1
|
Goeury T, Faye N, Gerbault P, Černý V, Crubézy E, Chiaroni J, Brouk H, Brunet L, Galan M, de Groot NG, Nunes JM, Sanchez‐Mazas A. Evidence for Pathogen-Driven Selection Acting on HLA-DPB1 in Response to Plasmodium falciparum Malaria in West Africa. Ecol Evol 2025; 15:e70933. [PMID: 40008064 PMCID: PMC11850448 DOI: 10.1002/ece3.70933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
African populations remain underrepresented in studies of human genetic diversity, despite a growing interest in understanding how they have adapted to the diverse environments they live in. In particular, understanding the genetic basis of immune adaptation to pathogens is of paramount importance in a continent such as Africa, where the burden of infectious diseases is a major public health challenge. In this study, we investigated the molecular variation of four Human Leukocyte Antigens (HLA) class II genes (DRB1, DQA1, DQB1 and DPB1), directly involved in the immune response to parasitic infections, in more than 1000 individuals from 23 populations across North, East, Central and West Africa. By analyzing the HLA molecular diversity of these populations in relation to various geographical, cultural and environmental factors, we identified divergent genetic profiles for several (semi-)nomadic populations of the Sahel belt as a signature of their unique demography. In addition, we observed significant genetic structuring supporting both substantial geographic and linguistic differentiations within West Africa. Furthermore, neutrality tests suggest balancing selection has been shaping the diversity of these four HLA class II genes, which is consistent with molecular comparisons between HLA genes and their orthologs in chimpanzees (Patr). However, the most striking observation comes from linear modeling, demonstrating that the prevalence of Plasmodium falciparum, the primary pathogen of malaria in Africa, significantly explains a large proportion of the nucleotide diversity observed at the DPB1 gene. DPB1*01:01, a highly frequent allele in Burkinabé populations, is identified as a potential protective allele against malaria, suggesting that strong pathogen-driven positive selection at this gene has shaped HLA variation in Africa. Additionally, two low-frequency DRB1 alleles, DRB1*08:06 and DRB1*11:02, also show significant associations with P. falciparum prevalence, supporting resistance to malaria is determined by multigenic and/or multiallelic combinations rather than single allele effects.
Collapse
Affiliation(s)
- Thomas Goeury
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and EvolutionUniversity of GenevaGenevaSwitzerland
| | - Ndeye Faye
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and EvolutionUniversity of GenevaGenevaSwitzerland
| | - Pascale Gerbault
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and EvolutionUniversity of GenevaGenevaSwitzerland
| | - Viktor Černý
- Institute of Archaeology of the Academy of Sciences of the Czech RepublicArchaeogenetics LaboratoryCzech Academy of SciencesPragueCzech Republic
| | - Eric Crubézy
- Institut Universitaire de FranceUMR5288 CNRSUniversity of Toulouse III Paul SabatierToulouseFrance
| | | | - Hacene Brouk
- Service of Hemobiology and Blood TransfusionUniversity Hospital Center Ibn Rochd of AnnabaFaculty of MedicineBadji Mokhtar University of AnnabaAnnabaAlgeria
| | - Lydie Brunet
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and EvolutionUniversity of GenevaGenevaSwitzerland
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH)Geneva University HospitalGenevaSwitzerland
| | - Maxime Galan
- CBGP UMR 1062INRAEIRDCIRADMontpellier SupAgroUniversity of MontpellierMontpellierFrance
| | - Natasja G. de Groot
- Department of Comparative Genetics and RefinementBiomedical Primate Research Centre (BPRC)Rijswijkthe Netherlands
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and EvolutionUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in Geneva (IGE3)University of GenevaGenevaSwitzerland
| | - Alicia Sanchez‐Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and EvolutionUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in Geneva (IGE3)University of GenevaGenevaSwitzerland
| |
Collapse
|
2
|
Giovambattista G, Kawamura A, Ishida A, Murakawa Y, Hosomichi K, Nagata F, Aida Y, Takeshima S. Four Target Resequencing for the Bovine Major Histocompatibility Complex Region. Proof of Concept. HLA 2025; 105:e70057. [PMID: 39991974 PMCID: PMC11848996 DOI: 10.1111/tan.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/06/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
The bovine leukocyte antigen (BoLA) comprises four regions that contain a high density of polymorphic genes and frequently show gene copy number variations (CNV). Therefore, genotyping BoLA using genome-wide resequencing is difficult. This study aimed to develop four probe sets for resequencing of the BoLA region using a hybridization capture target next-generation sequencing (NGS) method. This proof of concept showed and discussed the several applications of the used strategy. DNAs from nine Japanese Black cows and one Holstein cow were genotyped for BoLA-DRB3 using PCR sequence-based typing (SBT). DNA libraries were constructed using the KAPA HyperPlus Kit, and BoLA DNA sequences were enriched using the SeqCap EZ kit and four custom-made probes. Based on preliminary results, the probe set BoLA2 was selected for further analysis. This analysis resulted in a mean coverage of 90.8% with an average depth of 108 reads. A total of 113,646 SNPs and 17,995 indels were detected, several of which have previously been described in the dbSNP database. This allowed the genotyping of class II genes, including BoLA-DRB3. A comparison between target resequencing and PCR-SBT assays did not show conflicts between the BoLA-DRB3 genotyping results. CNV analysis based on read number inferred that the BoLA-DQA1, BoLA-DQA2, BoLA-DQA5, and BoLA-DQB genes would be present in the homozygous or heterozygous states or absent, allowing for the definition of four class II and three class I haplotypes. In addition, CNV of non-classical class I genes were also observed. In conclusion, results show that approach used in this study is a cost-effective strategy for sequencing large samples for many research purposes.
Collapse
Affiliation(s)
- Guillermo Giovambattista
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
- Institute of Veterinary Genetics (IGEVET, UNLP‐CONICET), Faculty of Veterinary SciencesNational University of La PlataLa PlataArgentina
| | - Arisa Kawamura
- Department of Food and NutritionJumonji UniversitySaitamaJapan
| | - Akane Ishida
- Department of Food and NutritionJumonji UniversitySaitamaJapan
| | - Yukine Murakawa
- Department of Food and NutritionJumonji UniversitySaitamaJapan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life ScienceTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Fumihiro Nagata
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | |
Collapse
|
3
|
Galdino Andrade TE, Scavassini Peña M, Fiorotti J, de Souza Bin R, Rodrigues Caetano A, Connelley T, Ferreira de Miranda Santos IK. Graduate Student Literature Review: The DRB3 gene of the bovine major histocompatibility complex-Discovery, diversity, and distribution of alleles in commercial breeds of cattle and applications for development of vaccines. J Dairy Sci 2024; 107:11324-11341. [PMID: 39004123 DOI: 10.3168/jds.2023-24628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The bovine major histocompatibility complex (MHC), also known as the bovine leukocyte antigen (BoLA) complex, is the genomic region that encodes the most important molecules for antigen presentation to initiate immune responses. The first evidence of MHC in bovines pointed to a locus containing 2 antigens, one detected by cytotoxic antiserum (MHC class I) and another studied by mixed lymphocyte culture tests (MHC class II). The most studied gene in the BoLA region is the highly polymorphic BoLA-DRB3, which encodes a β chain with a peptide groove domain involved in antigen presentation for T cells that will develop and co-stimulate cellular and humoral effector responses. The BoLA-DRB3 alleles have been associated with outcomes in infectious diseases such as mastitis, trypanosomiasis, and tick loads, and with production traits. To catalog these alleles, 2 nomenclature methods were proposed, and the current use of both systems makes it difficult to list, comprehend and apply these data effectively. In this review we have organized the knowledge available in all of the reports on the frequencies of BoLA-DRB3 alleles. It covers information from studies made in at least 26 countries on more than 30 breeds; studies are lacking in countries that are important producers of cattle livestock. We highlight practical applications of BoLA studies for identification of markers associated with resistance to infectious and parasitic diseases, increased production traits and T cell epitope mapping, in addition to genetic diversity and conservation studies of commercial and Creole and locally adapted breeds. Finally, we provide support for the need of studies to discover new BoLA alleles and uncover unknown roles of this locus in production traits.
Collapse
Affiliation(s)
| | - Maurício Scavassini Peña
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | - Jéssica Fiorotti
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | - Renan de Souza Bin
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | | | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom, EH25 9RG
| | | |
Collapse
|
4
|
Siljestam M, Rueffler C. Heterozygote advantage can explain the extraordinary diversity of immune genes. eLife 2024; 13:e94587. [PMID: 39589392 PMCID: PMC11723581 DOI: 10.7554/elife.94587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.
Collapse
Affiliation(s)
- Mattias Siljestam
- Department of Ecology and Genetics, Animal Ecology, Uppsala UniversityUppsalaSweden
| | - Claus Rueffler
- Department of Ecology and Genetics, Animal Ecology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
5
|
Różańska-Wróbel J, Migalska M, Urbanowicz A, Grzybek M, Rego ROM, Bajer A, Dwuznik-Szarek D, Alsarraf M, Behnke-Borowczyk J, Behnke JM, Radwan J. Interplay between vertebrate adaptive immunity and bacterial infectivity genes: Bank vole MHC versus Borrelia afzelii OspC. Mol Ecol 2024; 33:e17534. [PMID: 39314079 DOI: 10.1111/mec.17534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Coevolution of parasites with their hosts may lead to balancing selection on genes involved in determining the specificity of host-parasite interactions, but examples of such specific interactions in wild vertebrates are scarce. Here, we investigated whether the polymorphic outer surface protein C (OspC), used by the Lyme disease agent, Borrelia afzelii, to manipulate vertebrate host innate immunity, interacts with polymorphic major histocompatibility genes (MHC), while concurrently eliciting a strong antibody response, in one of its main hosts in Europe, the bank vole. We found signals of balancing selection acting on OspC, resulting in little differentiation in OspC variant frequencies between years. Neither MHC alleles nor their inferred functional groupings (supertypes) significantly predicted the specificity of infection with strains carrying different OspC variants. However, we found that MHC alleles, but not supertypes, significantly predicted the level of IgG antibodies against two common OspC variants among seropositive individuals. Our results thus indicate that MHC alleles differ in their ability to induce antibody responses against specific OspC variants, which may contribute to selection of OspC polymorphism by the vole immune system.
Collapse
Affiliation(s)
- Joanna Różańska-Wróbel
- Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anna Urbanowicz
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Gdynia, Poland
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Dwuznik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mohammed Alsarraf
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jolanta Behnke-Borowczyk
- Department of Forest Phytopathology, Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Jacek Radwan
- Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Single RM, Mack SJ, Solberg OD, Thomson G, Erlich HA. Natural Selection on HLA-DPB1 Amino Acids Operates Primarily on DP Serologic Categories. Hum Immunol 2024; 85:111153. [PMID: 39461275 PMCID: PMC12022158 DOI: 10.1016/j.humimm.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The DPB1 locus is notable among the classical HLA loci in that allele frequencies at this locus are consistent with genetic drift, whereas the frequencies of specific DPβ amino acids are consistent with the action of balancing selection. We investigated the influence of natural selection in shaping the diversity of three functional categories of DPB1 diversity defined by specific amino acid motifs, DPB1 T-cell epitopes, DPB1 supertypes and DP1-DP4 serologic categories (SCs), via Ewens-Watterson (EW) selective neutrality and asymmetric Linkage Disequilibrium (ALD) analyses in a worldwide sample of 136 populations. These EW analyses provide strong evidence for the operation of balancing selection on DP SCs, but no evidence for balancing selection on T-cell epitopes or supertypes. We further investigated the global distribution of SCs. Each SC is common in a different region of the world, with the DP1 SC most common in Southeast Asia and Oceania, the DP2 SC in North and South America, the DP3 SC in South America, and the DP4 SC in Europe. The DP2 SC is present in all populations, while 14% of populations are missing at least one DP1, DP3, or DP4 SC. We observed consistent DPA1∼DP SC haplotype associations across 10 populations from five global regions, and found that asymmetric linkage disequilibrium (LD) between the DPB1 locus and the four most-common DPA1 alleles (DPA1*01:03, *02:01, *02:02 and *03:01) is determined by variation at DPβ AA positions 85-87. These positions are in LD with both DPα positions 31 and 50. We conclude from these EW analyses that natural selection is primarily operating to maintain population-level diversity of DP SCs, rather than DPB1 alleles or other functional categories of DPB1 diversity.
Collapse
Affiliation(s)
- Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
7
|
Vaulin A, Karpulevich E, Kasianov A, Morozova I. Europeans and Americans of European origin show differences between their biological pathways related to the major histocompatibility complex. Sci Rep 2024; 14:21816. [PMID: 39294244 PMCID: PMC11410964 DOI: 10.1038/s41598-024-71803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
In this study, we analysed biological pathway diversity among Europeans and Northern Americans of European origin, the groups of people that share a common genetic ancestry but live in different geographic regions. We used a novel complex approach for analysing genomic data: we studied the total effects of multiple weak selection signals, accumulated from independent SNPs within a pathway. We found significant differences between immunity-related biological pathways from the two groups. All identified pathways included genes belonging to the major histocompatibility complex (MHC) system, which plays an important role in adaptive immune responses. We suggest that the ways of evolution were different for the MHC-I and MHC-II gene groups at least in Europeans and Americans of European origin. We hypothesise that the observed variability between the two populations was triggered by selection pressures due to the different pathogen landscapes and pathogen loads on the two continents. Our findings can be important for epidemic prevention and control, as well as for analysing processes related to allergies, organ transplantation, and autoimmune diseases.
Collapse
Affiliation(s)
- Andrey Vaulin
- Nanyang Technological University, Singapore, Singapore
| | - Evgeny Karpulevich
- Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS), Moscow, Russia
| | - Artem Kasianov
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Irina Morozova
- Institute for Globally Distributed Open Research and Education (IGDORE), Moscow, Russia.
| |
Collapse
|
8
|
Lyn Fortier A, Pritchard JK. The Primate Major Histocompatibility Complex: An Illustrative Example of Gene Family Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613318. [PMID: 39345418 PMCID: PMC11429698 DOI: 10.1101/2024.09.16.613318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Gene families are groups of evolutionarily-related genes. One large gene family that has experienced rapid evolution is the Major Histocompatibility Complex (MHC), whose proteins serve critical roles in innate and adaptive immunity. Across the ~60 million year history of the primates, some MHC genes have turned over completely, some have changed function, some have converged in function, and others have remained essentially unchanged. Past work has typically focused on identifying MHC alleles within particular species or comparing gene content, but more work is needed to understand the overall evolution of the gene family across species. Thus, despite the immunologic importance of the MHC and its peculiar evolutionary history, we lack a complete picture of MHC evolution in the primates. We readdress this question using sequences from dozens of MHC genes and pseudogenes spanning the entire primate order, building a comprehensive set of gene and allele trees with modern methods. Overall, we find that the Class I gene subfamily is evolving much more quickly than the Class II gene subfamily, with the exception of the Class II MHC-DRB genes. We also pay special attention to the often-ignored pseudogenes, which we use to reconstruct different events in the evolution of the Class I region. We find that despite the shared function of the MHC across species, different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response. Our trees and extensive literature review represent the most comprehensive look into MHC evolution to date.
Collapse
Affiliation(s)
- Alyssa Lyn Fortier
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| | - Jonathan K. Pritchard
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| |
Collapse
|
9
|
Silver LW, Hogg CJ, Belov K. Plethora of New Marsupial Genomes Informs Our Knowledge of Marsupial MHC Class II. Genome Biol Evol 2024; 16:evae156. [PMID: 39031605 PMCID: PMC11305139 DOI: 10.1093/gbe/evae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024] Open
Abstract
The major histocompatibility complex (MHC) plays a vital role in the vertebrate immune system due to its role in infection, disease and autoimmunity, or recognition of "self". The marsupial MHC class II genes show divergence from eutherian MHC class II genes and are a unique taxon of therian mammals that give birth to altricial and immunologically naive young providing an opportune study system for investigating evolution of the immune system. Additionally, the MHC in marsupials has been implicated in disease associations, including susceptibility to Chlamydia pecorum infection in koalas. Due to the complexity of the gene family, automated annotation is not possible so here we manually annotate 384 class II MHC genes in 29 marsupial species. We find losses of key components of the marsupial MHC repertoire in the Dasyuromorphia order and the Pseudochiridae family. We perform PGLS analysis to show the gene losses we find are true gene losses and not artifacts of unresolved genome assembly. We investigate the associations between the number of loci and life history traits, including lifespan and reproductive output in lineages of marsupials and hypothesize that gene loss may be linked to the energetic cost and tradeoffs associated with pregnancy and reproduction. We found support for litter size being a significant predictor of the number of DBA and DBB loci, indicating a tradeoff between the energetic requirements of immunity and reproduction. Additionally, we highlight the increased susceptibility of Dasyuridae species to neoplasia and a potential link to MHC gene loss. Finally, these annotations provide a valuable resource to the immunogenetics research community to move forward and further investigate diversity in MHC genes in marsupials.
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
10
|
Zeng Q, Li X, Shi X, Yan S. Partial molecular characterization, expression pattern and polymorphism analysis of MHC I genes in Chinese domestic goose (Anser cygnoides). Genet Mol Biol 2024; 47:e20220252. [PMID: 39012094 PMCID: PMC11249561 DOI: 10.1590/1678-4685-gmb-2022-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/09/2024] [Indexed: 07/17/2024] Open
Abstract
Major histocompatibility complex (MHC) allelic polymorphism is critically important for mediating antigen presentation in vertebrates. Presently, there are insufficient studies of MHC genetic diversity in domestic Anseriform birds. In this study, we analyzed the expression profile of MHC I genes and screened for MHC I exon 2 polymorphism in one domestic goose population from China using Illumina MiSeq sequencing. The results showed that four MHC I alleles (Ancy-IE2*09/*11/*13/*21) in one goose were identified based on cDNA cloning and sequencing using four primer combinations, and the varying number of cDNA clones implied that these four classical sequences showed differential expression patterns. Through next-generation sequencing, 27 alleles were obtained from 68 geese with 3-10 putative alleles per individual, indicating at least the existence of 5 MHC I loci in the goose. The marked excess of the non-synonymous over the synonymous substitution in the peptide-binding region (PBR) along 27 alleles and five positively selected sites (PSSs) detected around the PBR indicated that balancing selection might be the major force in shaping high MHC variation in the goose. Additionally, IA alleles displaying lower polymorphism were subject to less positive selection pressure than non-IA alleles with a higher level of polymorphism.
Collapse
Affiliation(s)
- Qianqian Zeng
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| | - Xiaojie Li
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| | - Xiaomin Shi
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| | - Shigan Yan
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| |
Collapse
|
11
|
Minias P, Pap PL, Vincze O, Vágási CI. Correlated evolution of oxidative physiology and MHC-based immunosurveillance in birds. Proc Biol Sci 2024; 291:20240686. [PMID: 38889785 DOI: 10.1098/rspb.2024.0686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Maintenance and activation of the immune system incur costs, not only in terms of substrates and energy but also via collateral oxidative damage to host cells or tissues during immune response. So far, associations between immune function and oxidative damage have been primarily investigated at intra-specific scales. Here, we hypothesized that pathogen-driven selection should favour the evolution of effective immunosurveillance mechanisms (e.g. major histocompatibility complex, MHC) and antioxidant defences to mitigate oxidative damage resulting from immune function. Using phylogenetically informed comparative approaches, we provided evidence for the correlated evolution of host oxidative physiology and MHC-based immunosurveillance in birds. Species selected for more robust MHC-based immunosurveillance (higher gene copy numbers and allele diversity) showed stronger antioxidant defences, although selection for MHC diversity still showed a positive evolutionary association with oxidative damage to lipids. Our results indicate that historical pathogen-driven selection for highly duplicated and diverse MHC could have promoted the evolution of efficient antioxidant mechanisms, but these evolutionary solutions may be insufficient to keep oxidative stress at bounds. Although the precise nature of mechanistic links between the MHC and oxidative stress remains unclear, our study suggests that a general evolutionary investment in immune function may require co-adaptations at the level of host oxidative metabolism.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, University of Lodz, Faculty of Biology and Environmental Protection, Banacha 1/3, 90-237 Lodz, Poland
| | - Péter L Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Orsolya Vincze
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Wetland Ecology Research Group, HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary
- ImmunoConcEpT, University of Bordeaux, CNRS UMR 5164, Bordeaux, France
| | - Csongor I Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Gowane GR, Sharma P, Kumar R, Misra SS, Alex R, Vohra V, Chhotaray S, Dass G, Chopra A, Kandalkar Y, Vijay V, Choudhary A, Magotra A, Rajendran R. Cross-population genetic analysis revealed genetic variation and selection in the Ovar-DRB1 gene of Indian sheep breeds. Anim Biotechnol 2023; 34:2928-2939. [PMID: 36153754 DOI: 10.1080/10495398.2022.2125404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In sheep, MHC variability is studied widely to explore disease association. The aim of the current study was to explore the genetic diversity of Ovar-DRB diversity across sheep breeds of India. Here, Ovar-DRB1 locus was studied across 20 sheep breeds. DRB1 was amplified (301 bp) and sequenced using a PCR-sequence-based typing approach. Results revealed a high degree of heterozygosity across breeds (mean: 73.99%). Overall mean distance for DRB1 was highest in Sangamneri (0.18) and lowest in Madgyal sheep (0.10). There was a higher rate of transition, across breeds. Further, 39 alleles were isolated in different breeds, out of which 10 were new. To allow easy access and use of the immune-polymorphic database, an online database management system was launched (http://www.mhcdbms.in/). Nucleotide content across breeds for the DRB1 region revealed the richness of GC content (59.26%). Wu-Kabat index revealed vast genetic variation across peptide binding sites (PBS) of DRB1. Residues 6, 66, 69, 52, and 81, were polymorphic showing utility for antigen presentation. All breeds were under positive selection for DRB1 locus (dN > dS). Study revealed the importance of DRB locus diversity for beta chain specifically at PBS across sheep breeds of the Indian subcontinent and presented evidence of positive selection for DRB owing to its evolutionary significance.
Collapse
Affiliation(s)
- G R Gowane
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Priya Sharma
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Rajiv Kumar
- Animal Genetics & Breeding Division, ICAR-Central Sheep & Wool Research Institute, Avikanagar, India
| | - S S Misra
- Animal Genetics & Breeding Division, ICAR-Central Sheep & Wool Research Institute, Avikanagar, India
| | - Rani Alex
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - V Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Gopal Dass
- Animal Genetics & Breeding Division, ICAR-Central Institute for Research on Goats, Makhdoom, India
| | - Ashish Chopra
- Animal Genetics & Breeding Division, ICAR-Arid Region Campus, Central Sheep & Wool Research Institute Bikaner, Avikanagar, India
| | - Yogesh Kandalkar
- Deccani Sheep Breeding Unit, NWPSI at Mahatma Phule Krishi Vidyapith, Rahuri, India
| | - V Vijay
- Sonadi Seep Breeding Unit, NWPSI at Navaniya Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | | | - Ankit Magotra
- Animal Genetics & Breeding Division, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - R Rajendran
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Theni, India
| |
Collapse
|
13
|
Paterson NM, Al-Zubieri H, Ragona J, Kohler KM, Tirado J, Geisbrecht BV, Barber MF. Dynamic Evolution of Bacterial Ligand Recognition by Formyl Peptide Receptors. Genome Biol Evol 2023; 15:evad175. [PMID: 37776517 PMCID: PMC10566242 DOI: 10.1093/gbe/evad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
The detection of invasive pathogens is critical for host immune defense. Cell surface receptors play a key role in the recognition of diverse microbe-associated molecules, triggering leukocyte recruitment, phagocytosis, release of antimicrobial compounds, and cytokine production. The intense evolutionary forces acting on innate immune receptor genes have contributed to their rapid diversification across plants and animals. However, the functional consequences of immune receptor divergence are often unclear. Formyl peptide receptors (FPRs) comprise a family of animal G protein-coupled receptors which are activated in response to a variety of ligands including formylated bacterial peptides, pathogen virulence factors, and host-derived antimicrobial peptides. FPR activation in turn promotes inflammatory signaling and leukocyte migration to sites of infection. Here we investigate patterns of gene loss, diversification, and ligand recognition among FPRs in primates and carnivores. We find that FPR1, which plays a critical role in innate immune defense in humans, has been lost in New World primates. Amino acid variation in FPR1 and FPR2 among primates and carnivores is consistent with a history of repeated positive selection acting on extracellular domains involved in ligand recognition. To assess the consequences of FPR divergence on bacterial ligand interactions, we measured binding between primate FPRs and the FPR agonist Staphylococcus aureus enterotoxin B, as well as S. aureus FLIPr-like, an FPR inhibitor. We found that few rapidly evolving sites in primate FPRs are sufficient to modulate recognition of bacterial proteins, demonstrating how natural selection may serve to tune FPR activation in response to diverse microbial ligands.
Collapse
Affiliation(s)
- Nicole M Paterson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hussein Al-Zubieri
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Joseph Ragona
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Kristin M Kohler
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Juan Tirado
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Department of Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
14
|
Zwonitzer KD, Iverson ENK, Sterling JE, Weaver RJ, Maclaine BA, Havird JC. Disentangling Positive Selection from Relaxed Selection in Animal Mitochondrial Genomes. Am Nat 2023; 202:E121-E129. [PMID: 37792916 PMCID: PMC10955554 DOI: 10.1086/725805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractDisentangling different types of selection is a common goal in molecular evolution. Elevated dN/dS ratios (the ratio of nonsynonymous to synonymous substitution rates) in focal lineages are often interpreted as signs of positive selection. Paradoxically, relaxed purifying selection can also result in elevated dN/dS ratios, but tests to distinguish these two causes are seldomly implemented. Here, we reevaluated seven case studies describing elevated dN/dS ratios in animal mitochondrial DNA (mtDNA) and their accompanying hypotheses regarding selection. They included flightless lineages versus flighted lineages in birds, bats, and insects and physiological adaptations in snakes, two groups of electric fishes, and primates. We found that elevated dN/dS ratios were often not caused by the predicted mechanism, and we sometimes found strong support for the opposite mechanism. We discuss reasons why energetic hypotheses may be confounded by other selective forces acting on mtDNA and caution against overinterpreting singular molecular signals, including elevated dN/dS ratios.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Erik N. K. Iverson
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Jess E. Sterling
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Ryan J. Weaver
- Department of Ecology, Evolution, and Organismal Biology and Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa 50011
| | - Bradley A. Maclaine
- Department of Human Development and Family Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Justin C. Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
15
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
16
|
Klymus KE, Hrabik RA, Thompson NL, Cornman RS. Genome resequencing clarifies phylogeny and reveals patterns of selection in the toxicogenomics model Pimephales promelas. PeerJ 2022; 10:e13954. [PMID: 36042859 PMCID: PMC9420404 DOI: 10.7717/peerj.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/05/2022] [Indexed: 01/19/2023] Open
Abstract
Background The fathead minnow (Pimephales promelas) is a model species for toxicological research. A high-quality genome reference sequence is available, and genomic methods are increasingly used in toxicological studies of the species. However, phylogenetic relationships within the genus remain incompletely known and little population-genomic data are available for fathead minnow despite the potential effects of genetic background on toxicological responses. On the other hand, a wealth of extant samples is stored in museum collections that in principle allow fine-scale analysis of contemporary and historical genetic variation. Methods Here we use short-read shotgun resequencing to investigate sequence variation among and within Pimephales species. At the genus level, our objectives were to resolve phylogenetic relationships and identify genes with signatures of positive diversifying selection. At the species level, our objective was to evaluate the utility of archived-sample resequencing for detecting selective sweeps within fathead minnow, applied to a population introduced to the San Juan River of the southwestern United States sometime prior to 1950. Results We recovered well-supported but discordant phylogenetic topologies for nuclear and mitochondrial sequences that we hypothesize arose from mitochondrial transfer among species. The nuclear tree supported bluntnose minnow (P. notatus) as sister to fathead minnow, with the slim minnow (P. tenellus) and bullhead minnow (P. vigilax) more closely related to each other. Using multiple methods, we identified 11 genes that have diversified under positive selection within the genus. Within the San Juan River population, we identified selective-sweep regions overlapping several sets of related genes, including both genes that encode the giant sarcomere protein titin and the two genes encoding the MTORC1 complex, a key metabolic regulator. We also observed elevated polymorphism and reduced differentation among populations (FST) in genomic regions containing certain immune-gene clusters, similar to what has been reported in other taxa. Collectively, our data clarify evolutionary relationships and selective pressures within the genus and establish museum archives as a fruitful resource for characterizing genomic variation. We anticipate that large-scale resequencing will enable the detection of genetic variants associated with environmental toxicants such as heavy metals, high salinity, estrogens, and agrichemicals, which could be exploited as efficient biomarkers of exposure in natural populations.
Collapse
Affiliation(s)
- Katy E. Klymus
- U.S. Geological Survey, Columbia Ecological Research Center, Columbia, MO, USA
| | | | - Nathan L. Thompson
- U.S. Geological Survey, Columbia Ecological Research Center, Columbia, MO, USA
| | - Robert S. Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| |
Collapse
|
17
|
Gigliotti AK, Bowen WD, Hammill MO, Puryear WB, Runstadler J, Wenzel FW, Cammen KM. Sequence diversity and differences at the highly duplicated MHC-I gene reflect viral susceptibility in sympatric pinniped species. J Hered 2022; 113:525-537. [PMID: 35690352 PMCID: PMC9584807 DOI: 10.1093/jhered/esac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022] Open
Abstract
Differences in disease susceptibility among species can result from rapid host-pathogen coevolution and differences in host species ecology that affect the strength and direction of natural selection. Among two sympatric pinniped species that differ in sociality and putative disease exposure, we investigate observed differences in susceptibility through an analysis of a highly variable, duplicated gene family involved in the vertebrate immune response. Using high-throughput amplicon sequencing, we characterize diversity at the two exons that encode the peptide binding region of the major histocompatibility complex class I (MHC-I) gene in harbor (N = 60) and gray (N = 90) seal populations from the Northwest Atlantic. Across species, we identified 106 full-length exon 2 and 103 exon 3 sequence variants and a minimum of 11 duplicated MHC-I loci. The sequence variants clustered in 15 supertypes defined by the physiochemical properties of the peptide binding region, including a putatively novel Northwest Atlantic MHC-I diversity sublineage. Trans-species polymorphisms, dN/dS ratios, and evidence of gene conversion among supertypes are consistent with balancing selection acting on this gene. High functional redundancy suggests particularly strong selection among gray seals at the novel Northwest Atlantic MHC-I diversity sublineage. At exon 2, harbor seals had a significantly greater number of variants per individual than gray seals, but fewer supertypes. Supertype richness and private supertypes are hypothesized to contribute to observed differences in disease resistance between species, as consistently, across the North Atlantic and many disease outbreaks, gray seals appear to be more resistant to respiratory viruses than harbor seals.
Collapse
Affiliation(s)
| | - W Don Bowen
- Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Michael O Hammill
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, Canada
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jonathan Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Frederick W Wenzel
- Protected Species Branch, NOAA, NMFS, Northeast Fisheries Science Center, Woods Hole, MA, USA
| | | |
Collapse
|
18
|
Annotation-free delineation of prokaryotic homology groups. PLoS Comput Biol 2022; 18:e1010216. [PMID: 35675326 PMCID: PMC9212150 DOI: 10.1371/journal.pcbi.1010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Phylogenomic studies of prokaryotic taxa often assume conserved marker genes are homologous across their length. However, processes such as horizontal gene transfer or gene duplication and loss may disrupt this homology by recombining only parts of genes, causing gene fission or fusion. We show using simulation that it is necessary to delineate homology groups in a set of bacterial genomes without relying on gene annotations to define the boundaries of homologous regions. To solve this problem, we have developed a graph-based algorithm to partition a set of bacterial genomes into Maximal Homologous Groups of sequences (MHGs) where each MHG is a maximal set of maximum-length sequences which are homologous across the entire sequence alignment. We applied our algorithm to a dataset of 19 Enterobacteriaceae species and found that MHGs cover much greater proportions of genomes than markers and, relatedly, are less biased in terms of the functions of the genes they cover. We zoomed in on the correlation between each individual marker and their overlapping MHGs, and show that few phylogenetic splits supported by the markers are supported by the MHGs while many marker-supported splits are contradicted by the MHGs. A comparison of the species tree inferred from marker genes with the species tree inferred from MHGs suggests that the increased bias and lack of genome coverage by markers causes incorrect inferences as to the overall relationship between bacterial taxa. Assuming genes to be the basic evolutionary unit has been commonplace in bacterial genomics. For example, when quantifying the extent of horizontal gene transfer it is common to infer gene trees and reconcile them against a species tree to account for recombination-based processes. We have developed a new method which challenges this assumption by identifying contiguous regions of true homology without regards to gene boundaries and applied it to Enterobacteriaceae, a family of bacteria containing several important human pathogens. Our results show that genes are composed of distinct homologous regions with conflicting phylogenetic histories. We further demonstrate that failing to take account of this conflict, together with the functional biases we show exist among single-copy marker genes, significantly changes the consensus evolutionary tree of Enterobacteriaceae.
Collapse
|
19
|
Maróstica AS, Nunes K, Castelli EC, Silva NSB, Weir BS, Goudet J, Meyer D. How HLA diversity is apportioned: influence of selection and relevance to transplantation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200420. [PMID: 35430892 PMCID: PMC9014195 DOI: 10.1098/rstb.2020.0420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In his 1972 paper ‘The apportionment of human diversity’, Lewontin showed that, when averaged over loci, genetic diversity is predominantly attributable to differences among individuals within populations. However, selection can alter the apportionment of diversity of specific genes or genomic regions. We examine genetic diversity at the human leucocyte antigen (HLA) loci, located within the major histocompatibility complex (MHC) region. HLA genes code for proteins that are critical to adaptive immunity and are well-documented targets of balancing selection. The single-nucleotide polymorphisms (SNPs) within HLA genes show strong signatures of balancing selection on large timescales and are broadly shared among populations, displaying low FST values. However, when we analyse haplotypes defined by these SNPs (which define ‘HLA alleles’), we find marked differences in frequencies between geographic regions. These differences are not reflected in the FST values because of the extreme polymorphism at HLA loci, illustrating challenges in interpreting FST. Differences in the frequency of HLA alleles among geographic regions are relevant to bone-marrow transplantation, which requires genetic identity at HLA loci between patient and donor. We discuss the case of Brazil's bone marrow registry, where a deficit of enrolled volunteers with African ancestry reduces the chance of finding donors for individuals with an MHC region of African ancestry. This article is part of the theme issue ‘Celebrating 50 years since Lewontin's apportionment of human diversity’.
Collapse
Affiliation(s)
- André Silva Maróstica
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erick C. Castelli
- Departamento de Patologia, Universidade Estadual Paulista - Unesp, Faculdade de Medicina de Botucatu, Botucatu, SP, Brazil
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University - Unesp, Botucatu, SP, Brazil
| | - Nayane S. B. Silva
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University - Unesp, Botucatu, SP, Brazil
| | - Bruce S. Weir
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Diogo Meyer
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Pontarotti P, Paganini J. COVID-19 Pandemic: Escape of Pathogenic Variants and MHC Evolution. Int J Mol Sci 2022; 23:ijms23052665. [PMID: 35269808 PMCID: PMC8910380 DOI: 10.3390/ijms23052665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
We propose a new hypothesis that explains the maintenance and evolution of MHC polymorphism. It is based on two phenomena: the constitution of the repertoire of naive T lymphocytes and the evolution of the pathogen and its impact on the immune memory of T lymphocytes. Concerning the latter, pathogen evolution will have a different impact on reinfection depending on the MHC allomorph. If a mutation occurs in a given region, in the case of MHC allotypes, which do not recognize the peptide in this region, the mutation will have no impact on the memory repertoire. In the case where the MHC allomorph binds to the ancestral peptides and not to the mutated peptide, that individual will have a higher chance of being reinfected. This difference in fitness will lead to a variation of the allele frequency in the next generation. Data from the SARS-CoV-2 pandemic already support a significant part of this hypothesis and following up on these data may enable it to be confirmed. This hypothesis could explain why some individuals after vaccination respond less well than others to variants and leads to predict the probability of reinfection after a first infection depending upon the variant and the HLA allomorph.
Collapse
Affiliation(s)
- Pierre Pontarotti
- Evolutionary Biology Team, MEPHI, Aix Marseille Université, IRD, APHM, IHU MI, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- SNC 5039 CNRS, 13005 Marseille, France
- Xegen, 15 Rue Dominique Piazza, 13420 Gemenos, France
- Correspondence: (P.P.); (J.P.)
| | - Julien Paganini
- Xegen, 15 Rue Dominique Piazza, 13420 Gemenos, France
- Correspondence: (P.P.); (J.P.)
| |
Collapse
|
21
|
Forni D, Sironi M, Cagliani R. Evolutionary history of type II transmembrane serine proteases involved in viral priming. Hum Genet 2022; 141:1705-1722. [PMID: 35122525 PMCID: PMC8817155 DOI: 10.1007/s00439-022-02435-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/15/2022] [Indexed: 11/24/2022]
Abstract
Type II transmembrane serine proteases (TTSPs) are a family of trypsin-like membrane-anchored serine proteases that play key roles in the regulation of some crucial processes in physiological conditions, including cardiac function, digestion, cellular iron homeostasis, epidermal differentiation, and immune responses. However, some of them, in particular TTSPs expressed in the human airways, were identified as host factors that promote the proteolytic activation and spread of respiratory viruses such as influenza virus, human metapneumovirus, and coronaviruses, including SARS-CoV-2. Given their involvement in viral priming, we hypothesized that members of the TTSP family may represent targets of positive selection, possibly as the result of virus-driven pressure. Thus, we investigated the evolutionary history of sixteen TTSP genes in mammals. Evolutionary analyses indicate that most of the TTSP genes that have a verified role in viral proteolytic activation present signals of pervasive positive selection, suggesting that viral infections represent a selective pressure driving the evolution of these proteases. We also evaluated genetic diversity in human populations and we identified targets of balancing selection in TMPRSS2 and TMPRSS4. This scenario may be the result of an ancestral and still ongoing host–pathogen arms race. Overall, our results provide evolutionary information about candidate functional sites and polymorphic positions in TTSP genes.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy.
| |
Collapse
|
22
|
Ordoñez D, Bohórquez MD, Avendaño C, Patarroyo MA. Comparing Class II MHC DRB3 Diversity in Colombian Simmental and Simbrah Cattle Across Worldwide Bovine Populations. Front Genet 2022; 13:772885. [PMID: 35186024 PMCID: PMC8854852 DOI: 10.3389/fgene.2022.772885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022] Open
Abstract
The major histocompatibility complex (MHC) exerts great influence on responses to infectious diseases and vaccination due to its fundamental role in the adaptive immune system. Knowledge about MHC polymorphism distribution among breeds can provide insights into cattle evolution and diversification as well as population-based immune response variability, thus guiding further studies. Colombian Simmental and Simbrah cattle’s BoLA-DRB3 genetic diversity was compared to that of taurine and zebuine breeds worldwide to estimate functional diversity. High allele richness was observed for Simmental and Simbrah cattle; nevertheless, high homozygosity was associated with individual low sequence variability in both the β1 domain and the peptide binding region (PBR), thereby implying reduced MHC-presented peptide repertoire size. There were strong signals of positive selection acting on BoLA-DRB3 in all populations, some of which were poorly structured and displayed common alleles accounting for their high genetic similarity. PBR sequence correlation analysis suggested that, except for a few populations exhibiting some divergence at PBR, global diversity regarding potential MHC-presented peptide repertoire could be similar for the cattle populations analyzed here, which points to the retention of functional diversity in spite of the selective pressures imposed by breeding.
Collapse
Affiliation(s)
- Diego Ordoñez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
- PhD Program in Tropical Health and Development, Universidad de Salamanca, Salamanca, Spain
| | - Michel David Bohórquez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- MSc Program in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- *Correspondence: Manuel Alfonso Patarroyo,
| |
Collapse
|
23
|
Hyun YS, Lee YH, Jo HA, Baek IC, Kim SM, Sohn HJ, Kim TG. Comprehensive Analysis of CD4 + T Cell Response Cross-Reactive to SARS-CoV-2 Antigens at the Single Allele Level of HLA Class II. Front Immunol 2022; 12:774491. [PMID: 35069546 PMCID: PMC8770530 DOI: 10.3389/fimmu.2021.774491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Common human coronaviruses have been circulating undiagnosed worldwide. These common human coronaviruses share partial sequence homology with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); therefore, T cells specific to human coronaviruses are also cross-reactive with SARS-CoV-2 antigens. Herein, we defined CD4+ T cell responses that were cross-reactive with SARS-CoV-2 antigens in blood collected in 2016–2018 from healthy donors at the single allele level using artificial antigen-presenting cells (aAPC) expressing a single HLA class II allotype. We assessed the allotype-restricted responses in the 42 individuals using the aAPCs matched 22 HLA-DR alleles, 19 HLA-DQ alleles, and 13 HLA-DP alleles. The response restricted by the HLA-DR locus showed the highest magnitude, and that by HLA-DP locus was higher than that by HLA-DQ locus. Since two alleles of HLA-DR, -DQ, and -DP loci are expressed co-dominantly in an individual, six different HLA class II allotypes can be used to the cross-reactive T cell response. Of the 16 individuals who showed a dominant T cell response, five, one, and ten showed a dominant response by a single allotype of HLA-DR, -DQ, and -DP, respectively. The single allotype-restricted T cells responded to only one antigen in the five individuals and all the spike, membrane, and nucleocapsid proteins in the six individuals. In individuals heterozygous for the HLA-DPA and HLA-DPB loci, four combinations of HLA-DP can be expressed, but only one combination showed a dominant response. These findings demonstrate that cross-reactive T cells to SARS-CoV-2 respond with single-allotype dominance.
Collapse
Affiliation(s)
- You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong-Hun Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyeong-A Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun-Mi Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
24
|
BoLA-DRB3 gene haplotypes show divergence in native Sudanese cattle from taurine and indicine breeds. Sci Rep 2021; 11:17202. [PMID: 34433838 PMCID: PMC8387388 DOI: 10.1038/s41598-021-96330-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/02/2021] [Indexed: 11/08/2022] Open
Abstract
Autochthonous Sudanese cattle breeds, namely Baggara for beef and Butana and Kenana for dairy, are characterized by their adaptive characteristics and high performance in hot and dry agro-ecosystems. They are thus used largely by nomadic and semi-nomadic pastoralists. We analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus linked to the immune response, for the indigenous cattle of Sudan and in the context of the global cattle repository. Blood samples (n = 225) were taken from three indigenous breeds (Baggara; n = 113, Butana; n = 60 and Kenana; n = 52) distributed across six regions of Sudan. Nucleotide sequences were genotyped using the sequence-based typing method. We describe 53 alleles, including seven novel alleles. Principal component analysis (PCA) of the protein pockets implicated in the antigen-binding function of the MHC complex revealed that pockets 4 and 9 (respectively) differentiate Kenana-Baggara and Kenana-Butana breeds from other breeds. Venn analysis of Sudanese, Southeast Asian, European and American cattle breeds with 115 alleles showed 14 were unique to Sudanese breeds. Gene frequency distributions of Baggara cattle showed an even distribution suggesting balancing selection, while the selection index (ω) revealed the presence of diversifying selection in several amino acid sites along the BoLA-DRB3 exon 2 of these native breeds. The results of several PCA were in agreement with clustering patterns observed on the neighbor joining (NJ) trees. These results provide insight into their high survival rate for different tropical diseases and their reproductive capacity in Sudan's harsh environment.
Collapse
|
25
|
Nur-Farahiyah AN, Kumar K, Yasmin AR, Omar AR, Camalxaman SN. Isolation and Genetic Characterization of Canine Parvovirus in a Malayan Tiger. Front Vet Sci 2021; 8:660046. [PMID: 34414223 PMCID: PMC8369201 DOI: 10.3389/fvets.2021.660046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Naïve Felidae in the wild may harbor infectious viruses of importance due to cross-species transmission between the domesticated animals or human–wildlife contact. However, limited information is available on virus shedding or viremia in the captive wild felids, especially in Malaysia. Four infectious viruses of cat, feline herpesvirus (FHV), feline calicivirus (FCV), canine distemper virus (CDV), and canine parvovirus (CPV), were screened in leopards, feral cats, and tigers in Malaysia based on virus isolation in Crandell-Rees feline kidney (CRFK) cells, PCR/RT-PCR, and whole-genome sequencing analysis of the positive isolate. From a total of 36 sera collected, 11 samples showed three consecutive cytopathic effects in the cell culture and were subjected to PCR using specific primers for FHV, FCV, CDV, and CPV. Only one sample from a Malayan tiger was detected positive for CPV. The entire viral genome of CPV (UPM-CPV15/P. tigris jacksoni; GenBank Accession number MW380384) was amplified using the Sanger sequencing approach. Genome sequencing of the isolate revealed 99.13, 98.65, and 98.40% close similarity to CPV-31, CPV-d Cornell #320, and CPV-15 strains, respectively, and classified as CPV-2a. Time-scaled Bayesian Maximum Clade Credibility tree for the non-structural (NS) genes of CPV showed a close relationship to the isolates CPV-CN SD6_2014 and KSU7-SD_2004 from China and USA, respectively, while the capsid gene showed the same ancestor as the FPV-BJ04 strain from China. The higher evolution rate of the capsid protein (CP) (VP 1 and VP2) [1.649 × 10−5 (95% HPD: 7.626 × 10−3 to 7.440 × 10−3)] as compared to the NS gene [1.203 × 10−4 (95% HPD: 6.663 × 10−3 to 6.593 × 10−3)] was observed in the CPV from this study, and fairly higher than other parvovirus species from the Protoparvovirus genus. Genome sequencing of the isolated CPV from a Malayan tiger in the present study provides valuable information about the genomic characteristics of captive wild felids, which may add information on the presence of CPV in species other than dogs.
Collapse
Affiliation(s)
- Ahmad Nadzri Nur-Farahiyah
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Kiven Kumar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abd Rahaman Yasmin
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Siti Nazrina Camalxaman
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
| |
Collapse
|
26
|
Diversity of MHC IIB genes and parasitism in hybrids of evolutionarily divergent cyprinoid species indicate heterosis advantage. Sci Rep 2021; 11:16860. [PMID: 34413384 PMCID: PMC8376869 DOI: 10.1038/s41598-021-96205-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are an essential component of the vertebrate immune system and MHC genotypes may determine individual susceptibility to parasite infection. In the wild, selection that favors MHC variability can create situations in which interspecies hybrids experience a survival advantage. In a wild system of two naturally hybridizing leuciscid fish, we assessed MHC IIB genetic variability and its potential relationships to hosts' ectoparasite communities. High proportions of MHC alleles and parasites were species-specific. Strong positive selection at specific MHC codons was detected in both species and hybrids. MHC allele expression in hybrids was slightly biased towards the maternal species. Controlling for a strong seasonal effect on parasite communities, we found no clear associations between host-specific parasites and MHC alleles or MHC supertypes. Hybrids shared more MHC alleles with the more MHC-diverse parental species, but expressed intermediate numbers of MHC alleles and positively selected sites. Hybrids carried significantly fewer ectoparasites than either parent species, suggesting a hybrid advantage via potential heterosis.
Collapse
|
27
|
Kang M, Ahn B, Youk S, Cho HS, Choi M, Hong K, Do JT, Song H, Jiang H, Kennedy LJ, Park C. High Allelic Diversity of Dog Leukocyte Antigen Class II in East Asian Dogs: Identification of New Alleles and Haplotypes. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09560-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Independent duplications of the Golgi phosphoprotein 3 oncogene in birds. Sci Rep 2021; 11:12483. [PMID: 34127736 PMCID: PMC8203631 DOI: 10.1038/s41598-021-91909-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) was the first reported oncoprotein of the Golgi apparatus. It was identified as an evolutionarily conserved protein upon its discovery about 20 years ago, but its function remains puzzling in normal and cancer cells. The GOLPH3 gene is part of a group of genes that also includes the GOLPH3L gene. Because cancer has deep roots in multicellular evolution, studying the evolution of the GOLPH3 gene family in non-model species represents an opportunity to identify new model systems that could help better understand the biology behind this group of genes. The main goal of this study is to explore the evolution of the GOLPH3 gene family in birds as a starting point to understand the evolutionary history of this oncoprotein. We identified a repertoire of three GOLPH3 genes in birds. We found duplicated copies of the GOLPH3 gene in all main groups of birds other than paleognaths, and a single copy of the GOLPH3L gene. We suggest there were at least three independent origins for GOLPH3 duplicates. Amino acid divergence estimates show that most of the variation is located in the N-terminal region of the protein. Our transcript abundance estimations show that one paralog is highly and ubiquitously expressed, and the others were variable. Our results are an example of the significance of understanding the evolution of the GOLPH3 gene family, especially for unraveling its structural and functional attributes.
Collapse
|
29
|
Minias P, He K, Dunn PO. The strength of selection is consistent across both domains of the MHC class I peptide-binding groove in birds. BMC Ecol Evol 2021; 21:80. [PMID: 33964878 PMCID: PMC8106206 DOI: 10.1186/s12862-021-01812-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 02/26/2023] Open
Abstract
Background The Major Histocompatibility Complex (MHC) codes for the key vertebrate immune receptors responsible for pathogen recognition. Foreign antigens are recognized via their compatibility to hyper-variable region of the peptide-binding groove (PBR), which consists of two separate protein domains. Specifically, the PBR of the MHC class I receptors, which recognize intra-cellular pathogens, has two α domains encoded by exon 2 (α1) and exon 3 (α2) of the same gene. Most research on avian MHC class I polymorphism has traditionally focused exclusively on exon 3 and comparisons of selection between the two domains have been hampered by the scarcity of molecular data for exon 2. Thus, it is not clear whether the two domains vary in their specificity towards different antigens and whether they are subject to different selective pressure. Results Here, we took advantage of rapidly accumulating genomic resources to test for the differences in selection patterns between both MHC class I domains of the peptide-binding groove in birds. For this purpose, we compiled a dataset of MHC class I exon 2 and 3 sequences for 120 avian species from 46 families. Our phylogenetically-robust approach provided strong evidence for highly consistent levels of selection on the α1 and α2 domains. There were strong correlations in all selection measures (number of positively/negatively selected residues and dN/dS ratios) between both PBR exons. Similar positive associations were found for the level of amino acid polymorphism across the two domains. Conclusions We conclude that the strength of selection and the level of polymorphism are highly consistent between both peptide-binding domains (α1 and α2) of the avian MHC class I. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01812-x.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| |
Collapse
|
30
|
Camak DT, Osborne MJ, Turner TF. Population genomics and conservation of Gila Trout (Oncorhynchus gilae). CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01355-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Ivy-Israel NMD, Moore CE, Schwartz TS, Steury TD, Zohdy S, Newbolt CH, Ditchkoff SS. Association between sexually selected traits and allelic distance in two unlinked MHC II loci in white-tailed deer (Odocoileus virginianus). Evol Ecol 2021. [DOI: 10.1007/s10682-021-10108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Suprovych TM, Suprovych MP, Mokhnachova NB, Biriukova OD, Strojanovska LV, Chepurna VA. Genetic variability and biodiversity of Ukrainian Gray cattle by the BoLA-DRB3 gene. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
At the current stage of genetic studies of cattle, more and more attention is being drawn to autochthonous breeds. Native cattle have a number of prominent phenotypic traits and have preserved unique genes and their combinations lost by modern commercial breeds, which would be valuable to use in selective programs. We surveyed polymorphism of the Ukrainian autochthonous Gray breed according to alleles of exon 2 of the BoLA-DRB3 gene. The uniqueness of the gene lies in the broad variability of its allele variants. Significant informativeness at DNA level is quite important for genetic studies. We surveyed allele polymorphism using the PCR-RLFP method on DNA isolated from 88 samples of blood of cows and 5 samples of sperm. We identified 28 alleles, of which 23 variants were nomenclature ones and 5 (jba, *jab, *jbb, *nad and *nda) were “without established nomenclature”, their share accounting for 8.9%. Four alleles *06, *12, *16 and *jba had a frequency above 5% and occupied 69.9% of the breed’s allele fund overall. The commonest allele was BoLA-DRB3.2*16 (44.1%). In total, we found 40 genotypes. Considering the significant dominance of variant *16, as expected, 5 genotypes with its inclusion occurred: *16/*16, *12/*16, *06/*16, *16/*24 and *jba/*16. It was present in the genotype of two out three studied animals. Parameters of heterozygosity, effective number of alleles, Shannon and Pielou indices indicate that Ukrainian Gray cattle are characterized by lowest level of genetic variability and biodiversity according to the BoLA-DRB3 gene compared with other breeds. Due to significant dominance of allele *16, the breed has no inbred motifs. We noted deviation toward increase in homozygosity without deviations from the norm of the distribution according to Hardy-Weinberg equilibrium. The obtained results will be used for genetic-populational programs with the purpose of improving the genetic potential of cattle breeds in terms of economically beneficial traits and diseases of cattle.
Collapse
|
33
|
Hyun YS, Jo HA, Lee YH, Kim SM, Baek IC, Sohn HJ, Cho HI, Kim TG. Comprehensive Analysis of CD4 + T Cell Responses to CMV pp65 Antigen Restricted by Single HLA-DR, -DQ, and -DP Allotype Within an Individual. Front Immunol 2021; 11:602014. [PMID: 33658991 PMCID: PMC7917246 DOI: 10.3389/fimmu.2020.602014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/18/2023] Open
Abstract
Within an individual, six different HLA class II heterodimers are expressed co-dominantly by two alleles of HLA-DR, -DQ, and -DP loci. However, it remained unclear which HLA allotypes were used in T cell responses to a given antigen. For the measurement of the CD4+ T cell responses restricted by a single HLA allotype, we established a panel of artificial antigen-presenting cells (aAPCs) expressing each single HLA allele of 20 HLA-DRB1, 16 HLA-DQ, and 13 HLA-DP alleles. CD4+ T cell responses to cytomegalovirus (CMV) pp65 restricted by single HLA class II allotype defined in 45 healthy donors. The average magnitude of CD4+ T cell responses by HLA-DR allotypes was higher than HLA-DQ and HLA-DP allotypes. CD4+ T cell responses by DRA*01:01/DRB1*04:06, DQA1*01:02/DQB1*06:02, DPA1*02:02/DPB1*05:01 were higher among the other alleles in each HLA-DR, -DQ, and -DP locus. Interestingly, the frequencies of HLA-DR alleles and the positivity of specific allotypes showed an inverse correlation. One allotype within individuals is dominantly used in CD4+ T cell response in 49% of donors, and two allotypes showed that in 7% of donors, and any positive response was detected in 44% of donors. Even if one individual had several dominant alleles, CD4+ T cell responses tended to be restricted by only one of them. Furthermore, CD8+ and CD4+ T cell responses by HLA class I and class II were correlated. Our results demonstrate that the CD4+ T cell preferentially use a few dominant HLA class II allotypes within individuals, similar to CD8+ T cell response to CMV pp65.
Collapse
Affiliation(s)
- You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyeong-A Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong-Hun Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun-Mi Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Jung Sohn
- Translational and Clinical Division, ViGenCell Inc., Seoul, South Korea
| | - Hyun-Il Cho
- Translational and Clinical Division, ViGenCell Inc., Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
34
|
Lee C, Day J, Goodman SM, Pedrono M, Besnard G, Frantz L, Taylor PJ, Herrera MJ, Gongora J. Genetic origins and diversity of bushpigs from Madagascar (Potamochoerus larvatus, family Suidae). Sci Rep 2020; 10:20629. [PMID: 33244111 PMCID: PMC7693328 DOI: 10.1038/s41598-020-77279-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/09/2020] [Indexed: 11/08/2022] Open
Abstract
The island of Madagascar, situated off the southeast coast of Africa, shows the first evidence of human presence ~ 10,000 years ago; however, other archaeological data indicates a settlement of the modern peoples of the island distinctly more recent, perhaps > 1500 years ago. Bushpigs of the genus Potamochoerus (family Suidae), are today widely distributed in Madagascar and presumed to have been introduced from Africa at some stage by human immigrants to the island. However, disparities about their origins in Madagascar have been presented in the literature, including the possibility of endemic subspecies, and few empirical data are available. Furthermore, the separation of bushpigs in Madagascar from their mainland relatives may have favoured the evolution of a different repertoire of immune genes first due to a founder effect and then as a response to distinct pathogens compared to their ancestors. Molecular analysis confirmed the species status of the bushpig in Madagascar as P. larvatus, likely introduced from the central region of southern Africa, with no genetic evidence for the recognition of eastern and western subspecies as suggested from previous cranial morphology examination. Investigation of the immunologically important SLA-DQB1 peptide-binding region showed a different immune repertoire of bushpigs in Madagascar compared to those on the African mainland, with seventeen exon-2 haplotypes unique to bushpigs in Madagascar (2/28 haplotypes shared). This suggests that the MHC diversity of the Madagascar populations may have enabled Malagasy bushpigs to adapt to new environments.
Collapse
Affiliation(s)
- Carol Lee
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jenna Day
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Steven M Goodman
- Field Museum of Natural History, Chicago, IL, 60605, USA
- Association Vahatra, 101, Antananarivo, Madagascar
| | - Miguel Pedrono
- UMR ASTRE, INRAE, CIRAD, Université de Montpellier, 34398, Montpellier Cedex 5, France
| | - Guillaume Besnard
- CNRS, UPS, IRD, Laboratoire Evolution et Diversité Biologique, UMR5174, Université Toulouse III Paul Sabatier, 31062, Toulouse, France
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Peter J Taylor
- School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, Limpopo Province, South Africa
- Afromontane Research Unit and Zoology Department, University of the Free State, Qwa Qwa campus, Phuthaditjhaba, 9866, South Africa
| | - Michael J Herrera
- Archaeological Studies Program, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Jaime Gongora
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
35
|
Leen G, Stein JE, Robinson J, Maldonado Torres H, Marsh SGE. The HLA diversity of the Anthony Nolan register. HLA 2020; 97:15-29. [PMID: 33128327 PMCID: PMC7756289 DOI: 10.1111/tan.14127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
While the success of allogeneic stem cell transplantation depends on a high degree of HLA compatibility between donor and patient, finding a suitable donor remains challenging due to the hyperpolymorphic nature of HLA genes. We calculated high-resolution allele, haplotype and phenotype frequencies for HLA-A, -C, -B, -DRB1 and -DQB1 for 10 subpopulations of the Anthony Nolan (AN) register using an in-house expectation-maximisation (EM) algorithm run on mixed resolution HLA data, covering 676 155 individuals. Sample sizes range from 599 410 for British/Irish North West European (BINWE) individuals, the largest subpopulation in the United Kingdom to 1105 for the British Bangladeshi population. Calculation of genetic distance between the subpopulations based on haplotype frequencies shows three broad clusters, each following a major continental group: European, African and Asian. We further analysed the HLA haplotype and phenotype diversity of each subpopulation, and found that 35.52% of BINWE individuals ranging to 98.34% of Middle Eastern individuals on the register had a unique phenotype within their subpopulation. These analyses and the allele, haplotype and phenotype frequency data of the subpopulation on the AN register are a valuable resource in understanding the HLA diversity in the United Kingdom and can be used to improve the accuracy of match likelihoods and to inform future donor recruitment strategies.
Collapse
Affiliation(s)
- Gayle Leen
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Jeremy E Stein
- Anthony Nolan Research Institute, Royal Free Campus, London, UK
| | - James Robinson
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Hazael Maldonado Torres
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| |
Collapse
|
36
|
Liu C, Lei H, Ran X, Wang J. Genetic variation and selection in the major histocompatibility complex Class II gene in the Guizhou pony. PeerJ 2020; 8:e9889. [PMID: 32999762 PMCID: PMC7505079 DOI: 10.7717/peerj.9889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
The Guizhou pony (GZP) is an indigenous species of equid found in the mountains of the Guizhou province in southwest China. We selected four regions of the equine leukocyte antigen (ELA), including DQA, DRA, DQB, and DRB, and used them to assess the diversity of the major histocompatibility complex (MHC) class II gene using direct sequencing technology. DRA had the lowest dN/dS ratio (0.560) compared with the other three loci, indicating that DRA was conserved and could be conserved after undergoing selective processes. Nine DQA, five DQB, nine DRA, and seven DRB codons were under significant positive selection at the antigen binding sites (ABS), suggesting that the selected residues in ABS may play a significant role in the innate immune system of the GZP. Two GZP alleles were shared with Przewalski’s horse, and six older GZP haplotypes had a better relationship with other horse species by one or two mutational steps, indicating that the GZP may be a natural ancient variety of equid. The specific diversity of ABS and the numbers of unique haplotypes in the evolutionary process affords this species a better genetic fitness and ability to adapt to the native environment.
Collapse
Affiliation(s)
- Chang Liu
- College of Animal Sciences, Guizhou University, Guiyang, China.,College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hongmei Lei
- College of Animal Sciences, Guizhou University, Guiyang, China
| | - Xueqin Ran
- College of Animal Sciences, Guizhou University, Guiyang, China
| | - Jiafu Wang
- College of Animal Sciences, Guizhou University, Guiyang, China.,Tongren University, Tongren, China
| |
Collapse
|
37
|
Giovambattista G, Moe KK, Polat M, Borjigin L, Hein ST, Moe HH, Takeshima SN, Aida Y. Characterization of bovine MHC DRB3 diversity in global cattle breeds, with a focus on cattle in Myanmar. BMC Genet 2020; 21:95. [PMID: 32867670 PMCID: PMC7460757 DOI: 10.1186/s12863-020-00905-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022] Open
Abstract
Background Myanmar cattle populations predominantly consist of native cattle breeds (Pyer Sein and Shwe), characterized by their geographical location and coat color, and the Holstein-Friesian crossbreed, which is highly adapted to the harsh tropical climates of this region. Here, we analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus that has been linked to the immune response, in Myanmar cattle populations. Methods Blood samples (n = 294) were taken from two native breeds (Pyer Sein, n = 163 and Shwe Ni, n = 69) and a cattle crossbreed (Holstein-Friesian, n = 62) distributed across six regions of Myanmar (Bago, n = 38; Sagaing, n = 77; Mandalay, n = 46; Magway, n = 46; Kayin, n = 43; Yangon, n = 44). In addition, a database that included 2428 BoLA-DRB3 genotypes from European (Angus, Hereford, Holstein, Shorthorn, Overo Negro, Overo Colorado, and Jersey), Zebuine (Nellore, Brahman and Gir), Asian Native from Japan and Philippine and Latin-American Creole breeds was also included. Furthermore, the information from the IPD–MHC database was also used in the present analysis. DNA was genotyped using the sequence-based typing method. DNA electropherograms were analyzed using the Assign 400ATF software. Results We detected 71 distinct alleles, including three new variants for the BoLA-DRB3 gene. Venn analysis showed that 11 of these alleles were only detected in Myanmar native breeds and 26 were only shared with Asian native and/or Zebu groups. The number of alleles ranged from 33 in Holstein-Friesians to 58 in Pyer Seins, and the observed versus unbiased expected heterozygosity were higher than 0.84 in all the three the populations analyzed. The FST analysis showed a low level of genetic differentiation between the two Myanmar native breeds (FST = 0.003), and between these native breeds and the Holstein-Friesians (FST < 0.021). The average FST value for all the Myanmar Holstein-Friesian crossbred and Myanmar native populations was 0.0136 and 0.0121, respectively. Principal component analysis (PCA) and tree analysis showed that Myanmar native populations grouped in a narrow cluster that diverged clearly from the Holstein-Friesian populations. Furthermore, the BoLA-DRB3 allele frequencies suggested that while some Myanmar native populations from Bago, Mandalay and Yangon regions were more closely related to Zebu breeds (Gir and Brahman), populations from Kayin, Magway and Sagaing regions were more related to the Philippines native breeds. On the contrary, PCA showed that the Holstein-Friesian populations demonstrated a high degree of dispersion, which is likely the result of the different degrees of native admixture in these populations. Conclusion This study is the first to report the genetic diversity of the BoLA-DRB3 gene in two native breeds and one exotic cattle crossbreed from Myanmar. The results obtained contribute to our understanding of the genetic diversity and distribution of BoLA-DRB3 gene alleles in Myanmar, and increases our knowledge of the worldwide variability of cattle BoLA-DRB3 genes, an important locus for immune response and protection against pathogens.
Collapse
Affiliation(s)
- Guillermo Giovambattista
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, B1900AVW, CC 296, La Plata, Argentina.
| | - Kyaw Kyaw Moe
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Si Thu Hein
- Department of Anatomy, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Hla Hla Moe
- Department of Genetics and Animal Breeding, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza-shi, Saitama, 352-8510, Japan
| | - Yoko Aida
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
38
|
Mishra SK, Niranjan SK, Singh R, Kumar P, Kumar SL, Banerjee B, Kataria RS. Diversity analysis at MHC class II DQA locus in buffalo (Bubalus bubalis) indicates extensive duplication and trans-species evolution. Genomics 2020; 112:4417-4426. [PMID: 32738270 DOI: 10.1016/j.ygeno.2020.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
Abstract
Variation at MHC Class II-DQA locus in riverine and swamp buffaloes (Bubu) has been explored in this study. Through sequencing of buffalo DQA, 48 nucleotide variants identified from 17 individuals, reporting 42 novel alleles, including one pseudogene. Individual animal displayed two to seven variants, suggesting the presence of more than two Bubu-DQA loci, as an evidence of extensive duplication. dN values were found to be higher than dS values at peptide binding sites, separately for riverine and swamp buffaloes, indicating locus being under positive selection. Evolutionary analysis revealed numerous trans-species polymorphism with alleles from water buffalo assigned to at least three different loci (Bubu-DQA1, DQA2, DQA3). Alleles of both the sub-species intermixed within the cluster, showing convergent evolution of MHC alleles in bovines. The results thus suggest that both riverine and swamp buffaloes share con-current arrangement of DQA region, comparable to cattle in terms of copy number and population polymorphism.
Collapse
Affiliation(s)
- Shailendra Kumar Mishra
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India; School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Saket Kumar Niranjan
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India.
| | - Ravinder Singh
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India
| | - Prem Kumar
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India
| | - S Lava Kumar
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India
| | - Bhaswati Banerjee
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201310, India
| | - Ranjit Singh Kataria
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India.
| |
Collapse
|
39
|
Porcine Parvovirus 7: Evolutionary Dynamics and Identification of Epitopes toward Vaccine Design. Vaccines (Basel) 2020; 8:vaccines8030359. [PMID: 32635618 PMCID: PMC7565409 DOI: 10.3390/vaccines8030359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
Porcine parvovirus 7 (PPV7) belonging to the genus Chapparvovirus in the family Parvoviridae, has been identified in the USA, Sweden, Poland, China, South Korea and Brazil. Our objective was to determine the phylogeny, estimate the time of origin and evolutionary dynamics of PPV7, and use computer-based immune-informatics to assess potential epitopes of its Cap, the main antigenic viral protein, for vaccines or serology. Regarding evolutionary dynamics, PPV7 had 2 major clades, both of which possibly had a common ancestor in 2004. Furthermore, PPV7 strains from China were the most likely ancestral strains. The nucleotide substitution rates of NS1 and Cap genes were 8.01 × 10−4 and 2.19 × 10−3 per site per year, respectively, which were higher than those reported for PPV1-4. The antigenic profiles of PPV7 Cap were revealed and there were indications that PPV7 used antigenic shift to escape from the host’s immune surveillance. Linear B cell epitopes and CD8 T cell epitopes of Cap with good antigenic potential were identified in silico; these conserved B cell epitopes may be candidates for the PPV7 vaccine or for the development of serological diagnostic methods.
Collapse
|
40
|
Pierini F, Nutsua M, Böhme L, Özer O, Bonczarowska J, Susat J, Franke A, Nebel A, Krause-Kyora B, Lenz TL. Targeted analysis of polymorphic loci from low-coverage shotgun sequence data allows accurate genotyping of HLA genes in historical human populations. Sci Rep 2020; 10:7339. [PMID: 32355290 PMCID: PMC7193575 DOI: 10.1038/s41598-020-64312-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/14/2020] [Indexed: 01/15/2023] Open
Abstract
The highly polymorphic human leukocyte antigen (HLA) plays a crucial role in adaptive immunity and is associated with various complex diseases. Accurate analysis of HLA genes using ancient DNA (aDNA) data is crucial for understanding their role in human adaptation to pathogens. Here, we describe the TARGT pipeline for targeted analysis of polymorphic loci from low-coverage shotgun sequence data. The pipeline was successfully applied to medieval aDNA samples and validated using both simulated aDNA and modern empirical sequence data from the 1000 Genomes Project. Thus the TARGT pipeline enables accurate analysis of HLA polymorphisms in historical (and modern) human populations.
Collapse
Affiliation(s)
- Federica Pierini
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany.,Université Paris-Saclay, CNRS, Inria, Laboratoire de recherche en informatique, 91405, Orsay, France
| | - Marcel Nutsua
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Lisa Böhme
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Onur Özer
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany
| | - Joanna Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany.
| |
Collapse
|
41
|
Jiang X, Assis R. Population-Specific Genetic and Expression Differentiation in Europeans. Genome Biol Evol 2020; 12:358-369. [PMID: 32365201 PMCID: PMC7197493 DOI: 10.1093/gbe/evaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Much of the enormous phenotypic variation observed across human populations is thought to have arisen from events experienced as our ancestors peopled different regions of the world. However, little is known about the genes involved in these population-specific adaptations. Here, we explore this problem by simultaneously examining population-specific genetic and expression differentiation in four human populations. In particular, we derive a branch-based estimator of population-specific differentiation in four populations, and apply this statistic to single-nucleotide polymorphism and RNA-seq data from Italian, British, Finish, and Yoruban populations. As expected, genome-wide estimates of genetic and expression differentiation each independently recapitulate the known relationships among these four human populations, highlighting the utility of our statistic for identifying putative targets of population-specific adaptations. Moreover, genes with large copy number variations display elevated levels of population-specific genetic and expression differentiation, consistent with the hypothesis that gene duplication and deletion events are key reservoirs of adaptive variation. Further, many top-scoring genes are well-known targets of adaptation in Europeans, including those involved in lactase persistence and vitamin D absorption, and a handful of novel candidates represent promising avenues for future research. Together, these analyses reveal that our statistic can aid in uncovering genes involved in population-specific genetic and expression differentiation, and that such genes often play important roles in a diversity of adaptive and disease-related phenotypes in humans.
Collapse
Affiliation(s)
- Xueyuan Jiang
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Raquel Assis
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|
42
|
Pierini F, Lenz TL. Divergent Allele Advantage at Human MHC Genes: Signatures of Past and Ongoing Selection. Mol Biol Evol 2020; 35:2145-2158. [PMID: 29893875 PMCID: PMC6106954 DOI: 10.1093/molbev/msy116] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The highly polymorphic genes of the major histocompatibility complex (MHC) play a key role in adaptive immunity. Divergent allele advantage, a mechanism of balancing selection, is proposed to contribute to their exceptional polymorphism. It assumes that MHC genotypes with more divergent alleles allow for broader antigen-presentation to immune effector cells, by that increasing immunocompetence. However, the direct correlation between pairwise sequence divergence and the corresponding repertoire of bound peptides has not been studied systematically across different MHC genes. Here, we investigated this relationship for five key classical human MHC genes (human leukocyte antigen; HLA-A, -B, -C, -DRB1, and -DQB1), using allele-specific computational binding prediction to 118,097 peptides derived from a broad range of human pathogens. For all five human MHC genes, the genetic distance between two alleles of a heterozygous genotype was positively correlated with the total number of peptides bound by these two alleles. In accordance with the major antigen-presentation pathway of MHC class I molecules, HLA-B and HLA-C alleles showed particularly strong correlations for peptides derived from intracellular pathogens. Intriguingly, this bias coincides with distinct protein compositions between intra- and extracellular pathogens, possibly suggesting adaptation of MHC I molecules to present specifically intracellular peptides. Eventually, we observed significant positive correlations between an allele’s average divergence and its population frequency. Overall, our results support the divergent allele advantage as a meaningful quantitative mechanism through which pathogen-mediated selection leads to the evolution of MHC diversity.
Collapse
Affiliation(s)
- Federica Pierini
- Research Group for Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
43
|
Álvaro-Benito M, Morrison E, Ebner F, Abualrous ET, Urbicht M, Wieczorek M, Freund C. Distinct editing functions of natural HLA-DM allotypes impact antigen presentation and CD4 + T cell activation. Cell Mol Immunol 2020; 17:133-142. [PMID: 30467419 PMCID: PMC7000412 DOI: 10.1038/s41423-018-0181-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022] Open
Abstract
Classical human leukocyte antigen (HLA) molecules of the major histocompatibility class II (MHCII) complex present peptides for the development, surveillance and activation of CD4+ T cells. The nonclassical MHCII-like protein HLA-DM (DM) catalyzes the exchange and loading of peptides onto MHCII molecules, thereby shaping MHCII immunopeptidomes. Natural variations of DM in both chains of the protein (DMA and DMB) have been hypothesized to impact peptide presentation, but no evidence for altered function has been reported. Here we define the presence of DM allotypes in human populations covered by the 1000 Genomes Project and probe their activity. The functional properties of several allotypes are investigated and show strong enhancement of peptide-induced T cell activation for a particular combination of DMA and DMB. Biochemical evidence suggests a broader pH activity profile for the new variant relative to that of the most commonly expressed DM allotype. Immunopeptidome analysis indicates that the compartmental activity of the new DM heterodimer extends beyond the late endosome and suggests that the natural variation of DM has profound effects on adaptive immunity when antigens bypass the canonical processing pathway.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| | - Eliot Morrison
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Friederike Ebner
- Institut für Immunologie, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Marie Urbicht
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Marek Wieczorek
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
44
|
Arauco-Shapiro G, Schumacher KI, Boersma D, Bouzat JL. The role of demographic history and selection in shaping genetic diversity of the Galápagos penguin (Spheniscus mendiculus). PLoS One 2020; 15:e0226439. [PMID: 31910443 PMCID: PMC6946592 DOI: 10.1371/journal.pone.0226439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 11/25/2022] Open
Abstract
Although many studies have documented the effects of demographic bottlenecks on the genetic diversity of natural populations, there is conflicting evidence of the roles that genetic drift and selection may play in driving changes in genetic variation at adaptive loci. We analyzed genetic variation at microsatellite and mitochondrial loci in conjunction with an adaptive MHC class II locus in the Galápagos penguin (Spheniscus mendiculus), a species that has undergone serial demographic bottlenecks associated with El Niño events through its evolutionary history. We compared levels of variation in the Galápagos penguin to those of its congener, the Magellanic penguin (Spheniscus magellanicus), which has consistently maintained a large population size and thus was used as a non-bottlenecked control. The comparison of neutral and adaptive markers in these two demographically distinct species allowed assessment of the potential role of balancing selection in maintaining levels of MHC variation during bottleneck events. Our analysis suggests that the lack of genetic diversity at both neutral and adaptive loci in the Galápagos penguin likely resulted from its restricted range, relatively low abundance, and history of demographic bottlenecks. The Galápagos penguin revealed two MHC alleles, one mitochondrial haplotype, and six alleles across five microsatellite loci, which represents only a small fraction of the diversity detected in Magellanic penguins. Despite the decreased genetic diversity in the Galápagos penguin, results revealed signals of balancing selection at the MHC, which suggest that selection can mitigate some of the effects of genetic drift during bottleneck events. Although Galápagos penguin populations have persisted for a long time, increased frequency of El Niño events due to global climate change, as well as the low diversity exhibited at immunological loci, may put this species at further risk of extinction.
Collapse
Affiliation(s)
- Gabriella Arauco-Shapiro
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Katelyn I. Schumacher
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Dee Boersma
- Center for Ecosystem Sentinels and Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Juan L. Bouzat
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
45
|
Rekdal SL, Anmarkrud JA, Lifjeld JT, Johnsen A. Extra‐pair mating in a passerine bird with highly duplicated major histocompatibility complex class II: Preference for the golden mean. Mol Ecol 2019; 28:5133-5144. [DOI: 10.1111/mec.15273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | - Arild Johnsen
- Natural History Museum University of Oslo Oslo Norway
| |
Collapse
|
46
|
Divergence between genes but limited allelic polymorphism in two MHC class II A genes in Leach's storm-petrels Oceanodroma leucorhoa. Immunogenetics 2019; 71:561-573. [PMID: 31506710 DOI: 10.1007/s00251-019-01130-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
The major histocompatibility complex (MHC) is critical to host-pathogen interactions. Class II MHC is a heterodimer, with α and β subunits encoded by different genes. The peptide-binding groove is formed by the first domain of both subunits (α1 and β1), but studies of class II variation or natural selection focus primarily on the β subunit and II B genes. We explored MHC II A in Leach's storm-petrel, a seabird with two expressed, polymorphic II B genes. We found two II A genes, Ocle-DAA and Ocle-DBA, in contrast to the single II A gene in chicken and duck. In exon 2 which encodes the α1 domain, the storm-petrel II A genes differed strongly from each other but showed little within-gene polymorphism in 30 individuals: just one Ocle-DAA allele, and three Ocle-DBA alleles differing from each other by single non-synonymous substitutions. In a comparable sample, the two II B genes had nine markedly diverged alleles each. Differences between the α1 domains of Ocle-DAA and Ocle-DBA showed signatures of positive selection, but mainly at non-peptide-binding site (PBS) positions. In contrast, positive selection within and between the II B genes corresponded to putative PBS codons. Phylogenetic analysis of the conserved α2 domain did not reveal deep or well-supported lineages of II A genes in birds, in contrast to the pronounced differentiation of DQA, DPA, and DRA isotypes in mammals. This uncertain homology complicates efforts to compare levels of functional variation and modes of evolution of II A genes across taxa.
Collapse
|
47
|
Manlik O, Krützen M, Kopps AM, Mann J, Bejder L, Allen SJ, Frère C, Connor RC, Sherwin WB. Is MHC diversity a better marker for conservation than neutral genetic diversity? A case study of two contrasting dolphin populations. Ecol Evol 2019; 9:6986-6998. [PMID: 31380027 PMCID: PMC6662329 DOI: 10.1002/ece3.5265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia-one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty-three microsatellite loci. We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population-for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low. Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human-induced changes to the coastal ecosystem it inhabits.
Collapse
Affiliation(s)
- Oliver Manlik
- Biology Department, College of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Michael Krützen
- Department of AnthropologyUniversity of ZurichZurichSwitzerland
| | - Anna M. Kopps
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Janet Mann
- Department of Biology and Department of PsychologyGeorgetown UniversityWashingtonDistrict of Columbia
| | - Lars Bejder
- Marine Mammal Research Program, Hawai'i Institute of Marine BiologyUniversity of Hawai'i at ManoaKaneoheHonolulu
- Aquatic Megafauna Research Unit, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Simon J. Allen
- School of Biological SciencesUniversity of BristolBristolUnited Kingdom
| | - Celine Frère
- Faculty of Science, Health, Education and EngineeringUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | | | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Aquatic Megafauna Research Unit, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| |
Collapse
|
48
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
49
|
Abstract
The protein titin plays a key role in vertebrate muscle where it acts like a giant molecular spring. Despite its importance and conservation over vertebrate evolution, a lack of high quality annotations in non-model species makes comparative evolutionary studies of titin challenging. The PEVK region of titin—named for its high proportion of Pro-Glu-Val-Lys amino acids—is particularly difficult to annotate due to its abundance of alternatively spliced isoforms and short, highly repetitive exons. To understand PEVK evolution across mammals, we developed a bioinformatics tool, PEVK_Finder, to annotate PEVK exons from genomic sequences of titin and applied it to a diverse set of mammals. PEVK_Finder consistently outperforms standard annotation tools across a broad range of conditions and improves annotations of the PEVK region in non-model mammalian species. We find that the PEVK region can be divided into two subregions (PEVK-N, PEVK-C) with distinct patterns of evolutionary constraint and divergence. The bipartite nature of the PEVK region has implications for titin diversification. In the PEVK-N region, certain exons are conserved and may be essential, but natural selection also acts on particular codons. In the PEVK-C, exons are more homogenous and length variation of the PEVK region may provide the raw material for evolutionary adaptation in titin function. The PEVK-C region can be further divided into a highly repetitive region (PEVK-CA) and one that is more variable (PEVK-CB). Taken together, we find that the very complexity that makes titin a challenge for annotation tools may also promote evolutionary adaptation.
Collapse
|
50
|
Goeury T, Creary LE, Brunet L, Galan M, Pasquier M, Kervaire B, Langaney A, Tiercy JM, Fernández-Viña MA, Nunes JM, Sanchez-Mazas A. Deciphering the fine nucleotide diversity of full HLA class I and class II genes in a well-documented population from sub-Saharan Africa. HLA 2019; 91:36-51. [PMID: 29160618 PMCID: PMC5767763 DOI: 10.1111/tan.13180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023]
Abstract
With the aim to understand how next‐generation sequencing (NGS) improves both our assessment of genetic variation within populations and our knowledge on HLA molecular evolution, we sequenced and analysed 8 HLA loci in a well‐documented population from sub‐Saharan Africa (Mandenka). The results of full‐gene NGS‐MiSeq sequencing compared with those obtained by traditional typing techniques or limited sequencing strategies showed that segregating sites located outside exon 2 are crucial to describe not only class I but also class II population diversity. A comprehensive analysis of exons 2, 3, 4 and 5 nucleotide diversity at the 8 HLA loci revealed remarkable differences among these gene regions, notably a greater variation concentrated in the antigen recognition sites of class I exons 3 and some class II exons 2, likely associated with their peptide‐presentation function, a lower diversity of HLA‐C exon 3, possibly related to its role as a KIR ligand, and a peculiar molecular diversity of HLA‐A exon 2, revealing demographic signals. Based on full‐length HLA sequences, we also propose that the most frequent DRB1 allele in the studied population, DRB1*13:04, emerged from an allelic conversion involving 3 potential alleles as donors and DRB1*11:02:01 as recipient. Finally, our analysis revealed a high occurrence of the DRB1*13:04‐DQA1*05:05:01‐DQB1*03:19 haplotype, possibly resulting from a selective sweep due to protection to Onchorcerca volvulus, a prevalent pathogen in West Africa. This study unveils highly relevant information on the molecular evolution of HLA genes in relation to their immune function, calling for similar analyses in other populations living in contrasting environments.
Collapse
Affiliation(s)
- T Goeury
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - L E Creary
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - L Brunet
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospital, Geneva, Switzerland
| | - M Galan
- INRA, UMR 1062 CBGP, avenue du Campus Agropolis, Montferrier sur Lez, France
| | - M Pasquier
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - B Kervaire
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospital, Geneva, Switzerland
| | - A Langaney
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - J-M Tiercy
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospital, Geneva, Switzerland
| | - M A Fernández-Viña
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - J M Nunes
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - A Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|