1
|
García-Vicente L, Martínez-Fernández M, Borja M, Tran V, Álvarez-Vázquez A, Flores-Hernández R, Ding Y, González-Sánchez R, Granados A, McGeever E, Kim YJ, Detweiler A, Mekonen H, Paul S, Pisco AO, Neff NF, Tabernero A. Single-nucleus RNA sequencing reveals a preclinical model for the most common subtype of glioblastoma. Commun Biol 2025; 8:671. [PMID: 40295632 PMCID: PMC12037721 DOI: 10.1038/s42003-025-08092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Different glioblastoma (GBM) subtypes have been identified based on the tumor microenvironment (TME). The discovery of new therapies for these hard-to-treat tumors requires a thorough characterization of preclinical models, including their TME, to apply preclinical results to the most similar GBM subtype. Using single-nucleus RNA sequencing (snRNA-seq), we characterized the tumor and TME in an immunocompetent mouse model with intracranially implanted GBM stem cells at different stages and treatments. Visium spatial transcriptomics confirmed the location of annotated cells. This model exhibits GBM targets related to integration into neural circuits - Grik2, Nlgn3, Gap43 or Kcnn4-, immunoevasion - Nt5e, Cd274 or Irf8- and immunosuppression - Csf1r, Arg1, Mrc1 and Tgfb1. The landscape of cytokines, checkpoint ligands and receptors uncovered Mrc1, PD-L1, TIM-3 or B7-H3, among the immunotherapy targets that can be addressed in this model. The comparison with human GBMs unveiled crucial similarities with TMEMed GBM, the most frequent subtype.
Collapse
Affiliation(s)
- Laura García-Vicente
- Neuroscience Institute of Castile-Leon (INCYL), iBRAINS-IN-CyL, Department of Biochemistry and Molecular Biology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - María Martínez-Fernández
- Neuroscience Institute of Castile-Leon (INCYL), iBRAINS-IN-CyL, Department of Biochemistry and Molecular Biology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | | | | | - Andrea Álvarez-Vázquez
- Neuroscience Institute of Castile-Leon (INCYL), iBRAINS-IN-CyL, Department of Biochemistry and Molecular Biology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Raquel Flores-Hernández
- Neuroscience Institute of Castile-Leon (INCYL), iBRAINS-IN-CyL, Department of Biochemistry and Molecular Biology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Yuxin Ding
- Neuroscience Institute of Castile-Leon (INCYL), iBRAINS-IN-CyL, Department of Biochemistry and Molecular Biology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Raúl González-Sánchez
- Neuroscience Institute of Castile-Leon (INCYL), iBRAINS-IN-CyL, Department of Biochemistry and Molecular Biology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | | - Arantxa Tabernero
- Neuroscience Institute of Castile-Leon (INCYL), iBRAINS-IN-CyL, Department of Biochemistry and Molecular Biology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.
| |
Collapse
|
2
|
Zhu Y, Yang G. Identification of an IRF8 gene in common carp (Cyprinus carpio. L) and its regulatory role in immune responses. BMC Vet Res 2025; 21:143. [PMID: 40038681 PMCID: PMC11881467 DOI: 10.1186/s12917-025-04607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Interferon (IFN) regulatory factors (IRF) are the crucial transcription factors for IFN expression and leading host cells response to viral infection. IRF8 in mammals plays vital roles in the innate and adaptive immune systems. In this study, we identified and characterized the common carp (Cyprinus carpio. L) IRF8 gene (ccIRF8) to further clarify the function of IRF8 in teleost fish. RESULTS The complete cDNA sequence of ccIRF8 was 1431 bp and encodes a polypeptide of 431 amino acids. Analysis of the putative amino acid sequence showed that ccIRF8 encodes structures typical of the IRF family, including a DNA-binding domain (DBD), an IRF-association domain (IAD) and two nuclear localization signals (NLS). Comparison with homologous proteins showed that the deduced protein has the highest sequence identity to grass carp IRF8 (92.7%). Phylogenetic analysis grouped ccIRF8 with other IRF8s of teleosts. Quantitative RT-PCR analysis showed that ccIRF8 transcripts were detectable in all investigated tissues of healthy fish with the highest level in spleen. Following poly I: C and Aeromonas hydrophila challenge, ccIRF8 transcripts were induced significantly in immune relevant tissues. In addition, ccIRF8 was induced by poly I: C and ipopolysaccharide (LPS), peptidoglycan (PGN) and flagellin in HKLs. Overexpression of ccIRF8 increased the expression of IFN and IFN-stimulated genes (ISGs), and a dual-luciferase reporter assay revealed that ccIRF8 decreased the activation of NF-κB though TRAF6. CONCLUSIONS Overall, our findings provide a new perspective on the role of IRF8 in innate immunity in fish, as well as insights that will help the prevention and control of disease in the common carp farming industry.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Key Laboratory of Tropical Marine Fishery Resources Protection and Utilization of Hainan Province, College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China.
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, 572022, China.
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
3
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
4
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Babadei O, Strobl B, Müller M, Decker T. Transcriptional control of interferon-stimulated genes. J Biol Chem 2024; 300:107771. [PMID: 39276937 PMCID: PMC11489399 DOI: 10.1016/j.jbc.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Interferon-induced genes are among the best-studied groups of coregulated genes. Nevertheless, intense research into their regulation, supported by new technologies, is continuing to provide insights into their many layers of transcriptional regulation and to reveal how cellular transcriptomes change with pathogen-induced innate and adaptive immunity. This article gives an overview of recent findings on interferon-induced gene regulation, paying attention to contributions beyond the canonical JAK-STAT pathways.
Collapse
Affiliation(s)
- Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria.
| |
Collapse
|
6
|
Kim S, Liu TT, Ou F, Murphy TL, Murphy KM. Anatomy of a superenhancer. Adv Immunol 2024; 163:51-96. [PMID: 39271259 DOI: 10.1016/bs.ai.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Interferon regulatory factor-8 (IRF8) is the lineage determining transcription factor for the type one classical dendritic cell (cDC1) subset, a terminal selector for plasmacytoid dendritic cells and important for the function of monocytes. Studies of Irf8 gene regulation have identified several enhancers controlling its activity during development of progenitors in the bone marrow that precisely regulate expression at distinct developmental stages. Each enhancer responds to distinct transcription factors that are expressed at each stage. IRF8 is first expressed in early progenitors that form the monocyte dendritic cell progenitor (MDP) in response to induction of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) acting at the Irf8 +56 kb enhancer. IRF8 levels increase further as the MDP transits into the common dendritic cell progenitor (CDP) in response to E protein activity at the Irf8 +41 kb enhancer. Upon Nfil3-induction in CDPs leading to specification of the cDC1 progenitor, abrupt induction of BATF3 forms the JUN/BATF3/IRF8 heterotrimer that activates the Irf8 +32 kb enhancer that sustains Irf8 autoactivation throughout the cDC1 lifetime. Deletions of each of these enhancers has revealed their stage dependent activation. Surprisingly, studies of compound heterozygotes for each combination of enhancer deletions revealed that activation of each subsequent enhancer requires the successful activation of the previous enhancer in strictly cis-dependent mechanism. Successful progression of enhancer activation is finely tuned to alter the functional accessibility of subsequent enhancers to factors active in the next stage of development. The molecular basis for these phenomenon is still obscure but could have implications for genomic regulation in a broader developmental context.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
7
|
Liang KL, Laurenti E, Taghon T. Circulating IRF8-expressing CD123 +CD127 + lymphoid progenitors: key players in human hematopoiesis. Trends Immunol 2023; 44:678-692. [PMID: 37591714 PMCID: PMC7614993 DOI: 10.1016/j.it.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Lymphopoiesis is the process in which B and T cells, and innate lymphoid cells (ILCs) develop from hematopoietic progenitors that exhibit early lymphoid priming. The branching points where lymphoid-primed human progenitors are further specified to B/T/ILC differentiation trajectories remain unclear. Here, we discuss the emerging role of interferon regulatory factor (IRF)8 as a key factor to bridge human lymphoid and dendritic cell (DC) differentiation, and the current evidence for the existence of circulating and tissue-resident CD123+CD127+ lymphoid progenitors. We propose a model whereby DC/B/T/ILC lineage programs in circulating CD123+CD127+ lymphoid progenitors are expressed in balance. Upon tissue seeding, the tissue microenvironment tilts this molecular balance towards a specific lineage, thereby determining in vivo lineage fates. Finally, we discuss the translational implication of these lymphoid precursors.
Collapse
Affiliation(s)
- Kai Ling Liang
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
8
|
Johnson KD, Jung MM, Tran VL, Bresnick EH. Interferon regulatory factor-8-dependent innate immune alarm senses GATA2 deficiency to alter hematopoietic differentiation and function. Curr Opin Hematol 2023; 30:117-123. [PMID: 37254854 PMCID: PMC10236032 DOI: 10.1097/moh.0000000000000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.
Collapse
Affiliation(s)
- Kirby D Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
9
|
Microglia and Brain Macrophages as Drivers of Glioma Progression. Int J Mol Sci 2022; 23:ijms232415612. [PMID: 36555253 PMCID: PMC9779147 DOI: 10.3390/ijms232415612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially in the context of therapeutic considerations. New ideas have emerged regarding the role of microglia and, more recently, blood-derived brain macrophages in glioblastoma (GBM) progression. We are now beginning to understand the mechanisms that allow malignant glioma cells to weaken microglia and brain macrophage defence mechanisms. Surface molecules and cytokines have a prominent role in microglia/macrophage-glioma cell interactions, and we discuss them in detail. The involvement of exosomes and microRNAs forms another focus of this review. In addition, certain microglia and glioma cell pathways deserve special attention. These "synergistic" (we suggest calling them "Janus") pathways are active in both glioma cells and microglia/macrophages where they act in concert supporting malignant glioma progression. Examples include CCN4 (WISP1)/Integrin α6β1/Akt and CHI3L1/PI3K/Akt/mTOR. They represent attractive therapeutic targets.
Collapse
|
10
|
Sung JY, Kim JH, Kang HG, Park JW, Park SY, Park BK, Kim YN. ICSBP-induced PD-L1 enhances osteosarcoma cell growth. Front Oncol 2022; 12:918216. [PMID: 36249036 PMCID: PMC9555079 DOI: 10.3389/fonc.2022.918216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundInterferon (IFN) consensus sequence binding protein (ICSBP) is a transcription factor induced by IFN-γ. We previously reported that ICSBP expression promotes osteosarcoma progression by enhancing transforming growth factor-β signaling. In cancer cells, programmed death-ligand 1 (PD-L1) contributes to immune escape and may also be involved in tumor progression. Because IFN-γ induces the expression of both ICSBP and PD-L1, we explored the association between ICSBP and PD-L1 expression in terms of osteosarcoma progression.MethodsThree osteosarcoma cell lines (Saos2, U2OS, and 143B) were employed. Gene expression was measured by qRT-PCR, and protein levels were assessed by immunoblotting. PD-L1 expression was evaluated in cells overexpressing ICSBP and in ICSBP knockdown cells. The effects of PD-L1 expression on cell growth were examined by MTS assays, Incucyte analysis, soft agar assays, and three-dimensional (3D) culture. Cell cycle and apoptosis were evaluated by FACS analysis of cells stained with propidium iodide (PI) and annexin V/PI, respectively. The antitumor effects of PD-L1 knockdown without or with doxorubicin treatment were evaluated in vivo in nude mice bearing ICSBP-overexpressing 143B cell xenograft. The clinical relevance of PD-L1 and ICSBP expression was evaluated immunohistochemically using a human osteosarcoma microarray and through analysis of publicly available data using Gene Expression Profiling Interactive Analysis2.ResultsICSBP overexpression upregulated PD-L1 expression in all three cell lines, whereas ICSBP knockdown decreased the PD-L1 expression. PD-L1 knockdown attenuated the cell growth and reduced colony-forming capacity in both soft agar assays and 3D culture. PD-L1 knockdown increased apoptosis and induced G2/M arrest, which was associated with decreased expression of survivin, cyclin-dependent kinase 4 (CDK4), cyclin E, and cyclin D1 expression and increased the expression of p27, phosphorylated Cdc2, and phosphorylated Wee1. PD-L1 knockdown decreased the growth of tumor xenografts and increased the doxorubicin sensitivity of ICSBP-overexpressing 143B cells both in vitro and in vivo. PD-L1 was expressed in human osteosarcoma tissues, and its expression was moderately correlated with that of ICSBP in osteosarcoma patients.ConclusionICSBP regulates PD-L1 expression in osteosarcoma cells, and PD-L1 knockdown combined with doxorubicin treatment could represent a strategy for controlling osteosarcoma expressing ICSBP.
Collapse
Affiliation(s)
- Jee Young Sung
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, South Korea
| | - June Hyuk Kim
- Orthopedic Oncology Clinic, Center for Rare Cancers, National Cancer Center, Goyang, South Korea
| | - Hyun Guy Kang
- Orthopedic Oncology Clinic, Center for Rare Cancers, National Cancer Center, Goyang, South Korea
| | - Jong Woong Park
- Orthopedic Oncology Clinic, Center for Rare Cancers, National Cancer Center, Goyang, South Korea
| | - Seog-Yun Park
- Pathology Department, National Cancer Center, Goyang, South Korea
| | - Byung-Kiu Park
- Center for Pediatric Oncology, National Cancer Center, Goyang, South Korea
- *Correspondence: Yong-Nyun Kim, ; Byung-Kiu Park,
| | - Yong-Nyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, South Korea
- *Correspondence: Yong-Nyun Kim, ; Byung-Kiu Park,
| |
Collapse
|
11
|
Moorman HR, Reategui Y, Poschel DB, Liu K. IRF8: Mechanism of Action and Health Implications. Cells 2022; 11:2630. [PMID: 36078039 PMCID: PMC9454819 DOI: 10.3390/cells11172630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor of the IRF protein family. IRF8 was originally identified as an essentialfactor for myeloid cell lineage commitment and differentiation. Deletion of Irf8 leads to massive accumulation of CD11b+Gr1+ immature myeloid cells (IMCs), particularly the CD11b+Ly6Chi/+Ly6G- polymorphonuclear myeloid-derived suppressor cell-like cells (PMN-MDSCs). Under pathological conditions such as cancer, Irf8 is silenced by its promoter DNA hypermethylation, resulting in accumulation of PMN-MDSCs and CD11b+ Ly6G+Ly6Clo monocytic MDSCs (M-MDSCs) in mice. IRF8 is often silenced in MDSCs in human cancer patients. MDSCs are heterogeneous populations of immune suppressive cells that suppress T and NK cell activity to promote tumor immune evasion and produce growth factors to exert direct tumor-promoting activity. Emerging experimental data reveals that IRF8 is also expressed in non-hematopoietic cells. Epithelial cell-expressed IRF8 regulates apoptosis and represses Osteopontin (OPN). Human tumor cells may use the IRF8 promoter DNA methylation as a mechanism to repress IRF8 expression to advance cancer through acquiring apoptosis resistance and OPN up-regulation. Elevated OPN engages CD44 to suppress T cell activation and promote tumor cell stemness to advance cancer. IRF8 thus is a transcription factor that regulates both the immune and non-immune components in human health and diseases.
Collapse
Affiliation(s)
- Hannah R. Moorman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Yazmin Reategui
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
12
|
Kesper C, Viestenz A, Wiese-Rischke C, Scheller M, Hammer T. Impact of the transcription factor IRF8 on limbal epithelial progenitor cells in a mouse model. Exp Eye Res 2022; 218:108985. [DOI: 10.1016/j.exer.2022.108985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
|
13
|
Wu M, Assassi S. Dysregulation of Type 1 Interferon Signaling in Systemic Sclerosis: a Promising Therapeutic Target? CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021; 7:349-360. [PMID: 35694218 PMCID: PMC9187215 DOI: 10.1007/s40674-021-00188-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 01/06/2023]
Abstract
Purpose of review There are several lines of evidence at the genetic and gene expression levels linking type I interferon (IFN) activation to systemic sclerosis (SSc) pathogenesis. Herein, we summarize the potential role of type I IFN signaling components as therapeutic targets. Recent findings All type I IFN cytokines signal through the interferon-α/β receptor (IFNAR). Early phase studies indicate that anifrolumab (a human monoclonal antibody against IFNAR subunit 1) has an acceptable safety profile and can attenuate transforming growth factor beta (TGF-β)-mediated fibrosis in SSc skin, supporting its further clinical development. Janus kinase (JAK) signaling pathways are downstream from IFNAR. Building on their efficacy in hereditary interferonopathies, JAK inhibitors have the potential to block the deleterious IFN and other profibrotic cytokine activation in SSc and are promising drug targets. Moreover, interferon regulator factor (IRF) 5, 7, and 8 have been linked to the profibrotic response in SSc preclinical studies, underscoring their potential as therapeutic targets. Lastly, depletion of plasmacytoid dendritic cells (pDCs) attenuates the IFN activation and fibrotic response in vitro and murine model experiments and can be studied as a viable drug target in future clinical studies. Summary There is increasing evidence linking the prominent type I IFN activation to the observed exaggerated fibrotic response in SSc. Key components of type I IFN signaling are druggable therapeutic targets that can be pursued in future randomized clinical trials, in order to develop more effective therapeutic options for SSc.
Collapse
Affiliation(s)
- Minghua Wu
- Division of Rheumatology, Department of Internal medicine, The University of Texas McGovern Medical School at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Shervin Assassi
- Division of Rheumatology, Department of Internal medicine, The University of Texas McGovern Medical School at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
14
|
Li H, Chen X, Zhu Y, Liu R, Zheng L, Shan S, Zhang F, An L, Yang G. Molecular characterization and immune functional analysis of IRF2 in common carp (Cyprinus carpio L.): different regulatory role in the IFN and NF-κB signalling pathway. BMC Vet Res 2021; 17:303. [PMID: 34503504 PMCID: PMC8428054 DOI: 10.1186/s12917-021-03012-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Interferon regulatory factor 2 (IRF2) is an important transcription factor, which can regulate the IFN response and plays a role in antiviral innate immunity in teleost. RESULTS In the present study, the full-length cDNA sequence of IRF2 (CcIRF2) was characterized in common carp (Cyprinus carpio L.), which encoded a protein containing a conserved DNA-binding domain (DBD) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF2 was most closely related with IRF2 of Ctenopharyngodon idella. CcIRF2 transcripts were detectable in all examined tissues, with higher expression in the gills, spleen and brain. CcIRF2 expression was upregulated in immune-related tissues of common carp upon polyinosinic:polycytidylic acid (poly (I:C)) and Aeromonas hydrophila stimulation and induced by poly (I:C), lipopolysaccharide (LPS), peptidoglycan (PGN) and flagellin in the peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs). In addition, overexpression of CcIRF2 decreased the expression of IFN and IFN-stimulated genes (ISGs), and a dual-luciferase reporter assay revealed that CcIRF2 could increase the activation of NF-κB. CONCLUSIONS These results indicate that CcIRF2 participates in antiviral and antibacterial immune response and negatively regulates the IFN response, which provide a new insight into the regulation of IFN system in common carp, and are helpful for the prevention and control of infectious diseases in carp farming.
Collapse
Affiliation(s)
- Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Yaoyao Zhu
- College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Linlin Zheng
- Jinan Eco-environmental Monitoring Center of Shandong Province, No. 17199 Lvyou Road, Jinan, 250101, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Fumiao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
15
|
Chang K, Han K, Qiu W, Hu Z, Chen X, Chen X, Xie X, Wang S, Hu C, Mao H. Grass carp (Ctenopharyngodon idella) interferon regulatory factor 8 down-regulates interferon1 expression via interaction with interferon regulatory factor 2 in vitro. Mol Immunol 2021; 137:202-211. [PMID: 34280770 DOI: 10.1016/j.molimm.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a negative regulatory factor of interferon (IFN) and plays an important role in cell differentiation and innate immunity in mammals. In recent years, some irf8 homologous genes have been cloned and confirmed to take part in innate immune response in fish, but the mechanism still remains unclear. In this paper, a grass carp (Ctenopharyngodon idella) irf8 gene (Ciirf8) was cloned and characterized. The deduced protein (CiIRF8) possesses a highly conserved N-terminal DNA binding domain but a less well-conserved C-terminal IRF association domain (IAD). Ciirf8 was widely expressed in all tested tissues of grass carp and up-regulated following poly(I:C) stimulation. Ciirf8 expression was also up-regulated in CIK cells upon treatment with poly(I:C). To explore the molecular mechanism of how fish IRF8 regulates ifn1 expression, the similarities and differences of grass carp IRF8 and IRF2 were compared and contrasted. Subcellular localization analysis showed that CiIRF8 is located both in the cytoplasm and nucleus; however, CiIRF2 is only located in the nucleus. The nuclear-cytoplasmic translocation of CiIRF8 was observed in CIK cells under stimulation with poly(I:C). The interaction of CiIRF8 and CiIRF2 was further confirmed by a co-immunoprecipitation assay in the nucleus. Dual-luciferase reporter assays showed that the promoter activity of Ciifn1 was significantly inhibited by co-transfection with CiIRF2 and CiIRF8. The transcription inhibition of Ciifn1 was alleviated by competitive binding of CiIRF2 and CiIRF8 to CiIRF1. In conclusion, CiIRF8 down-regulates Ciifn1 expression via interaction with CiIRF2 in cells.
Collapse
Affiliation(s)
- Kaile Chang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kun Han
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Weihua Qiu
- Teaching Material Research Office of Jiangxi Provincial Education Department, China
| | - Zhizhen Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xingxing Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xin Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiaofen Xie
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
16
|
Ototake Y, Yamaguchi Y, Asami M, Komitsu N, Akita A, Watanabe T, Kanaoka M, Kurotaki D, Tamura T, Aihara M. Downregulated IRF8 in Monocytes and Macrophages of Patients with Systemic Sclerosis May Aggravate the Fibrotic Phenotype. J Invest Dermatol 2021; 141:1954-1963. [PMID: 33705797 DOI: 10.1016/j.jid.2021.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Monocytes and macrophages may be involved in the pathogenesis of systemic sclerosis (SSc); however, the etiology and regulation of monocyte and macrophage function in SSc remain unknown. IRF8 is a transcriptional regulator that is essential for the differentiation and function of monocytes and macrophages and thus may be involved in the regulation of macrophage phenotypes in SSc fibrosis. In this study, we measured IRF8 levels in circulating monocytes of 26 patients with SSc (diffuse cutaneous SSc, n = 11; limited cutaneous SSc, n = 15) and 14 healthy controls. IRF8 levels were significantly suppressed in monocytes of patients with diffuse cutaneous SSc and correlated negatively with the modified Rodnan total skin thickness score. Next, we assessed expression levels of cell surface markers, cytokine profiles, and components of extracellular matrix in IRF8-silenced monocyte-derived macrophages. IRF8-silenced monocyte-derived macrophages displayed an M2 phenotype and significantly upregulated mRNA and protein levels of profibrotic factors and extracellular matrix components. Finally, we assessed skin fibrosis in myeloid cell-specific IRF8 conditional knockout (Irf8flox/flox; Lyz2Cre/+) mice and found upregulated mRNA levels of extracellular matrix components and increased bleomycin-induced skin fibrosis. In conclusion, altered IRF8 regulation in monocytes and macrophages may be involved in SSc pathogenesis.
Collapse
Affiliation(s)
- Yasushi Ototake
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Miho Asami
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Komitsu
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asami Akita
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoya Watanabe
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miwa Kanaoka
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michiko Aihara
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
17
|
Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N, Güç E, Kapourani CA, Byron A, Ferguson KM, Alfazema N, Morrison G, Grant V, Blin C, Sou I, Marques-Torrejon MA, Conde L, Parrinello S, Herrero J, Beck S, Brandner S, Brennan PM, Bertone P, Pollard JW, Quezada SA, Sproul D, Frame MC, Serrels A, Pollard SM. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 2021; 184:2454-2470.e26. [PMID: 33857425 PMCID: PMC8099351 DOI: 10.1016/j.cell.2021.03.023] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 12/18/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.
Collapse
Affiliation(s)
- Ester Gangoso
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Benjamin Southgate
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Leanne Bradley
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Stefanie Rus
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK
| | - Niamh McGivern
- CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Esra Güç
- Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chantriolnt-Andreas Kapourani
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Adam Byron
- CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Kirsty M Ferguson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Neza Alfazema
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Gillian Morrison
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Vivien Grant
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Carla Blin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - IengFong Sou
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Maria Angeles Marques-Torrejon
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, Department of Cancer Biology, University College London Cancer Institute, London WC1E 6BT
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London WC1E 6BT, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, Department of Cancer Biology, University College London Cancer Institute, London WC1E 6BT
| | - Stephan Beck
- Medical Genomics Research Group, Department of Cancer Biology, University College London Cancer Institute, London, WC1E 6BT
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Paul M Brennan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Paul Bertone
- Department of Medicine, Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jeffrey W Pollard
- Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK
| | - Duncan Sproul
- CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Margaret C Frame
- CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Alan Serrels
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK.
| |
Collapse
|
18
|
Yanai H, Negishi H, Taniguchi T. The IRF family of transcription factors: Inception, impact and implications in oncogenesis. Oncoimmunology 2021; 1:1376-1386. [PMID: 23243601 PMCID: PMC3518510 DOI: 10.4161/onci.22475] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the interferon-regulatory factor (IRF) proteins family were originally identified as transcriptional regulators of the Type I interferon system. Thanks to consistent advances made in our understanding of the immunobiology of innate receptors, it is now clear that several IRFs are critical for the elicitation of innate pattern recognition receptors, and—as a consequence—for adaptive immunity. In addition, IRFs have attracted great attentions as they modulate cellular responses that are involved in tumorigenesis. The regulation of oncogenesis by IRFs has important implications for understanding the host susceptibility to several Types of cancers, their progression, as well as the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Molecular Immunology; Institute of Industrial Science; The University of Tokyo; Tokyo, Japan ; Core Research for Evolution Science and Technology; Japan Science and Technology Agency; Chiyoda-ku, Tokyo, Japan
| | | | | |
Collapse
|
19
|
Kienes I, Weidl T, Mirza N, Chamaillard M, Kufer TA. Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. Int J Mol Sci 2021; 22:1301. [PMID: 33525590 PMCID: PMC7865845 DOI: 10.3390/ijms22031301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Tanja Weidl
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Nora Mirza
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | | | - Thomas A. Kufer
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| |
Collapse
|
20
|
Zhang Z, Wei J, Ren R, Zhang X. Anti-virus effects of interferon regulatory factors (IRFs) identified in ascidian Ciona savignyi. FISH & SHELLFISH IMMUNOLOGY 2020; 106:273-282. [PMID: 32750546 DOI: 10.1016/j.fsi.2020.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Interferon regulatory factors (IRFs) are key transcription factors that function in the immune system via the interferon (IFN) pathway. In the current study, we identified and characterized three IRFs (CsIRFL1, CsIRFL2, and CsIRFL3) from ascidian Ciona savignyi. Phylogenetic analysis showed that CsIRFL1 was clustered with two IRFs from Ciona robusta and shrimp IRF apart from the vertebrate IRFs, whereas CsIRFL2 and CsIRFL3 were grouped with an unnamed protein from Oikopleura dioica into a sub-branch highly identifying with the vertebrate IRF4, IRF8, and IRF9. Gene expression analysis revealed that CsIRFL1 and CsIRFL2 expressed in all the examined adult tissues (stomach, intestines, eggs, hemocytes, gonad, heart, and pharynx) and predominantly in hemocytes. However, the expression of CsIRFL3 was undetectable in the tested adult tissues. Furthermore, in situ hybridization showed that CsIRFL1 and CsIRFL2 mainly expressed in immunocytes within hemolymph, including phagocytes, macrophage-like cells, morula cells, and amoebocytes, suggesting CsIRFL1 and CsIRFL2 were involved in ascidian immune responses. We then performed LPS and poly(I:C) challenge assay and found that CsIRFL1 highly expressed in the cultured hemocytes following LPS infection for 24 h. After viral analogue poly(I:C) stimulation, the expression of CsIRFL2 was dramatically upregulated from 12 to 24 h. Meanwhile, two critical components of the IFN signaling pathways, STAT and TBK1, showed the increased expression as well after poly(I:C) induction, indicating that CsIRFL2 and IFN pathways genes were activated under the infection of viral analogue. Thus, our findings suggested that CsIRFL2 was a potential transcriptional regulatory factor that participated in regulating the ascidian anti-virus immune response.
Collapse
Affiliation(s)
- Zhaoxuan Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ruimei Ren
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Xiaoming Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
21
|
Kim S, Bagadia P, Anderson DA, Liu TT, Huang X, Theisen DJ, O'Connor KW, Ohara RA, Iwata A, Murphy TL, Murphy KM. High Amount of Transcription Factor IRF8 Engages AP1-IRF Composite Elements in Enhancers to Direct Type 1 Conventional Dendritic Cell Identity. Immunity 2020; 53:759-774.e9. [PMID: 32795402 PMCID: PMC8193644 DOI: 10.1016/j.immuni.2020.07.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/20/2020] [Accepted: 07/23/2020] [Indexed: 11/30/2022]
Abstract
Development and function of conventional dendritic cell (cDC) subsets, cDC1 and cDC2, depend on transcription factors (TFs) IRF8 and IRF4, respectively. Since IRF8 and IRF4 can each interact with TF BATF3 at AP1-IRF composite elements (AICEs) and with TF PU.1 at Ets-IRF composite elements (EICEs), it is unclear how these factors exert divergent actions. Here, we determined the basis for distinct effects of IRF8 and IRF4 in cDC development. Genes expressed commonly by cDC1 and cDC2 used EICE-dependent enhancers that were redundantly activated by low amounts of either IRF4 or IRF8. By contrast, cDC1-specific genes relied on AICE-dependent enhancers, which required high IRF concentrations, but were activated by either IRF4 or IRF8. IRF8 was specifically required only by a minority of cDC1-specific genes, such as Xcr1, which could distinguish between IRF8 and IRF4 DNA-binding domains. Thus, these results explain how BATF3-dependent Irf8 autoactivation underlies emergence of the cDC1-specific transcriptional program.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - David A Anderson
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Xiao Huang
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Derek J Theisen
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kevin W O'Connor
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Xia X, Wang W, Yin K, Wang S. Interferon regulatory factor 8 governs myeloid cell development. Cytokine Growth Factor Rev 2020; 55:48-57. [DOI: 10.1016/j.cytogfr.2020.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
|
23
|
Role of IRF8 in immune cells functions, protection against infections, and susceptibility to inflammatory diseases. Hum Genet 2020; 139:707-721. [DOI: 10.1007/s00439-020-02154-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
|
24
|
Sung JY, Yoon K, Ye SK, Goh SH, Park SY, Kim JH, Kang HG, Kim YN, Park BK. Upregulation of transforming growth factor-beta type I receptor by interferon consensus sequence-binding protein in osteosarcoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:761-772. [PMID: 30710564 DOI: 10.1016/j.bbamcr.2019.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a known tumor suppressor, which also exerts a tumor promoting activity at an advanced stage of cancer. Previously, we reported that expression of interferon consensus sequence-binding protein (ICSBP), also known as interferon regulatory factor-8, is positively correlated with TGF-β type I receptor (TGF-β RI) expression in osteosarcoma patient tissues. In this study, we demonstrated that ICSBP upregulated TGF-β RI and induced epithelial-to-mesenchymal transition-like phenomena in human osteosarcoma cell lines. As determined by soft agar growth of osteosarcoma cells and xenografted mouse models, ICSBP increased tumorigenicity, which was reversed by ICSBP knock-down or a TGF-β RI inhibitor. To test whether ICSBP directly regulates the promoter activity of TGF-β RI, we performed a TGF-β RI promoter assay, an electro mobility shift assay, and a chromatin immunoprecipitation assay. We observed that TGF-β RI promoter was activated in ICSBP-overexpressing osteosarcoma cells. Exploiting serial deletions and mutations of the TGF-β RI promoter, we found a putative ICSBP-binding site at nucleotides -216/-211 (GGXXTC) in the TGF-β RI promoter. Our data suggest that ICSBP upregulates TGF-β RI expression by binding to this site, causing ICSBP-mediated tumor progression in osteosarcoma cells. In addition, we found a positive correlation between ICSBP and TGF-β RI expression in several types of tumors using the cBioportal database. SUMMARY: We demonstrated that interferon consensus sequence-binding protein upregulates transforming growth factor-beta type I receptor (TGF-β RI) expression by binding to nucleotides -216/-211 (GGXXTC) in the TGF-β RI promoter, which resulted in increased tumorigenicity and tumor progression in human osteosarcoma cells.
Collapse
Affiliation(s)
- Jee Young Sung
- Rare Cancer Branch, Division of Clinical Research, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sung-Ho Goh
- Precision Medicine Branch, Division of Precision Medicine, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Seog-Yun Park
- Department of Pathology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - June Hyuk Kim
- Orthopaedic Oncology Clinic, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Hyun Guy Kang
- Orthopaedic Oncology Clinic, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Yong-Nyun Kim
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea.
| | - Byung-Kiu Park
- Rare Cancer Branch, Division of Clinical Research, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea.
| |
Collapse
|
25
|
Mao F, Lin Y, Zhou Y, He Z, Li J, Zhang Y, Yu Z. Structural and functional analysis of interferon regulatory factors (IRFs) reveals a novel regulatory model in an invertebrate, Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:14-22. [PMID: 30077552 DOI: 10.1016/j.dci.2018.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Interferon regulatory factors (IRF), a family of transcription factors, are involved in the regulation of interferon to response the pathogen infection. Here, three IRF-like genes including CgIRF1a, CgIRF1b and CgIRF8 were identified in the genome of the oyster C. gigas. Among these genes, CgIRF1a and CgIRF1b, which are tandemly located in adjacent loci of scaffold 4, share the same domains. Phylogenetic analysis indicated that CgIRF1a and CgIRF1b were two paralogs that may originate from duplication of the same ancestral IRF gene. Subcellular localization analysis confirmed the nuclear distribution of CgIRF1a and CgIRF1b. Dual-luciferase reporter assay showed that CgIRF1a significantly activated the ISRE reporter gene, whereas CgIRF1b did not. Additionally, overexpression of CgIRF1b could significantly suppress the activation effect of CgIRF1a, which strongly suggests that CgIRF1b may serve as a regulator of the IRF signaling pathway. Furthermore, the result of native page revealed that CgIRF1a would form homologous dimers, and CgIRF1b would interact with CgIRF1a to inhibit the activity of the latter. Taken together, one novel regulatory model of IRF signaling pathways has been raised one paralog of IRF has evolved and appears to be a regulator of IRF.
Collapse
Affiliation(s)
- Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiying He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China.
| |
Collapse
|
26
|
Adams NM, Lau CM, Fan X, Rapp M, Geary CD, Weizman OE, Diaz-Salazar C, Sun JC. Transcription Factor IRF8 Orchestrates the Adaptive Natural Killer Cell Response. Immunity 2018; 48:1172-1182.e6. [PMID: 29858012 PMCID: PMC6233715 DOI: 10.1016/j.immuni.2018.04.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/08/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that display features of adaptive immunity during viral infection. Biallelic mutations in IRF8 have been reported to cause familial NK cell deficiency and susceptibility to severe viral infection in humans; however, the precise role of this transcription factor in regulating NK cell function remains unknown. Here, we show that cell-intrinsic IRF8 was required for NK-cell-mediated protection against mouse cytomegalovirus infection. During viral exposure, NK cells upregulated IRF8 through interleukin-12 (IL-12) signaling and the transcription factor STAT4, which promoted epigenetic remodeling of the Irf8 locus. Moreover, IRF8 facilitated the proliferative burst of virus-specific NK cells by promoting expression of cell-cycle genes and directly controlling Zbtb32, a master regulator of virus-driven NK cell proliferation. These findings identify the function and cell-type-specific regulation of IRF8 in NK-cell-mediated antiviral immunity and provide a mechanistic understanding of viral susceptibility in patients with IRF8 mutations.
Collapse
Affiliation(s)
- Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiying Fan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moritz Rapp
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carlos Diaz-Salazar
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
27
|
Inhibition of Fas associated phosphatase 1 (Fap1) facilitates apoptosis of colon cancer stem cells and enhances the effects of oxaliplatin. Oncotarget 2018; 9:25891-25902. [PMID: 29899829 PMCID: PMC5995227 DOI: 10.18632/oncotarget.25401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/28/2018] [Indexed: 12/25/2022] Open
Abstract
Fas associated phosphatase 1 (Fap1) is a ubiquitously expressed protein tyrosine phosphatase. Fap1 substrates include Fas and Gsk3β, suggesting a role in regulating cell survival. Consistent with this, increased Fap1 expression is associated with resistance to Fas or platinum induced apoptosis in some human colon cancer tumors or cell lines. In the current studies, we found that Fap1 expression was significantly greater in CD133+ colon cancer stem cells compared to CD133− tumor cells. PTPN13 promoter activity (encoding Fap1) was repressed by interferon regulatory factor 2 (irf2), and expression of Fap1 and Irf2 were inversely correlated in CD133+ or CD133− colon cancer cells. We determined that CD133+ cells were relatively resistant to Fas or oxaliplatin induced apoptosis, but this was reversed by Fap1-knockdown or a Fap1-blocking tripeptide (SLV). In a murine xenograft model of colon cancer, we found treatment with SLV peptide significantly decreased tumor growth and relative abundance of CD133+CD44+ cells; associated with increased phosphorylation of Fap1 substrates. SLV peptide also enhanced inhibitory effects of oxaliplatin on tumor growth and Fap1 substrate phosphorylation in this model. Our studies suggest that therapeutically targeting Fap1 may decrease persistence of colon cancer stem cells during treatment with platinum chemotherapy by activating Fap1 substrates. In a murine model of chronic myeloid leukemia, we previously determined that inhibition of Fap1 decreased persistence of leukemia stem cells during tyrosine kinase inhibitor treatment. Therefore, Fap1 may be a tissue agnostic target to increase apoptosis in malignant stem cells.
Collapse
|
28
|
Interferon regulatory factor 1 inactivation in human cancer. Biosci Rep 2018; 38:BSR20171672. [PMID: 29599126 PMCID: PMC5938431 DOI: 10.1042/bsr20171672] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/18/2018] [Accepted: 03/28/2018] [Indexed: 11/28/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a group of closely related proteins collectively referred to as the IRF family. Members of this family were originally recognized for their roles in inflammatory responses; however, recent research has suggested that they are also involved in tumor biology. This review focusses on current knowledge of the roles of IRF-1 and IRF-2 in human cancer, with particular attention paid to the impact of IRF-1 inactivation. The different mechanisms underlying IRF-1 inactivation and their implications for human cancers and the potential importance of IRF-1 in immunotherapy are also summarized.
Collapse
|
29
|
Karki R, Lee E, Place D, Samir P, Mavuluri J, Sharma BR, Balakrishnan A, Malireddi RKS, Geiger R, Zhu Q, Neale G, Kanneganti TD. IRF8 Regulates Transcription of Naips for NLRC4 Inflammasome Activation. Cell 2018; 173:920-933.e13. [PMID: 29576451 DOI: 10.1016/j.cell.2018.02.055] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/17/2018] [Accepted: 02/21/2018] [Indexed: 02/08/2023]
Abstract
Inflammasome activation is critical for host defenses against various microbial infections. Activation of the NLRC4 inflammasome requires detection of flagellin or type III secretion system (T3SS) components by NLR family apoptosis inhibitory proteins (NAIPs); yet how this pathway is regulated is unknown. Here, we found that interferon regulatory factor 8 (IRF8) is required for optimal activation of the NLRC4 inflammasome in bone-marrow-derived macrophages infected with Salmonella Typhimurium, Burkholderia thailandensis, or Pseudomonas aeruginosa but is dispensable for activation of the canonical and non-canonical NLRP3, AIM2, and Pyrin inflammasomes. IRF8 governs the transcription of Naips to allow detection of flagellin or T3SS proteins to mediate NLRC4 inflammasome activation. Furthermore, we found that IRF8 confers protection against bacterial infection in vivo, owing to its role in inflammasome-dependent cytokine production and pyroptosis. Altogether, our findings suggest that IRF8 is a critical regulator of NAIPs and NLRC4 inflammasome activation for defense against bacterial infection.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ein Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - David Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jayadev Mavuluri
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Arjun Balakrishnan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Rechel Geiger
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Qifan Zhu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
30
|
Abrams SI, Netherby CS, Twum DYF, Messmer MN. Relevance of Interferon Regulatory Factor-8 Expression in Myeloid-Tumor Interactions. J Interferon Cytokine Res 2018; 36:442-53. [PMID: 27379866 DOI: 10.1089/jir.2015.0174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Perturbations in myelopoiesis are a common feature in solid tumor biology, reflecting the central premise that cancer is not only a localized affliction but also a systemic disease. Because the myeloid compartment is essential for the induction of adaptive immunity, these alterations in myeloid development contribute to the failure of the host to effectively manage tumor progression. These "dysfunctional" myeloid cells have been coined myeloid-derived suppressor cells (MDSCs). Interestingly, such cells not only arise in neoplasia but also are associated with many other inflammatory or pathologic conditions. MDSCs affect disease outcome through multiple mechanisms, including their ability to mediate generalized or antigen-specific immune suppression. Consequently, MDSCs pose a significant barrier to effective immunotherapy in multiple disease settings. Although much interest has been devoted to unraveling mechanisms by which MDSCs mediate immune suppression, a large gap has remained in our understanding of the mechanisms that drive their development in the first place. Investigations into this question have identified an unrecognized role of interferon regulatory factor-8 (IRF-8), a member of the IRF family of transcription factors, in tumor-induced myeloid dysfunction. Ordinarily, IRF-8 is involved in diverse stages of myelopoiesis, namely differentiation and lineage commitment toward monocytes, dendritic cells, and granulocytes. Several recent studies now support the hypothesis that IRF-8 functions as a "master" negative regulator of MDSC formation in vivo. This review focuses on IRF-8 as a potential target suppressed by tumors to cripple normal myelopoiesis, redirecting myeloid differentiation toward the emergence of MDSCs. Understanding the bases by which neoplasia drives MDSC accumulation has the potential to improve the efficacy of therapies that require a competent myeloid compartment.
Collapse
Affiliation(s)
- Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| | - Colleen S Netherby
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| | - Danielle Y F Twum
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| | - Michelle N Messmer
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| |
Collapse
|
31
|
Pak2 regulates myeloid-derived suppressor cell development in mice. Blood Adv 2017; 1:1923-1933. [PMID: 29296839 DOI: 10.1182/bloodadvances.2017007435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are CD11b+Gr1+ cells that induce T-cell hyporesponsiveness, thus impairing antitumor immunity. We have previously reported that disruption of Pak2, a member of the p21-activated kinases (Paks), in hematopoietic stem/progenitor cells (HSPCs) induces myeloid lineage skewing and expansion of CD11bhighGr1high cells in mice. In this study, we confirmed that Pak2-KO CD11bhighGr1high cells suppressed T-cell proliferation, consistent with an MDSC phenotype. Loss of Pak2 function in HSPCs led to (1) increased hematopoietic progenitor cell sensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling, (2) increased MDSC proliferation, (3) decreased MDSC sensitivity to both intrinsic and Fas-Fas ligand-mediated apoptosis, and (4) promotion of MDSCs by Pak2-deficient CD4+ T cells that produced more interferon γ, tumor necrosis factor α, and GM-CSF. Pak2 disruption activated STAT5 while downregulating the expression of IRF8, a well-described myeloid transcription factor. Together, our data reveal a previously unrecognized role of Pak2 in regulating MDSC development via both cell-intrinsic and extrinsic mechanisms. Our findings have potential translational implications, as the efficacy of targeting Paks in cancer therapeutics may be undermined by tumor escape from immune control and/or acceleration of tumorigenesis through MDSC expansion.
Collapse
|
32
|
Valanparambil RM, Tam M, Gros PP, Auger JP, Segura M, Gros P, Jardim A, Geary TG, Ozato K, Stevenson MM. IRF-8 regulates expansion of myeloid-derived suppressor cells and Foxp3+ regulatory T cells and modulates Th2 immune responses to gastrointestinal nematode infection. PLoS Pathog 2017; 13:e1006647. [PMID: 28968468 PMCID: PMC5638610 DOI: 10.1371/journal.ppat.1006647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 10/12/2017] [Accepted: 09/12/2017] [Indexed: 11/24/2022] Open
Abstract
Interferon regulatory factor-8 (IRF-8) is critical for Th1 cell differentiation and negatively regulates myeloid cell development including myeloid-derived suppressor cells (MDSC). MDSC expand during infection with various pathogens including the gastrointestinal (GI) nematode Heligmosomoides polygyrus bakeri (Hpb). We investigated if IRF-8 contributes to Th2 immunity to Hpb infection. Irf8 expression was down-regulated in MDSC from Hpb-infected C57BL/6 (B6) mice. IRF-8 deficient Irf8-/- and BXH-2 mice had significantly higher adult worm burdens than B6 mice after primary or challenge Hpb infection. During primary infection, MDSC expanded to a significantly greater extent in mesenteric lymph nodes (MLN) and spleens of Irf8-/- and BXH-2 than B6 mice. CD4+GATA3+ T cells numbers were comparable in MLN of infected B6 and IRF-8 deficient mice, but MLN cells from infected IRF-8 deficient mice secreted significantly less parasite-specific IL-4 ex vivo. The numbers of alternatively activated macrophages in MLN and serum levels of Hpb-specific IgG1 and IgE were also significantly less in infected Irf8-/- than B6 mice. The frequencies of antigen-experienced CD4+CD11ahiCD49dhi cells that were CD44hiCD62L- were similar in MLN of infected Irf8-/- and B6 mice, but the proportions of CD4+GATA3+ and CD4+IL-4+ T cells were lower in infected Irf8-/- mice. CD11b+Gr1+ cells from naïve or infected Irf8-/- mice suppressed CD4+ T cell proliferation and parasite-specific IL-4 secretion in vitro albeit less efficiently than B6 mice. Surprisingly, there were significantly more CD4+ T cells in infected Irf8-/- mice, with a higher frequency of CD4+CD25+Foxp3+ T (Tregs) cells and significantly higher numbers of Tregs than B6 mice. In vivo depletion of MDSC and/or Tregs in Irf8-/- mice did not affect adult worm burdens, but Treg depletion resulted in higher egg production and enhanced parasite-specific IL-5, IL-13, and IL-6 secretion ex vivo. Our data thus provide a previously unrecognized role for IRF-8 in Th2 immunity to a GI nematode. We investigated if IRF-8, which is critical for Th1 immunity and negatively regulates myeloid cell development including MDSC, contributes to Th2 immunity to the gastrointestinal nematode Heligmosomoides polygyrus bakeri (Hpb). Irf8 expression was down-regulated in MDSC from infected C57BL/6 (B6) mice. Hpb-infected IRF-8 deficient mice had significantly higher adult worm burdens than B6 mice. There were significantly more MDSC, fewer alternatively activated macrophages, lower serum levels of Hpb-specific antibodies in infected IRF-8 deficient than B6 mice, and MLN cells from infected IRF-8 deficient mice secreted less parasite-specific IL-4 ex vivo. There were similar frequencies of antigen-experienced CD4+CD11ahiCD49dhi T cells in MLN that were CD44hiCD62L- in infected Irf8-/- and B6 mice, but lower proportions of CD4+GATA3+ and CD4+IL-4+ T cells in Irf8-/- mice. Infected Irf8-/- mice had a higher frequency of CD4+Foxp3+ T (Tregs) cells and significantly higher numbers of Tregs compared to infected B6 mice. MDSC from infected Irf8-/- mice suppressed CD4+ T cell effector functions in vitro albeit less efficiently than B6 mice. Treg and/or MDSC depletion did not affect adult worm burdens in infected Irf8-/- mice, but Treg depletion partially restored Th2 cytokine responses. These data highlight the importance of IRF-8 in Th2 immunity to Hpb infection.
Collapse
Affiliation(s)
- Rajesh M. Valanparambil
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste-Anne de Bellevue, Quebec, Canada
| | - Mifong Tam
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre-Paul Gros
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jean-Philippe Auger
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, Quebec, Canada
| | - Mariela Segura
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste-Anne de Bellevue, Quebec, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, Quebec, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Armando Jardim
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste-Anne de Bellevue, Quebec, Canada
| | - Timothy G. Geary
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste-Anne de Bellevue, Quebec, Canada
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, NIH, Bethesda MD, United States of America
| | - Mary M. Stevenson
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste-Anne de Bellevue, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
33
|
Blewett MM, Xie J, Zaro BW, Backus KM, Altman A, Teijaro JR, Cravatt BF. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells. Sci Signal 2016; 9:rs10. [PMID: 27625306 DOI: 10.1126/scisignal.aaf7694] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear but may involve the covalent modification of proteins or DMF serving as a prodrug that is converted to monomethyl fumarate (MMF). We found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF sensitivity of >2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase Cθ (PKCθ). DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology.
Collapse
Affiliation(s)
- Megan M Blewett
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jiji Xie
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Balyn W Zaro
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Keriann M Backus
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Tamai R, Sugawara S, Takeuchi O, Akira S, Takada H. Synergistic effects of lipopolysaccharide and interferon-γ in inducing interleukin-8 production in human monocytic THP-1 cells is accompanied by up-regulation of CD14, Toll-like receptor 4, MD-2 and MyD88 expression. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090030201] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipopolysaccharide (LPS) and interferon (IFN)-γ synergistically induced interleukin-8 (IL-8) production in human monocytic THP-1 cells. IFN-γ-primed THP-1 cells produced higher levels of IL-8 on stimulation with LPS than non-primed cells and the level correlated with duration of priming up to 24 h, although the level of IL-8 induced was most comparable to that induced by co-stimulation with LPS and IFN-γ . Unstimulated THP-1 cells were shown by flow cytometry to be practically devoid of membrane CD14 (mCD14). LPS and IFN-γ enhanced mCD14 and Toll-like receptor (TLR) 4 expression in THP-1 cells, respectively, and co-stimulation with LPS and IFN-γ induced higher levels of mCD14 and TLR4 expression than stimulation with either agent alone. LPS and IFN-γ alone each augmented MD-2 and MyD88 mRNA expression in THP-1 cells, and co-stimulation with LPS and IFN-γ markedly enhanced MD-2 and MyD88 mRNA expression in the cells compared to those with either LPS or IFN-γ alone. Anti-CD 14 and anti-TLR4 monoclonal antibodies almost completely inhibited IL-8 production induced by LPS plus IFN-γ in THP-1 cells. These findings suggest that combined stimulation of THP-1 cells with LPS and IFN-γ up-regulate mCD14, TLR4, MD-2 and MyD88 expression by these cells, which might be involved in synergistic IL-8 production by the cells.
Collapse
Affiliation(s)
- Riyoko Tamai
- Department of Microbiology and Immunology, Tohoku University School of Dentistry, Sendai, Japan
| | - Shunji Sugawara
- Department of Microbiology and Immunology, Tohoku University School of Dentistry, Sendai, Japan
| | - Osamu Takeuchi
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Haruhiko Takada
- Department of Microbiology and Immunology, Tohoku University School of Dentistry, Sendai, Japan,
| |
Collapse
|
35
|
Minderman H, Maguire O, O'Loughlin KL, Muhitch J, Wallace PK, Abrams SI. Total cellular protein presence of the transcription factor IRF8 does not necessarily correlate with its nuclear presence. Methods 2016; 112:84-90. [PMID: 27582125 DOI: 10.1016/j.ymeth.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/09/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023] Open
Abstract
The transcription factor interferon regulatory factor-8 (IRF8) plays an essential role in myeloid differentiation and lineage commitment, based largely on molecular and genetic studies. The detection of IRF8 in specific cell populations by flow cytometry (FCM) has the potential to provide new insights into normal and pathologic myelopoiesis, but critical validation of this protein-based approach, particularly in human samples, is lacking. In this study, the assessment of total cellular IRF8 presence was compared to its specific nuclear presence as assessed by imaging flow cytometry (IFC) analysis. Peptide neutralization of the IRF8-specific antibody that has been predominantly used to date in the literature served as a negative control for the immunofluorescent labeling. Expression of total IRF8 was analyzed by total cellular fluorescence analogous to the mean fluorescence intensity readout of conventional FCM. Additionally, specific nuclear fluorescence and the similarity score between the nuclear image (DAPI) and the corresponding IRF8 image for each cell were analyzed as parameters for nuclear localization of IRF8. IFC showed that peptide blocking eliminated binding of the IRF8 antibody in the nucleus. It also reduced cytoplasmic binding of the antibody but not to the extent observed in the nucleus. In agreement with the similarity score data, the total cellular IRF8 as well as nuclear IRF8 intensities decreased with peptide blocking. In healthy donor peripheral blood subpopulations and a positive control cell line (THP-1), the assessment of IRF8 by total cellular presence correlated well with its specific nuclear presence and correlated with the known distribution of IRF8 in these cells. In clinical samples of myeloid-derived suppressors cells derived from patients with renal carcinoma, however, total cellular IRF8 did not necessarily correlate with its nuclear presence. Discordance was primarily associated with peptide blocking having a proportionally greater effect on the IRF8 nuclear localization versus total fluorescence assessment. The data thus indicate that IRF8 can have cytoplasmic presence and that during disease its nuclear-cytoplasmic distribution may be altered, which may provide a basis for potential myeloid defects during certain pathologies.
Collapse
Affiliation(s)
- Hans Minderman
- Flow and Image Cytometry Shared Resource, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States.
| | - Orla Maguire
- Flow and Image Cytometry Shared Resource, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States
| | - Kieran L O'Loughlin
- Flow and Image Cytometry Shared Resource, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States
| | - Jason Muhitch
- Dept of Urology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States
| | - Paul K Wallace
- Flow and Image Cytometry Shared Resource, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States
| | - Scott I Abrams
- Dept of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States
| |
Collapse
|
36
|
Kurotaki D, Tamura T. Transcriptional and Epigenetic Regulation of Innate Immune Cell Development by the Transcription Factor, Interferon Regulatory Factor-8. J Interferon Cytokine Res 2016; 36:433-41. [DOI: 10.1089/jir.2015.0138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
37
|
Mysm1 is required for interferon regulatory factor expression in maintaining HSC quiescence and thymocyte development. Cell Death Dis 2016; 7:e2260. [PMID: 27277682 PMCID: PMC5143390 DOI: 10.1038/cddis.2016.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022]
Abstract
Mysm1(-/-) mice have severely decreased cellularity in hematopoietic organs. We previously revealed that Mysm1 knockout impairs self-renewal and lineage reconstitution of HSCs by abolishing the recruitment of key transcriptional factors to the Gfi-1 locus, an intrinsic regulator of HSC function. The present study further defines a large LSKs in >8-week-old Mysm1(-/-) mice that exhibit increased proliferation and reduced cell lineage differentiation compared with those of WT LSKs. We found that IRF2 and IRF8, which are important for HSC homeostasis and commitment as transcription repressors, were expressed at lower levels in Mysm1(-/-) HSCs, and Mysm1 enhanced function of the IRF2 and IRF8 promoters, suggesting that Mysm1 governs the IRFs for HSC homeostasis. We further found that the lower expressions of IRF2 and IRF8 led to an enhanced transcription of p53 in Mysm1(-/-) HSCs, which was recently defined to have an important role in mediating Mysm1(-/-)-associated defects. The study also revealed that Mysm1(-/-) thymocytes exhibited lower IRF2 expression, but had higher Sca1 expression, which has a role in mediating thymocyte death. Furthermore, we found that the thymocytes from B16 melanoma-bearing mice, which display severe thymus atrophy at late tumor stages, exhibited reduced Mysm1 and IRF2 expression but enhanced Sca1 expression, suggesting that tumors may downregulate Mysm1 and IRF2 for thymic T-cell elimination.
Collapse
|
38
|
White CL, Kessler PM, Dickerman BK, Ozato K, Sen GC. Interferon Regulatory Factor 8 (IRF8) Impairs Induction of Interferon Induced with Tetratricopeptide Repeat Motif (IFIT) Gene Family Members. J Biol Chem 2016; 291:13535-45. [PMID: 27137933 DOI: 10.1074/jbc.m115.705467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Indexed: 11/06/2022] Open
Abstract
The chromosomally clustered interferon-induced with tetratricopeptide repeat motif (IFIT) gene family members share structural features at the gene and protein levels. Despite these similarities, different IFIT genes have distinct inducer- and cell type-specific induction patterns. Here, we investigated the mechanism for the observed differential induction of the mouse Ifit1, Ifit2, and Ifit3 genes in B cells and demonstrated that the repressive effect of the transcription factor interferon regulatory factor 8 (IRF8), which is highly expressed in B cells, played an essential role in this regulation. Although IRF8 could impair induction of all three IFIT genes following stimulation of retinoic acid-inducible gene I (RIG-I), it could selectively impair the induction of the Ifit1 gene following IFN stimulation. The above properties could be imparted to IRF8-non-expressing cells by ectopic expression of the protein. Induction of reporter genes, driven by truncated Ifit1 promoters, identified the regions that mediate the repression, and a chromatin immunoprecipitation assay revealed that more IRF8 bound to the IFN-stimulated response element of the Ifit1 gene than to those of the Ifit2 and the Ifit3 genes. Mutational analyses of IRF8 showed that its ability to bind DNA, interact with other proteins, and undergo sumoylation were all necessary to selectively repress Ifit1 gene induction in response to IFN. Our study revealed a new role for IRFs in differentially regulating the induction patterns of closely related IFN-stimulated genes that are located adjacent to one another in the mouse genome.
Collapse
Affiliation(s)
- Christine L White
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195,
| | - Patricia M Kessler
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Benjamin K Dickerman
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, the Graduate Program in Molecular Virology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Keiko Ozato
- the Program in Genomics of Differentiation, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Ganes C Sen
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, the Graduate Program in Molecular Virology, Case Western Reserve University, Cleveland, Ohio 44106, and
| |
Collapse
|
39
|
Interferon regulatory factor 8 and the regulation of neutrophil, monocyte, and dendritic cell production. Curr Opin Hematol 2016; 23:11-7. [DOI: 10.1097/moh.0000000000000196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Park JH, Choi AJ, Kim SJ, Jeong SY. 3,3'-Diindolylmethane Inhibits Flt3L/GM-CSF-induced-bone Marrow-derived CD103(+) Dendritic Cell Differentiation Regulating Phosphorylation of STAT3 and STAT5. Immune Netw 2015; 15:278-90. [PMID: 26770182 PMCID: PMC4700404 DOI: 10.4110/in.2015.15.6.278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 01/05/2023] Open
Abstract
The intestinal immune system maintains oral tolerance to harmless antigens or nutrients. One mechanism of oral tolerance is mediated by regulatory T cell (Treg)s, of which differentiation is regulated by a subset of dendritic cell (DC)s, primarily CD103+ DCs. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, plays an important role in regulating immunity. The intestines are exposed to various AhR ligands, including endogenous metabolites and phytochemicals. It was previously reported that AhR activation induced tolerogenic DCs in mice or in cultures of bone marrow-derived DCs. However, given the variety of tolerogenic DCs, which type of tolerogenic DCs is regulated by AhR remains unknown. In this study, we found that AhR ligand 3,3'-diindolylmethane (DIM) inhibited the development of CD103+ DCs from mouse bone marrow cells stimulated with Flt3L and GM-CSF. DIM interfered with phosphorylation of STAT3 and STAT5 inhibiting the expression of genes, including Id2, E2-2, IDO-1, and Aldh1a2, which are associated with DC differentiation and functions. Finally, DIM suppressed the ability of CD103+ DCs to induce Foxp3+ Tregs.
Collapse
Affiliation(s)
- Joo-Hung Park
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Ah-Jeong Choi
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Soo-Ji Kim
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - So-Yeon Jeong
- Department of Biology, Changwon National University, Changwon 51140, Korea
| |
Collapse
|
41
|
Hu L, Huang W, Hjort EE, Bei L, Platanias LC, Eklund EA. The Interferon Consensus Sequence Binding Protein (Icsbp/Irf8) Is Required for Termination of Emergency Granulopoiesis. J Biol Chem 2015; 291:4107-20. [PMID: 26683374 DOI: 10.1074/jbc.m115.681361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
Emergency granulopoiesis occurs in response to infectious or inflammatory challenge and is a component of the innate immune response. Some molecular events involved in initiating emergency granulopoiesis are known, but termination of this process is less well defined. In this study, we found that the interferon consensus sequence binding protein (Icsbp/Irf8) was required to terminate emergency granulopoiesis. Icsbp is an interferon regulatory transcription factor with leukemia suppressor activity. Expression of Icsbp is decreased in chronic myeloid leukemia, and Icsbp(-/-) mice exhibit progressive granulocytosis with evolution to blast crisis, similar to the course of human chronic myeloid leukemia. In this study, we found aberrantly sustained granulocyte production in Icsbp(-/-) mice after stimulation of an emergency granulopoiesis response. Icsbp represses transcription of the genes encoding Fas-associated phosphatase 1 (Fap1) and growth arrest-specific 2 (Gas2) and activates genes encoding Fanconi C and F. After stimulation of emergency granulopoiesis, we found increased and sustained expression of Fap1 and Gas2 in bone marrow myeloid progenitor cells from Icsbp(-/-) mice in comparison with the wild type. This was associated with resistance to Fas-induced apoptosis and increased β-catenin activity in these cells. We also found that repeated episodes of emergency granulopoiesis accelerated progression to acute myeloid leukemia in Icsbp(-/-) mice. This was associated with impaired Fanconi C and F expression and increased sensitivity to DNA damage in bone marrow myeloid progenitors. Our results suggest that impaired Icsbp expression enhances leukemogenesis by deregulating processes that normally limit granulocyte expansion during the innate immune response.
Collapse
Affiliation(s)
- Liping Hu
- From the Feinberg School of Medicine and
| | - Weiqi Huang
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | | | - Ling Bei
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Leonidas C Platanias
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612 Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Elizabeth A Eklund
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612 Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| |
Collapse
|
42
|
Kim SH, Burton J, Yu CR, Sun L, He C, Wang H, Morse HC, Egwuagu CE. Dual Function of the IRF8 Transcription Factor in Autoimmune Uveitis: Loss of IRF8 in T Cells Exacerbates Uveitis, Whereas Irf8 Deletion in the Retina Confers Protection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1480-8. [PMID: 26163590 PMCID: PMC4530071 DOI: 10.4049/jimmunol.1500653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023]
Abstract
IFN regulatory factor 8 (IRF8) is constitutively expressed in monocytes and B cells and plays a critical role in the functional maturation of microglia cells. It is induced in T cells following Ag stimulation, but its functions are less well understood. However, recent studies in mice with T cell-specific Irf8 disruption under direction of the Lck promoter (LCK-IRF8KO) suggest that IRF8 directs a silencing program for Th17 differentiation, and IL-17 production is markedly increased in IRF8-deficient T cells. Paradoxically, loss of IRF8 in T cells has no effect on the development or severity of experimental autoimmune encephalomyelitis (EAE), although exacerbating colitis in a mouse colitis model. In contrast, mice with a macrophage/microglia-specific Irf8 disruption are resistant to EAE, further confounding our understanding of the roles of IRF8 in host immunity and autoimmunity. To clarify the role of IRF8 in autoimmune diseases, we have generated two mouse strains with targeted deletion of Irf8 in retinal cells, including microglial cells and a third mouse strain with targeted Irf8 deletion in T cells under direction of the nonpromiscuous, CD4 promoter (CD4-IRF8KO). In contrast to the report that IRF8 deletion in T cells has no effect on EAE, experimental autoimmune uveitis is exacerbated in CD4-IRF8KO mice and disease enhancement correlates with significant expansion of Th17 cells and a reduction in T regulatory cells. In contrast to CD4-IRF8KO mice, Irf8 deletion in retinal cells confers protection from uveitis, underscoring divergent and tissue-specific roles of IRF8 in host immunity. These results raise a cautionary note in the context of therapeutic targeting of IRF8.
Collapse
Affiliation(s)
- Sung-Hye Kim
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Jenna Burton
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Cheng-Rong Yu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Lin Sun
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Chang He
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Hongsheng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Charles E Egwuagu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
43
|
Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol 2015; 101:342-51. [DOI: 10.1007/s12185-015-1761-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
44
|
Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsuneyama K, Tsukada K, Irimura T, Shibahara N, Takasaki I, Inujima A, Nakayama T, Yoshie O, Sakurai H, Saiki I, Koizumi K. CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer 2014; 14:949. [PMID: 25495942 PMCID: PMC4300614 DOI: 10.1186/1471-2407-14-949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/08/2014] [Indexed: 12/23/2022] Open
Abstract
Background Inhibition of metastasis through upregulation of immune surveillance is a major purpose of chemokine gene therapy. In this study, we focused on a membrane-bound chemokine CXCL16, which has shown a correlation with a good prognosis for colorectal cancer (CRC) patients. Methods We generated a CXCL16-expressing metastatic CRC cell line and identified changes in TNF and apoptosis-related factors. To investigate the effect of CXCL16 on colorectal liver metastasis, we injected SL4-Cont and SL4-CXCL16 cells into intraportal vein in C57BL/6 mice and evaluated the metastasis. Moreover, we analyzed metastatic liver tissues using flow cytometry whether CXCL16 expression regulates the infiltration of M1 macrophages. Results CXCL16 expression enhanced TNF-α-induced apoptosis through activation of PARP and the caspase-3-mediated apoptotic pathway and through inactivation of the NF-κB-mediated survival pathway. Several genes were changed by CXCL16 expression, but we focused on IRF8, which is a regulator of apoptosis and the metastatic phenotype. We confirmed CXCL16 expression in SL4-CXCL16 cells and the correlation between CXCL16 and IRF8. Silencing of IRF8 significantly decreased TNF-α-induced apoptosis. Liver metastasis of SL4-CXCL16 cells was also inhibited by TNF-α-induced apoptosis through the induction of M1 macrophages, which released TNF-α. Our findings suggest that the accumulation of M1 macrophages and the enhancement of apoptosis by CXCL16 might be an effective dual approach against CRC liver metastasis. Conclusions Collectively, this study revealed that CXCL16 regulates immune surveillance and cell signaling. Therefore, we provide the first evidence of CXCL16 serving as an intracellular signaling molecule. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-949) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Keiichi Koizumi
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
45
|
Messmer MN, Netherby CS, Banik D, Abrams SI. Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother 2014; 64:1-13. [PMID: 25432147 DOI: 10.1007/s00262-014-1639-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/19/2014] [Indexed: 01/27/2023]
Abstract
Immune function relies on an appropriate balance of the lymphoid and myeloid responses. In the case of neoplasia, this balance is readily perturbed by the dramatic expansion of immature or dysfunctional myeloid cells accompanied by a reciprocal decline in the quantity/quality of the lymphoid response. In this review, we seek to: (1) define the nature of the atypical myelopoiesis observed in cancer patients and the impact of this perturbation on clinical outcomes; (2) examine the potential mechanisms underlying these clinical manifestations; and (3) explore potential strategies to restore normal myeloid cell differentiation to improve activation of the host antitumor immune response. We posit that fundamental alterations in myeloid homeostasis triggered by the neoplastic process represent critical checkpoints that govern therapeutic efficacy, as well as offer novel cellular-based biomarkers for tracking changes in disease status or relapse.
Collapse
Affiliation(s)
- Michelle N Messmer
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | | | | | | |
Collapse
|
46
|
Yoon J, Feng X, Kim YS, Shin DM, Hatzi K, Wang H, Morse HC. Interferon regulatory factor 8 (IRF8) interacts with the B cell lymphoma 6 (BCL6) corepressor BCOR. J Biol Chem 2014; 289:34250-7. [PMID: 25331958 DOI: 10.1074/jbc.m114.571182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
B cell lymphoma 6 (BCL6) corepressor (BCOR) was discovered as a BCL6-interacting corepressor, but little is known about its other biological activities in normal B cell development and function. Previously, we found that interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein, directly targets a large number of genes in germinal center B cells including BCL6. In this study, we screened potential binding partners of IRF8 using a retrovirus-based protein complementation assay screen in a mouse pre-B cell line. We found that IRF8 interacts directly with BCOR and that the α-helical region of IRF8 and the BCL6 binding domain of BCOR are required for this interaction. In addition, IRF8 protein interacts directly with BCL6. Using an siRNA-mediated IRF8 knockdown mouse B cell lymphoma cell line, we showed that IRF8 represses Bcor and enhances Bcl6 transcription. Taken together, these data suggest that a complex comprising BCOR-BCL6-IRF8 modulates BCL6-associated transcriptional regulation of germinal center B cell function.
Collapse
Affiliation(s)
- Jeongheon Yoon
- From the Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852 and
| | - Xianxum Feng
- From the Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852 and
| | - Yong-Soo Kim
- From the Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852 and
| | - Dong-Mi Shin
- From the Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852 and
| | - Katerina Hatzi
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Hongsheng Wang
- From the Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852 and
| | - Herbert C Morse
- From the Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852 and
| |
Collapse
|
47
|
Landel V, Baranger K, Virard I, Loriod B, Khrestchatisky M, Rivera S, Benech P, Féron F. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease. Mol Neurodegener 2014; 9:33. [PMID: 25213090 PMCID: PMC4237952 DOI: 10.1186/1750-1326-9-33] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/27/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The 5XFAD early onset mouse model of Alzheimer's disease (AD) is gaining momentum. Behavioral, electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of human AD. However, transcriptional changes during disease progression have not yet been investigated. To this end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (M1, M4, M6, M9). RESULTS Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation, sustained by the overexpression of genes from the complement and integrin families, is accompanied by an increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ related pathways. CONCLUSIONS Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening potential therapeutic molecules.
Collapse
Affiliation(s)
- Véréna Landel
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Kévin Baranger
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
- APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie, 13385 Marseille, France
| | - Isabelle Virard
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Béatrice Loriod
- Aix Marseille Université, TAGC UMR 1090, 13288 Marseille, France
- INSERM, TAGC UMR 1090, 13288 Marseille, France
| | | | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Philippe Benech
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - François Féron
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| |
Collapse
|
48
|
Hodge DL, Berthet C, Coppola V, Kastenmüller W, Buschman MD, Schaughency PM, Shirota H, Scarzello AJ, Subleski JJ, Anver MR, Ortaldo JR, Lin F, Reynolds DA, Sanford ME, Kaldis P, Tessarollo L, Klinman DM, Young HA. IFN-gamma AU-rich element removal promotes chronic IFN-gamma expression and autoimmunity in mice. J Autoimmun 2014; 53:33-45. [PMID: 24583068 PMCID: PMC4148478 DOI: 10.1016/j.jaut.2014.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/17/2014] [Accepted: 02/05/2014] [Indexed: 12/31/2022]
Abstract
We generated a mouse model with a 162 nt AU-rich element (ARE) region deletion in the 3' untranslated region (3'UTR) of the interferon-gamma (IFN-γ) gene that results in chronic circulating serum IFN-γ levels. Mice homozygous for the ARE deletion (ARE-Del) (-/-) present both serologic and cellular abnormalities typical of patients with systemic lupus erythematosus (SLE). ARE-Del(-/-) mice display increased numbers of pDCs in bone marrow and spleen. Addition of IFN-γ to Flt3-ligand (Flt3L) treated in vitro bone marrow cultures results in a 2-fold increase in pDCs with concurrent increases in IRF8 expression. Marginal zone B (MZB) cells and marginal zone macrophages (MZMs) are absent in ARE-Del(-/-) mice. ARE-Del(+/-) mice retain both MZB cells and MZMs and develop no or mild autoimmunity. However, low dose clodronate treatment in ARE-Del(+/-) mice specifically eliminates MZMs and promotes anti-DNA antibody development and glomerulonephritis. Our findings demonstrate the consequences of a chronic IFN-γ milieu on B220(+) cell types and in particular the impact of MZB cell loss on MZM function in autoimmunity. Furthermore, similarities between disease states in ARE-Del(-/-) mice and SLE patients suggest that IFN-γ may not only be a product of SLE but may be critical for disease onset and progression.
Collapse
Affiliation(s)
- Deborah L Hodge
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA.
| | - Cyril Berthet
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA; Oncodesign, 20 Rue Jean Mazen, Dijon 21076, France.
| | - Vincenzo Coppola
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA; Department of Molecular Virology, Immunology and Medical Genetics at The Ohio State University, 460 W. 12th Street, Columbus, OH 43210, USA.
| | - Wolfgang Kastenmüller
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Cellular Interactions and Immunimaging Institutes of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Sigmund-Freud Str. 25, Bonn 53105, Germany.
| | - Matthew D Buschman
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA; Division of Endocrinology and Metabolism, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Paul M Schaughency
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA; Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hidekazu Shirota
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA; Department of Clinical Oncology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Anthony J Scarzello
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA.
| | - Jeff J Subleski
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA.
| | - Miriam R Anver
- Laboratory Animal Science Program (LASP), Science Applications International Corporation (SAIC), National Cancer Institute, Frederick, MD 21702, USA.
| | - John R Ortaldo
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA.
| | - Fanching Lin
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA.
| | - Della A Reynolds
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA.
| | - Michael E Sanford
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA.
| | - Philipp Kaldis
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61 Biopolis Drive, Singapore 138673, Republic of Singapore.
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | - Dennis M Klinman
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA.
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, MD 21702, USA.
| |
Collapse
|
49
|
The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells. PLoS Pathog 2014; 10:e1004302. [PMID: 25101696 PMCID: PMC4125235 DOI: 10.1371/journal.ppat.1004302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/29/2014] [Indexed: 11/19/2022] Open
Abstract
MHV68 is a murine gammaherpesvirus that infects laboratory mice and thus provides a tractable small animal model for characterizing critical aspects of gammaherpesvirus pathogenesis. Having evolved with their natural host, herpesviruses encode numerous gene products that are involved in modulating host immune responses to facilitate the establishment and maintenance of lifelong chronic infection. One such protein, MHV68 M1, is a secreted protein that has no known homologs, but has been shown to play a critical role in controlling virus reactivation from latently infected macrophages. We have previous demonstrated that M1 drives the activation and expansion of Vβ4+ CD8+ T cells, which are thought to be involved in controlling MHV68 reactivation through the secretion of interferon gamma. The mechanism of action and regulation of M1 expression are poorly understood. To gain insights into the function of M1, we set out to evaluate the site of expression and transcriptional regulation of the M1 gene. Here, using a recombinant virus expressing a fluorescent protein driven by the M1 gene promoter, we identify plasma cells as the major cell type expressing M1 at the peak of infection in the spleen. In addition, we show that M1 gene transcription is regulated by both the essential viral immediate-early transcriptional activator Rta and cellular interferon regulatory factor 4 (IRF4), which together potently synergize to drive M1 gene expression. Finally, we show that IRF4, a cellular transcription factor essential for plasma cell differentiation, can directly interact with Rta. The latter observation raises the possibility that the interaction of Rta and IRF4 may be involved in regulating a number of viral and cellular genes during MHV68 reactivation linked to plasma cell differentiation. Through coevolution with their hosts, gammaherpesviruses have acquired unique genes that aid in infection of a particular host. Here we study the regulation of the MHV68 M1 gene, which encodes a protein that modulates the host immune response. Using a strategy that allowed us to identify MHV68 infected cells in mice, we have determined that M1 expression is largely limited to the antibody producing plasma cells. In addition, we show that M1 gene expression is regulated by both cellular and viral factors, which allow the virus to fine-tune gene expression in response to environmental signals. These findings provide insights into M1 function through a better understanding of how M1 expression is regulated.
Collapse
|
50
|
Gun SY, Claser C, Tan KSW, Rénia L. Interferons and interferon regulatory factors in malaria. Mediators Inflamm 2014; 2014:243713. [PMID: 25157202 PMCID: PMC4124246 DOI: 10.1155/2014/243713] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022] Open
Abstract
Malaria is one of the most serious infectious diseases in humans and responsible for approximately 500 million clinical cases and 500 thousand deaths annually. Acquired adaptive immune responses control parasite replication and infection-induced pathologies. Most infections are clinically silent which reflects on the ability of adaptive immune mechanisms to prevent the disease. However, a minority of these can become severe and life-threatening, manifesting a range of overlapping syndromes of complex origins which could be induced by uncontrolled immune responses. Major players of the innate and adaptive responses are interferons. Here, we review their roles and the signaling pathways involved in their production and protection against infection and induced immunopathologies.
Collapse
Affiliation(s)
- Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
| | - Kevin Shyong Wei Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|