1
|
Wang X, Feng JK, Mao FF, Hou YC, Zhang YQ, Liu LH, Wei Q, Sun JX, Liu C, Shi J, Cheng SQ. Prognostic and Immunotherapeutic Predictive Value of CAD Gene in Hepatocellular Carcinoma: Integrated Bioinformatics and Experimental Analysis. Mol Biotechnol 2025; 67:1240-1255. [PMID: 38683442 DOI: 10.1007/s12033-024-01125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common type of cancer that ranks first in cancer-associated death worldwide. Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) are the key components of the pyrimidine pathway, which promotes cancer development. However, the function of CAD in HCC needs to be clarified. In this study, the clinical and transcriptome data of 424 TCGA-derived HCC cases were analyzed. The results demonstrated that high CAD expression was associated with poor prognosis in HCC patients. The effect of CAD on HCC was then investigated comprehensively using GO annotation analysis, KEGG enrichment analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT algorithm. The results showed that CAD expression was correlated with immune checkpoint inhibitors and immune cell infiltration. In addition, low CAD levels in HCC patients predicted increased sensitivity to anti-CTLA4 and PD1, while HCC patients with high CAD expression exhibited high sensitivity to chemotherapeutic and molecular-targeted agents, including gemcitabine, paclitaxel, and sorafenib. Finally, the results from clinical sample suggested that CAD expression increased remarkably in HCC compared with non-cancerous tissues. Loss of function experiments demonstrated that CAD knockdown could significantly inhibit HCC cell growth and migration both in vitro and in vivo. Collectively, the results indicated that CAD is a potential oncogene during HCC metastasis and progression. Therefore, CAD is recommended as a candidate marker and target for HCC prediction and treatment.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Fei-Fei Mao
- Tongji University Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yu-Chao Hou
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Yu-Qing Zhang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Li-Heng Liu
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Qian Wei
- The First Clinical Medicine School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ju-Xian Sun
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Chang Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Jie Shi
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China.
| | - Shu-Qun Cheng
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China.
- Tongji University Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Li A, Kibby D, Foo J. A comparison of mutation and amplification-driven resistance mechanisms and their impacts on tumor recurrence. J Math Biol 2023; 87:59. [PMID: 37707631 DOI: 10.1007/s00285-023-01992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/15/2023]
Abstract
Tumor recurrence, driven by the evolution of drug resistance is a major barrier to therapeutic success in cancer. Tumor drug resistance is often caused by genetic alterations such as point mutation, which refers to the modification of a single genomic base pair, or gene amplification, which refers to the duplication of a region of DNA that contains a gene. These mechanisms typically confer varying degrees of resistance, and they tend to occur at vastly different frequencies. Here we investigate the dependence of tumor recurrence dynamics on these mechanisms of resistance, using stochastic multi-type branching process models. We derive tumor extinction probabilities and deterministic estimates for the tumor recurrence time, defined as the time when an initially drug sensitive tumor surpasses its original size after developing resistance. For models of amplification-driven and mutation-driven resistance, we prove law of large numbers results regarding the convergence of the stochastic recurrence times to their mean. Additionally, we prove sufficient and necessary conditions for a tumor to escape extinction under the gene amplification model, discuss behavior under biologically relevant parameters, and compare the recurrence time and tumor composition in the mutation and amplification models both analytically and using simulations. In comparing these mechanisms, we find that the ratio between recurrence times driven by amplification versus mutation depends linearly on the number of amplification events required to acquire the same degree of resistance as a mutation event, and we find that the relative frequency of amplification and mutation events plays a key role in determining the mechanism under which recurrence is more rapid for any specific system. In the amplification-driven resistance model, we also observe that increasing drug concentration leads to a stronger initial reduction in tumor burden, but that the eventual recurrent tumor population is less heterogeneous, more aggressive and harbors higher levels of drug-resistance.
Collapse
Affiliation(s)
- Aaron Li
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | | | - Jasmine Foo
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Nicholson MD, Cheek D, Antal T. Sequential mutations in exponentially growing populations. PLoS Comput Biol 2023; 19:e1011289. [PMID: 37428805 PMCID: PMC10359018 DOI: 10.1371/journal.pcbi.1011289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 07/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
Stochastic models of sequential mutation acquisition are widely used to quantify cancer and bacterial evolution. Across manifold scenarios, recurrent research questions are: how many cells are there with n alterations, and how long will it take for these cells to appear. For exponentially growing populations, these questions have been tackled only in special cases so far. Here, within a multitype branching process framework, we consider a general mutational path where mutations may be advantageous, neutral or deleterious. In the biologically relevant limiting regimes of large times and small mutation rates, we derive probability distributions for the number, and arrival time, of cells with n mutations. Surprisingly, the two quantities respectively follow Mittag-Leffler and logistic distributions regardless of n or the mutations' selective effects. Our results provide a rapid method to assess how altering the fundamental division, death, and mutation rates impacts the arrival time, and number, of mutant cells. We highlight consequences for mutation rate inference in fluctuation assays.
Collapse
Affiliation(s)
- Michael D. Nicholson
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - David Cheek
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tibor Antal
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Somarelli JA, DeGregori J, Gerlinger M, Heng HH, Marusyk A, Welch DR, Laukien FH. Questions to guide cancer evolution as a framework for furthering progress in cancer research and sustainable patient outcomes. Med Oncol 2022; 39:137. [PMID: 35781581 PMCID: PMC9252949 DOI: 10.1007/s12032-022-01721-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022]
Abstract
We appear to be faced with ‘two truths’ in cancer—one of major advances and successes and another one of remaining short-comings and significant challenges. Despite decades of research and substantial progress in treating cancer, most patients with metastatic cancer still experience great suffering and poor outcomes. Metastatic cancer, for the vast majority of patients, remains incurable. In the context of advanced disease, many clinical trials report only incremental advances in progression-free and overall survival. At the same time, the breadth and depth of new scientific discoveries in cancer research are staggering. These discoveries are providing increasing mechanistic detail into the inner workings of normal and cancer cells, as well as into cancer–host interactions; however, progress remains frustratingly slow in translating these discoveries into improved diagnostic, prognostic, and therapeutic interventions. Despite enormous advances in cancer research and progress in progression-free survival, or even cures, for certain cancer types—with earlier detection followed by surgical, adjuvant, targeted, or immuno- therapies, we must challenge ourselves to do even better where patients do not respond or experience evolving therapy resistance. We propose that defining cancer evolution as a separate domain of study and integrating the concept of evolvability as a core hallmark of cancer can help position scientific discoveries into a framework that can be more effectively harnessed to improve cancer detection and therapy outcomes and to eventually decrease cancer lethality. In this perspective, we present key questions and suggested areas of study that must be considered—not only by the field of cancer evolution, but by all investigators researching, diagnosing, and treating cancer.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK.,St Bartholomew's Hospital Cancer Centre, London, UK
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center and The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Frank H Laukien
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
5
|
Bikle DD. Ligand-Independent Actions of the Vitamin D Receptor: More Questions Than Answers. JBMR Plus 2021; 5:e10578. [PMID: 34950833 PMCID: PMC8674770 DOI: 10.1002/jbm4.10578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Our predominant understanding of the actions of vitamin D involve binding of its ligand, 1,25(OH)D, to the vitamin D receptor (VDR), which for its genomic actions binds to discrete regions of its target genes called vitamin D response elements. However, chromatin immunoprecipitation‐sequencing (ChIP‐seq) studies have observed that the VDR can bind to many sites in the genome without its ligand. The number of such sites and how much they coincide with sites that also bind the liganded VDR vary from cell to cell, with the keratinocyte from the skin having the greatest overlap and the intestinal epithelial cell having the least. What is the purpose of the unliganded VDR? In this review, I will focus on two clear examples in which the unliganded VDR plays a role. The best example is that of hair follicle cycling. Hair follicle cycling does not need 1,25(OH)2D, and Vdr lacking the ability to bind 1,25(OH)2D can restore hair follicle cycling in mice otherwise lacking Vdr. This is not true for other functions of VDR such as intestinal calcium transport. Tumor formation in the skin after UVB radiation or the application of chemical carcinogens also appears to be at least partially independent of 1,25(OH)2D in that Vdr null mice develop such tumors after these challenges, but mice lacking Cyp27b1, the enzyme producing 1,25(OH)2D, do not. Examples in other tissues emerge when studies comparing Vdr null and Cyp27b1 null mice are compared, demonstrating a more severe phenotype with respect to bone mineral homeostasis in the Cyp27b1 null mouse, suggesting a repressor function for VDR. This review will examine potential mechanisms for these ligand‐independent actions of VDR, but as the title indicates, there are more questions than answers with respect to this role of VDR. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology University of California San Francisco, San Francisco VA Health Center San Francisco CA USA
| |
Collapse
|
6
|
Nguyen TH, Vemu PL, Hoy GE, Boudjadi S, Chatterjee B, Shern JF, Khan J, Sun W, Barr FG. Serine hydroxymethyltransferase 2 expression promotes tumorigenesis in rhabdomyosarcoma with 12q13-q14 amplification. J Clin Invest 2021; 131:e138022. [PMID: 34166228 DOI: 10.1172/jci138022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
The 12q13-q14 chromosomal region is recurrently amplified in 25% of fusion-positive (FP) rhabdomyosarcoma (RMS) cases and is associated with a poor prognosis. To identify amplified oncogenes in FP RMS, we compared the size, gene composition, and expression of 12q13-q14 amplicons in FP RMS with those of other cancer categories (glioblastoma multiforme, lung adenocarcinoma, and liposarcoma) in which 12q13-q14 amplification frequently occurs. We uncovered a 0.2 Mb region that is commonly amplified across these cancers and includes CDK4 and 6 other genes that are overexpressed in amplicon-positive samples. Additionally, we identified a 0.5 Mb segment that is only recurrently amplified in FP RMS and includes 4 genes that are overexpressed in amplicon-positive RMS. Among these genes, only serine hydroxymethyltransferase 2 (SHMT2) was overexpressed at the protein level in an amplicon-positive RMS cell line. SHMT2 knockdown in amplicon-positive RMS cells suppressed growth, transformation, and tumorigenesis, whereas overexpression in amplicon-negative RMS cells promoted these phenotypes. High SHMT2 expression reduced sensitivity of FP RMS cells to SHIN1, a direct SHMT2 inhibitor, but sensitized cells to pemetrexed, an inhibitor of the folate cycle. In conclusion, our study demonstrates that SHMT2 contributes to tumorigenesis in FP RMS and that SHMT2 amplification predicts differential response to drugs targeting this metabolic pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | |
Collapse
|
7
|
Abstract
Combining live-cell imaging, cytogenetics, genome sequencing, and in vitro evolution, Shoshani et al. (2020) revealed deep connections between chromothripsis, the catastrophic shattering of a chromosome in abnormal nuclear structures, and gene amplification, a frequent culprit of oncogenic activation.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Shaffer SM, Emert BL, Reyes Hueros RA, Cote C, Harmange G, Schaff DL, Sizemore AE, Gupte R, Torre E, Singh A, Bassett DS, Raj A. Memory Sequencing Reveals Heritable Single-Cell Gene Expression Programs Associated with Distinct Cellular Behaviors. Cell 2020; 182:947-959.e17. [PMID: 32735851 PMCID: PMC7496637 DOI: 10.1016/j.cell.2020.07.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/04/2020] [Accepted: 07/01/2020] [Indexed: 01/25/2023]
Abstract
Non-genetic factors can cause individual cells to fluctuate substantially in gene expression levels over time. It remains unclear whether these fluctuations can persist for much longer than the time of one cell division. Current methods for measuring gene expression in single cells mostly rely on single time point measurements, making the duration of gene expression fluctuations or cellular memory difficult to measure. Here, we combined Luria and Delbrück's fluctuation analysis with population-based RNA sequencing (MemorySeq) for identifying genes transcriptome-wide whose fluctuations persist for several divisions. MemorySeq revealed multiple gene modules that expressed together in rare cells within otherwise homogeneous clonal populations. These rare cell subpopulations were associated with biologically distinct behaviors like proliferation in the face of anti-cancer therapeutics. The identification of non-genetic, multigenerational fluctuations can reveal new forms of biological memory in single cells and suggests that non-genetic heritability of cellular state may be a quantitative property.
Collapse
Affiliation(s)
- Sydney M Shaffer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin L Emert
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raúl A Reyes Hueros
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Cote
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillaume Harmange
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dylan L Schaff
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann E Sizemore
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohit Gupte
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Eduardo Torre
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Santa Fe Institute, Santa Fe, NM, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Bikle DD. The Vitamin D Receptor as Tumor Suppressor in Skin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:285-306. [PMID: 32918224 DOI: 10.1007/978-3-030-46227-7_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cutaneous malignancies including melanomas and keratinocyte carcinomas (KC) are the most common types of cancer, occurring at a rate of over one million per year in the United States. KC, which include both basal cell carcinomas and squamous cell carcinomas, are substantially more common than melanomas and form the subject of this chapter. Ultraviolet radiation (UVR), both UVB and UVA, as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVB is also required for vitamin D synthesis in the skin. Keratinocytes are the major cell in the epidermis. These cells not only produce vitamin D but contain the enzymatic machinery to metabolize vitamin D to its active metabolite, 1,25(OH)2D, and express the receptor for this metabolite, the vitamin D receptor (VDR). This allows the cell to respond to the 1,25(OH)2D that it produces. Based on our own data and that reported in the literature, we conclude that vitamin D signaling in the skin suppresses UVR-induced epidermal tumor formation. In this chapter we focus on four mechanisms by which vitamin D signaling suppresses tumor formation. They are inhibition of proliferation/stimulation of differentiation with discussion of the roles of hedgehog, Wnt/β-catenin, and hyaluronan/CD44 pathways in mediating vitamin D regulation of proliferation/differentiation, regulation of the balance between oncogenic and tumor suppressor long noncoding RNAs, immune regulation, and promotion of DNA damage repair (DDR).
Collapse
Affiliation(s)
- Daniel D Bikle
- Medicine and Dermatology, VA Medical Center and University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Competing evolutionary paths in growing populations with applications to multidrug resistance. PLoS Comput Biol 2019; 15:e1006866. [PMID: 30986219 PMCID: PMC6483269 DOI: 10.1371/journal.pcbi.1006866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/25/2019] [Accepted: 02/13/2019] [Indexed: 11/19/2022] Open
Abstract
Investigating the emergence of a particular cell type is a recurring theme in models of growing cellular populations. The evolution of resistance to therapy is a classic example. Common questions are: when does the cell type first occur, and via which sequence of steps is it most likely to emerge? For growing populations, these questions can be formulated in a general framework of branching processes spreading through a graph from a root to a target vertex. Cells have a particular fitness value on each vertex and can transition along edges at specific rates. Vertices represent cell states, say genotypes or physical locations, while possible transitions are acquiring a mutation or cell migration. We focus on the setting where cells at the root vertex have the highest fitness and transition rates are small. Simple formulas are derived for the time to reach the target vertex and for the probability that it is reached along a given path in the graph. We demonstrate our results on several scenarios relevant to the emergence of drug resistance, including: the orderings of resistance-conferring mutations in bacteria and the impact of imperfect drug penetration in cancer. How long does it take for a treatment naive, growing bacterial colony to be able to survive exposure to a cocktail of antibiotics? En route to multidrug resistance, what order did the drugs become impotent in? Questions such as these that pertain to the emergence of a significant cell type in a growing population arise frequently. They are often investigated via mathematical modelling but biologically insightful results are challenging to obtain. Here we outline a general framework of a stochastically growing population spreading through a graph to study such questions and provide simple formulas as answers. The significant cell type appears upon the population reaching a target vertex. Due to their simplicity, the derived formulas are widely accessible and can be used to guide and develop intuition on a range of biological scenarios. We demonstrate this on several settings including: how a region where drugs cannot penetrate affects the emergence of resistance, and, the ordering of mutations that leads to drugs being ineffective.
Collapse
|
11
|
Affiliation(s)
- Ivana Bozic
- Program for Evolutionary Dynamics and
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195
| | - Martin A. Nowak
- Program for Evolutionary Dynamics and
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
12
|
Fortunato A, Boddy A, Mallo D, Aktipis A, Maley CC, Pepper JW. Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait Hallmarks. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029652. [PMID: 28148564 DOI: 10.1101/cshperspect.a029652] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolution by natural selection is the conceptual foundation for nearly every branch of biology and increasingly also for biomedicine and medical research. In cancer biology, evolution explains how populations of cells in tumors change over time. It is a fundamental question whether this evolutionary process is driven primarily by natural selection and adaptation or by other evolutionary processes such as founder effects and drift. In cancer biology, as in organismal evolutionary biology, there is controversy about this question and also about the use of adaptation through natural selection as a guiding framework for research. In this review, we discuss the differences and similarities between evolution among somatic cells versus evolution among organisms. We review what is known about the parameters and rate of evolution in neoplasms, as well as evidence for adaptation. We conclude that adaptation is a useful framework that accurately explains the defining characteristics of cancer. Further, convergent evolution through natural selection provides the only satisfying explanation both for how a group of diverse pathologies have enough in common to usefully share the descriptive label of "cancer" and for why this convergent condition becomes life-threatening.
Collapse
Affiliation(s)
- Angelo Fortunato
- Biodesign Center for Personalized Diagnostics, and School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Amy Boddy
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Diego Mallo
- Biodesign Center for Personalized Diagnostics, and School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, Arizona 85287.,Biodesign Center for Evolution and Medicine, Arizona State University, Tempe, Arizona 85287
| | - Carlo C Maley
- Biodesign Center for Personalized Diagnostics, and School of Life Sciences, Arizona State University, Tempe, Arizona 85287.,Centre for Evolution and Cancer, Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - John W Pepper
- Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland 20850.,Santa Fe Institute, Santa Fe, New Mexico 87501
| |
Collapse
|
13
|
Abstracts. Toxicol Pathol 2016. [DOI: 10.1177/019262339202000415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Platform Presentations. Toxicol Pathol 2016. [DOI: 10.1177/019262339302100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Abstract
Changes in gene copy number are among the most frequent mutational events in all genomes and were among the mutations for which a physical basis was first known. Yet mechanisms of gene duplication remain uncertain because formation rates are difficult to measure and mechanisms may vary with position in a genome. Duplications are compared here to deletions, which seem formally similar but can arise at very different rates by distinct mechanisms. Methods of assessing duplication rates and dependencies are described with several proposed formation mechanisms. Emphasis is placed on duplications formed in extensively studied experimental situations. Duplications studied in microbes are compared with those observed in metazoan cells, specifically those in genomes of cancer cells. Duplications, and especially their derived amplifications, are suggested to form by multistep processes often under positive selection for increased copy number.
Collapse
Affiliation(s)
- Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, California 95819-6077
| | - John R Roth
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| |
Collapse
|
16
|
Nelson WG, Yegnasubramanian S. Resistance emerges to second-generation antiandrogens in prostate cancer. Cancer Discov 2014; 3:971-4. [PMID: 24019330 DOI: 10.1158/2159-8290.cd-13-0405] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The appearance of a mutant androgen receptor, AR(F876L), in prostate cancer cells chronically exposed to enzalutamide or ARN-509 promotes a switch from antagonist to agonist receptor function, undermining the potential long-term effectiveness of these second-generation antiandrogen drugs.
Collapse
Affiliation(s)
- William G Nelson
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | | |
Collapse
|
17
|
Bikle DD, Elalieh H, Welsh J, Oh D, Cleaver J, Teichert A. Protective role of vitamin D signaling in skin cancer formation. J Steroid Biochem Mol Biol 2013; 136:271-9. [PMID: 23059470 PMCID: PMC3596439 DOI: 10.1016/j.jsbmb.2012.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 12/26/2022]
Abstract
Vitamin D sufficiency is associated with protection against malignancy in a number of tissues clinically, and a strong body of evidence from animal and cell culture studies supports this protective role. Cancers in the skin differ, however, in that higher serum levels of 25OHD are associated with increased basal cell carcinomas (BCC), the most common form of epidermal malignancy. This result may be interpreted as indicating the role of UVR (spectrum 280-320) in producing vitamin D in the skin as well as causing those DNA mutations and proliferative changes that lead to epidermal malignancies. Recent animal studies have shown that mice lacking the vitamin D receptor (VDR) are predisposed to developing skin tumors either from chemical carcinogens such as 7,12-dimethylbenzanthracene (DMBA) or chronic UVR exposure. Such studies suggest that vitamin D production and subsequent signaling through the VDR in the skin may have evolved in part as a protective mechanism against UVR induced epidermal cancer formation. In this manuscript we provide evidence indicating that vitamin D signaling protects the skin from cancer formation by controlling keratinocyte proliferation and differentiation, facilitating DNA repair, and suppressing activation of the hedgehog (Hh) pathway following UVR exposure. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Daniel D Bikle
- Department of Medicine, San Francisco VA Medical Center and University of California, San Francisco, CA, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Bikle DD. Protective actions of vitamin D in UVB induced skin cancer. Photochem Photobiol Sci 2013; 11:1808-16. [PMID: 22990497 DOI: 10.1039/c2pp25251a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-melanoma skin cancers (NMSC) are the most common type of cancer, occurring at a rate of over 1 million per year in the United States. Although their metastatic potential is generally low, they can and do metastasize, especially in the immune compromised host, and their surgical treatment is often quite disfiguring. Ultraviolet radiation (UVR) as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVR is also required for vitamin D synthesis in the skin. Based on our own data and that reported in the literature, we hypothesize that the vitamin D produced in the skin serves to suppress UVR epidermal tumor formation. In this review we will first discuss the evidence supporting the conclusion that the vitamin D receptor (VDR), with or without its ligand 1,25-dihydroxyvitamin D, limits the propensity for cancer formation following UVR. We will then explore three potential mechanisms for this protection: inhibition of proliferation and stimulation of differentiation, immune regulation, and stimulation of DNA damage repair (DDR).
Collapse
Affiliation(s)
- Daniel D Bikle
- Department of Medicine, San Francisco VA Medical Center and University of California, San Francisco, CA, USA.
| |
Collapse
|
19
|
Cacciatore JJ, Leonard EF, Chasin LA. The isolation of CHO cells with a site conferring a high and reproducible transgene amplification rate. J Biotechnol 2013; 164:346-53. [PMID: 23376841 DOI: 10.1016/j.jbiotec.2013.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 01/05/2013] [Accepted: 01/14/2013] [Indexed: 12/01/2022]
Abstract
Co-amplification of transgenes using the dihydrofolate reductase/methotrexate (DHFR/MTX) system is a widely used method for the isolation of Chinese hamster ovary (CHO) cell lines that secrete high levels of recombinant proteins. A bottleneck in this process is the stepwise selection for MTX resistant populations; which can be slow, tedious and erratic. We sought to speed up and regularize this process by isolating dhfr(-) CHO cell lines capable of integrating a transgene of interest into a defined chromosomal location that supports a high rate of gene amplification. We isolated 100 independent transfectants carrying a gene for human adenosine deaminase (ada) linked to a φC31 attP site and a portion of the dihydrofolate reductase (dhfr) gene. Measurement of the ada amplification rate in each transfectant using Luria-Delbruck fluctuation analysis revealed a wide clonal variation; sub-cloning showed these rates to be heritable. Site directed recombination was used to insert a transgene carrying a reporter gene for secreted embryonic alkaline phosphatase (SEAP) as well as the remainder of the dhfr gene into the attP site at this location in several of these clones. Subsequent selection for gene amplification of the reconstructed dhfr gene in a high ada amplification candidate clone (DG44-HA-4) yielded reproducible rates of seap gene amplification and concomitant increased levels of SEAP secretion. In contrast, random integrations of the dhfr gene into clone HA-4 did not yield these high levels of amplification. This cell line as well as this method of screening for high amplification rates may prove helpful for the reliable amplification of recombinant genes for therapeutically or diagnostically useful proteins.
Collapse
|
20
|
Discussion on research methods of bacterial resistant mutation mechanisms under selective culture--uncertainty analysis of data from the Luria-Delbrück fluctuation experiment. SCIENCE CHINA-LIFE SCIENCES 2012; 55:1007-21. [PMID: 23160830 DOI: 10.1007/s11427-012-4395-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
Whether bacterial drug-resistance is drug-induced or results from rapid propagation of random spontaneous mutations in the flora prior to exposure, remains a long-term key issue concerned and debated in both genetics and medicinal fields. In a pioneering study, Luria and Delbrück exposed E. coli to T1 phage, to investigate whether the number of resistant colonies followed the Poisson distribution. They deduced that the development of resistant colonies is independent of phage presence. Similar results have since been obtained on solid medium containing antibacterial agents. Luria and Delbrück's conclusions were long considered a gold standard for analyzing drug resistance mutations. More recently, the concept of adaptive mutation has triggered controversy over this approach. Microbiological observation shows that, following exposure to drugs of various concentrations, drug-resistant cells emerge and multiply depending on the time course, and show a process function, inconsistent with the definition of Poisson distribution (which assumes not only that resistance is independent of drug quantity but follows no specific time course). At the same time, since cells tend to aggregate after division rather than separating, colonies growing on drug plates arise from the multiplication of resistant bacteria cells of various initial population sizes. Thus, statistical analysis based on equivalence of initial populations will yield erroneous results. In this paper, 310 data from the Luria-Delbrück fluctuation experiment were reanalyzed from this perspective. In most cases, a high-end abnormal value, resulting from the non-synchronous variation of the two above-mentioned time variables, was observed. Therefore, the mean value cannot be regarded as an unbiased expectation estimate. The ratio between mean value and variance was similarly incomparable, because two different sampling methods were used. In fact, the Luria-Delbrück data appear to follow an aggregated, rather than Poisson distribution. In summary, the statistical analysis of Luria and Delbrück is insufficient to describe rules of resistant mutant development and multiplication. Correction of this historical misunderstanding will enable new insight into bacterial resistance mechanisms.
Collapse
|
21
|
Yan B, Ouyang R, Huang C, Liu F, Neill D, Li C, Dewhirst M. Heat induces gene amplification in cancer cells. Biochem Biophys Res Commun 2012; 427:473-7. [PMID: 22975353 DOI: 10.1016/j.bbrc.2012.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. MATERIALS AND METHODS (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44°C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. RESULTS (1) Heat exposure at 42 or 44°C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44°C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. CONCLUSION This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.
Collapse
Affiliation(s)
- Bin Yan
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Corcos D. Unbalanced replication as a major source of genetic instability in cancer cells. AMERICAN JOURNAL OF BLOOD RESEARCH 2012; 2:160-9. [PMID: 23119227 PMCID: PMC3484411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/30/2012] [Indexed: 06/01/2023]
Abstract
The origin of genetic instability in tumors is a matter of debate: while the prevailing model postulates a mutator phenotype resulting from an alteration in a caretaker gene as a prerequisite for genetic alterations leading to tumor formation, there is evidence against this model in the majority of cancers. A model for chromosomal instability should take into account the role of oncogenes in directly stimulating DNA and cellular component replication, creating aberrant structures when overexpressed. I will distinguish here two distinct mechanisms for the genetic instability of tumors: primary and secondary. Primary genetic instability is dependent on the inactivation of genes involved in maintaining genetic stability (caretaker genes), whereas secondary genetic instability is dependent on genes involved in tumor progression, i.e. oncogenes and tumor suppressor genes of the gatekeeper type. Secondary genetic instability, the most frequent condition, can be explained by the fact that some of the genes involved in tumor progression control replication of cell structures from within, leading to replication unbalance.
Collapse
Affiliation(s)
- Daniel Corcos
- INSERM U955- Hôpital Henri Mondor 51 Avenue du Maréchal de Lattre de Tassigny, Faculté de Médecine, Paris 12, Créteil 94010
| |
Collapse
|
23
|
Morin A, Fritsch L, Mathieu JRR, Gilbert C, Guarmit B, Firlej V, Gallou-Kabani C, Vieillefond A, Delongchamps NB, Cabon F. Identification of CAD as an androgen receptor interactant and an early marker of prostate tumor recurrence. FASEB J 2011; 26:460-7. [PMID: 21982950 DOI: 10.1096/fj.11-191296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Markers of prostate tumor recurrence after radical prostatectomy are lacking and highly demanded. The androgen receptor (AR) is a nuclear receptor that plays a pivotal role in normal and cancerous prostate tissue. AR interacts with a number of proteins modulating its stability, localization, and activity. To test the hypothesis that an increased expression of AR partners might foster tumor development, we immunopurified AR partners in human tumors xenografted into mice. One of the identified AR partners was the multifunctional enzyme carbamoyl-phosphate synthetase II, aspartate transcarbamylase, and dihydroorotase (CAD), which catalyzes the 3 initial steps of pyrimidine biosynthesis. We combined experiments in C4-2, LNCaP, 22RV1, and PC3 human prostate cell lines and analysis of frozen radical prostatectomy samples to study the CAD-AR interaction. We show here that in prostate tumor cells, CAD fosters AR translocation into the nucleus and stimulates its transcriptional activity. Notably, in radical prostatectomy specimens, CAD expression was not correlated with proliferation markers, but a higher CAD mRNA level was associated with local tumor extension (P=0.049) and cancer relapse (P=0.017). These results demonstrate an unsuspected function for a key metabolic enzyme and identify CAD as a potential predictive marker of cancer relapse.
Collapse
Affiliation(s)
- Aurélie Morin
- Centre National de la Recherche Scientifique, University of Paris Sud,Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
25
|
Preston BD, Albertson TM, Herr AJ. DNA replication fidelity and cancer. Semin Cancer Biol 2010; 20:281-93. [PMID: 20951805 PMCID: PMC2993855 DOI: 10.1016/j.semcancer.2010.10.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 10/07/2010] [Indexed: 12/14/2022]
Abstract
Cancer is fueled by mutations and driven by adaptive selection. Normal cells avoid deleterious mutations by replicating their genomes with extraordinary accuracy. Here we review the pathways governing DNA replication fidelity and discuss evidence implicating replication errors (point mutation instability or PIN) in carcinogenesis.
Collapse
Affiliation(s)
- Bradley D Preston
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
26
|
Tomasetti C, Levy D. An elementary approach to modeling drug resistance in cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2010; 7:905-18. [PMID: 21077714 PMCID: PMC3877932 DOI: 10.3934/mbe.2010.7.905] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Resistance to drugs has been an ongoing obstacle to a successful treatment of many diseases. In this work we consider the problem of drug resistance in cancer, focusing on random genetic point mutations. Most previous works on mathematical models of such drug resistance have been based on stochastic methods. In contrast, our approach is based on an elementary, compartmental system of ordinary differential equations. We use our very simple approach to derive results on drug resistance that are comparable to those that were previously obtained using much more complex mathematical techniques. The simplicity of our model allows us to obtain analytic results for resistance to any number of drugs. In particular, we show that the amount of resistance generated before the start of the treatment, and present at some given time afterward, always depends on the turnover rate, no matter how many drugs are simultaneously used in the treatment.
Collapse
Affiliation(s)
- Cristian Tomasetti
- Department of Mathematics and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742, United States.
| | | |
Collapse
|
27
|
Role of symmetric and asymmetric division of stem cells in developing drug resistance. Proc Natl Acad Sci U S A 2010; 107:16766-71. [PMID: 20826440 DOI: 10.1073/pnas.1007726107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Often, resistance to drugs is an obstacle to a successful treatment of cancer. In spite of the importance of the problem, the actual mechanisms that control the evolution of drug resistance are not fully understood. Many attempts to study drug resistance have been made in the mathematical modeling literature. Clearly, in order to understand drug resistance, it is imperative to have a good model of the underlying dynamics of cancer cells. One of the main ingredients that has been recently introduced into the rapidly growing pool of mathematical cancer models is stem cells. Surprisingly, this all-so-important subset of cells has not been fully integrated into existing mathematical models of drug resistance. In this work we incorporate the various possible ways in which a stem cell may divide into the study of drug resistance. We derive a previously undescribed estimate of the probability of developing drug resistance by the time a tumor is detected and calculate the expected number of resistant cancer stem cells at the time of tumor detection. To demonstrate the significance of this approach, we combine our previously undescribed mathematical estimates with clinical data that are taken from a recent six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myelogenous leukemia. Based on our analysis we conclude that leukemia stem cells must tend to renew symmetrically as opposed to their healthy counterparts that predominantly divide asymmetrically.
Collapse
|
28
|
Kwei KA, Kung Y, Salari K, Holcomb IN, Pollack JR. Genomic instability in breast cancer: pathogenesis and clinical implications. Mol Oncol 2010; 4:255-66. [PMID: 20434415 PMCID: PMC2904860 DOI: 10.1016/j.molonc.2010.04.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/27/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022] Open
Abstract
Breast cancer is a heterogeneous disease, appreciable by molecular markers, gene-expression profiles, and most recently, patterns of genomic alteration. In particular, genomic profiling has revealed three distinct patterns of DNA copy-number alteration: a "simple" type with few gains or losses of whole chromosome arms, an "amplifier" type with focal high-level DNA amplifications, and a "complex" type marked by numerous low-amplitude changes and copy-number transitions. The three patterns are associated with distinct gene-expression subtypes, and preferentially target different loci in the genome (implicating distinct cancer genes). Moreover, the different patterns of alteration imply distinct underlying mechanisms of genomic instability. The amplifier pattern may arise from transient telomere dysfunction, although new data suggest ongoing "amplifier" instability. The complex pattern shows similarity to breast cancers with germline BRCA1 mutation, which also exhibit "basal-like" expression profiles and complex-pattern genomes, implicating a possible defect in BRCA1-associated repair of DNA double-strand breaks. As such, targeting presumptive DNA repair defects represents a promising area of clinical investigation. Future studies should clarify the pathogenesis of breast cancers with amplifier and complex-pattern genomes, and will likely identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Kevin A Kwei
- Department of Pathology, Stanford University School of Medicine, CCSR-3245A, 269 Campus Drive, Stanford, CA 94305-5176, USA
| | | | | | | | | |
Collapse
|
29
|
Duplication frequency in a population of Salmonella enterica rapidly approaches steady state with or without recombination. Genetics 2010; 184:1077-94. [PMID: 20083614 DOI: 10.1534/genetics.109.111963] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tandem duplications are among the most common mutation events. The high loss rate of duplication suggested that the frequency of duplications in a bacterial population (1/1000) might reflect a steady state dictated by relative rates of formation (k(F)) and loss (k(L)). This possibility was tested for three genetic loci. Without homologous recombination (RecA), duplication loss rate dropped essentially to zero, but formation rate decreased only slightly and a steady state was still reached rapidly. Under all conditions, steady state was reached faster than predicted by formation and loss rates alone. A major factor in determining steady state proved to be the fitness cost, which can exceed 40% for some genomic regions. Depending on the region tested, duplications reached 40-98% of the steady-state frequency within 30 generations-approximately the growth required for a single cell to produce a saturated overnight culture or form a large colony on solid medium (10(9) cells). Long-term bacterial populations are stably polymorphic for duplications of every region of their genome. These polymorphisms contribute to rapid genetic adaptation by providing frequent preexisting mutations that are beneficial whenever imposed selection favors increases in some gene activity. While the reported results were obtained with the bacterium Salmonella enterica, the genetic implications seem likely to be of broader biological relevance.
Collapse
|
30
|
Jungck JR, Gaff H, Weisstein AE. Mathematical manipulative models: in defense of "beanbag biology". CBE LIFE SCIENCES EDUCATION 2010; 9:201-11. [PMID: 20810952 PMCID: PMC2931667 DOI: 10.1187/cbe.10-03-0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 05/24/2023]
Abstract
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education.
Collapse
Affiliation(s)
- John R Jungck
- BioQUEST Curriculum Consortium, Beloit College, Beloit, WI 53511, USA.
| | | | | |
Collapse
|
31
|
Thompson LH, Hinz JM. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 2009; 668:54-72. [PMID: 19622404 PMCID: PMC2714807 DOI: 10.1016/j.mrfmmm.2009.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/20/2009] [Accepted: 02/10/2009] [Indexed: 12/13/2022]
Abstract
The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| | | |
Collapse
|
32
|
Dowling K, Seymour C, Mothersill C. Delayed cell death and bystander effects in the progeny of Chinook Salmon Embryo cells exposed to radiation and a range of aquatic pollutants. Int J Radiat Biol 2009; 81:89-96. [PMID: 15966109 DOI: 10.1080/09553000400017606] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To determine whether delayed and bystander effects can be seen in both a non malignant teleost fish cell line, (CHSE) and a malignant teleost fish cell line (EPC) when exposed to low doses of ionising radiation and genotoxic pollutants. METHODS Teleost fish cells were briefly exposed to radiation and chemical toxins at low doses. Clonogenic survival was measured in the exposed population and the distant progeny of exposed cells to assess early and delayed cell death. Clonogenic survival was also measured in cultures, which received medium from briefly exposed cells to determine bystander effects. RESULTS The dose response pattern for both early and delayed cell death was found to differ for different stressors. Different mechanisms of cell death appear to be involved in the early cytotoxic effect and the delayed effect. No delayed cell death occurred in a transformed fish cell line (EPC). Bystander effects occurred in CHSE cells and were similar in intensity to previously reported mammalian cell bystander effects. CONCLUSIONS The results may have implications for radiation and environmental protection of biota. They demonstrate that damage caused by low doses of radiation and common aquatic pollutants is not only similar but occurs in both acute and delayed forms.
Collapse
Affiliation(s)
- Kevin Dowling
- Medical Physics and Applied Radiation Sciences Unit, McMaster University, Hamilton, Ontario L8S 4KI, Canada
| | | | | |
Collapse
|
33
|
Sánchez-Fortún S, Marvá F, Rouco M, Costas E, López-Rodas V. Toxic effect and adaptation in Scenedesmus intermedius to anthropogenic chloramphenicol contamination: genetic versus physiological mechanisms to rapid acquisition of xenobiotic resistance. ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:481-487. [PMID: 19319677 DOI: 10.1007/s10646-009-0303-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 02/21/2009] [Indexed: 05/27/2023]
Abstract
Anthropogenic water pollution is producing a challenge to the survival of phytoplankton populations. From an ecological point of view, the tolerance of these microorganisms to water pollution is of paramount importance since they are the principal primary producers of aquatic ecosystems. The adaptation of a common chlorophyta species (Scenedesmus intermedius) exposed to selected dose-response chloramphenicol (CAP) concentrations has been analyzed. A fluctuation analysis demonstrated that CAP-resistant cells arise due to spontaneous mutation which occurs randomly prior to the antibiotic exposure. CAP-inhibited growth and photosynthetic performance of algal cells at 0.28 mg/l, and the IC(50(72)) value was established in 0.10 mg/l for both parameters. The mutation rate from CAP sensitivity to resistance was 1.01 x 10(-5) mutations per cell division, while the frequency of CAP-resistant allele in non-polluted environment was estimated to be 5.5 CAP-resistant mutants per 10(3) sensitive-cells. These results demonstrate that resistant mutants exhibit a diminished fitness until 5 mg/l of CAP, thus enabling the survival of microalgae population.
Collapse
Affiliation(s)
- S Sánchez-Fortún
- Department of Toxicology and Pharmacology, Complutense University, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|
34
|
Wodarz D. Use of oncolytic viruses for the eradication of drug-resistant cancer cells. J R Soc Interface 2009; 6:179-86. [PMID: 18664430 PMCID: PMC2658788 DOI: 10.1098/rsif.2008.0191] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 12/28/2022] Open
Abstract
Targeted therapy using small-molecule inhibitors is a promising new therapy approach against cancer, but drug-resistant mutants present an obstacle to success. Oncolytic virus therapy, where viruses replicate specifically in cancer cells and kill them, is another promising therapy approach against cancer. While encouraging results have been observed in clinical trials, consistent success has not been possible so far. Based on a computational framework, I report that even if oncolytic virus therapy fails to eradicate a cancer, it can have the potential to eradicate the sub-population of drug-resistant cancer cells. Once this has occurred, targeted drug therapy can be used to induce cancer remission. For this to work, a drug resistance mutation must confer a certain fitness cost to the cell, as has been documented in the literature. The reason for this finding is that in the presence of a shared virus, the faster growing (drug-sensitive) cell population produces an amount of virus that is too much for the slower growing (drug-resistant) cell population to survive. This is derived from a population dynamic principle known as apparent competition. Therefore, a sequential combination of oncolytic virus and targeted therapies can overcome major weaknesses of either approach alone.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolution, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Vitamin D Receptor, UVR, and Skin Cancer: A Potential Protective Mechanism. J Invest Dermatol 2008; 128:2357-61. [DOI: 10.1038/jid.2008.249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Haeno H, Iwasa Y, Michor F. The evolution of two mutations during clonal expansion. Genetics 2007; 177:2209-21. [PMID: 18073428 PMCID: PMC2219486 DOI: 10.1534/genetics.107.078915] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/08/2007] [Indexed: 12/15/2022] Open
Abstract
Knudson's two-hit hypothesis proposes that two genetic changes in the RB1 gene are the rate-limiting steps of retinoblastoma. In the inherited form of this childhood eye cancer, only one mutation emerges during somatic cell divisions while in sporadic cases, both alleles of RB1 are inactivated in the growing retina. Sporadic retinoblastoma serves as an example of a situation in which two mutations are accumulated during clonal expansion of a cell population. Other examples include evolution of resistance against anticancer combination therapy and inactivation of both alleles of a metastasis-suppressor gene during tumor growth. In this article, we consider an exponentially growing population of cells that must evolve two mutations to (i) evade treatment, (ii) make a step toward (invasive) cancer, or (iii) display a disease phenotype. We calculate the probability that the population has evolved both mutations before it reaches a certain size. This probability depends on the rates at which the two mutations arise; the growth and death rates of cells carrying none, one, or both mutations; and the size the cell population reaches. Further, we develop a formula for the expected number of cells carrying both mutations when the final population size is reached. Our theory establishes an understanding of the dynamics of two mutations during clonal expansion.
Collapse
Affiliation(s)
- Hiroshi Haeno
- Department of Biology, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
37
|
Abstract
Modern techniques are revealing that repetition of segments of the genome, called amplification or gene amplification, is very common. Amplification is found in all domains of life, and occurs under conditions where enhanced expression of the amplified genes is advantageous. Amplification extends the range of gene expression beyond that which is achieved by control systems. It also is reversible because it is unstable, breaking down by homologous recombination. Amplification is believed to be the driving force in the clustering of related functions, in that it allows them to be amplified together. Amplification provides the extra copies of genes that allow evolution of functions to occur while retaining the original function. Amplification can be induced in response to cellular stressors. In many cases, it has been shown that the genomic regions that are amplified include those genes that are appropriate to upregulate for a specific stressor. There is some evidence that amplification occurs as part of a broad, general stress response, suggesting that organisms have the capacity to induce structural changes in the genome. This then allows adaptation to the stressful conditions. The mechanisms by which amplification arises are now being studied at the molecular level, but much is still unknown about the mechanisms in all organisms. Recent advances in our understanding of amplification in bacteria suggests new interpretations of events leading to human copy number variation, as well as evolution in general.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
38
|
Hinz JM, Nham PB, Urbin SS, Jones IM, Thompson LH. Disparate contributions of the Fanconi anemia pathway and homologous recombination in preventing spontaneous mutagenesis. Nucleic Acids Res 2007; 35:3733-40. [PMID: 17517774 PMCID: PMC1920256 DOI: 10.1093/nar/gkm315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder in which DNA-damage processing defects are reported for translesion synthesis (TLS), non-homologous end joining (NHEJ) and homologous recombination (HR; both increased and decreased). To reconcile these diverse findings, we compared spontaneous mutagenesis in FA and HR mutants of hamster CHO cells. In the fancg mutant we find a reduced mutation rate accompanied by an increased proportion of deletions within the hprt gene. Moreover, in fancg cells gene amplification at the CAD and dhfr loci is elevated, another manifestation of inappropriate processing of damage during DNA replication. In contrast, the rad51d HR mutant has a greatly elevated rate of hprt mutations, >85% of which are deletions. Our analysis supports the concept that HR faithfully restores broken replication forks, whereas the FA pathway acts more globally to ensure chromosome stability by promoting efficient end joining of replication-derived breaks, as well as TLS and HR.
Collapse
Affiliation(s)
- John M Hinz
- Chemistry, Materials, & Life Sciences Directorate, L441, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA.
| | | | | | | | | |
Collapse
|
39
|
Bachmann A, Zawatzky R, Rösl F. Genetic redundancy in human cervical carcinoma cells: identification of cells with "normal" properties. Int J Cancer 2007; 120:2119-26. [PMID: 17266037 DOI: 10.1002/ijc.22524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although it is generally assumed that cancer arises from a singular cell, a tumor must be considered as a dynamic and emergent biological structure, whose organizing principle is determined by genetic and epigenetic modifications, occurring variably in response to microenvironmental selection conditions. As previously shown, HPV-positive cervical carcinoma cells have lost their ability to induce IFN-beta upon TNF-alpha treatment. However, regarding cancer as a non-linear system, which may, even in the absence of an apparent selection pressure, fluctuate between different "metastable" phenotypes, we demonstrate that TNF-alpha mediated IFN-beta induction is not irreversibly disturbed in all cells. Using the IFN-beta sensitive Encephalomyocarditis virus (EMCV) as a tool to monitor antiviral activity in long-term established malignant HeLa cells, rare IFN-beta expressing clones were rescued from a population of non-responsive and EMCV-sensitive cells. Antiviral activity was mediated by the re-expression of IRF-1 and p48 (IRF-9), both key regulatory molecules normally found to be suppressed in cervical carcinoma cells. Upon inoculating of selected clones into immunocompromised animals, a reduced or even an absence of tumorigenicity of initially highly malignant cells could be discerned. These data indicate that both the absence of interferon signaling and the ability to form tumors were reversed in a minority of cells. We provide a paradigm for the existence of innate genetic redundancy mechanisms, where a particular phenotype persists and can be isolated without application of drugs generally changing the epigenetic context.
Collapse
Affiliation(s)
- Anastasia Bachmann
- Forschungsschwerpunkt Angewandte Tumorvirologie, Abteilung Virale Transformationsmechanismen, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
40
|
Myllykangas S, Böhling T, Knuutila S. Specificity, selection and significance of gene amplifications in cancer. Semin Cancer Biol 2006; 17:42-55. [PMID: 17161620 DOI: 10.1016/j.semcancer.2006.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/17/2006] [Indexed: 12/16/2022]
Abstract
DNA copy number amplifications activate oncogenes and are found in the majority of advanced solid tumors. Cell-lineage specificity and oncogene affinity of DNA amplifications in cancer suggest that properties of precursor stem cells and selection pressure in the tissue micro-environment determine the genomic location of gene amplifications. Biological specificity and significance of gene amplifications make them potential targets for clinical applications. Here we discuss the specificity of non-randomly occurring DNA copy number amplifications as defining features for cancers, their selection in the tumor tissue, and significance in the clinical practice.
Collapse
Affiliation(s)
- Samuel Myllykangas
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, POB 21 (Haartmaninkatu 3), FI-00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
41
|
Berman H, Zhang J, Crawford YG, Gauthier ML, Fordyce CA, McDermott KM, Sigaroudinia M, Kozakiewicz K, Tlsty TD. Genetic and epigenetic changes in mammary epithelial cells identify a subpopulation of cells involved in early carcinogenesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 70:317-27. [PMID: 16869768 DOI: 10.1101/sqb.2005.70.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Morphologically normal foci of epithelial cells exhibiting p16 inactivation have been found in several tissues and may be precursors to cancer. Our previous work demonstrates that cells lacking p16(INK4A) activity exhibit phenotypes associated with malignancy (Romanov et al. 2001). The acquisition of genomic instability occurs through the activation of telomeric and centrosomal dysfunction. Additionally, the activation of stress pathways such as COX-2 provides these cells with the mutagenic potential to survive adverse environments as well as the ability to migrate, evade apoptosis and immune surveillance, and summon sustaining vasculature. Examination of archived tissue from women with DCIS (ductal carcinoma in situ) reveals epithelial cells that overexpress markers of premalignant stress activation pathways and mirror the distinctive expression patterns of these markers observed in vitro. These epithelial cells are found within the premalignant lesion as well as in the field of morphologically normal tissue that surrounds the lesion. Here, we show that p16(INK4A)-silenced vHMEC cells exhibit a gene expression profile which is distinct, reproducible, and extends beyond the changes mediated by p16(INK4A) inactivation. The present work suggests that cells lacking p16(INK4A) activity exhibit critical activities which allow cells to evade differentiation processes that would be expected to terminate proliferation. All of these properties are critical to malignancy. These events may be useful biomarkers to detect the earliest events in breast cancer.
Collapse
MESH Headings
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/etiology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/etiology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Centrosome/metabolism
- DNA Methylation
- Epigenesis, Genetic
- Epithelial Cells/classification
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Expression Profiling
- Gene Silencing
- Genes, p16
- Genomic Instability
- Humans
- In Vitro Techniques
- Models, Biological
- Promoter Regions, Genetic
- Telomere/genetics
Collapse
Affiliation(s)
- H Berman
- Department of Pathology and UCSF Comprehensive Cancer Center, University of California at San Francisco, 94143-0511, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chung YM, Kim JS, Yoo YD. A novel protein, Romo1, induces ROS production in the mitochondria. Biochem Biophys Res Commun 2006; 347:649-55. [PMID: 16842742 DOI: 10.1016/j.bbrc.2006.06.140] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 06/21/2006] [Indexed: 11/21/2022]
Abstract
The majority of endogenous reactive oxygen species (ROS) are produced in the mitochondrial respiratory chain. An imbalance in ROS production alters the intracellular redox homeostasis, triggers DNA damage, and contributes to cancer development and progression. This study identified a novel protein, reactive oxygen species modulator 1 (Romo1), which is localized in the mitochondria. Romo1 was found to increase the level of ROS in the cells. Increased Romo1 expression was observed in various cancer cell lines. This suggests that the increased Romo1 expression during cancer progression may cause persistent oxidative stress to tumor cells, which can increase their malignancy.
Collapse
Affiliation(s)
- Young Min Chung
- Graduate School of Medicine, Korea University College of Medicine, Korea University, Anam-dong, Sungbuk-ku, Seoul, Republic of Korea
| | | | | |
Collapse
|
43
|
Albertson DG. Gene amplification in cancer. Trends Genet 2006; 22:447-55. [PMID: 16787682 DOI: 10.1016/j.tig.2006.06.007] [Citation(s) in RCA: 376] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/26/2006] [Accepted: 06/08/2006] [Indexed: 02/07/2023]
Abstract
Gene amplification is a copy number increase of a restricted region of a chromosome arm. It is prevalent in some tumors and is associated with overexpression of the amplified gene(s). Amplified DNA can be organized as extrachromosomal elements, as repeated units at a single locus or scattered throughout the genome. Common chromosomal fragile sites, defects in DNA replication or telomere dysfunction might promote amplification. Some regions of amplification are complex, yet elements of the pattern are reproduced in different tumor types. A genetic basis for amplification is suggested by its relative frequency in some tumor subtypes, and its occurrence in "early" preneoplastic lesions. Clinically, amplification has prognostic and diagnostic usefulness, and is a mechanism of acquired drug resistance.
Collapse
Affiliation(s)
- Donna G Albertson
- Cancer Research Institute and Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
44
|
Slack A, Thornton PC, Magner DB, Rosenberg SM, Hastings PJ. On the mechanism of gene amplification induced under stress in Escherichia coli. PLoS Genet 2006; 2:e48. [PMID: 16604155 PMCID: PMC1428787 DOI: 10.1371/journal.pgen.0020048] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 02/14/2006] [Indexed: 12/02/2022] Open
Abstract
Gene amplification is a collection of processes whereby a DNA segment is reiterated to multiple copies per genome. It is important in carcinogenesis and resistance to chemotherapeutic agents, and can underlie adaptive evolution via increased expression of an amplified gene, evolution of new gene functions, and genome evolution. Though first described in the model organism Escherichia coli in the early 1960s, only scant information on the mechanism(s) of amplification in this system has been obtained, and many models for mechanism(s) were possible. More recently, some gene amplifications in E. coli were shown to be stress-inducible and to confer a selective advantage to cells under stress (adaptive amplifications), potentially accelerating evolution specifically when cells are poorly adapted to their environment. We focus on stress-induced amplification in E. coli and report several findings that indicate a novel molecular mechanism, and we suggest that most amplifications might be stress-induced, not spontaneous. First, as often hypothesized, but not shown previously, certain proteins used for DNA double-strand-break repair and homologous recombination are required for amplification. Second, in contrast with previous models in which homologous recombination between repeated sequences caused duplications that lead to amplification, the amplified DNAs are present in situ as tandem, direct repeats of 7–32 kilobases bordered by only 4 to 15 base pairs of G-rich homology, indicating an initial non-homologous recombination event. Sequences at the rearrangement junctions suggest nonhomologous recombination mechanisms that occur via template switching during DNA replication, but unlike previously described template switching events, these must occur over long distances. Third, we provide evidence that 3′-single-strand DNA ends are intermediates in the process, supporting a template-switching mechanism. Fourth, we provide evidence that lagging-strand templates are involved. Finally, we propose a novel, long-distance template-switching model for the mechanism of adaptive amplification that suggests how stress induces the amplifications. We outline its possible applicability to amplification in humans and other organisms and circumstances. A common change in genomes of all organisms is the reiteration of segments of DNA to multiple copies. DNA amplification can allow rapid evolution by changing the amounts of proteins made, and is instrumental in cancer formation, variation between human genomes, and antibiotic resistance and pathogenicity in microbes. Yet little is known about how amplification occurs, even in simple organisms. DNA amplification can occur in response to stress. In Escherichia coli bacteria, starvation stress provokes amplifications that can allow E. coli ultimately to adjust to the starvation condition. This study elucidates several aspects of the mechanism underlying these stress-provoked amplifications. The data suggest a new model in which DNA replication stalls during starvation, and the end of the new DNA jumps to another stalled replication fork to create a duplicated DNA segment. The duplication can then amplify to many copies by genetic recombination. This model, if correct, can explain how stress provokes these genome rearrangements—by replication stalling. The general model may be useful for other long-distance genome rearrangements in many organisms. Stress can cause rapid and profound changes in the genome, some of which can give cells an advantage—this paper helps to explain how.
Collapse
Affiliation(s)
- Andrew Slack
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. C Thornton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel B Magner
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Iwasa Y, Nowak MA, Michor F. Evolution of resistance during clonal expansion. Genetics 2006; 172:2557-66. [PMID: 16636113 PMCID: PMC1456382 DOI: 10.1534/genetics.105.049791] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 10/03/2005] [Indexed: 11/18/2022] Open
Abstract
Acquired drug resistance is a major limitation for cancer therapy. Often, one genetic alteration suffices to confer resistance to an otherwise successful therapy. However, little is known about the dynamics of the emergence of resistant tumor cells. In this article, we consider an exponentially growing population starting from one cancer cell that is sensitive to therapy. Sensitive cancer cells can mutate into resistant ones, which have relative fitness alpha prior to therapy. In the special case of no cell death, our model converges to the one investigated by Luria and Delbrück. We calculate the probability of resistance and the mean number of resistant cells once the cancer has reached detection size M. The probability of resistance is an increasing function of the detection size M times the mutation rate u. If Mu << 1, then the expected number of resistant cells in cancers with resistance is independent of the mutation rate u and increases with M in proportion to M(1-1/alpha) for advantageous mutants with relative fitness alpha>1, to l nM for neutral mutants (alpha = 1), but converges to an upper limit for deleterious mutants (alpha<1). Further, the probability of resistance and the average number of resistant cells increase with the number of cell divisions in the history of the tumor. Hence a tumor subject to high rates of apoptosis will show a higher incidence of resistance than expected on its detection size only.
Collapse
Affiliation(s)
- Yoh Iwasa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
46
|
Abstract
Intensive research efforts during the last several decades have increased our understanding of carcinogenesis, and have identified a genetic basis for the multi-step process of cancer development. Tumors grow through a process of clonal expansion driven by mutation. Several forms of molecular alteration have been described in human cancers, and these can be generally classified as chromosomal abnormalities and nucleotide sequence abnormalities. Most cancer cells display a phenotype characterized by genomic hypermutability, suggesting that genomic instability may precede the acquisition of transforming mutations in critical target genes. Reduced to its essence, cancer is a disease of abnormal gene expression, and these genetic abnormalities contribute to cancer pathogenesis through inactivation of negative mediators of cell proliferation (including tumor suppressor genes) and activation of positive mediators of cell proliferation (including proto-oncogenes). In several human tumor systems, specific genetic alterations have been shown to correlate with well-defined histopathological stages of tumor development and progression. Although the significance of mutations to the etiological mechanisms of tumor development has been debated, a causal role for such genetic lesions is now commonly accepted for most human cancers. Thus, genetic lesions represent an integral part of the processes of neoplastic transformation, tumorigenesis, and tumor progression, and as such represent potentially valuable markers for cancer detection and staging.
Collapse
Affiliation(s)
- William B Coleman
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill NC, 27599, USA.
| | | |
Collapse
|
47
|
Li R, Hehlman R, Sachs R, Duesberg P. Chromosomal alterations cause the high rates and wide ranges of drug resistance in cancer cells. ACTA ACUST UNITED AC 2006; 163:44-56. [PMID: 16271955 DOI: 10.1016/j.cancergencyto.2005.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/30/2005] [Accepted: 05/02/2005] [Indexed: 11/30/2022]
Abstract
Conventional mutation-selection theories have failed to explain (i) how cancer cells become spontaneously resistant against cytotoxic drugs at rates of up to 10(-3) per cell generation, orders higher than gene mutation, even in cancer cells; (ii) why resistance far exceeds a challenging drug-a state termed multidrug resistance; (iii) why resistance is associated with chromosomal alterations and proportional to their numbers; and (iv) why resistance is totally dependent on aneuploidy. We propose here that cancer-specific aneuploidy generates drug resistance via chromosomal alterations. According to this mechanism, aneuploidy varies the numbers and structures of chromosomes automatically, because it corrupts the many teams of proteins that segregate, synthesize, and repair chromosomes. Aneuploidy is thus a steady source of chromosomal variation from which, in classical Darwinian terms, resistance-specific aneusomies are selected in the presence of chemotherapeutic drugs. Some of the thousands of unselected genes that hitchhike with resistance-specific aneusomies can thus generate multidrug resistance. To test this hypothesis, we determined the rates of chromosomal alterations in clonal cultures of human breast and colon cancer lines by dividing the fraction of nonclonal karyotypes by the number of generations of the clone. These rates were about 10(-2) per cell generation, orders higher than mutation. Chromosome numbers and structures were determined in metaphases hybridized with color-coded chromosome-specific DNA probes. Further, we tested puromycin-resistant subclones of these lines for resistance-specific aneusomies. Resistant subclones differed from parental lines in four to seven specific aneusomies, of which different subclones shared some. The degree of resistance was roughly proportional to the number of these aneusomies. Thus, aneuploidy is the primary cause of the high rates and wide ranges of drug resistance in cancer cells.
Collapse
Affiliation(s)
- Ruhong Li
- Department of Molecular and Cell Biology, Donner Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
48
|
Yan B, Wang H, Peng Y, Hu Y, Wang H, Zhang X, Chen Q, Bedford JS, Dewhirst MW, Li CY. A unique role of the DNA fragmentation factor in maintaining genomic stability. Proc Natl Acad Sci U S A 2006; 103:1504-9. [PMID: 16432220 PMCID: PMC1360538 DOI: 10.1073/pnas.0507779103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
DNA fragmentation is a hallmark of apoptosis (programmed cell death). However, the biological function of apoptotic DNA fragmentation remains unclear. Here, we show that DNA fragmentation factor plays an important role for maintaining genomic stability. Inhibition or loss of the DNA fragmentation factor (DFF)/caspase-activated DNase (CAD), whose nuclease activity is responsible for digesting genomic DNA during apoptosis, led to significant increases in spontaneous or induced gene mutations, gene amplifications, and chromosomal instability in primary mouse cells and transformed human cell lines. The mechanism underlying genetic instability in DFF/CAD-deficient cells, at least in part, involves a small but significant elevation in the survival of cells exposed to ionizing radiation, suggesting that apoptotic DNA fragmentation factor contributes to genomic stability by ensuring the removal of cells that have suffered DNA damage. In support of this hypothesis are the observations of increased cellular transformation of mouse embryonic cells from the DFF/CAD-null mice and significantly enhanced susceptibility to radiation-induced carcinogenesis in these mice. These data, in combination with published reports on the existence of tumor-specific gene mutations/deletions in the DFF/CAD genes in human cancer samples, suggest that apoptotic DNA fragmentation factor is required for the maintenance of genetic stability and may play a role in tumor suppression.
Collapse
Affiliation(s)
- Bin Yan
- Departments of Radiation Oncology and Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Myllykangas S, Knuutila S. Manifestation, mechanisms and mysteries of gene amplifications. Cancer Lett 2005; 232:79-89. [PMID: 16288831 DOI: 10.1016/j.canlet.2005.07.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Accepted: 07/30/2005] [Indexed: 12/31/2022]
Abstract
Gene amplifications are essential features of advanced cancers and have prognostic as well as therapeutic significance in clinical cancer treatment. Models explaining the amplification process, such as breakage-fusion-bridge cycle and excision and unequal segregation of extrachromosomal DNA fragments, predict that independent DNA double-stranded breaks must occur to induce amplification formation. Many cellular, tissue and environmental factors induce DNA damage and amplifications. Also labile DNA sequence features like fragile sites facilitate amplifications. Although, databases and data mining tools of various genomic attributes are already available, extra-large scale systems biology endeavors to decipher dynamics, interactions and dependencies between different factors contributing to amplification process fail, because current databases of DNA copy number aberrations and fragile sites comprise conventional cytogenetics results obtained at far too coarse chromosome band resolution. Array comparative genomic hybridization (aCGH) enables genome-wide gene copy number measurements and amplification detection at molecular genetic resolution. Similarly, cloning and sequencing of fragile sites produce mapping information of vastly improved resolution. In conclusion, databases of aCGH and sequenced fragile sites are needed to resolve the mechanisms of gene amplifications in systems biology configuration.
Collapse
Affiliation(s)
- Samuel Myllykangas
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | |
Collapse
|
50
|
Komarova N. Stochastic modeling of drug resistance in cancer. J Theor Biol 2005; 239:351-66. [PMID: 16194548 DOI: 10.1016/j.jtbi.2005.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/21/2005] [Accepted: 08/01/2005] [Indexed: 11/21/2022]
Abstract
One of the main causes of failure in the treatment of cancer is the development of drug resistance by the cancer cells. Employing multi-drug therapeutic strategies is a promising way to prevent resistance and improve the chances of treatment success. We formulate and analyse a stochastic model for multi-drug resistance and investigate the dependence of treatment outcomes on the initial tumor load, mutation rates and the turnover rate of cancerous cells. We elucidate the general principles of the emergence and evolution of resistant cells inside the tumor, before and after the start of treatment. We discover that for non-mutagenic drugs, pre-existence contributes more to resistance generation than the treatment phase; this result holds for the case where all drugs are applied simultaneously, and is not applicable for sequential therapy models. The application of mathematical modelling to aspects of adjuvant chemotherapy scheduling. J. Math. Biol. 48(4), 375-422]. Also, we find that treatment success is independent on the turnover rate for one drug, and it depends strongly on it for multi-drug therapies. For low-turnover rates, increasing the number of drugs will increase the probability of successful therapy. For very high-turnover rates, increasing the number of drugs used does not significantly increase the chances of treatment success.
Collapse
Affiliation(s)
- Natalia Komarova
- Department of Mathematics and Ecology and Evolution, University of California, Irvine, CA 92697, USA.
| |
Collapse
|