1
|
Borg J, Loy C, Kim J, Buhagiar A, Chin C, Damle N, De Vlaminck I, Felice A, Liu T, Matei I, Meydan C, Muratani M, Mzava O, Overbey E, Ryon KA, Smith SM, Tierney BT, Trudel G, Zwart SR, Beheshti A, Mason CE, Borg J. Spatiotemporal expression and control of haemoglobin in space. Nat Commun 2024; 15:4927. [PMID: 38862545 PMCID: PMC11166948 DOI: 10.1038/s41467-024-49289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
It is now widely recognised that the environment in space activates a diverse set of genes involved in regulating fundamental cellular pathways. This includes the activation of genes associated with blood homoeostasis and erythropoiesis, with a particular emphasis on those involved in globin chain production. Haemoglobin biology provides an intriguing model for studying space omics, as it has been extensively explored at multiple -omic levels, spanning DNA, RNA, and protein analyses, in both experimental and clinical contexts. In this study, we examined the developmental expression of haemoglobin over time and space using a unique suite of multi-omic datasets available on NASA GeneLab, from the NASA Twins Study, the JAXA CFE study, and the Inspiration4 mission. Our findings reveal significant variations in globin gene expression corresponding to the distinct spatiotemporal characteristics of the collected samples. This study sheds light on the dynamic nature of globin gene regulation in response to the space environment and provides valuable insights into the broader implications of space omics research.
Collapse
Affiliation(s)
- Josef Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Conor Loy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alfred Buhagiar
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Iwijn De Vlaminck
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alex Felice
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Tammy Liu
- Ottawa Hospital Research Institute, Department of Medicine, Ottawa, Ontario, Canada
| | - Irina Matei
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Masafumi Muratani
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Omary Mzava
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Guy Trudel
- Ottawa Hospital Research Institute, Department of Medicine, Ottawa, Ontario, Canada
| | - Sara R Zwart
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
- University of Texas Medical Branch, Galveston, TX, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta.
| |
Collapse
|
2
|
Abstract
Significance: Central nervous system (CNS) diseases are disorders of the brain and/or spinal cord and include neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor belonging to the cap-n-collar family that harbors a unique basic leucine zipper motif and plays as a master regulator of homeostatic responses. Recent Advances: Kelch-like ECH-associated protein 1 (KEAP1) is an adaptor of the Cullin3 (CUL3)-based ubiquitin E3 ligase that enhances the ubiquitylation of NRF2, which promotes the degradation of NRF2 to suppress its transcriptional activity in the absence of stress. Cysteine residues of KEAP1 are modified under stress conditions, and NRF2 degradation is attenuated, allowing it to accumulate and induce the expression of target genes. This regulatory system is referred to as the KEAP1-NRF2 system and plays a central role in protecting cells against various stresses. NRF2 also negatively regulates the expression of inflammatory cytokine and chemokine genes and suppresses pathological inflammation. As oxidative stress, inflammation, and proteostasis are known to contribute to neurodegenerative diseases, the KEAP1-NRF2 system is an attractive target for the treatment of these diseases. Critical Issues: In mouse models of neurodegenerative diseases, Nrf2 depletion exacerbates symptoms and enhances oxidative damage and inflammation in the CNS. In contrast, chemical or genetic NRF2 activation improves these symptoms. Indeed, the NRF2-activating chemical dimethyl fumarate is now widely used for the clinical treatment of MS. Future Directions: The KEAP1-NRF2 system is a promising therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Laurindo LF, de Maio MC, Minniti G, de Góes Corrêa N, Barbalho SM, Quesada K, Guiguer EL, Sloan KP, Detregiachi CRP, Araújo AC, de Alvares Goulart R. Effects of Medicinal Plants and Phytochemicals in Nrf2 Pathways during Inflammatory Bowel Diseases and Related Colorectal Cancer: A Comprehensive Review. Metabolites 2023; 13:243. [PMID: 36837862 PMCID: PMC9966918 DOI: 10.3390/metabo13020243] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are related to nuclear factor erythroid 2-related factor 2 (Nrf2) dysregulation. In vitro and in vivo studies using phytocompounds as modulators of the Nrf2 signaling in IBD have already been published. However, no existing review emphasizes the whole scenario for the potential of plants and phytocompounds as regulators of Nrf2 in IBD models and colitis-associated colorectal carcinogenesis. For these reasons, this study aimed to build a review that could fill this void. The PubMed, EMBASE, COCHRANE, and Google Scholar databases were searched. The literature review showed that medicinal plants and phytochemicals regulated the Nrf2 on IBD and IBD-associated colorectal cancer by amplifying the expression of the Nrf2-mediated phase II detoxifying enzymes and diminishing NF-κB-related inflammation. These effects improve the bowel environment, mucosal barrier, colon, and crypt disruption, reduce ulceration and microbial translocation, and consequently, reduce the disease activity index (DAI). Moreover, the modulation of Nrf2 can regulate various genes involved in cellular redox, protein degradation, DNA repair, xenobiotic metabolism, and apoptosis, contributing to the prevention of colorectal cancer.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| | - Mariana Canevari de Maio
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Natália de Góes Corrêa
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | | | - Claudia R. P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
4
|
Uruno A, Yamamoto M. The KEAP1-NRF2 system and neurodegenerative diseases. Antioxid Redox Signal 2023. [PMID: 36734430 DOI: 10.1089/ars.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Significance: Central nervous system (CNS) diseases are disorders of the brain and/or spinal cord and include neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). NF-E2-related factor 2 (NRF2) is a transcription factor belonging to the cap-n-collar (CNC) family that harbors a unique basic leucine zipper motif and plays as a master regulator of homeostatic responses. Recent Advances: Kelch-like ECH-associated protein 1 (KEAP1) is an adaptor of the Cullin3 (CUL3)-based ubiquitin E3 ligase that enhances the ubiquitylation of NRF2, which promotes the degradation of NRF2 to suppress its transcriptional activity in the absence of stress. Cysteine residues of KEAP1 are modified under stress conditions, and NRF2 degradation is attenuated, allowing it to accumulate and induce the expression of target genes. This regulatory system is referred to as the KEAP1-NRF2 system and plays a central role in protecting cells against various stresses. NRF2 also negatively regulates the expression of inflammatory cytokine and chemokine genes and suppresses pathological inflammation. As oxidative stress, inflammation, and proteostasis are known to contribute to neurodegenerative diseases, the KEAP1-NRF2 system is an attractive target for the treatment of these diseases. Critical Issues: In mouse models of neurodegenerative diseases, Nrf2 depletion exacerbates symptoms and enhances oxidative damage and inflammation in the CNS. In contrast, chemical or genetic NRF2 activation improves these symptoms. Indeed, the NRF2-activating chemical dimethyl fumarate (DMF) is now widely used for the clinical treatment of MS. Future Directions: The KEAP1-NRF2 system is a promising therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Akira Uruno
- Tohoku University, 13101, 2-1 Seiryo-cho, Aoba-ku, Sendai, Sendai, Miyagi, Japan, 980-8577;
| | - Masayuki Yamamoto
- Tohoku University Graduate School of Medicine, Department of Medical Biochemistry, 2-1 Seiryo-machi, Aoba-ku, Sendai, Sendai, Japan, 980-8575;
| |
Collapse
|
5
|
Zhang D, Iwabuchi S, Baba T, Hashimoto SI, Mukaida N, Sasaki SI. Involvement of a Transcription factor, Nfe2, in Breast Cancer Metastasis to Bone. Cancers (Basel) 2020; 12:3003. [PMID: 33081224 PMCID: PMC7602858 DOI: 10.3390/cancers12103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with triple negative breast cancer (TNBC) is frequently complicated by bone metastasis, which deteriorates the life expectancy of this patient cohort. In order to develop a novel type of therapy for bone metastasis, we established 4T1.3 clone with a high capacity to metastasize to bone after orthotopic injection, from a murine TNBC cell line, 4T1.0. To elucidate the molecular mechanism underlying a high growth ability of 4T1.3 in a bone cavity, we searched for a novel candidate molecule with a focus on a transcription factor whose expression was selectively enhanced in a bone cavity. Comprehensive gene expression analysis detected enhanced Nfe2 mRNA expression in 4T1.3 grown in a bone cavity, compared with in vitro culture conditions. Moreover, Nfe2 gene transduction into 4T1.0 cells enhanced their capability to form intraosseous tumors. Moreover, Nfe2 shRNA treatment reduced tumor formation arising from intraosseous injection of 4T1.3 clone as well as another mouse TNBC-derived TS/A.3 clone with an augmented intraosseous tumor formation ability. Furthermore, NFE2 expression was associated with in vitro growth advantages of these TNBC cell lines under hypoxic condition, which mimics the bone microenvironment, as well as Wnt pathway activation. These observations suggest that NFE2 can potentially contribute to breast cancer cell survival in the bone microenvironment.
Collapse
Affiliation(s)
- Di Zhang
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (S.I.); (S.-i.H.)
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - Shin-ichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (S.I.); (S.-i.H.)
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - So-ichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| |
Collapse
|
6
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
7
|
Li H, Yang Z, Zeng Q, Wang S, Luo Y, Huang Y, Xin Y, He N. Abnormal expression of bHLH3 disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits. HORTICULTURE RESEARCH 2020; 7:83. [PMID: 32528695 PMCID: PMC7261776 DOI: 10.1038/s41438-020-0302-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/18/2023]
Abstract
Mulberry fruits with high concentrations of anthocyanins are favored by consumers because of their good taste, bright color, and high nutritional value. However, neither the regulatory mechanism controlling flavonoid biosynthesis in mulberry nor the molecular basis of different mulberry fruit colors is fully understood. Here, we report that a flavonoid homeostasis network comprising activation and feedback regulation mechanisms determines mulberry fruit color. In vitro and in vivo assays showed that MYBA-bHLH3-TTG1 regulates the biosynthesis of anthocyanins, while TT2L1 and TT2L2 work with bHLH3 or GL3 and form a MYB-bHLH-WD40 (MBW) complex with TTG1 to regulate proanthocyanidin (PA) synthesis. Functional and expression analyses showed that bHLH3 is a key regulator of the regulatory network controlling mulberry fruit coloration and that MYB4 is activated by MBW complexes and participates in negative feedback control of the regulatory network to balance the accumulation of anthocyanins and proanthocyanidins. Our research demonstrates that the interaction between bHLH3 and MYB4 in the homeostasis regulatory network ensures that the fruits accumulate desirable flavonoids and that this network is stable in pigment-rich mulberry fruits. However, the abnormal expression of bHLH3 disrupts the balance of the network and redirects flavonoid metabolic flux in pale-colored fruits, resulting in differences in the levels and proportions of anthocyanins, flavones, and flavonols among differently colored mulberry fruits (red, yellow, and white). The results of our study reveal the molecular basis of the diversity of mulberry fruit colors.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Qiwei Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Shibo Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Yan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| |
Collapse
|
8
|
Cis-element architecture of Nrf2-sMaf heterodimer binding sites and its relation to diseases. Arch Pharm Res 2019; 43:275-285. [PMID: 31792803 DOI: 10.1007/s12272-019-01193-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
Cellular detoxication is essential for health because it provides protection against various chemicals and xenobiotics. The KEAP1-NRF2 system is important for cellular defense against oxidative and electrophilic stresses as NRF2 activates the transcription of an array of cytoprotective genes, including drug-metabolizing and antioxidant enzymes, in a stress-dependent manner. The CNC family of transcription factors, including NRF2, form heterodimers with small Maf (sMaf) proteins and bind to consensus DNA sequences that have been referred to as antioxidant response element, electrophile response element, or NF-E2-binding element. These sequences are now collectively called CNC-sMaf binding element (CsMBE). In addition to forming a heterodimer with CNC proteins, sMaf proteins can form homodimers and recognize regulatory motifs called Maf recognition element (MARE). Although the CsMBE sequence substantially overlaps with that of MARE, the sequences differ. NRF2 selectively recognizes CsMBE, which is critical for cytoprotection. Recent advances in high-throughput sequencing and population-scale genome analysis provide new insights into the transcriptional regulation involved in the stress response. The integration of a genome-wide map of NRF2 occupancy with disease-susceptibility loci reveals the associations between polymorphisms in CsMBE and disease risk, information useful for the personalized medicine of the future.
Collapse
|
9
|
Phillips JD. Heme biosynthesis and the porphyrias. Mol Genet Metab 2019; 128:164-177. [PMID: 31326287 PMCID: PMC7252266 DOI: 10.1016/j.ymgme.2019.04.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Porphyrias, is a general term for a group of metabolic diseases that are genetic in nature. In each specific porphyria the activity of specific enzymes in the heme biosynthetic pathway is defective and leads to accumulation of pathway intermediates. Phenotypically, each disease leads to either neurologic and/or photocutaneous symptoms based on the metabolic intermediate that accumulates. In each porphyria the distinct patterns of these substances in plasma, erythrocytes, urine and feces are the basis for diagnostically defining the metabolic defect underlying the clinical observations. Porphyrias may also be classified as either erythropoietic or hepatic, depending on the principal site of accumulation of pathway intermediates. The erythropoietic porphyrias are congenital erythropoietic porphyria (CEP), and erythropoietic protoporphyria (EPP). The acute hepatic porphyrias include ALA dehydratase deficiency porphyria, acute intermittent porphyria (AIP), hereditary coproporphyria (HCP) and variegate porphyria (VP). Porphyria cutanea tarda (PCT) is the only porphyria that has both genetic and/or environmental factors that lead to reduced activity of uroporphyrinogen decarboxylase in the liver. Each of the 8 enzymes in the heme biosynthetic pathway have been associated with a specific porphyria (Table 1). Mutations affecting the erythroid form of ALA synthase (ALAS2) are most commonly associated with X-linked sideroblastic anemia, however, gain-of-function mutations of ALAS2 have also been associated with a variant form of EPP. This overview does not describe the full clinical spectrum of the porphyrias, but is meant to be an overview of the biochemical steps that are required to make heme in both erythroid and non-erythroid cells.
Collapse
Affiliation(s)
- John D Phillips
- Division of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America.
| |
Collapse
|
10
|
Direct and Specific Functional Evaluation of the Nrf2 and MafG Heterodimer by Introducing a Tethered Dimer into Small Maf-Deficient Cells. Mol Cell Biol 2019; 39:MCB.00273-19. [PMID: 31383749 DOI: 10.1128/mcb.00273-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
A group of cytoprotective genes is regulated by heterodimers composed of the cap'n'collar (CNC) family member Nrf2 and one of the small Maf (sMaf) proteins (MafF, MafG, or MafK) through the antioxidant response element (ARE, also referred to as the CNC-sMaf binding element [CsMBE]). Many lines of evidence support this model; however, a direct and specific evaluation of the Nrf2-sMaf heterodimer remains to be executed. To address this issue, we constructed a tethered Nrf2-MafG (T-N2G) heterodimer using a flexible linker peptide. We then introduced the T-N2G construct into cells lacking all three sMaf proteins to specifically evaluate the function of the tethered heterodimer without interference from other endogenous CNC-sMaf heterodimers or sMaf homodimers. In response to an Nrf2 activator, diethyl maleate, the T-N2G protein can widely activate the target genes of Nrf2 but not those of Nrf1, such as proteasome subunit genes. Genome-wide binding analysis showed that the T-N2G protein preferentially bound to the CsMBE motifs in the regulatory regions of the Nrf2 target genes. These results provide direct evidence that the Nrf2-MafG heterodimer acts as a transcriptional activator of Nrf2-dependent genes and show that this assay system will be a powerful tool to specifically examine the function of other CNC-sMaf heterodimers.
Collapse
|
11
|
Zhang T, Liu H, Wang J, Li L, Han C, Mustafa A, Xiong X. Evidences in duck (Anas platyrhynchos) by transcriptome data for supporting the biliverdin was mainly synthesized by shell gland. Poult Sci 2019; 98:2260-2271. [DOI: 10.3382/ps/pey576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
|
12
|
Dodson M, de la Vega MR, Cholanians AB, Schmidlin CJ, Chapman E, Zhang DD. Modulating NRF2 in Disease: Timing Is Everything. Annu Rev Pharmacol Toxicol 2019; 59:555-575. [PMID: 30256716 PMCID: PMC6538038 DOI: 10.1146/annurev-pharmtox-010818-021856] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) is a central regulator of redox, metabolic, and protein homeostasis that intersects with many other signaling cascades. Although the understanding of the complex nature of NRF2 signaling continues to grow, there is only one therapeutic targeting NRF2 for clinical use, dimethyl fumarate, used for the treatment of multiple sclerosis. The discovery of new therapies is confounded by the fact that NRF2 levels vary significantly depending on physiological and pathological context. Thus, properly timed and targeted manipulation of the NRF2 pathway is critical in creating effective therapeutic regimens. In this review, we summarize the regulation and downstream targets of NRF2. Furthermore, we discuss the role of NRF2 in cancer, neurodegeneration, and diabetes as well as cardiovascular, kidney, and liver disease, with a special emphasis on NRF2-based therapeutics, including those that have made it into clinical trials.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Aram B Cholanians
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
- Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
13
|
Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 2018; 17:297-314. [PMID: 29775961 PMCID: PMC6007815 DOI: 10.1016/j.redox.2018.05.002] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 05/05/2018] [Indexed: 12/20/2022] Open
Abstract
Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raju Nagarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India.
| |
Collapse
|
14
|
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol Rev 2018; 98:1169-1203. [PMID: 29717933 PMCID: PMC9762786 DOI: 10.1152/physrev.00023.2017] [Citation(s) in RCA: 1265] [Impact Index Per Article: 180.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) system forms the major node of cellular and organismal defense against oxidative and electrophilic stresses of both exogenous and endogenous origins. KEAP1 acts as a cysteine thiol-rich sensor of redox insults, whereas NRF2 is a transcription factor that robustly transduces chemical signals to regulate a battery of cytoprotective genes. KEAP1 represses NRF2 activity under quiescent conditions, whereas NRF2 is liberated from KEAP1-mediated repression on exposure to stresses. The rapid inducibility of a response based on a derepression mechanism is an important feature of the KEAP1-NRF2 system. Recent studies have unveiled the complexities of the functional contributions of the KEAP1-NRF2 system and defined its broader involvement in biological processes, including cell proliferation and differentiation, as well as cytoprotection. In this review, we describe historical milestones in the initial characterization of the KEAP1-NRF2 system and provide a comprehensive overview of the molecular mechanisms governing the functions of KEAP1 and NRF2, as well as their roles in physiology and pathology. We also refer to the clinical significance of the KEAP1-NRF2 system as an important prophylactic and therapeutic target for various diseases, particularly aging-related disorders. We believe that controlled harnessing of the KEAP1-NRF2 system is a key to healthy aging and well-being in humans.
Collapse
|
15
|
Tian W, Rojo de la Vega M, Schmidlin CJ, Ooi A, Zhang DD. Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). J Biol Chem 2018; 293:2029-2040. [PMID: 29255090 PMCID: PMC5808764 DOI: 10.1074/jbc.ra117.000428] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/04/2017] [Indexed: 12/28/2022] Open
Abstract
Nuclear factor erythroid-2-related factor 1 (NRF1) and NRF2 are essential for maintaining redox homeostasis and coordinating cellular stress responses. They are highly homologous transcription factors that regulate the expression of genes bearing antioxidant-response elements (AREs). Genetic ablation of NRF1 or NRF2 results in vastly different phenotypic outcomes, implying that they play different roles and may be differentially regulated. Kelch-like ECH-associated protein 1 (KEAP1) is the main negative regulator of NRF2 and mediates ubiquitylation and degradation of NRF2 through its NRF2-ECH homology-like domain 2 (Neh2). Here, we report that KEAP1 binds to the Neh2-like (Neh2L) domain of NRF1 and stabilizes it. Consistently, NRF1 is more stable in KEAP1+/+ than in KEAP1-/- isogenic cell lines, whereas NRF2 is dramatically stabilized in KEAP1-/- cells. Replacing NRF1's Neh2L domain with NRF2's Neh2 domain renders NRF1 sensitive to KEAP1-mediated degradation, indicating that the amino acids between the DLG and ETGE motifs, not just the motifs themselves, are essential for KEAP1-mediated degradation. Systematic site-directed mutagenesis identified the core amino acid residues required for KEAP1-mediated degradation and further indicated that the DLG and ETGE motifs with correct spacing are insufficient as a KEAP1 degron. Our results offer critical insights into our understanding of the differential regulation of NRF1 and NRF2 by KEAP1 and their different physiological roles.
Collapse
Affiliation(s)
- Wang Tian
- From the Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | | | - Cody J. Schmidlin
- From the Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Aikseng Ooi
- From the Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Donna D. Zhang
- From the Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, To whom correspondence should be addressed:
Dept. of Pharmacology and Toxicology, College of Pharmacy, 1703 E. Mabel St., Rm. 408, Tucson, AZ 85721. Tel.:
520-626-9918; Fax:
520-626-2466; E-mail:
| |
Collapse
|
16
|
Yu CH, Cui NX, Wang Y, Wang Y, Liu WJ, Gong M, Zhao X, Rong L, Yi ZC. Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to catechol in long term. Toxicol In Vitro 2017; 43:21-28. [PMID: 28552822 DOI: 10.1016/j.tiv.2017.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Catechol is one of phenolic metabolites of benzene that is a general occupational hazard and a ubiquitous environmental air pollutant. Catechol also occurs naturally in fruits, vegetables and cigarettes. Previous studies have revealed that 72h exposure to catechol improved hemin-induced erythroid differentiation of K562 cells accompanied with elevated methylation in erythroid specific genes. In present study, K562 cells were treated with 0, 10 or 20μM catechol for 1-4weeks, hemin-induced hemoglobin synthesis increased in a concentration- and time-dependent manner and the enhanced hemoglobin synthesis was relatively stable. The mRNA expression of α-, β- and γ-globin genes, erythroid heme synthesis enzymes PBGD and ALAS2, transcription factor GATA-1 and NF-E2 showed a significant increase in K562 cells exposed to 20μM catechol for 3w, and catechol enhanced hemin-induced mRNA expression of these genes. Quantitative MassARRAY methylation analysis also confirmed that the exposure to catechol changed DNA methylation levels at several CpG sites in several erythroid-specific genes and their far upstream of regulatory elements. These results demonstrated that long-term exposure to low concentration of catechol enhanced the hemin-induced erythroid differentiation of K562 cells, in which DNA methylation played a role by up-regulating erythroid specific genes.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ning-Xuan Cui
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yan Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ying Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wen-Juan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Meng Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiao Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Rong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
17
|
Tang KY, Yu CH, Jiang L, Gong M, Liu WJ, Wang Y, Cui NX, Song W, Sun Y, Yi ZC. Long-term exposure of K562 cells to benzene metabolites inhibited erythroid differentiation and elevated methylation in erythroid specific genes. Toxicol Res (Camb) 2016; 5:1284-1297. [PMID: 30090432 DOI: 10.1039/c6tx00143b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
Benzene is a common occupational hazard and a widespread environmental pollutant. Previous studies have revealed that 72 h exposure to benzene metabolites inhibited hemin-induced erythroid differentiation of K562 cells accompanied with elevated methylation in erythroid specific genes. However, little is known about the effects of long-term and low-dose benzene metabolite exposure. In this study, to elucidate the effects of long-term benzene metabolite exposure on erythroid differentiation, K562 cells were treated with low-concentration phenol, hydroquinone and 1,2,4-benzenetriol for at least 3 weeks. After exposure of K562 cells to benzene metabolites, hemin-induced hemoglobin synthesis declined in a concentration- and time-dependent manner, and the hemin-induced expressions of α-, β- and γ-globin genes and heme synthesis enzyme porphobilinogen deaminase were significantly suppressed. Furthermore, when K562 cells were continuously cultured without benzene metabolites for another 20 days after exposure to benzene metabolites for 4 weeks, the decreased erythroid differentiation capabilities still remained stable in hydroquinone- and 1,2,4-benzenetriol-exposed cells, but showed a slow increase in phenol-exposed K562 cells. In addition, methyltransferase inhibitor 5-aza-2'-deoxycytidine significantly blocked benzene metabolites inhibiting hemoglobin synthesis and expression of erythroid genes. Quantitative MassARRAY methylation analysis also confirmed that the exposure to benzene metabolites increased DNA methylation levels at several CpG sites in several erythroid-specific genes and their far-upstream regulatory elements. These results demonstrated that long-term and low-dose exposure to benzene metabolites inhibited the hemin-induced erythroid differentiation of K562 cells, in which DNA methylation played a role through the suppression of erythroid specific genes.
Collapse
Affiliation(s)
- K Y Tang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China . .,State Key Laboratory of Transducer Technology , Chinese Academy of Sciences , Beijing , China
| | - C H Yu
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - L Jiang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - M Gong
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - W J Liu
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - Y Wang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - N X Cui
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - W Song
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - Y Sun
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China . .,State Key Laboratory of Transducer Technology , Chinese Academy of Sciences , Beijing , China
| | - Z C Yi
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| |
Collapse
|
18
|
Small Maf proteins (MafF, MafG, MafK): History, structure and function. Gene 2016; 586:197-205. [PMID: 27058431 DOI: 10.1016/j.gene.2016.03.058] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/11/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Abstract
The small Maf proteins (sMafs) are basic region leucine zipper (bZIP)-type transcription factors. The basic region of the Maf family is unique among the bZIP factors, and it contributes to the distinct DNA-binding mode of this class of proteins. MafF, MafG and MafK are the three vertebrate sMafs, and no functional differences have been observed among them in terms of their bZIP structures. sMafs form homodimers by themselves, and they form heterodimers with cap 'n' collar (CNC) proteins (p45 NF-E2, Nrf1, Nrf2, and Nrf3) and also with Bach proteins (Bach1 and Bach2). Because CNC and Bach proteins cannot bind to DNA as monomers, sMafs are indispensable partners that are required by CNC and Bach proteins to exert their functions. sMafs lack the transcriptional activation domain; hence, their homodimers act as transcriptional repressors. In contrast, sMafs participate in transcriptional activation or repression depending on their heterodimeric partner molecules and context. Mouse genetic analyses have revealed that various biological pathways are under the regulation of CNC-sMaf heterodimers. In this review, we summarize the history and current progress of sMaf studies in relation to their partners.
Collapse
|
19
|
Otsuki A, Suzuki M, Katsuoka F, Tsuchida K, Suda H, Morita M, Shimizu R, Yamamoto M. Unique cistrome defined as CsMBE is strictly required for Nrf2-sMaf heterodimer function in cytoprotection. Free Radic Biol Med 2016; 91:45-57. [PMID: 26677805 DOI: 10.1016/j.freeradbiomed.2015.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/01/2015] [Accepted: 12/06/2015] [Indexed: 12/30/2022]
Abstract
Nrf2-small Maf (sMaf) heterodimer is essential for the inducible expression of cytoprotective genes upon exposure to oxidative and xenobiotic stresses. While the Nrf2-sMaf heterodimer recognizes DNA sequences referred to as the antioxidant/electrophile responsive element (ARE/EpRE), we here define these DNA sequences collectively as CNC-sMaf binding element (CsMBE). In contrast, large and small Maf proteins are able to form homodimers that recognize the Maf recognition element (MARE). CsMBE and MARE share a conserved core sequence but they differ in the 5'-adjacent nucleotide neighboring the core. Because of the high similarity between the CsMBE and MARE sequences, it has been unclear how many target binding sites and target genes are shared by the Nrf2-sMaf heterodimers and Maf homodimers. To address this issue, we introduced a substitution mutation of alanine to tyrosine at position 502 in Nrf2, which rendered the DNA-binding domain structure of Nrf2 similar to Maf, and generated knock-in mice expressing the Nrf2(A502Y) mutant. Our chromatin immunoprecipitation-sequencing analyses showed that binding sites of Nrf2(A502Y)-sMaf were dramatically changed from CsMBE to MARE in vivo. Intriguingly, however, one-quarter of the Nrf2(A502Y)-sMaf binding sites also bound Nrf2-sMaf commonly and vice versa. RNA-sequencing analyses revealed that Nrf2(A502Y)-sMaf failed to induce expression of major cytoprotective genes upon stress stimulation, which increased the sensitivity of Nrf2(A502Y) mutant mice to acute acetaminophen toxicity. These results demonstrate that the unique cistrome defined as CsMBE is strictly required for the Nrf2-sMaf heterodimer function in cytoprotection and that the roles played by CsMBE differ sharply from those of MARE.
Collapse
Affiliation(s)
- Akihito Otsuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Kouhei Tsuchida
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiromi Suda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masanobu Morita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan.
| |
Collapse
|
20
|
Gasiorek JJ, Blank V. Regulation and function of the NFE2 transcription factor in hematopoietic and non-hematopoietic cells. Cell Mol Life Sci 2015; 72:2323-35. [PMID: 25721735 PMCID: PMC11114048 DOI: 10.1007/s00018-015-1866-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/27/2015] [Accepted: 02/16/2015] [Indexed: 01/01/2023]
Abstract
The NFE2 transcription factor was identified over 25 years ago. The NFE2 protein forms heterodimers with small MAF proteins, and the resulting complex binds to regulatory elements in a large number of target genes. In contrast to other CNC transcription family members including NFE2L1 (NRF1), NFE2L2 (NRF2) and NFE2L3 (NRF3), which are widely expressed, earlier studies had suggested that the major sites of NFE2 expression are hematopoietic cells. Based on cell culture studies it was proposed that this protein acts as a critical regulator of globin gene expression. However, the knockout mouse model displayed only mild erythroid abnormalities, while the major phenotype was a defect in megakaryocyte biogenesis. Indeed, absence of NFE2 led to severely impaired platelet production. A series of recent data, also summarized here, shed new light on the various functional roles of NFE2 and the regulation of its activity. NFE2 is part of a complex regulatory network, including transcription factors such as GATA1 and RUNX1, controlling megakaryocytic and/or erythroid cell function. Surprisingly, it was recently found that NFE2 also has a role in non-hematopoietic tissues, such as the trophoblast, in which it is also expressed, as well as the bone, opening the door to new research areas for this transcription factor. Additional data showed that NFE2 function is controlled by a series of posttranslational modifications. Important strides have been made with respect to the clinical significance of NFE2, linking this transcription factor to hematological disorders such as polycythemias.
Collapse
Affiliation(s)
- Jadwiga J. Gasiorek
- Lady Davis Institute for Medical Research, McGill University, 3755 Chemin de la Côte Sainte-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Medicine, McGill University, Montreal, QC Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, McGill University, 3755 Chemin de la Côte Sainte-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Medicine, McGill University, Montreal, QC Canada
- Department of Physiology, McGill University, Montreal, QC Canada
| |
Collapse
|
21
|
Igarashi K, Watanabe-Matsui M. Wearing red for signaling: the heme-bach axis in heme metabolism, oxidative stress response and iron immunology. TOHOKU J EXP MED 2014; 232:229-53. [PMID: 24681888 DOI: 10.1620/tjem.232.229] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The connection between gene regulation and metabolism is an old issue that warrants revisiting in order to understand both normal as well as pathogenic processes in higher eukaryotes. Metabolites affect the gene expression by either binding to transcription factors or serving as donors for post-translational modification, such as that involving acetylation and methylation. The focus of this review is heme, a prosthetic group of proteins that includes hemoglobin and cytochromes. Heme has been shown to bind to several transcription factors, including Bach1 and Bach2, in higher eukaryotes. Heme inhibits the transcriptional repressor activity of Bach1, resulting in the derepression of its target genes, such as globin in erythroid cells and heme oxygenase-1 in diverse cell types. Since Bach2 is important for class switch recombination and somatic hypermutation of immunoglobulin genes as well as regulatory and effector T cell differentiation and the macrophage function, the heme-Bach2 axis may regulate the immune response as a signaling cascade. We discuss future issues regarding the topic of the iron/heme-gene regulation network based on current understanding of the heme-Bach axis, including the concept of "iron immunology" as the synthesis of the iron metabolism and the immune response.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine
| | | |
Collapse
|
22
|
Rheinemann L, Seeger TS, Wehrle J, Pahl HL. NFE2 regulates transcription of multiple enzymes in the heme biosynthesis pathway. Haematologica 2014; 99:e208-10. [PMID: 24951464 DOI: 10.3324/haematol.2014.106393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lara Rheinemann
- Division of Molecular Hematology, University Hospital Freiburg, Center for Clinical Research, Freiburg, Germany
| | - Thalia S Seeger
- Division of Molecular Hematology, University Hospital Freiburg, Center for Clinical Research, Freiburg, Germany
| | - Julius Wehrle
- Division of Molecular Hematology, University Hospital Freiburg, Center for Clinical Research, Freiburg, Germany
| | - Heike L Pahl
- Division of Molecular Hematology, University Hospital Freiburg, Center for Clinical Research, Freiburg, Germany
| |
Collapse
|
23
|
Tzou WS, Chu Y, Lin TY, Hu CH, Pai TW, Liu HF, Lin HJ, Cases I, Rojas A, Sanchez M, You ZY, Hsu MW. Molecular evolution of multiple-level control of heme biosynthesis pathway in animal kingdom. PLoS One 2014; 9:e86718. [PMID: 24489775 PMCID: PMC3904948 DOI: 10.1371/journal.pone.0086718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/12/2013] [Indexed: 01/23/2023] Open
Abstract
Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5′ untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.
Collapse
Affiliation(s)
- Wen-Shyong Tzou
- Department of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| | - Ying Chu
- Department of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Tzung-Yi Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chin-Hwa Hu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsin-Fu Liu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Han-Jia Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ildeofonso Cases
- Computational Cell Biology Group, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Ana Rojas
- Computational Cell Biology Group, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Mayka Sanchez
- Cancer and Iron Group, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Zong-Ye You
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ming-Wei Hsu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
24
|
Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to phenol and hydroquinone. Toxicology 2013; 312:108-14. [DOI: 10.1016/j.tox.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/18/2013] [Accepted: 08/10/2013] [Indexed: 11/18/2022]
|
25
|
Jutzi JS, Bogeska R, Nikoloski G, Schmid CA, Seeger TS, Stegelmann F, Schwemmers S, Gründer A, Peeken JC, Gothwal M, Wehrle J, Aumann K, Hamdi K, Dierks C, Kamar Wang W, Döhner K, Jansen JH, Pahl HL. MPN patients harbor recurrent truncating mutations in transcription factor NF-E2. ACTA ACUST UNITED AC 2013; 210:1003-19. [PMID: 23589569 PMCID: PMC3646501 DOI: 10.1084/jem.20120521] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The molecular etiology of myeloproliferative neoplasms (MPNs) remains incompletely understood, despite recent advances incurred through the discovery of several different mutations in MPN patients. We have recently described overexpression of the transcription factor NF-E2 in MPN patients and shown that elevated NF-E2 levels in vivo cause an MPN phenotype and predispose to leukemic transformation in transgenic mice. We report the presence of acquired insertion and deletion mutations in the NF-E2 gene in MPN patients. These result in truncated NF-E2 proteins that enhance wild-type (WT) NF-E2 function and cause erythrocytosis and thrombocytosis in a murine model. NF-E2 mutant cells acquire a proliferative advantage, witnessed by clonal dominance over WT NF-E2 cells in MPN patients. Our data underscore the role of increased NF-E2 activity in the pathophysiology of MPNs.
Collapse
Affiliation(s)
- Jonas S Jutzi
- Department of Hematology/Oncology, University Hospital Freiburg, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li XF, Wu XR, Xue M, Wang Y, Wang J, Li Y, Suriguga, Zhang GY, Yi ZC. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells. Toxicol Appl Pharmacol 2012; 265:43-50. [DOI: 10.1016/j.taap.2012.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/06/2012] [Accepted: 09/20/2012] [Indexed: 12/17/2022]
|
27
|
Hirotsu Y, Katsuoka F, Funayama R, Nagashima T, Nishida Y, Nakayama K, Douglas Engel J, Yamamoto M. Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res 2012; 40:10228-39. [PMID: 22965115 PMCID: PMC3488259 DOI: 10.1093/nar/gks827] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
NF-E2-related factor 2 (Nrf2) is a key transcription factor that is critical for cellular defense against oxidative and xenobiotic insults. Nrf2 heterodimerizes with small Maf (sMaf) proteins and binds to antioxidant response elements (AREs) to activate a battery of cytoprotective genes. However, it remains unclear to what extent the Nrf2–sMaf heterodimers contribute to ARE-dependent gene regulation on a genome-wide scale. We performed chromatin immunoprecipitation coupled with high-throughput sequencing and identified the binding sites of Nrf2 and MafG throughout the genome. Compared to sites occupied by Nrf2 alone, many sites co-occupied by Nrf2 and MafG exhibit high enrichment and are located in species-conserved genomic regions. The ARE motifs were significantly enriched among the recovered Nrf2–MafG-binding sites but not among the Nrf2-binding sites that did not display MafG binding. The majority of the Nrf2-regulated cytoprotective genes were found in the vicinity of Nrf2–MafG-binding sites. Additionally, sequences that regulate glucose metabolism and several amino acid transporters were identified as Nrf2–MafG target genes, suggesting diverse roles for the Nrf2–MafG heterodimer in stress response. These data clearly support the notion that Nrf2–sMaf heterodimers are complexes that regulate batteries of genes involved in various aspects of cytoprotective and metabolic functions through associated AREs.
Collapse
Affiliation(s)
- Yosuke Hirotsu
- Department of Medical Biochemistry, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-220, USA
| | - Fumiki Katsuoka
- Department of Medical Biochemistry, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-220, USA
- *To whom correspondence should be addressed. Tel: +81 22 717 8084; Fax: +81 22 717 8090;
| | - Ryo Funayama
- Department of Medical Biochemistry, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-220, USA
| | - Takeshi Nagashima
- Department of Medical Biochemistry, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-220, USA
| | - Yuichiro Nishida
- Department of Medical Biochemistry, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-220, USA
| | - Keiko Nakayama
- Department of Medical Biochemistry, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-220, USA
| | - James Douglas Engel
- Department of Medical Biochemistry, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-220, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-220, USA
- Correspondence may also be addressed to Fumiki Katsuoka. Tel: +81 22 717 8089; Fax: +81 22 717 8090;
| |
Collapse
|
28
|
Jouini L, Bibi A, Ouali F, Hadj Fredj S, Ouennich F, Siala H, Messaoud T, Fattoum S. Contribution of β-globin cluster polymorphisms to raise fetal hemoglobin levels in normal adults. Mol Biol Rep 2011; 39:4619-25. [DOI: 10.1007/s11033-011-1253-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 09/14/2011] [Indexed: 11/30/2022]
|
29
|
Hara T, Tachibana H, Yamada K. Increase in histamine content and enhancement of high affinity IgE receptor FcepsilonRI expression in the human leukemia KU812 cells upon treatment with hydrocortisone. Cytotechnology 2011; 34:213-23. [PMID: 19003397 DOI: 10.1023/a:1008183400709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hydrocortisone was investigated for its ability todifferentiate human leukemia KU812 cells into maturehematopoietic cells including basophils. Hydrocortisonetreatment increased the amount of intracellular histamine byup-regulation of L-histidine decarboxylase (HDC) mRNA andenhanced cell surface expression of the high affinity IgEreceptor FcepsilonRI. Histamine is catalyzed from L-histidine byHDC, which in blood cell types is only expressed in basophilsand mast cells. Cells, on which the FcepsilonRI expression wasenhanced by hydrocortisone, were shown to release histaminewhen stimulated with anti-IgE antibody after sensitizationwith myeloma IgE, implying that the induced FcepsilonRI moleculeswere able to transduce a signal for degranulation. Theseresults suggest that hydrocortisone promotes differentiationof KU812 cells into functionally mature basophilic cells.
Collapse
Affiliation(s)
- T Hara
- Division of Bioresources and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|
30
|
Itoh K, Mimura J, Yamamoto M. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid Redox Signal 2010; 13:1665-78. [PMID: 20446768 DOI: 10.1089/ars.2010.3222] [Citation(s) in RCA: 412] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An antioxidant response element (ARE) or an electrophile responsive element (EpRE) regulate the transcriptional induction of a battery of drug-detoxifying enzymes that are protective against electrophiles. Based on the high similarity of the ARE consensus sequence to an erythroid gene regulatory element NF-E2 binding site, we have found that the transcription factor Nrf2 is indispensable for the ARE-mediated induction of drug-metabolizing enzymes. Recent genome-wide analysis demonstrated that Nrf2 regulates hundreds of genes that are involved in the cytoprotective response against oxidative stress. In-depth analysis of Nrf2 regulatory mechanisms has led us to the discovery of a novel protein, which we have named Keap1. Keap1 suppresses Nrf2 activity by specifically binding to its evolutionarily conserved N-terminal Neh2 regulatory domain. In this review article, we summarize the findings and observations that have lead to the discovery of the Nrf2-Keap1 system. Furthermore, we briefly discuss the function of the Nrf2-Keap1 system under the regulation of the endogenous electrophilic compound 15-deoxy-Δ¹²(,)¹⁴-prostaglandin J₂. We propose that Nrf2-Keap1 plays a significant physiological role in the response to endogenous, environmental, and pharmacological electrophiles.
Collapse
Affiliation(s)
- Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Japan.
| | | | | |
Collapse
|
31
|
Niture SK, Kaspar JW, Shen J, Jaiswal AK. Nrf2 signaling and cell survival. Toxicol Appl Pharmacol 2010; 244:37-42. [PMID: 19538984 PMCID: PMC2837794 DOI: 10.1016/j.taap.2009.06.009] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/28/2009] [Accepted: 06/05/2009] [Indexed: 12/30/2022]
Abstract
Nrf2:INrf2 acts as a sensor for oxidative/electrophilic stress. INrf2 serves as an adaptor to link Nrf2 to the ubiquitin ligase Cul3-Rbx1 complex that ubiquitinate and degrade Nrf2. Under basal conditions, cytosolic INrf2/Cul3-Rbx1 is constantly degrading Nrf2. When a cell encounters stress Nrf2 dissociates from the INrf2 and translocates into the nucleus. Oxidative/electrophilic stress induced modification of INrf2Cysteine151 and/or protein kinase C (PKC)-mediated phosphorylation of Nrf2Serine40 controls Nrf2 release from INrf2 followed by stabilization and nuclear translocation of Nrf2. Nrf2 binds to the antioxidant response element (ARE) and activates a myriad of genes that protect cells against oxidative/electrophilic stress and neoplasia. A delayed response of oxidative/electrophilic stress activates GSK-3beta that phosphorylates Fyn at unknown threonine residue(s). Phosphorylated Fyn translocates to the nucleus and phosphorylates Nrf2Tyrosine568 that leads to nuclear export and degradation of Nrf2. Prothymosin-alpha mediated nuclear translocation of INrf2 also degrades nuclear Nrf2. The degradation of Nrf2 both in cytosol and nuclear compartments rapidly brings down its levels to normal resulting in suppression of Nrf2 downstream gene expression. An auto-regulatory loop between Nrf2 and INrf2 controls their cellular abundance. Nrf2 regulates INrf2 by controlling its transcription, and INrf2 controls Nrf2 by degrading it. In conclusion, switching on and off of Nrf2 combined with promoting an auto-regulatory loop between them regulates activation/deactivation of defensive genes leading to protection of cells against adverse effects of oxidative and electrophilic stress and promote cell survival.
Collapse
Affiliation(s)
- Suryakant K. Niture
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - James W. Kaspar
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Jun Shen
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Anil K. Jaiswal
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
de Vooght KMK, van Solinge WW, van Wesel AC, Kersting S, van Wijk R. First mutation in the red blood cell-specific promoter of hexokinase combined with a novel missense mutation causes hexokinase deficiency and mild chronic hemolysis. Haematologica 2009; 94:1203-10. [PMID: 19608687 DOI: 10.3324/haematol.2008.002881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hexokinase is one of the key enzymes of glycolysis and catalyzes the phosphorylation of glucose to glucose-6-phosphate. Red blood cell-specific hexokinase is transcribed from HK1 by use of an erythroid-specific promoter. The aim of this study was to investigate the molecular basis for hexokinase deficiency in a patient with chronic hemolysis. DESIGN AND METHODS Functional studies were performed using transient transfection of HK promoter constructs in human K562 erythroleukemia cells. The DNA-protein interaction at the promoter of hexokinase was studied using electrophoretic mobility shift assays with nuclear extracts from K562 cells. DNA analysis and reverse transcriptase polymerase chain reaction were performed according to standardized procedures. RESULTS On the paternal allele we identified two novel mutations in cis in the erythroid-specific promoter of HKI: -373A>C and -193A>G. Transfection of promoter reporter constructs showed that the -193A>G mutation reduced promoter activity to 8%. Hence, -193A>G is the first mutation reported to affect red blood cell-specific hexokinase specific transcription. By electrophoretic mobility shift assays we showed that in vitro binding of c-jun to an AP-1 binding site was disrupted by this mutation. Subsequent chromatin-immunoprecipitation assays demonstrated that c-jun binds this region of the promoter in vivo. On the maternal allele we identified a novel missense mutation in exon 3: c.278G>A, encoding an arginine to glutamine substitution at residue 93, affecting both hexokinase-1 and red cell specific-hexokinase. In addition, this missense mutation was shown to compromise normal pre-mRNA processing. CONCLUSIONS We postulate that reduced erythroid transcription of HK1 together with aberrant splicing of both hexokinase-1 and red cell specific-hexokinase results in hexokinase deficiency and mild chronic hemolysis.
Collapse
Affiliation(s)
- Karen M K de Vooght
- Department of Clinical Chemistry and Hematology, Laboratory for Red Blood Cell Research, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Pautz A, Rauschkolb P, Schmidt N, Art J, Oelze M, Wenzel P, Förstermann U, Daiber A, Kleinert H. Effects of nitroglycerin or pentaerithrityl tetranitrate treatment on the gene expression in rat hearts: evidence for cardiotoxic and cardioprotective effects. Physiol Genomics 2009; 38:176-85. [PMID: 19417013 DOI: 10.1152/physiolgenomics.00035.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nitroglycerin (NTG) and pentaerithrityl tetranitrate (PETN) are organic nitrates used in the treatment of angina pectoris, myocardial infarction, and congestive heart failure. Recent data show marked differences in the effects of NTG and PETN on the generation of reactive oxygen species. These differences are attributed to different effects of NTG and PETN on the expression of antioxidative proteins like the heme oxygenase-I. To analyze the expressional effects of NTG and PETN in a more comprehensive manner we performed whole genome expression profiling experiments using cardiac total RNA from NTG- or PETN-treated rats and DNA microarrays containing oligonucleotides representing 27,044 rat gene transcripts. The data obtained show that NTG and PETN together significantly modify the expression of >1,600 genes (NTG 532, PETN 1212). However, the expression of only a small group of these genes (68) was modified by both treatments, indicating marked differences in the expressional effects of NTG and PETN. NTG treatment resulted in the enhanced expression of genes that are believed to be markers for cardiotoxic processes. In addition, NTG treatment reduced the expression of genes described to code for cardioprotective proteins. In sharp contrast, PETN treatment enhanced the expression of cardioprotective genes and reduced the expression of genes believed to perform cardiotoxic effects. In conclusion, our data suggest that NTG treatment results in the induction of cardiotoxic gene expression networks leading to an activation of mechanisms that result in pathological changes in cardiomyocytes. In contrast, PETN treatment seems to activate gene expression networks that result in cardioprotective effects.
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Evidence for a bigenic chromatin subdomain in regulation of the fetal-to-adult hemoglobin switch. Mol Cell Biol 2008; 29:1635-48. [PMID: 19114559 DOI: 10.1128/mcb.01735-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During development, human beta-globin locus regulation undergoes two critical switches, the embryonic-to-fetal and fetal-to-adult hemoglobin switches. To define the role of the fetal (A)gamma-globin promoter in switching, human beta-globin-YAC transgenic mice were produced with the (A)gamma-globin promoter replaced by the erythroid porphobilinogen deaminase (PBGD) promoter (PBGD(A)gamma-YAC). Activation of the stage-independent PBGD(A)gamma-globin strikingly stimulated native (G)gamma-globin expression at the fetal and adult stages, identifying a fetal gene pair or bigenic cooperative mechanism. This impaired fetal silencing severely suppressed both delta- and beta-globin expression in PBGD(A)gamma-YAC mice from fetal to neonatal stages and altered kinetics and delayed switching of adult beta-globin. This regulation evokes the two human globin switching patterns in the mouse. Both patterns of DNA demethylation and chromatin immunoprecipitation analysis correlated with gene activation and open chromatin. Locus control region (LCR) interactions detected by chromosome conformation capture revealed distinct spatial fetal and adult LCR bigenic subdomains. Since both intact fetal promoters are critical regulators of fetal silencing at the adult stage, we concluded that fetal genes are controlled as a bigenic subdomain rather than a gene-autonomous mechanism. Our study also provides evidence for LCR complex interaction with spatial fetal or adult bigenic functional subdomains as a niche for transcriptional activation and hemoglobin switching.
Collapse
|
35
|
Buck I, Morceau F, Cristofanon S, Heintz C, Chateauvieux S, Reuter S, Dicato M, Diederich M. Tumor necrosis factor α inhibits erythroid differentiation in human erythropoietin-dependent cells involving p38 MAPK pathway, GATA-1 and FOG-1 downregulation and GATA-2 upregulation. Biochem Pharmacol 2008; 76:1229-39. [DOI: 10.1016/j.bcp.2008.08.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/22/2008] [Accepted: 08/25/2008] [Indexed: 01/06/2023]
|
36
|
Positive receptor feedback during lineage commitment can generate ultrasensitivity to ligand and confer robustness to a bistable switch. Biophys J 2008; 95:1575-89. [PMID: 18469073 DOI: 10.1529/biophysj.107.120600] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytokines and lineage-specific transcription factors are critical molecular effectors for terminal differentiation during hematopoiesis. Intrinsic transcription factor activity is often believed to drive commitment and differentiation, whereas cytokine receptor signals have been implicated in the regulation of cell proliferation, survival, and differentiation. In erythropoiesis, recent experimental findings provide direct evidence that erythropoietin (Epo) can generate commitment cues via the erythropoietin receptor (EpoR); specifically, EpoR signaling leads to activation of the transcription factor GATA-1, which then triggers transcription of erythrocyte-specific genes. In particular, activated GATA-1 induces two positive feedback loops in the system through the enhanced expression of both inactive GATA-1 and EpoR, the latter of which is externally regulatable by Epo. Based upon this network architecture, we present a mathematical model of GATA-1 activation by EpoR, which bidirectionally links a lineage-specific receptor and transcription factor. Our deterministic model offers insight into stimulus-response relationships between Epo and several downstream effectors. In addition to the survival signals that EpoR provides, steady-state analysis of our model suggests that receptor upregulation during lineage commitment can also generate ultrasensitivity to Epo and bistability in GATA-1 activity. These system-level properties can induce a switch-like characteristic during differentiation and provide robustness to the mature state. The topology also suggests a novel mechanism for achieving robust bistability in a purely deterministic manner without molecular cooperativity. The analytical solution of a generalized, minimal model is provided and the significance of each of the two positive feedback loops is elucidated through bifurcation analysis. This network topology, or variations thereof, may link other receptor-transcription factor pairs and may therefore be of general relevance in cellular decision-making.
Collapse
|
37
|
Wozniak RJ, Bresnick EH. Chapter 3 Epigenetic Control of Complex Loci During Erythropoiesis. Curr Top Dev Biol 2008; 82:55-83. [DOI: 10.1016/s0070-2153(07)00003-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Maruyama K, Ishikawa Y, Yasumasu S, Iuchi I. Globin Gene Enhancer Activity of a DNase-I Hypersensitive Site-40 Homolog in Medaka, Oryzias latipes. Zoolog Sci 2007; 24:997-1004. [DOI: 10.2108/zsj.24.997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/14/2007] [Indexed: 11/17/2022]
|
39
|
Chen Z, Hu M, Shivdasani RA. Expression analysis of primary mouse megakaryocyte differentiation and its application in identifying stage-specific molecular markers and a novel transcriptional target of NF-E2. Blood 2007; 109:1451-9. [PMID: 17047147 PMCID: PMC1794061 DOI: 10.1182/blood-2006-08-038901] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 09/25/2006] [Indexed: 12/22/2022] Open
Abstract
Megakaryocyte (MK) differentiation is well described in morphologic terms but its molecular counterparts and the basis for platelet release are incompletely understood. We profiled mRNA expression in populations of primary mouse MKs representing successive differentiation stages. Genes associated with DNA replication are highly expressed in young MKs, in parallel with endomitosis. Intermediate stages are characterized by disproportionate expression of genes associated with the cytoskeleton, cell migration, and G-protein signaling, whereas terminally mature MKs accumulate hemostatic factors, including many membrane proteins. We used these expression profiles to extract a reliable panel of molecular markers for MKs of early, intermediate, or advanced differentiation and establish the value of this marker panel using mouse models of defective thrombopoiesis resulting from absence of GATA1, NF-E2, or tubulin beta1. Computational analysis of the promoters of late-expressed MK genes identified new candidate targets for NF-E2, a critical transcriptional regulator of platelet release. One such gene encodes the kinase adaptor protein LIMS1/PINCH1, which is highly expressed in MKs and platelets and significantly reduced in NF-E2-deficient cells. Transactivation studies and chromatin immunoprecipitation implicate Lims1 as a direct target of NF-E2 regulation. Attribution of stage-specific genes, in combination with various applications, thus constitutes a powerful way to study MK differentiation and platelet biogenesis.
Collapse
Affiliation(s)
- Zhao Chen
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
40
|
Ajioka RS, Phillips JD, Kushner JP. Biosynthesis of heme in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:723-36. [PMID: 16839620 DOI: 10.1016/j.bbamcr.2006.05.005] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 11/30/2022]
Abstract
Most iron in mammalian systems is routed to mitochondria to serve as a substrate for ferrochelatase. Ferrochelatase inserts iron into protoporphyrin IX to form heme which is incorporated into hemoglobin and cytochromes, the dominant hemoproteins in mammals. Tissue-specific regulatory features characterize the heme biosynthetic pathway. In erythroid cells, regulation is mediated by erythroid-specific transcription factors and the availability of iron as Fe/S clusters. In non-erythroid cells the pathway is regulated by heme-mediated feedback inhibition. All of the enzymes in the heme biosynthetic pathway have been crystallized and the crystal structures have permitted detailed analyses of enzyme mechanisms. All of the genes encoding the heme biosynthetic enzymes have been cloned and mutations of these genes are responsible for a group of human disorders designated the porphyrias and for X-linked sideroblastic anemia. The biochemistry, structural biology and the mechanisms of tissue-specific regulation are presented in this review along with the key features of the porphyric disorders.
Collapse
Affiliation(s)
- Richard S Ajioka
- Department of Internal Medicine, Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
41
|
Suzuki M, Ohneda K, Hosoya-Ohmura S, Tsukamoto S, Ohneda O, Philipsen S, Yamamoto M. Real-time monitoring of stress erythropoiesis in vivo using Gata1 and beta-globin LCR luciferase transgenic mice. Blood 2006; 108:726-33. [PMID: 16537808 DOI: 10.1182/blood-2005-10-4064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythroid progenitors have the potential to proliferate rapidly in response to environmental stimuli. This process is referred to as stress erythropoiesis, with erythropoietin (EPO) playing central roles in its promotion. In this study, we wanted to elucidate the molecular mechanisms governing the regulation of stress erythropoiesis and the maintenance of red-cell homeostasis. This was achieved by our development of a noninvasive real-time monitoring system for erythropoiesis using transgenic mouse lines expressing luciferase under the control of the mouse Gata1 hematopoietic regulatory domain (G1-HRD-luc) or human beta-globin locus control region (Hbb-LCR-luc). Optical bioluminescence images revealed that the luciferase was specifically expressed in spleen and bone marrow and was induced rapidly in response to anemia and hypoxia stimuli. The G1-HRD-luc activity tracked the emergence and disappearance of proerythroblast-stage progenitors, whereas the Hbb-LCR-luc activity tracked erythroblasts and later stage erythroid cells. Increased plasma EPO concentration preceded an increase in G1-HRD-luc, supporting our contention that EPO acts as the key upstream signal in stress erythropoiesis. Hence, we conclude that G1-HRD-luc and Hbb-LCR-luc reporters are differentially activated during stress erythropoiesis and that the transgenic mouse lines used serve as an important means for understanding the homeostatic regulation of erythropoiesis.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Graduate School of Comprehensive Human Sciences, the Center for Tsukuba Advanced Research Alliance (TARA), Japan Science and Technology Corporation, University of Tsukuba
| | | | | | | | | | | | | |
Collapse
|
42
|
Igarashi K, Sun J. The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal 2006; 8:107-18. [PMID: 16487043 DOI: 10.1089/ars.2006.8.107] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heme--as a prosthetic group of proteins required for oxygen transport and storage, respiration, and biosynthetic pathways--is essential for practically all forms of life. Additionally, the degradation products of heme (i.e., carbon monoxide, biliverdin, and bilirubin) produced by the enzymatic actions of heme oxygenase (HO) and biliverdin reductase, possess various biological activities in vivo. In mammalian cells, heme also functions as an intracellular regulator of gene expression by virtue of its ability to bind to Bach1, a transcription factor that functions in association with small Maf proteins. Normally, such complexes function as repressors by binding to specific target sequences, the Maf recognition element (MARE), within enhancers of genes encoding proteins such as HO-1 and beta-globin. By binding to Bach1, heme induces selective removal of the repressor from the gene enhancers permitting subsequent occupancy of the MAREs by activators that, interestingly, also contain small Maf proteins. Thus small Maf proteins play dual functions in gene expression: complexes with Bach1 repress MARE-dependent gene expression, whereas heterodimers with NF-E2 p45 or related factors (Nrf1, Nrf2, and Nrf3) activate MARE-driven genes. By modulating the equilibrium of the small Maf heterodimer network, heme regulates expression of the cytoprotective enzyme HO-1 during the stress response and of beta-globin during erythroid differentiation. Implications of such heme-regulated gene expression in human diseases including atherosclerosis are discussed.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | |
Collapse
|
43
|
Shyu YC, Lee TL, Ting CY, Wen SC, Hsieh LJ, Li YC, Hwang JL, Lin CC, Shen CKJ. Sumoylation of p45/NF-E2: nuclear positioning and transcriptional activation of the mammalian beta-like globin gene locus. Mol Cell Biol 2005; 25:10365-78. [PMID: 16287851 PMCID: PMC1291221 DOI: 10.1128/mcb.25.23.10365-10378.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-E2 is a transcription activator for the regulation of a number of erythroid- and megakaryocytic lineage-specific genes. Here we present evidence that the large subunit of mammalian NF-E2, p45, is sumoylated in vivo in human erythroid K562 cells and in mouse fetal liver. By in vitro sumoylation reaction and DNA transfection experiments, we show that the sumoylation occurs at lysine 368 (K368) of human p45/NF-E2. Furthermore, p45 sumoylation enhances the transactivation capability of NF-E2, and this is accompanied by an increase of the NF-E2 DNA binding affinity. More interestingly, we have found that in K562 cells, the beta-globin gene loci in the euchromatin regions are predominantly colocalized with the nuclear bodies promyelocytic leukemia protein (PML) oncogenic domains that are enriched with the PML, SUMO-1, RNA polymerase II, and sumoylatable p45/NF-E2. Chromatin immunoprecipitation assays further showed that the intact sumoylation site of p45/NF-E2 is required for its binding to the DNase I-hypersensitive sites of the beta-globin locus control region. Finally, we demonstrated by stable transfection assay that only the wild-type p45, but not its mutant form p45 (K368R), could efficiently rescue beta-globin gene expression in the p45-null, erythroid cell line CB3. These data together point to a model of mammalian beta-like globin gene activation by sumoylated p45/NF-E2 in erythroid cells.
Collapse
Affiliation(s)
- Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hodge D, Coghill E, Keys J, Maguire T, Hartmann B, McDowall A, Weiss M, Grimmond S, Perkins A. A global role for EKLF in definitive and primitive erythropoiesis. Blood 2005; 107:3359-70. [PMID: 16380451 PMCID: PMC1895762 DOI: 10.1182/blood-2005-07-2888] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythroid Kruppel-like factor (EKLF, KLF1) plays an important role in definitive erythropoiesis and beta-globin gene regulation but failure to rectify lethal fetal anemia upon correction of globin chain imbalance suggested additional critical EKLF target genes. We employed expression profiling of EKLF-null fetal liver and EKLF-null erythroid cell lines containing an inducible EKLF-estrogen receptor (EKLF-ER) fusion construct to search for such targets. An overlapping list of EKLF-regulated genes from the 2 systems included alpha-hemoglobin stabilizing protein (AHSP), cytoskeletal proteins, hemesynthesis enzymes, transcription factors, and blood group antigens. One EKLF target gene, dematin, which encodes an erythrocyte cytoskeletal protein (band 4.9), contains several phylogenetically conserved consensus CACC motifs predicted to bind EKLF. Chromatin immunoprecipitation demonstrated in vivo EKLF occupancy at these sites and promoter reporter assays showed that EKLF activates gene transcription through these DNA elements. Furthermore, investigation of EKLF target genes in the yolk sac led to the discovery of unexpected additional defects in the embryonic red cell membrane and cytoskeleton. In short, EKLF regulates global erythroid gene expression that is critical for the development of primitive and definitive red cells.
Collapse
Affiliation(s)
- Denise Hodge
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schaak S, Cussac D, Labialle S, Mignotte V, Paris H. Cloning and functional characterization of the rat alpha2B-adrenergic receptor gene promoter region: Evidence for binding sites for erythropoiesis-related transcription factors GATA1 and NF-E2. Biochem Pharmacol 2005; 70:606-17. [PMID: 15993847 DOI: 10.1016/j.bcp.2005.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
In the rat, the alpha2B-adrenergic receptor (alpha2B-AR) is encoded by the rat non-glycosylated (RNG) gene and is primarily expressed in the kidney, brain and liver of adult animals. High levels of alpha2B-AR are also found during fetal life in the placenta, liver and blood, where it is borne by cells of the erythropoietic lineage. As a first step to define the mechanisms responsible for the spatio-temporal pattern of alpha2B-AR expression, a genomic fragment containing 2.8 kb of the 5'-flanking region, the ORF and approximately 20 kb of the 3'-flanking region of the RNG gene was isolated. RNase protection assays performed on RNA from placenta or kidney using a series of riboprobes permitted to locate the transcription start site 372 bases upstream from the start codon. Transient transfection of various cells, including rat proximal tubule in primary culture, with constructs containing luciferase as a reporter gene demonstrated that: (i) the 5'-flanking region exhibited a strong and sense-dependent transcriptional activity and (ii) the 332 bp fragment (-732/-401 relative to the start codon), which lacks a TATA box but contains Sp1 sites, is sufficient to drive expression. Analysis of chromatin susceptibility to DNaseI digestion identified two hypersensitive sites (HS1 and HS2) located 1.7 and 1.0 kb, respectively, upstream from ATG and containing recognition sequences for erythroid transcription factors. EMSA showed specific binding of GATA1 and NF-E2 to these elements. Taken together, the results suggest that the chromatin environment in the vicinity of these boxes plays a critical role for alpha2B-AR expression during fetal life.
Collapse
Affiliation(s)
- Stéphane Schaak
- INSERM Unit 388, Institut Louis Bugnard, CHU Rangueil, Bâtiment L3, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | |
Collapse
|
46
|
Yanagawa T, Itoh K, Ishii T. Protective Roles of Nrf2 in Disease including Oral Disease. J Oral Biosci 2005. [DOI: 10.1016/s1349-0079(05)80020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 2004; 36:1199-207. [PMID: 15110384 DOI: 10.1016/j.freeradbiomed.2004.02.074] [Citation(s) in RCA: 1004] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/04/2004] [Accepted: 02/19/2004] [Indexed: 12/16/2022]
Abstract
Antioxidant response element (ARE)-mediated expression and coordinated induction of antioxidant enzymes is a critical mechanism of protection against chemically induced oxidative/electrophilic stress. NF-E2-related nuclear factors (Nrf1 and Nrf2) bind to ARE and regulate ARE-mediated gene expression and induction. Nrf2 is more potent than Nrf1 in activation of ARE-regulated gene expression. Nrf2 is retained in the cytoplasm by an inhibitor INrf2. Nrf2 binding to INrf2 leads to proteasomal degradation of Nrf2. An increase in oxidative/electrophilic stress, due to chemical exposure, leads to the activation of protein kinase C (PKC) and other cytosolic factors. PKC phosphorylation of Nrf2 at serine 40 results in the escape or release of Nrf2 from INrf2. Nrf2 translocates to the nucleus, forms heterodimers with its unknown partner proteins, and binds to the ARE. This leads to the coordinated activation of ARE-regulated genes. Additional nuclear factor including small Mafs (MafG and MafK), large Maf (c-Maf), c-Fos, and Fra1, also bind to ARE and negatively regulate ARE-mediated gene expression. This is presumably to keep the expression of antioxidant enzymes "in check" to maintain the cellular defenses active and/or to rapidly restore induced enzymes to normal levels. Future investigations are expected to reveal that a balance between positive and negative factors regulates ARE-mediated gene expression and induction. The future studies should also reveal a complete mechanism of signal transduction from antioxidants and xenobiotics to the transcription factors, such as Nrf2, that bind to ARE.
Collapse
Affiliation(s)
- Anil K Jaiswal
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Jaiswal AK. Regulation of antioxidant response element-dependent induction of detoxifying enzyme synthesis. Methods Enzymol 2004; 378:221-38. [PMID: 15038972 DOI: 10.1016/s0076-6879(04)78018-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anil K Jaiswal
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
49
|
Schnekenburger M, Morceau F, Duvoix A, Delhalle S, Trentesaux C, Dicato M, Diederich M. Expression of glutathione S-transferase P1-1 in differentiating K562: role of GATA-1. Biochem Biophys Res Commun 2003; 311:815-21. [PMID: 14623254 DOI: 10.1016/j.bbrc.2003.10.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glutathione S-transferase P1-1 (GSTP1-1) conjugates glutathione to electrophilic compounds and its expression is correlated to chemotherapeutic drug resistance. Results show that GSTP1-1 mRNA as well as protein expressions are increased during Aclarubicin (Acla)- and Doxorubicin (Dox)-induced erythroid differentiation of human K562 cells. In contrast, during megakaryocytic differentiation by 12-O-tetradecanoyl phorbol 13-acetate (TPA), GSTP1-1 expression decreased at both mRNA and protein levels. In order to clarify the molecular mechanisms leading to these variations, we identified a GATA sequence located at -1208 relative to the transcriptional start site of the GSTP1-1 promoter. By gel shift, competition, and supershift analyses we show here the specificity of the GATA-1 binding regulated by both anthracyclines and TPA. Altogether, these results demonstrate for the first time the implication of GATA-1 in differentiation-specific variations of GSTP1-1 expression.
Collapse
Affiliation(s)
- Michael Schnekenburger
- Laboratoire de Recherche sur le Cancer et les Maladies du Sang (RCMS), Centre Universitaire de Luxembourg, Bâtiment des Sciences, 162A, avenue de la Fai;encerie, L-1511, Luxembourg, Luxembourg
| | | | | | | | | | | | | |
Collapse
|
50
|
Tramier M, Gautier I, Piolot T, Ravalet S, Kemnitz K, Coppey J, Durieux C, Mignotte V, Coppey-Moisan M. Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells. Biophys J 2002; 83:3570-7. [PMID: 12496124 PMCID: PMC1302432 DOI: 10.1016/s0006-3495(02)75357-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
By using a novel time- and space-correlated single-photon counting detector, we show that fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to herpes simplex virus thymidine kinase (TK) monomers can be used to reveal homodimerization of TK in the nucleus and cytoplasm of live cells. However, the quantification of energy transfer was limited by the intrinsic biexponential fluorescence decay of the donor CFP (lifetimes of 1.3 +/- 0.2 ns and 3.8 +/- 0.4 ns) and by the possibility of homodimer formation between two TK-CFP. In contrast, the heterodimerization of the transcriptional factor NF-E2 in the nucleus of live cells was quantified from the analysis of the fluorescence decays of GFP in terms of 1) FRET efficiency between GFP and DsRed chromophores fused to p45 and MafG, respectively, the two subunits of NF-E2 (which corresponds to an interchromophoric distance of 39 +/- 1 A); and 2) fractions of GFP-p45 bound to DsRed-MafG (constant in the nucleus, varying in the range of 20% to 70% from cell to cell). The picosecond resolution of the fluorescence kinetics allowed us to discriminate between very short lifetimes of immature green species of DsRed-MafG and that of GFP-p45 involved in FRET with DsRed-MafG.
Collapse
Affiliation(s)
- Marc Tramier
- Institut Jacques Monod, UMR 7592, CNRS, Universités P6/P7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|