PC12 cells sufficed to promote small lamellipodia- and filopodia-like cell processes that resemble the initial stages of neurite formation. Three rGas7 isoforms were differentially expressed in all of the brain subregions. Only rGas7-a was detected in rat cerebellum, as in mouse cerebellum. Kainate injury did not affect the level of rGas7-b, but the level of isoform c was substantially suppressed in the hippocampus. Immunohistochemistry reveals that Gas7 was expressed primarily in the pyramidal neurons of the hippocampus and was quickly attenuated before recovery in the CA3 area after kainate was administered. These results suggest that differential expression and unique regulation of Gas7 isoforms in brain subregions may be important in specialized brain functions. Conservation of Gas7 isoforms by alternative splicing in mammals is also considered.
Collapse
Affiliation(s)
- P-Y Chang
- Tumor Biology Laboratory, Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
19
|
Chao CCK, Su LJ, Sun NK, Ju YT, Lih JCJ, Lin-Chao S. Involvement of Gas7 in nerve growth factor-independent and dependent cell processes in PC12 cells. J Neurosci Res 2003; 74:248-54. [PMID: 14515354 DOI: 10.1002/jnr.10763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gas7, a growth arrest-specific gene originally isolated from serum-starved mouse fibroblast cells, is expressed in vivo predominantly in the brain and is required for neurite formation in cultured mouse cerebellar neurons (Ju et al. [1998] Proc. Natl. Acad. Sci. USA 95: 11423-11428). Here we report that Gas7 plays a key role in the morphological differentiation of PC12 preneuronal rat pheochromocytoma cells (PC12 cells). We found that overexpression of murine Gas7 in PC12 cells leads to an expanded cell morphology and promotes spike-like cell processes that resemble the early stages of neurite formation. These processes undergo elongation upon addition of nerve growth factor (NGF). We also found that the addition of NGF induces the production of endogenous rat-Gas7 (rGas7), which is transiently elevated prior to the appearance of NGF-promoted neurite outgrowths. Furthermore, inhibition of endogenous rGas7 production by antisense nucleotides complimentary to the translation initiation region of a rGas7 cDNA (AJ131902) reduces the NGF-promoted neurite outgrowths. Our results demonstrate that Gas7 by itself influences early cell morphological development and likely functions as an early-stage intermediary in NGF-induced neuronal differentiation of PC12 culture cells.
Collapse
Affiliation(s)
- Chuck C-K Chao
- Tumor Biology Laboratory, Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Rupp G, Porter ME. A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest-specific gene product. J Cell Biol 2003; 162:47-57. [PMID: 12847082 PMCID: PMC2172716 DOI: 10.1083/jcb.200303019] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 05/15/2003] [Accepted: 05/21/2003] [Indexed: 11/22/2022] Open
Abstract
The dynein regulatory complex (DRC) is an important intermediate in the pathway that regulates flagellar motility. To identify subunits of the DRC, we characterized a Chlamydomonas motility mutant obtained by insertional mutagenesis. The pf2-4 mutant displays an altered waveform that results in slow swimming cells. EM analysis reveals defects in DRC structure that can be rescued by reintroduction of the wild-type PF2 gene. Immunolocalization studies show that the PF2 protein is distributed along the length of the axoneme, where it is part of a discrete complex of polypeptides. PF2 is a coiled-coil protein that shares significant homology with a mammalian growth arrest-specific gene product (Gas11/Gas8) and a trypanosome protein known as trypanin. PF2 and its homologues appear to be universal components of motile axonemes that are required for DRC assembly and the regulation of flagellar motility. The expression of Gas8/Gas11 transcripts in a wide range of tissues may also indicate a potential role for PF2-related proteins in other microtubule-based structures.
Collapse
Affiliation(s)
- Gerald Rupp
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901
| | - Mary E. Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
21
|
Yin Y, Kikkawa Y, Mudd JL, Skarnes WC, Sanes JR, Miner JH. Expression of laminin chains by central neurons: analysis with gene and protein trapping techniques. Genesis 2003; 36:114-27. [PMID: 12820173 DOI: 10.1002/gene.10206] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laminins exert numerous effects on neurons in vitro, but expression of laminin subunit genes by neurons in vivo remains controversial. To reexamine this issue, we generated mice from ES cells in which the laminin alpha1, alpha5, beta1, and gamma1 genes had been "trapped" by insertion of a histochemically detectable selectable marker, betageo (beta-galactosidase fused to neomycin phosphotransferase). The presence of laminin-betageo fusion proteins was assayed histochemically and immunochemically, revealing expression of laminin beta1 and gamma1 genes, but not alpha chain genes, by defined subsets of neurons in brain and retina. We also used the gene traps in a novel way to assay expression of endogenous laminin subunits, which were barely detectable by ordinary immunohistochemical methods. The trapping vector included a transmembrane domain that anchors proteins otherwise destined for secretion. Laminin alpha/beta/gamma heterotrimers are assembled intracellularly, and we show that the trapped laminin gamma1 fusion protein "co-trapped" endogenous beta1 intracellularly. The laminin gamma1 fusion was also able to co-trap transgene-derived alpha chains, but we detected no co-trapped endogenous alpha chains. The co-trapping method may be generally useful for identifying proteins or isolating protein complexes associated with trapped gene products.
Collapse
Affiliation(s)
- Yong Yin
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lukacsovich T, Yamamoto D. Trap a gene and find out its function: toward functional genomics in Drosophila. J Neurogenet 2002; 15:147-68. [PMID: 12092900 DOI: 10.3109/01677060109167373] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Many declared aims of the genome projects have been achieved. The total genomic sequences of several relatively noncomplex/complex organisms (such as E. coli, yeast, Caenorhabditis, Drosophila) are being determined, and the nucleotide sequencing of the entire human genome will be complete in the near future. However, this achievement is not the end of the road but rather the first step toward the functional understanding of the genome of humans and other organisms. The determined linear nucleotide sequences remain only lists of A, C, G and T, unless they are given functional significance. The coding sequences of genes can be identified in a relatively reliable manner by computational methods, but the exact function of their protein products can rarely be determined without obtaining much additional information, e.g., by biochemical or cell biological methods. Thus, following sequencing, the next step must be to assign functions to the identified genes. The final goal of genome research today may look futuristic, but the knowledge of the function of every single gene and the interactions between them will finally allow us to understand the development and functioning of an organism as a whole. Gene-trapping methodology is a powerful strategy for cloning and identifying functional genes, as it marks a gene with a tag and simultaneously generates a corresponding genetic variation for that particular locus. Therefore, gene trapping is an extremely useful tool for functional genomics, establishing a correlation between the physical and genetic maps of the genome. The relative simplicity of its genome and the availability of huge bodies of genetic and molecular information make Drosophila melanogaster one of the most important model organisms. Its genome will serve as a "reference" for the in-depth analysis of the organization of more complex eukaryotic genomes. Multifaceted approaches to Drosophila functional genomics and the dual-tagging gene trap system newly developed for functional analysis of Drosophila genes are discussed in this review.
Collapse
Affiliation(s)
- T Lukacsovich
- Advanced Institute for Science and Engineering and School of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| | | |
Collapse
|
23
|
Chen QP, Giannobile WV. Adenoviral gene transfer of PDGF downregulates gas gene product PDGFalphaR and prolongs ERK and Akt/PKB activation. Am J Physiol Cell Physiol 2002; 282:C538-44. [PMID: 11832339 PMCID: PMC2579768 DOI: 10.1152/ajpcell.00419.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The delivery of platelet-derived growth factor (PDGF) for tissue engineering of skin and periodontal wounds has become an active area of interest. However, little is known regarding the extended effects of PDGF on cell signaling via gene therapy and how such an approach facilitates the exiting of cells from growth arrest and entry to competence required for cell cycling. We show in vitro expression and secretion of PDGF-AA by recombinant adenovirus encoding the PDGF-A gene (Ad-PDGF-A). The bioactive PDGF-AA protein released induces sustained downregulation of PDGFalphaR that is encoded by a growth arrest-specific (gas) gene. Ad-PDGF-A induces sustained phosphorylation of PDGFalphaR as well as prolonged phosphorylation of downstream extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Furthermore, the phosphorylation of PDGFalphaR is abolished by cotransducing cells with adenovirus encoding a dominant negative mutant of the PDGF-A gene that disrupts PDGF bioactivity. These findings demonstrate the prolonged effects of adenoviral delivery of PDGF and aid in the better understanding of sustained PDGF signaling.
Collapse
Affiliation(s)
- Qi-Ping Chen
- Center for Biorestoration of Oral Health, Department of Periodontics, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
24
|
Yeh SD, Chen YJ, Chang ACY, Ray R, She BR, Lee WS, Chiang HS, Cohen SN, Lin-Chao S. Isolation and properties of Gas8, a growth arrest-specific gene regulated during male gametogenesis to produce a protein associated with the sperm motility apparatus. J Biol Chem 2002; 277:6311-7. [PMID: 11751847 DOI: 10.1074/jbc.m106941200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth arrest-specific (Gas) genes are expressed during serum starvation or contact inhibition of cells grown in culture. Here we report the isolation and characterization of Gas8, a novel gene identified on the basis of its growth arrest-specific expression in murine fibroblasts. We show that production of Gas8 mRNA and protein occurs in adult mice predominantly in the testes, where expression is regulated during postmeiotic development of male gametocytes. Whereas a low level of Gas8 mRNA was detected by Northern blotting in testes of murine male neonates and young adolescents, Gas8 mRNA increased rapidly postmeiotically. In adult males, both Gas8 mRNA and protein reached steady state levels in testes that were 10-fold higher than in other tissues. Immunohistochemical analyses showed that Gas8 protein accumulates in gametocytes as they approach the lumen of seminiferous tubules and is localized to the cytoplasm of round spermatids, the tails of elongating spermatids, and mature spermatid tail bundles protruding into the lumen; in epididymal spermatozoa Gas8 protein was present in the flagella. However, premeiotic murine gametocytes lacked detectable Gas8 protein, as did seminiferous tubules in biopsy specimens from seven human males having cytological evidence of non-obstructive azoospermia secondary to Sertoli cell-only syndrome. Our findings, which associate Gas8 production developmentally with the later stages of spermatogenesis and spatially with the sperm motility apparatus, collectively suggest that this growth arrest-specific gene product may have a role in sperm motility. This postulated role for Gas8 is supported by our observation that highly localized production of Gas8 protein occurs also in the cilia of epithelial cells lining pulmonary bronchi and fallopian tubes and by the flagellar association of a Trypanosoma brucei ortholog of Gas8.
Collapse
Affiliation(s)
- Shauh-Der Yeh
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
She BR, Liou GG, Lin-Chao S. Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth. Exp Cell Res 2002; 273:34-44. [PMID: 11795944 DOI: 10.1006/excr.2001.5435] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and persisted transiently at high levels upon reentry of cells into the cell cycle, localized near the plasma membrane and selectively colocalized with microfilaments in membrane ruffles. Process extensions induced by ectopic overexpression of Gas7 were blocked by the actin-depolymerizing agent cytochalasin D, suggesting that membrane extensions produced by Gas7 require actin polymerization. Association of endogenous Gas7 protein with microfilaments was verified by F-actin affinity chromatography; direct binding of purified His-Gas7 to actin also was demonstrated and shown to be mediated by the Gas7 C-terminal domain. Similarly, localization of Gas7 in membrane ruffles was mediated by the C-terminal domain, although neither this region nor the N-terminal domain was individually sufficient to induce process formation. Biochemical studies and electron microscopy showed that both full-length Gas7 protein and its C-terminal region can promote actin assembly as well as the crosslinking of actin filaments. We propose that Gas7 localized near the plasma membrane induces the assembly of actin and the membrane outgrowth.
Collapse
Affiliation(s)
- Bin-Ru She
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | | | | |
Collapse
|
26
|
Lorincz M, Roederer M. Reporters of Gene Expression: Enzymatic Assays. ACTA ACUST UNITED AC 2001; Chapter 9:Unit 9.5. [DOI: 10.1002/0471142956.cy0905s06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matt Lorincz
- Fred Hutchinson Cancer Research Center Seattle Washington
| | | |
Collapse
|
27
|
Serebriiskii IG, Golemis EA. Uses of lacZ to study gene function: evaluation of beta-galactosidase assays employed in the yeast two-hybrid system. Anal Biochem 2000; 285:1-15. [PMID: 10998258 DOI: 10.1006/abio.2000.4672] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- I G Serebriiskii
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
28
|
Durick K, Mendlein J, Xanthopoulos KG. Hunting with traps: genome-wide strategies for gene discovery and functional analysis. Genome Res 1999; 9:1019-25. [PMID: 10568742 DOI: 10.1101/gr.9.11.1019] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With sequence analysis of the human genome well underway, there is an increasingly urgent challenge to understand the fundamental function and interplay of genes that build and maintain an organism. Several approaches will be critical for interpreting gene function, including random cDNA sequencing, expression profiling in different tissues, genetic analysis of human or model organism phenotypes, and creation of transgenic or "knockout" animals. Traditional gene-trapping approaches, in which genes are randomly disrupted with DNA elements inserted throughout the genome, have been used to generate large numbers of mutant organisms for genetic analysis. Recent modifications of gene-trapping methods and their increased use in mammalian systems are likely to result in a wealth of new information on gene function. Various trapping strategies allow genes to be segregated based on criteria like the specific subcellular location of an encoded protein, the tissue expression profile, or responsiveness to specific stimuli. Genome-wide gene-trapping strategies, which integrate gene discovery and expression profiling, can be applied in a massively parallel format to produce living assays for drug discovery.
Collapse
Affiliation(s)
- K Durick
- Aurora Biosciences Corporation, San Diego, California 92121, USA
| | | | | |
Collapse
|
29
|
Lazakovitch EM, She BR, Lien CL, Woo WM, Ju YT, Lin-Chao S. The Gas7 gene encodes two protein isoforms differentially expressed within the brain. Genomics 1999; 61:298-306. [PMID: 10552931 DOI: 10.1006/geno.1999.5964] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gas7, a growth arrest-specific gene first isolated from serum-starved NIH3T3 cells, is expressed abundantly in the brain and is essential for the outgrowth of neurites from cultured cerebellar neurons. Here, we report the existence of a Gas7-related cDNA, designated Gas7-cb, isolated from the mouse cerebellum, and we report the finding that Gas7-cb transcripts and protein are expressed at different locations than those of Gas7. Gas7-cb cDNA differs from the Gas7 cDNA only in the 5' region. Its encoded protein shares the same 320 amino acids in its C-terminus with those of Gas7. Analyses of the RNA and protein expression of Gas7-cb and Gas7 by RNase protection assay and Western blot indicated that while Gas7 expression is predominant in the cerebrum and in growth-arrested NIH3T3 fibroblasts, Gas7-cb expression is predominant in the cerebellum. Characterization of Gas7 and Gas7-cb RNAs and of the genomic structure of murine Gas7 cloned in a bacterial artificial chromosome indicated that the Gas7 gene spans more than 60 kb and consists of at least 15 exons. The 5'-terminus of Gas7-cb is located at exon 6a, which is absent in Gas7 transcripts but is retained in its entirety in Gas7-cb transcripts, resulting in the presence of a unique 20-amino-acid sequence at the N-terminus of the Gas7-cb protein. Our results show that the Gas7 gene encodes two Gas7 isoforms, Gas7 and Gas7-cb, whose expression is differentially regulated within mouse brain.
Collapse
Affiliation(s)
- E M Lazakovitch
- Institute of Molecular Biology, Academia Sinica, Nankang, 115, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The frog transgenesis technique ultimately promises to make mutagenesis possible through random insertion of plasmid DNA into the genome. This study was undertaken to evaluate whether a gene trap approach combined with transgenesis would be appropriate for performing insertional mutagenesis in Xenopus embryos. Firstly, we confirmed that the transgenic technique results in stable integration into the genome and that transmission through the germline occurs in the expected Mendelian fashion. Secondly, we developed several gene trap vectors, using the green fluorescent protein (GFP) as a marker. Using these vectors, we trapped several genes in Xenopus laevis that are expressed in a spatially restricted manner, including expression in the epiphysis, the olfactory bulb and placodes, the eyes, ear, brain, muscles, tail and intestine. Finally, we cloned one of the trapped genes using 5' rapid amplification of cDNA ends polymerase chain reaction (RACE PCR). These results suggest that the transgenic technique combined with a gene trap approach might provide a powerful method for generating mutations in endogenous genes in Xenopus.
Collapse
Affiliation(s)
- O J Bronchain
- Wellcome/CRC Institute, Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | |
Collapse
|
31
|
Hotfilder M, Baxendale S, Cross MA, Sablitzky F. Def-2, -3, -6 and -8, novel mouse genes differentially expressed in the haemopoietic system. Br J Haematol 1999; 106:335-44. [PMID: 10460589 DOI: 10.1046/j.1365-2141.1999.01551.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To identify developmentally regulated genes during myeloid differentiation, a self-inactivating retroviral gene-trap vector carrying a beta-galactosidase-neomycin (SA/lacZ/neo) fusion gene was constructed and used to infect myeloid progenitor cells (FDCP-Mix A4). G418-resistant and beta-galactosidase positive cell lines (gene-trap integration [GTI] clones) were established and induced to differentiate in vitro into either macrophages or granulocytes. Expression of the trapped loci was monitored at a single-cell level by analysing the mature cell types for beta-galactosidase activity. All 37 GTI clones tested showed down-regulation either during granulocyte or both granulocytic and macrophage differentiation. The endogenous coding regions fused to the SA/lacZ/neo reporter gene were isolated from eight clones. Molecular analysis revealed that half of them represented novel mouse genes (def-2, -3, -6 and -8) which we confirmed to be differentially expressed in primary haemopoietic tissues. Database searches revealed no significant similarities for def-2 (associated with haemopoietic progenitors) and def-8 (expressed most strongly in peripheral leucocytes). Def-6, which is down-regulated upon the differentiation into myeloid as well as erythroid lineages, was found to be closely related but not identical with the recently described B-cell-specific switch recombinase SWAP-70. Def-3, which is down-regulated upon differentiation into granulocytes but expressed in progenitor cells and macrophages, defines a novel family of RNA binding proteins.
Collapse
Affiliation(s)
- M Hotfilder
- Max-Delbrück-Laboratory in the MPG, Cologne, Germany
| | | | | | | |
Collapse
|
32
|
Velasco JA, Avila MA, Notario V. The product of the cph oncogene is a truncated, nucleotide-binding protein that enhances cellular survival to stress. Oncogene 1999; 18:689-701. [PMID: 9989819 DOI: 10.1038/sj.onc.1202324] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cph was isolated from neoplastic Syrian hamster embryo fibroblasts initiated by 3-methylcholanthrene (MCA), and was shown to be a single copy gene in the hamster genome, conserved from yeast to human cells, expressed in fetal cells and most adult tissues, and acting synergistically with H-ras in the transformation of murine NIH3T3 fibroblasts. We have now isolated Syrian hamster full-length cDNAs for the cph oncogene and proto-oncogene. Nucleotide sequence analysis revealed that cph was activated in MCA-treated cells by a point-mutational deletion at codon 214, which caused a shift in the normal open reading frame (ORF) and brought a translation termination codon 33 amino acids downstream. While proto-cph encodes a protein (pcph) of 469 amino acids, cph encodes a truncated protein (cph) of 246 amino acids with a new, hydrophobic C-terminus. Similar mechanisms activated cph in other MCA-treated Syrian hamster cells. The cph and proto-cph proteins have partial sequence homology with two protein families: GDP/GTP exchange factors and nucleotide phosphohydrolases. In vitro translated, gel-purified cph proteins did not catalyze nucleotide exchange for H-ras, but were able to bind nucleotide phosphates, in particular ribonucleotide diphosphates such as UDP and GDP. Steady-state levels of cph mRNA increased 6.7-fold in hamster neoplastic cells, relative to a 2.2-fold increase in normal cells, when they were subjected to a nutritional stress such as serum deprivation. Moreover, cph-transformed NIH3T3 cells showed increased survival to various forms of stress (serum starvation, hyperthermia, ionizing radiation), strongly suggesting that cph participates in cellular mechanisms of response to stress.
Collapse
Affiliation(s)
- J A Velasco
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
33
|
Ju YT, Chang AC, She BR, Tsaur ML, Hwang HM, Chao CC, Cohen SN, Lin-Chao S. gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc Natl Acad Sci U S A 1998; 95:11423-8. [PMID: 9736752 PMCID: PMC21658 DOI: 10.1073/pnas.95.19.11423] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth arrest-specific (gas) genes are expressed preferentially in cells that enter a quiescent state. gas7, which we identified in serum-starved murine fibroblasts, is reported here to be expressed in vivo selectively in neuronal cells of the mature cerebral cortex, hippocampus, and cerebellum. gas7 transcripts encode a 48-kDa protein containing a structural domain that resembles sequences of OCT2, a POU transcription factor implicated in neuronal development, and synapsins, which have a role in modulating neurotransmitter release. Using in situ hybridization and immunocytochemical analysis, we show that GAS7 expression occurs prominently in cerebellar Purkinje cells and that inhibition of production in terminally differentiating cultures of embryonic murine cerebellum impedes neurite outgrowth from maturing Purkinje cells. Conversely, GAS7 overexpression in undifferentiated neuroblastoma cell cultures dramatically promotes neurite-like outgrowth. Collectively, our results provide evidence for an association between expression of this gas gene and neuronal development.
Collapse
Affiliation(s)
- Y T Ju
- Institute of Molecular Biology, Academia Sinica, Nankang Taipei, Taiwan 115, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Andreú T, Beckers T, Thoenes E, Hilgard P, von Melchner H. Gene trapping identifies inhibitors of oncogenic transformation. The tissue inhibitor of metalloproteinases-3 (TIMP3) and collagen type I alpha2 (COL1A2) are epidermal growth factor-regulated growth repressors. J Biol Chem 1998; 273:13848-54. [PMID: 9593730 DOI: 10.1074/jbc.273.22.13848] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene trap strategy has been used to identify genes that are repressed in cells transformed by an activated epidermal growth factor (EGF)/EGF receptor signal transduction pathway. EGF receptor-expressing NIH3T3 cells (HER1 cells) were infected with a retrovirus containing coding sequences for the human CD2 antigen and for secreted alkaline phosphatase in the U3 region. By selecting for and against CD2 expression, we obtained clones in which the gene trap had integrated into genes selectively repressed by EGF. Two of these clones encoded for the secreted extracellular matrix proteins TIMP3 and COL1A2. We show here that both genes are downstream targets of RAS and are specifically repressed by EGF-induced transformation. Moreover, this strategy tags tumor suppressor genes in their normal chromosomal location, thereby improving target-specific screens for antineoplastic drugs.
Collapse
Affiliation(s)
- T Andreú
- Laboratory for Molecular Hematology, Department of Hematology, University of Frankfurt Medical School, Weismüllerstrasse 45, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
35
|
Lih CJ, Cohen SN, Wang C, Lin-Chao S. The platelet-derived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene. Proc Natl Acad Sci U S A 1996; 93:4617-22. [PMID: 8643452 PMCID: PMC39327 DOI: 10.1073/pnas.93.10.4617] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Using the Escherichia coli lacZ gene to identify chromosomal loci that are transcriptionally active during growth arrest of NIH 3T3 fibroblasts, we found that an mRNA expressed preferentially in serum-deprived cells specifies the previously characterized alpha-receptor (alphaR) for platelet-derived growth factor (PDGF), which mediates mitogenic responsiveness to all PDGF isoforms. Both PDGFalphaR mRNA, which was shown to include a 111-nt segment encoded by a DNA region thought to contain only intron sequences, and PDGFalphaR protein accumulated in serum-starved cells and decreased as cells resumed cycling. Elevated PDGFalphaR gene expression during serum starvation was not observed in cells that had been transformed with oncogenes erbB2, src, or raf, which prevent starvation-induced growth arrest. Our results support the view that products of certain genes expressed during growth arrest function to promote, rather than restrict, cell cycling. We suggest that accumulation of the PDGFalphaR gene product may facilitate the exiting of cells from growth arrest upon mitogenic stimulation by PDGF, leading to the state of "competence" required for cell cycling.
Collapse
Affiliation(s)
- C J Lih
- Institute of Molecular Biology, Academia Sinica, Nankang Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
36
|
Li L, Cohen SN. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 1996; 85:319-29. [PMID: 8616888 DOI: 10.1016/s0092-8674(00)81111-3] [Citation(s) in RCA: 258] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using a novel strategy that enables the isolation of previously unknown genes encoding selectable recessive phenotypes, we identified a gene (tsg101) whose homozygous functional disruption produces cell transformation. Antisense RNA from a transactivated promoter introduced randomly into transcribed genes throughout the genome of mouse 3T3 fibroblasts was used to knock out alleles of chromosomal genes adjacent to promoter inserts, generating clones that grew in 0.5% agar and formed metastatic tumors in nude mice. Removal of the transactivator restored normal growth. The protein encoded by tsg101 cDNA encodes a coiled-coil domain that interacts with stathmin, a cytosolic phosphoprotein implicated previously in tumorigenesis. Overexpression of tsg101 antisense transcripts in naive 3T3 cells resulted in cell transformation and increased stathmin-specific mRNA.
Collapse
MESH Headings
- 3T3 Cells/physiology
- Agar
- Alleles
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Differentiation/genetics
- Cell Division/genetics
- Cell Transformation, Neoplastic/genetics
- Chromosome Mapping
- Cloning, Molecular
- Cytosol/physiology
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Endosomal Sorting Complexes Required for Transport
- Gene Expression Regulation, Neoplastic/genetics
- Genes, Recessive/genetics
- Genes, Tumor Suppressor/genetics
- Homozygote
- Mammals
- Mice
- Mice, Knockout
- Mice, Nude
- Microtubule Proteins
- Molecular Sequence Data
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/secondary
- Phenotype
- Phosphoproteins/genetics
- RNA, Antisense/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Stathmin
- Transcription Factors/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- L Li
- Department of Genetics, Stanford University School of Medicine, California 94305-5120, USA
| | | |
Collapse
|
37
|
Kerr WG, Heller M, Herzenberg LA. Analysis of lipopolysaccharide-response genes in B-lineage cells demonstrates that they can have differentiation stage-restricted expression and contain SH2 domains. Proc Natl Acad Sci U S A 1996; 93:3947-52. [PMID: 8632995 PMCID: PMC39465 DOI: 10.1073/pnas.93.9.3947] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) is a potent stimulator of B-cell activation, proliferation, and differentiation. We examined the genetic response of B-lineage cells to LPS via trapping of expressed genes with a gene-trap retrovirus. This analysis showed that expression of only a small fraction of genes is altered during LPS stimulation of B-lineage cells. Isolation of the cellular portion of the trapped LPS-response genes via 5' RACE (rapid amplification of cDNA ends) cloning identified novel genes for all the cloned loci. These novel LPS-response genes were also found to have differentiation stage-restricted expression within the B-lymphoid lineage. That LPS-response genes in B cells also have differentiation stage-restricted expression suggests that these genes may be involved in the control of B-cell function and differentiation, since the known members of this class of genes have frequently been found to play a role in the function and differentiation of B-lineage cells. The isolation of novel members of this class of genes, including a gene that contains a putative SH2 domain, will further increase our understanding of the molecular events involved in the control of B-cell differentiation and function.
Collapse
Affiliation(s)
- W G Kerr
- Department of Genetics, Stanford University School of Medicine, CA 94305, USA
| | | | | |
Collapse
|
38
|
Skarnes WC, Moss JE, Hurtley SM, Beddington RS. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc Natl Acad Sci U S A 1995; 92:6592-6. [PMID: 7604039 PMCID: PMC41564 DOI: 10.1073/pnas.92.14.6592] [Citation(s) in RCA: 262] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A strategy based on the gene trap was developed to prescreen mouse embryonic stem cells for insertional mutations in genes encoding secreted and membrane-spanning proteins. The "secretory trap" relies on capturing the N-terminal signal sequence of an endogenous gene to generate an active beta-galactosidase fusion protein. Insertions were found in a cadherin gene, an unc6-related laminin (netrin) gene, the sek receptor tyrosine kinase gene, and genes encoding two receptor-linked protein-tyrosine phosphatases, LAR and PTP kappa. Analysis of homozygous mice carrying insertions in LAR and PTP kappa showed that both genes were effectively disrupted, but neither was essential for normal embryonic development.
Collapse
Affiliation(s)
- W C Skarnes
- Biotechnology and Biological Sciences Research Council, Centre for Genome Research, University of Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
39
|
Horowitz H, Berg CA. Aberrant splicing and transcription termination caused by P element insertion into the intron of a Drosophila gene. Genetics 1995; 139:327-35. [PMID: 7705633 PMCID: PMC1206329 DOI: 10.1093/genetics/139.1.327] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insertional mutagenesis screens using the P[lacZ, rosy+] (PZ) transposable element have provided thousands of mutant lines for analyzing genes of varied function in the fruitfly, Drosophila melanogaster. As have been observed with other P elements, many of the PZ-induced mutations result from insertion of the P element into the promoter or 5' untranslated regions of the affected gene. We document here a novel mechanism for mutagenesis by this element. We show that sequences present within the element direct aberrant splicing and termination events that produce a mRNA composed of 5' sequences from the mutated gene (in this case, pipsqueak) and 3' sequences from within the P[lacZ, rosy+] element. These truncated RNAs could yield proteins with dominant mutant effects.
Collapse
Affiliation(s)
- H Horowitz
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|
40
|
Frangioni JV, Moghal N, Stuart-Tilley A, Neel BG, Alper SL. The DNA binding domain of retinoic acid receptor beta is required for ligand-dependent suppression of proliferation. Application of general purpose mammalian coexpression vectors. J Cell Sci 1994; 107 ( Pt 4):827-38. [PMID: 8056839 DOI: 10.1242/jcs.107.4.827] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a family of mammalian coexpression vectors that permit identification of living or fixed cells overexpressing a gene of interest by surrogate detection of a coexpressed marker protein. Using these ‘pMARK’ vectors, a fluorescence-based, single cell proliferation assay was developed and used to study the effect of retinoic acid receptor beta (RAR-beta) on cell cycling. We demonstrate that transient overexpression of RAR-beta in the presence, but not absence, of all-trans retinoic acid results in a dramatic suppression of cell proliferation. We further show that this effect requires the DNA binding (C) domain of RAR-beta. It has been previously shown that RAR-beta expression is markedly altered in a variety of neoplasms and cell lines. Our data support the hypothesis that loss of RAR-beta may contribute to tumor progression by removing normal restraints on proliferation. The pMARK vectors should be useful for studying other genes that putatively suppress or enhance proliferation.
Collapse
Affiliation(s)
- J V Frangioni
- Molecular Medicine Unit, Beth Israel Hospital, Boston, MA 02215
| | | | | | | | | |
Collapse
|
41
|
Shaw-White JR, Denko N, Albers L, Doetschman TC, Stringer JR. Expression of the lacZ gene targeted to the HPRT locus in embryonic stem cells and their derivatives. Transgenic Res 1993; 2:1-13. [PMID: 8513334 DOI: 10.1007/bf01977675] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transgenes in mice often exhibit different expression patterns in different transgenic lines. While the basis for this phenomenon is not understood, it is widely believed that the site at which the transgene becomes integrated into the mouse genome is a major factor in determining the pattern of expression. Most transgenic mice have been produced by microinjection of DNA into the male pronucleus, which results in integration of tandem arrays of the transgene at random chromosomal sites. In the experiments described in this report, electroporation of embryonic stem (ES) cells was used to place single copies of a lacZ transgene into either random sites or into the HPRT (hypoxanthine phosphoribosyl transferase) locus of the mouse genome. Expression of lacZ was assayed by histochemical staining for Escherichia coli beta-galactosidase activity in ES cells and in differentiated derivatives obtained by teratocarcinoma formation. Several of the randomly integrated cell lines expressed lacZ at high levels in a variety of cell types present in the tumours, but most notably in epithelial cells. Targeted cell lines with lacZ in opposite orientation to the direction of HPRT gene transcription also expressed well in epithelial cells, but the targeted cell lines did not express in a wider variety of cell types than some of the nontargeted cell lines. Targeted cell lines transcribing lacZ in the same orientation as HPRT transcription did not express high levels of lacZ in any differentiated cell type. Analysis of transcripts suggested that this orientation effect may have been the result of transcriptional interference perpetrated by the HPRT gene promoter.
Collapse
Affiliation(s)
- J R Shaw-White
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, OH 45267-0524
| | | | | | | | | |
Collapse
|
42
|
Hill DP, Wurst W. Gene and enhancer trapping: mutagenic strategies for developmental studies. Curr Top Dev Biol 1993; 28:181-206. [PMID: 8348841 DOI: 10.1016/s0070-2153(08)60213-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- D P Hill
- Samuel Lunenfeld Research Institute of Mt. Sinai Hospital, Division of Molecular and Developmental Biology, Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Reddy S, Rayburn H, von Melchner H, Ruley HE. Fluorescence-activated sorting of totipotent embryonic stem cells expressing developmentally regulated lacZ fusion genes. Proc Natl Acad Sci U S A 1992; 89:6721-5. [PMID: 1495960 PMCID: PMC49575 DOI: 10.1073/pnas.89.15.6721] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Murine embryonic stem (ES) cells were infected with a retrovirus promoter trap vector, and clones expressing lacZ fusion genes (LacZ+) were isolated by fluorescence-activated cell sorting (FACS). Of 12 fusion genes tested, 1 was repressed when ES cells were allowed to differentiate in vitro. Two of three lacZ fusion genes tested were passed into the germ line, indicating that FACS does not significantly affect stem cell totipotency. The pattern of lacZ expression observed in vivo was consistent with that seen in vitro. Both fusion genes were expressed in preimplantation blastulas. However, a fusion gene whose expression was unaffected by in vitro differentiation was ubiquitously expressed in day-10 embryos, while the other, which showed regulated expression in vitro, was restricted to cells located along the posterior neural fold, the optic chiasm, and within the fourth ventricle. These results demonstrate the utility of using promoter trap vectors in conjunction with fluorescence sorting to disrupt developmentally regulated genes in mice.
Collapse
Affiliation(s)
- S Reddy
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
44
|
Skarnes WC, Auerbach BA, Joyner AL. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev 1992; 6:903-18. [PMID: 1592261 DOI: 10.1101/gad.6.6.903] [Citation(s) in RCA: 226] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have confirmed that the gene trap vector pGT4.5 creates spliced fusion transcripts with endogenous genes and prevents the synthesis of normal transcripts at the site of integration. cDNA was prepared to the lacZ fusion transcript in three ES cell lines to recover endogenous exon sequences upstream of lacZ. Each of the clones detected a unique-sized endogenous transcript, as well as the fusion transcript in the ES cell line from which the clone was derived. Sequence analysis of these clones and larger clones isolated from a random-primed cDNA library showed that the splice acceptor was used properly. For two insertions, the expression patterns of the lacZ reporter and the associated endogenous gene were compared in situ at three embryonic stages and were found to be similar. Three gene trap insertions were transmitted into the germ line, and abnormalities were observed with two of the three insertions in the homozygous state. RNA obtained from mice homozygous for the two mutant gene trap insertions was analyzed for normal endogenous transcripts and negligible amounts were detected, indicating that little splicing around the gene trap insertion occurred. This work demonstrates the capacity of the gene trap vector to generate lacZ fusion transcripts, to accurately report endogenous gene expression, and to mutate the endogenous gene at the site of integration.
Collapse
Affiliation(s)
- W C Skarnes
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | | | |
Collapse
|
45
|
von Melchner H, DeGregori JV, Rayburn H, Reddy S, Friedel C, Ruley HE. Selective disruption of genes expressed in totipotent embryonal stem cells. Genes Dev 1992; 6:919-27. [PMID: 1317320 DOI: 10.1101/gad.6.6.919] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two retrovirus promoter trap vectors (U3His and U3Neo) have been used to disrupt genes expressed in totipotent murine embryonal stem (ES) cells. Selection in L-histidinol or G418 produced clones in which the coding sequences for histidinol-dehydrogenase or neomycin-phosphotransferase were fused to sequences in or near the 5' exons of expressed genes, including one in the developmentally regulated REX-1 gene. Five of seven histidinol-resistant clones and three of three G418-resistant clones generated germ-line chimeras. A total of four disrupted genes have been passed to the germ line, of which two resulted in embryonic lethalities when bred to homozygosity. The ability to screen large numbers of recombinant ES cell clones for significant mutations, both in vitro and in vivo, circumvents genetic limitations imposed by the size and long generation time of mice and will facilitate a functional analysis of the mouse genome.
Collapse
Affiliation(s)
- H von Melchner
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- J Rossant
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
47
|
|
48
|
Joyner AL. Gene targeting and gene trap screens using embryonic stem cells: new approaches to mammalian development. Bioessays 1991; 13:649-56. [PMID: 1789782 DOI: 10.1002/bies.950131206] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mouse embryonic stem cell lines offer an attractive route for introducing rare genetic alternations into the gene pool since the cells can be pre-screened in culture and the mutations then transmitted into the germline through chimera production. Two applications of this technique that seem ideally suited for a genetic analysis of development are enhancer and gene trap screens for loci expressed during gastrulation and production of targeted mutations using homologous recombination. These approaches should greatly increase the number of mouse developmental mutants available and help to elucidate the genetic hierarchy controlling embryogenesis.
Collapse
Affiliation(s)
- A L Joyner
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Division of Molecular and Developmental Biology, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Friedrich G, Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 1991; 5:1513-23. [PMID: 1653172 DOI: 10.1101/gad.5.9.1513] [Citation(s) in RCA: 1082] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A general strategy for selecting insertion mutations in mice has been devised. Constructs lacking a promoter and including a beta-galactosidase gene, or a reporter gene encoding a protein with both beta-galactosidase and neomycin phosphotransferase activity, were designed so that activation of the reporter gene depends on its insertion within an active transcription unit. Such insertion events create a mutation in the tagged gene and allow its expression to be followed by beta-galactosidase activity. Introduction of promoter trap constructs into embryonic stem (ES) cells by electroporation or retroviral infection has led to the derivation of transgenic lines that show a variety of beta-galactosidase expression patterns. Intercrossing of heterozygotes from 24 strains that express beta-galactosidase identified 9 strains in which homozygosity leads to an embryonic lethality. Because no overt phenotype was detected in the remaining strains, these results suggest that a substantial proportion of mammalian genes identified by this approach are not essential for development.
Collapse
Affiliation(s)
- G Friedrich
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
50
|
Reddy S, DeGregori JV, von Melchner H, Ruley HE. Retrovirus promoter-trap vector to induce lacZ gene fusions in mammalian cells. J Virol 1991; 65:1507-15. [PMID: 1704929 PMCID: PMC239931 DOI: 10.1128/jvi.65.3.1507-1515.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A retrovirus promoter-trap vector (U3LacZ) has been developed in which Escherichia coli lacZ coding sequences were inserted into the 3' long terminal repeat (LTR) of an enhancerless Moloney murine leukemia virus. The U3LacZ virus contains the longest reported LTR (3.4 kbp); nevertheless, lacZ sequences did not interfere with the ability of the virus to transduce a neomycin resistance gene expressed from an internal promoter. Duplication of the LTR placed lacZ sequences in the 5' LTR just 30 nucleotides from the flanking cellular DNA. Approximately 0.4% of integrated proviruses expressed beta-galactosidase as judged by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) staining, and individual clones expressing lacZ were isolated by fluorescence-activated cell sorting. In all clones examined, beta-galactosidase expression resulted from the fusion of lacZ sequences to transcriptional promoters located in the flanking cellular DNA. Furthermore, by differential sorting of neomycin-resistant cell populations, clones were isolated in which lacZ expression was induced and repressed in growth-arrested and log phase cells, respectively.
Collapse
Affiliation(s)
- S Reddy
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|