1
|
Leys SP, Grombacher L, Field D, Elliott GRD, Ho VR, Kahn AS, Reid PJ, Riesgo A, Lanna E, Bobkov Y, Ryan JF, Horton AL. A morphological cell atlas of the freshwater sponge Ephydatia muelleri with key insights from targeted single-cell transcriptomes. EvoDevo 2025; 16:1. [PMID: 39953556 PMCID: PMC11827373 DOI: 10.1186/s13227-025-00237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
How animal cell types, tissues, and regional body plans arose is a fundamental question in EvoDevo. Many current efforts attempt to link genetic information to the morphology of cells, tissues and regionalization of animal body plans using single-cell sequencing of cell populations. However, a lack of in-depth understanding of the morphology of non-bilaterian animals remains a considerable block to understanding the transitions between bilaterian and non-bilaterian cells and tissues. Sponges (Porifera), one of the earliest diverging animal phyla, pose a particular challenge to this endeavour, because their body plans lack mouths, gut, conventional muscle and nervous systems. With a goal to help bridge this gap, we have studied the morphology, behaviour and transcriptomics of cells and tissue types of an easily accessible and well-studied species of freshwater sponge, Ephydatia muelleri. New features described here include: a polarized external epithelium, a new contractile sieve cell that forms the entry to incurrent canals, motile cilia on apopyle cells at the exit of choanocyte chambers, and non-motile cilia on cells in excurrent canals and oscula. Imaging cells in vivo shows distinct behavioural characteristics of motile cells in the mesohyl. Transcriptomic phenotypes of three cell types (cystencytes, choanocytes and archaeocytes) captured live indicate that cell-type transcriptomes are distinct. Importantly, individual archaeocytes show a range of transcriptomic phenotypes which is supported by the distinct expression of different genes by subsets of this cell type. In contrast, all five choanocyte cells sampled live revealed highly uniform transcriptomes with significantly fewer genes expressed than in other cell types. Our study shows that sponges have tissues whose morphology and cell diversity are both functionally complex, but which together enable the sponge, like other metazoans, to sense and respond to stimuli.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Lauren Grombacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Daniel Field
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Glen R D Elliott
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Elliott Microscopy and Microanalysis Inc., Edmonton, AB, Canada
| | - Vanessa R Ho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Amanda S Kahn
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Moss Landing Marine Laboratories and San Jose State University, Moss Landing, CA, 95039, USA
| | - Pamela J Reid
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Ana Riesgo
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Emilio Lanna
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Universidade Federal da Bahia, Instituto de Biologia, Salvador, BA, Brazil
| | - Yuriy Bobkov
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
2
|
Simman R. Role of small intestinal submucosa extracellular matrix in advanced regenerative wound therapy. J Wound Care 2023; 32:S3-S10. [PMID: 36724085 DOI: 10.12968/jowc.2023.32.sup2.s3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Advanced regenerative therapies using cellular and tissue-based products (CTPs) can play an important role in effective management of hard-to-heal wounds. CTPs derived from allogenic or xenogenic tissues use an extracellular matrix (ECM) to provide a therapeutic ECM scaffold in the wound bed to facilitate tissue regeneration. One such example is OASIS Extracellular Matrix (Cook Biotech Incorporated), a porcine small intestinal submucosa extracellular matrix (SIS-ECM) that preclinical and clinical data have shown to be tolerable and effective in promoting tissue regeneration in hard-to-heal wounds.
Collapse
Affiliation(s)
- Richard Simman
- Professor of Plastic Surgery, University of Toledo College of Medicine and Life Sciences, and Jobst Vascular Institute, ProMedica Health Network, Toledo, Ohio, US
| |
Collapse
|
3
|
Simman R. Role of small intestinal submucosa extracellular matrix in advanced regenerative wound therapy. J Wound Care 2023; 32:S3-S10. [PMID: 36744603 DOI: 10.12968/jowc.2023.32.sup1a.s3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced regenerative therapies using cellular and tissue-based products (CTPs) can play an important role in effective management of hard-to-heal wounds. CTPs derived from allogenic or xenogenic tissues use an extracellular matrix (ECM) to provide a therapeutic ECM scaffold in the wound bed to facilitate tissue regeneration. One such example is OASIS Extracellular Matrix (Cook Biotech Incorporated), a porcine small intestinal submucosa extracellular matrix (SIS-ECM) that preclinical and clinical data have shown to be tolerable and effective in promoting tissue regeneration in hard-to-heal wounds.
Collapse
Affiliation(s)
- Richard Simman
- Professor of Plastic Surgery, University of Toledo College of Medicine and Life Sciences, and Jobst Vascular Institute, ProMedica Health Network, Toledo, Ohio, US
| |
Collapse
|
4
|
Kraus EA, Mellenthin LE, Siwiecki SA, Song D, Yan J, Janmey PA, Sweeney AM. Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics. J R Soc Interface 2022; 19:20220476. [PMID: 36259170 PMCID: PMC9579767 DOI: 10.1098/rsif.2022.0476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023] Open
Abstract
Sponges are animals that inhabit many aquatic environments while filtering small particles and ejecting metabolic wastes. They are composed of cells in a bulk extracellular matrix, often with an embedded scaffolding of stiff, siliceous spicules. We hypothesize that the mechanical response of this heterogeneous tissue to hydrodynamic flow influences cell proliferation in a manner that generates the body of a sponge. Towards a more complete picture of the emergence of sponge morphology, we dissected a set of species and subjected discs of living tissue to physiological shear and uniaxial deformations on a rheometer. Various species exhibited rheological properties such as anisotropic elasticity, shear softening and compression stiffening, negative normal stress, and non-monotonic dissipation as a function of both shear strain and frequency. Erect sponges possessed aligned, spicule-reinforced fibres which endowed three times greater stiffness axially compared with orthogonally. By contrast, tissue taken from shorter sponges was more isotropic but time-dependent, suggesting higher flow sensitivity in these compared with erect forms. We explore ecological and physiological implications of our results and speculate about flow-induced mechanical signalling in sponge cells.
Collapse
Affiliation(s)
- Emile A. Kraus
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E. Mellenthin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Sara A. Siwiecki
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dawei Song
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Paul A. Janmey
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison M. Sweeney
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Fassini D, Wilkie IC, Pozzolini M, Ferrario C, Sugni M, Rocha MS, Giovine M, Bonasoro F, Silva TH, Reis RL. Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules 2021; 22:1815-1834. [PMID: 33835787 DOI: 10.1021/acs.biomac.1c00013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Marine biodiversity is expressed through the huge variety of vertebrate and invertebrate species inhabiting intertidal to deep-sea environments. The extraordinary variety of "forms and functions" exhibited by marine animals suggests they are a promising source of bioactive molecules and provides potential inspiration for different biomimetic approaches. This diversity is familiar to biologists and has led to intensive investigation of metabolites, polysaccharides, and other compounds. However, marine collagens are less well-known. This review will provide detailed insight into the diversity of collagens present in marine species in terms of their genetics, structure, properties, and physiology. In the last part of the review the focus will be on the most common marine collagen sources and on the latest advances in the development of innovative materials exploiting, or inspired by, marine collagens.
Collapse
Affiliation(s)
- Dario Fassini
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Iain C Wilkie
- Institute of Biodiversity Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Cinzia Ferrario
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Michela Sugni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miguel S Rocha
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Francesco Bonasoro
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
6
|
Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges. Essays Biochem 2019; 63:389-405. [DOI: 10.1042/ebc20180048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
AbstractAnimals (metazoans) include some of the most complex living organisms on Earth, with regard to their multicellularity, numbers of differentiated cell types, and lifecycles. The metazoan extracellular matrix (ECM) is well-known to have major roles in the development of tissues during embryogenesis and in maintaining homoeostasis throughout life, yet insight into the ECM proteins which may have contributed to the transition from unicellular eukaryotes to multicellular animals remains sparse. Recent phylogenetic studies place either ctenophores or poriferans as the closest modern relatives of the earliest emerging metazoans. Here, we review the literature and representative genomic and transcriptomic databases for evidence of ECM and ECM-affiliated components known to be conserved in bilaterians, that are also present in ctenophores and/or poriferans. Whereas an extensive set of related proteins are identifiable in poriferans, there is a strikingly lack of conservation in ctenophores. From this perspective, much remains to be learnt about the composition of ctenophore mesoglea. The principal ECM-related proteins conserved between ctenophores, poriferans, and bilaterians include collagen IV, laminin-like proteins, thrombospondin superfamily members, integrins, membrane-associated proteoglycans, and tissue transglutaminase. These are candidates for a putative ancestral ECM that may have contributed to the emergence of the metazoans.
Collapse
|
7
|
Sprangers S, Everts V. Molecular pathways of cell-mediated degradation of fibrillar collagen. Matrix Biol 2019; 75-76:190-200. [DOI: 10.1016/j.matbio.2017.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
|
8
|
Pozzolini M, Scarfì S, Gallus L, Castellano M, Vicini S, Cortese K, Gagliani MC, Bertolino M, Costa G, Giovine M. Production, Characterization and Biocompatibility Evaluation of Collagen Membranes Derived from Marine Sponge Chondrosia reniformis Nardo, 1847. Mar Drugs 2018; 16:111. [PMID: 29596370 PMCID: PMC5923398 DOI: 10.3390/md16040111] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Abstract
Collagen is involved in the formation of complex fibrillar networks, providing the structural integrity of tissues. Its low immunogenicity and mechanical properties make this molecule a biomaterial that is extremely suitable for tissue engineering and regenerative medicine (TERM) strategies in human health issues. Here, for the first time, we performed a thorough screening of four different methods to obtain sponge collagenous fibrillar suspensions (FSs) from C. reniformis demosponge, which were then chemically, physically, and biologically characterized, in terms of protein, collagen, and glycosaminoglycans content, viscous properties, biocompatibility, and antioxidant activity. These four FSs were then tested for their capability to generate crosslinked or not thin sponge collagenous membranes (SCMs) that are suitable for TERM purposes. Two types of FSs, of the four tested, were able to generate SCMs, either from crosslinking or not, and showed good mechanical properties, enzymatic degradation resistance, water binding capacity, antioxidant activity, and biocompatibility on both fibroblast and keratinocyte cell cultures. Finally, our results demonstrate that it is possible to adapt the extraction procedure in order to alternatively improve the mechanical properties or the antioxidant performances of the derived biomaterial, depending on the application requirements, thanks to the versatility of C. reniformis extracellular matrix extracts.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Lorenzo Gallus
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genova, Via Dodecaneso 31, 16146 Genova, Italy.
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genova, Via Dodecaneso 31, 16146 Genova, Italy.
| | - Katia Cortese
- Department of Experimental Medicine (DIMES), Human Anatomy Section, University of Genova, Via De Toni 14, 16132 Genova, Italy.
| | - Maria Cristina Gagliani
- Department of Experimental Medicine (DIMES), Human Anatomy Section, University of Genova, Via De Toni 14, 16132 Genova, Italy.
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Gabriele Costa
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| |
Collapse
|
9
|
Morris PJ. THE DEVELOPMENTAL ROLE OF THE EXTRACELLULAR MATRIX SUGGESTS A MONOPHYLETIC ORIGIN OF THE KINGDOM ANIMALIA. Evolution 2017; 47:152-165. [DOI: 10.1111/j.1558-5646.1993.tb01206.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/1992] [Accepted: 05/17/1992] [Indexed: 11/28/2022]
Affiliation(s)
- Paul J. Morris
- Museum of Comparative Zoology; Harvard University; Cambridge MA 02138 USA
| |
Collapse
|
10
|
Slatter DA, Farndale RW. Structural constraints on the evolution of the collagen fibril: convergence on a 1014-residue COL domain. Open Biol 2016; 5:rsob.140220. [PMID: 25994354 PMCID: PMC4450265 DOI: 10.1098/rsob.140220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type I collagen is the fundamental component of the extracellular matrix. Its α1 gene is the direct descendant of ancestral fibrillar collagen and contains 57 exons encoding the rod-like triple-helical COL domain. We trace the evolution of the COL domain from a primordial collagen 18 residues in length to its present 1014 residues, the limit of its possible length. In order to maintain and improve the essential structural features of collagen during evolution, exons can be added or extended only in permitted, non-random increments that preserve the position of spatially sensitive cross-linkage sites. Such sites cannot be maintained unless the twist of the triple helix is close to 30 amino acids per turn. Inspection of the gene structure of other long structural proteins, fibronectin and titin, suggests that their evolution might have been subject to similar constraints.
Collapse
|
11
|
Norman M, Zdarta J, Bartczak P, Piasecki A, Petrenko I, Ehrlich H, Jesionowski T. Marine sponge skeleton photosensitized by copper phthalocyanine: A catalyst for Rhodamine B degradation. OPEN CHEM 2016. [DOI: 10.1515/chem-2016-0025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractWe present a combined approach to photo-assisted degradation processes, in which a catalyst, H2O2 and UV irradiation are used together to enhance the oxidation of Rhodamine B (RB). The heterogeneous photocatalyst was made by the process of adsorption of copper phthalocyanine tetrasulfonic acid (CuPC) onto purified spongin-based Hippospongia communis marine sponge skeleton (HcS). The product obtained, CuPC-HcS, was investigated by a variety of spectroscopic (carbon-13 nuclear magnetic resonance 13C NMR, Fourier transform infrared spectroscopy FTIR, energy-dispersive X-ray spectroscopy EDS) and microscopic techniques (scanning electron microscopy SEM, fluorescent and optical microscopy), as well as thermal analysis. The study confirms the stable combination of the adsorbent and adsorbate. For a 10 mg/L RB solution, the percentage degradation reached 95% using CuPC-HcS as a heterocatalyst. The mechanism of RB removal involves adsorption and photodegradation simultaneously.
Collapse
Affiliation(s)
- Małgorzata Norman
- 1Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965 Poznan, Poland
| | - Jakub Zdarta
- 1Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965 Poznan, Poland
| | - Przemysław Bartczak
- 1Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965 Poznan, Poland
| | - Adam Piasecki
- 2Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Jana Pawła II 24, 60965 Poznan, Poland
| | - Iaroslav Petrenko
- 3TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger 23, 09599 Freiberg, Germany
| | - Hermann Ehrlich
- 3TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger 23, 09599 Freiberg, Germany
| | - Teofil Jesionowski
- 1Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965 Poznan, Poland
- 2Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Jana Pawła II 24, 60965 Poznan, Poland
| |
Collapse
|
12
|
Pozzolini M, Scarfì S, Mussino F, Ferrando S, Gallus L, Giovine M. Molecular Cloning, Characterization, and Expression Analysis of a Prolyl 4-Hydroxylase from the Marine Sponge Chondrosia reniformis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:393-407. [PMID: 25912371 DOI: 10.1007/s10126-015-9630-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Prolyl 4-hydroxylase (P4H) catalyzes the hydroxylation of proline residues in collagen. P4H has two functional subunits, α and β. Here, we report the cDNA cloning, characterization, and expression analysis of the α and β subunits of the P4H derived from the marine sponge Chondrosia reniformis. The amino acid sequence of the α subunit is 533 residues long with an M r of 59.14 kDa, while the β subunit counts 526 residues with an M r of 58.75 kDa. Phylogenetic analyses showed that αP4H and βP4H are more related to the mammalian sequences than to known invertebrate P4Hs. Western blot analysis of sponge lysate protein cross-linking revealed a band of 240 kDa corresponding to an α2β2 tetramer structure. This result suggests that P4H from marine sponges shares the same quaternary structure with vertebrate homologous enzymes. Gene expression analyses showed that αP4H transcript is higher in the choanosome than in the ectosome, while the study of factors affecting its expression in sponge fragmorphs revealed that soluble silicates had no effect on the αP4H levels, whereas ascorbic acid strongly upregulated the αP4H mRNA. Finally, treatment with two different tumor necrosis factor (TNF)-alpha inhibitors determined a significant downregulation of αP4H gene expression in fragmorphs demonstrating, for the first time in Porifera, a positive involvement of TNF in sponge matrix biosynthesis. The molecular characterization of P4H genes involved in collagen hydroxylation, including the mechanisms that regulate their expression, is a key step for future recombinant sponge collagen production and may be pivotal to understand pathological mechanisms related to extracellular matrix deposition in higher organisms.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Territory Environment and Life Sciences, University of Genova, Via Pastore 3, 16132, Genova, Italy,
| | | | | | | | | | | |
Collapse
|
13
|
Szatkowski T, Wysokowski M, Lota G, Pęziak D, Bazhenov VV, Nowaczyk G, Walter J, Molodtsov SL, Stöcker H, Himcinschi C, Petrenko I, Stelling AL, Jurga S, Jesionowski T, Ehrlich H. Novel nanostructured hematite–spongin composite developed using an extreme biomimetic approach. RSC Adv 2015. [DOI: 10.1039/c5ra09379a] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The characteristic mineral-free fibrous skeletons (made of structural protein-spongin) of H. communis (Demospongiae: Porifera) was used as a structural template in hydrothermal synthesis of hematite (α-Fe2O3) nanoparticles.
Collapse
|
14
|
Adsorption of C.I. Natural Red 4 onto Spongin Skeleton of Marine Demosponge. MATERIALS 2014; 8:96-116. [PMID: 28787926 PMCID: PMC5455230 DOI: 10.3390/ma8010096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/18/2014] [Indexed: 01/19/2023]
Abstract
C.I. Natural Red 4 dye, also known as carmine or cochineal, was adsorbed onto the surface of spongin-based fibrous skeleton of Hippospongia communis marine demosponge for the first time. The influence of the initial concentration of dye, the contact time, and the pH of the solution on the adsorption process was investigated. The results presented here confirm the effectiveness of the proposed method for developing a novel dye/biopolymer hybrid material. The kinetics of the adsorption of carmine onto a marine sponge were also determined. The experimental data correspond directly to a pseudo-second-order model for adsorption kinetics (r2 = 0.979–0.999). The hybrid product was subjected to various types of analysis (FT-IR, Raman, 13C CP/MAS NMR, XPS) to investigate the nature of the interactions between the spongin (adsorbent) and the dye (the adsorbate). The dominant interactions between the dye and spongin were found to be hydrogen bonds and electrostatic effects. Combining the dye with a spongin support resulted with a novel hybrid material that is potentially attractive for bioactive applications and drug delivery systems.
Collapse
|
15
|
Price S, Toal S, Anandan S. The TrpA protein of Trichodesmium erythraeum IMS101 is a non-fibril-forming collagen and a component of the outer sheath. MICROBIOLOGY-SGM 2014; 160:2148-2156. [PMID: 25009239 DOI: 10.1099/mic.0.079475-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Collagen molecules are structural in nature and primarily found in eukaryotic, multicellular organisms. Recently, a collagen-like protein, TrpA, was identified and characterized in the marine cyanobacterium Trichodesmium erythraeum IMS 101, and it was shown to be involved in maintaining the structural integrity of the trichomes. The TrpA protein contains one glycine interruption in the otherwise perfectly uninterrupted collagenous domain. In this study, we used phylogenetic analysis to determine that the TrpA protein sequence is most closely associated with non-fibril-forming collagen proteins. Structural modelling and circular dichroism data suggest that the glycine insertion decreases the stability of TrpA compared to uninterrupted collagen sequences. Additionally, scanning electron microscopy revealed that TrpA is expressed entirely on the surface of the trichomes, with no specific pattern of localization. These data indicate that the TrpA protein is part of the outer sheath of this organism. As such, this protein may function to promote adhesion between individual T. erythraeum trichomes, and between this organism and heterotrophic bacteria found in the same environment.
Collapse
Affiliation(s)
- Simara Price
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Siobhan Toal
- Department of Chemistry, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Shivanthi Anandan
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Yu EM, Liu BH, Wang GJ, Yu DG, Xie J, Xia Y, Gong WB, Wang HH, Li ZF, Wei N. Molecular cloning of type I collagen cDNA and nutritional regulation of type I collagen mRNA expression in grass carp. J Anim Physiol Anim Nutr (Berl) 2013; 98:755-65. [DOI: 10.1111/jpn.12132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- E. M. Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - B. H. Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - G. J. Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - D. G. Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - J. Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - Y. Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - W. B. Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - H. H. Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - Z. F. Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - N. Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| |
Collapse
|
17
|
Bertrand S, Fuentealba J, Aze A, Hudson C, Yasuo H, Torrejon M, Escriva H, Marcellini S. A dynamic history of gene duplications and losses characterizes the evolution of the SPARC family in eumetazoans. Proc Biol Sci 2013; 280:20122963. [PMID: 23446527 DOI: 10.1098/rspb.2012.2963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The vertebrates share the ability to produce a skeleton made of mineralized extracellular matrix. However, our understanding of the molecular changes that accompanied their emergence remains scarce. Here, we describe the evolutionary history of the SPARC (secreted protein acidic and rich in cysteine) family, because its vertebrate orthologues are expressed in cartilage, bones and teeth where they have been proposed to bind calcium and act as extracellular collagen chaperones, and because further duplications of specific SPARC members produced the small calcium-binding phosphoproteins (SCPP) family that is crucial for skeletal mineralization to occur. Both phylogeny and synteny conservation analyses reveal that, in the eumetazoan ancestor, a unique ancestral gene duplicated to give rise to SPARC and SPARCB described here for the first time. Independent losses have eliminated one of the two paralogues in cnidarians, protostomes and tetrapods. Hence, only non-tetrapod deuterostomes have conserved both genes. Remarkably, SPARC and SPARCB paralogues are still linked in the amphioxus genome. To shed light on the evolution of the SPARC family members in chordates, we performed a comprehensive analysis of their embryonic expression patterns in amphioxus, tunicates, teleosts, amphibians and mammals. Our results show that in the chordate lineage SPARC and SPARCB family members were recurrently recruited in a variety of unrelated tissues expressing collagen genes. We propose that one of the earliest steps of skeletal evolution involved the co-expression of SPARC paralogues with collagenous proteins.
Collapse
Affiliation(s)
- Stephanie Bertrand
- CNRS, UMR7232, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pozzolini M, Bruzzone F, Berilli V, Mussino F, Cerrano C, Benatti U, Giovine M. Molecular characterization of a nonfibrillar collagen from the marine sponge Chondrosia reniformis Nardo 1847 and positive effects of soluble silicates on its expression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:281-293. [PMID: 22072047 DOI: 10.1007/s10126-011-9415-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
We report here the complete cDNA sequence of a nonfibrillar collagen (COLch) isolated from the marine sponge Chondrosia reniformis, Nardo 1847 using a PCR approach. COLch cDNA consists of 2,563 nucleotides and includes a 5' untranslated region (UTR) of 136 nucleotides, a 3' UTR of 198 nucleotides, and an open reading frame encoding for a protein of 743 amino acids with an estimated M (r) of 72.12 kDa. The phylogenetic analysis on the deduced amino acid sequence of C-terminal end shows that the isolated sequence belongs to the short-chain spongin-like collagen subfamily, a nonfibrillar group of invertebrate collagens similar to type IV collagen. In situ hybridization analysis shows higher expression of COLch mRNA in the cortical part than in the inner part of the sponge. Therefore, COLch seems to be involved in the formation of C. reniformis ectosome, where it could play a key role in the attachment to the rocky substrata and in the selective sediment incorporation typical of these organisms. qPCR analysis of COLch mRNA level, performed on C. reniformis tissue culture models (fragmorphs), also demonstrates that this matrix protein is directly involved in sponge healing processes and that soluble silicates positively regulate its expression. These findings confirm the essential role of silicon in the fibrogenesis process also in lower invertebrates, and they should give a tool for a sustainable production of marine collagen in sponge mariculture.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department for the Study of Territory and its Resources, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as well as experimental work on choanocyte morphology and function. Special attention is given to pinacocyte epithelia, cell junctions, and the molecules present in sponge epithelia. Studies describing the role of the pinacoderm in sensing, coordination, and secretion are reviewed. A wealth of recent work describes gene presence and expression patterns in sponge tissues during development, and we review this in the context of the previous descriptions of sponge morphology and physiology. A final section addresses recent findings of genes involved in the immune response. This review is far from exhaustive but intends rather to revisit for non-specialists key aspects of sponge morphology and physiology in light of new molecular data as a means to better understand and interpret sponge form and function today.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
20
|
Renard E, Vacelet J, Gazave E, Lapébie P, Borchiellini C, Ereskovsky AV. Origin of the neuro-sensory system: new and expected insights from sponges. Integr Zool 2011; 4:294-308. [PMID: 21392302 DOI: 10.1111/j.1749-4877.2009.00167.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The capacity of all cells to respond to stimuli implies the conduction of information at least over short distances. In multicellular organisms, more complex systems of integration and coordination of activities are necessary. In most animals, the processing of information is performed by a nervous system. Among the most basal taxa, sponges are nerveless so that it is traditionally assumed that the integrated neuro-sensory system originated only once in Eumetazoa, a hypothesis not in agreement with some recent phylogenomic studies. The aim of this review is to show that recent data on sponges might provide clues for understanding the origin of this complex system. First, sponges are able to react to external stimuli, and some of them display spontaneous movement activities. These coordinated behaviors involve nervous system-like mechanisms, such as action potentials and/or neurotransmitters. Second, genomic analyses show that sponges possess genes orthologous to those involved in the patterning or functioning of the neuro-sensory system in Eumetazoa. Finally, some of these genes are expressed in specific cells (flask cells, choanocytes). Together with ultrastructural data, this gives rise to challenging hypotheses concerning cell types that might play neuro-sensory-like roles in sponges.
Collapse
Affiliation(s)
- Emmanuelle Renard
- Centre d'océanologie de Marseille, CNRS - Aix-Marseille Université, Marseille, France.
| | | | | | | | | | | |
Collapse
|
21
|
Exposito JY, Valcourt U, Cluzel C, Lethias C. The fibrillar collagen family. Int J Mol Sci 2010; 11:407-426. [PMID: 20386646 PMCID: PMC2852846 DOI: 10.3390/ijms11020407] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 01/22/2010] [Accepted: 01/23/2010] [Indexed: 01/25/2023] Open
Abstract
Collagens, or more precisely collagen-based extracellular matrices, are often considered as a metazoan hallmark. Among the collagens, fibrillar collagens are present from sponges to humans, and are involved in the formation of the well-known striated fibrils. In this review we discuss the different steps in the evolution of this protein family, from the formation of an ancestral fibrillar collagen gene to the formation of different clades. Genomic data from the choanoflagellate (sister group of Metazoa) Monosiga brevicollis, and from diploblast animals, have suggested that the formation of an ancestral alpha chain occurred before the metazoan radiation. Phylogenetic studies have suggested an early emergence of the three clades that were first described in mammals. Hence the duplication events leading to the formation of the A, B and C clades occurred before the eumetazoan radiation. Another important event has been the two rounds of "whole genome duplication" leading to the amplification of fibrillar collagen gene numbers, and the importance of this diversification in developmental processes. We will also discuss some other aspects of fibrillar collagen evolution such as the development of the molecular mechanisms involved in the formation of procollagen molecules and of striated fibrils.
Collapse
Affiliation(s)
- Jean-Yves Exposito
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +33-4-72-72-26-77; Fax: +33-4-72-72-26-04
| | | | | | | |
Collapse
|
22
|
Kawasaki K, Buchanan AV, Weiss KM. Biomineralization in Humans: Making the Hard Choices in Life. Annu Rev Genet 2009; 43:119-42. [DOI: 10.1146/annurev-genet-102108-134242] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | - Anne V. Buchanan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | - Kenneth M. Weiss
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
23
|
Abstract
An epithelium is important for integrity, homeostasis, communication and co-ordination, and its development must have been a fundamental step in the evolution of modern metazoan body plans. Sponges are metazoans that are often said to lack a true epithelium. We assess the properties of epithelia, and review the history of studies on sponge epithelia, focusing on their homology to bilaterian epithelia, their ultrastructure, and on their ability to seal. Electron micrographs show that adherens-type junctions are present in sponges but they can appear much slighter than equivalent junctions in other metazoans. Fine septae are seen in junctions of all sponge groups, but distinct septate junctions are only known from Calcarea. Similarly, all sponges can have collagenous sheets underlying their epithelia, but only homoscleromorphs are established to have a distinct basal lamina. The presence of most, but not all, gene families known to be involved in epithelial development and function also suggests that sponge epithelia function like, and are homologous to, bilaterian epithelia. However, physiological evidence that sponge epithelia regulate their internal environment is so far lacking. Given that up to six differentiated epithelia can be recognized in sponges, distinct physiological roles are expected. Recognition that sponges have epithelia challenges the perception that sponges are only loose associations of cells, and helps to relate the biology and physiology of the body plan of the adult sponge to the biology of other metazoans.
Collapse
Affiliation(s)
- Sally P Leys
- *Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
24
|
Capellini TD, Dunn MP, Passamaneck YJ, Selleri L, Di Gregorio A. Conservation of notochord gene expression across chordates: insights from the Leprecan gene family. Genesis 2008; 46:683-96. [PMID: 18798549 PMCID: PMC3065379 DOI: 10.1002/dvg.20406] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The notochord is a defining character of the chordates, and the T-box transcription factor Brachyury has been shown to be required for notochord development in all chordates examined. In the ascidian Ciona intestinalis, at least 44 notochord genes have been identified as bona fide transcriptional targets of Brachyury. We examined the embryonic expression of a subset of murine orthologs of Ciona Brachyury target genes in the notochord to assess its conservation throughout chordate evolution. We focused on analyzing the Leprecan gene family, which in mouse is composed of three genes, as opposed to the single-copy Ciona gene. We found that all three mouse Leprecan genes are expressed in the notochord. Additionally, while Leprecan expression in C. intestinalis is confined to the notochord, expression of its mouse orthologs includes dorsal root ganglia, limb buds, branchial arches, and developing kidneys. These results have interesting implications for the evolution and development of chordates.
Collapse
Affiliation(s)
- Terence D. Capellini
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York
| | - Matthew P. Dunn
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York
| | - Yale J. Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
25
|
McCauley DW. SoxE, Type II collagen, and Evolution of the Chondrogenic Neural Crest. Zoolog Sci 2008; 25:982-9. [DOI: 10.2108/zsj.25.982] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Heino J, Huhtala M, Käpylä J, Johnson MS. Evolution of collagen-based adhesion systems. Int J Biochem Cell Biol 2008; 41:341-8. [PMID: 18790075 DOI: 10.1016/j.biocel.2008.08.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 12/22/2022]
Abstract
Collagens are large, triple-helical proteins that form fibrils and network-like structures in the extracellular matrix. The collagens may have participated in the evolution of the metazoans from their very earliest origins. Cell adhesion receptors, such as the integrins, are at least as old as the collagens. Still, the early metazoan cells might not have been able to anchor directly to collagen fibrils, since the integrin-type collagen receptors have only been identified in vertebrates. Instead, the early metazoans may have used integrin-type receptors in the recognition of collagen-binding glycoproteins. It is possible that specialized, high-avidity collagen-receptor integrins have become instrumental for the evolution of bone, cartilage, circulatory and immune systems in the chordates. In vertebrates, specific collagen-binding receptor tyrosine kinases send signals into cells after adhesion to collagen. These receptors are members of the discoidin domain receptor (DDR) group. The evolutionary history of DDRs is poorly known at this time. DDR orthologs have been found in many invertebrates, but their ability to function as collagen receptors has not yet been tested. The two main categories of collagens, fibrillar and non-fibrillar, already exist in the most primitive metazoans, such as the sponges. Interestingly, both integrin and DDR families seem to have members that favor either one or the other of these two groups of collagens.
Collapse
Affiliation(s)
- Jyrki Heino
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland.
| | | | | | | |
Collapse
|
27
|
Exposito JY, Larroux C, Cluzel C, Valcourt U, Lethias C, Degnan BM. Demosponge and sea anemone fibrillar collagen diversity reveals the early emergence of A/C clades and the maintenance of the modular structure of type V/XI collagens from sponge to human. J Biol Chem 2008; 283:28226-35. [PMID: 18697744 DOI: 10.1074/jbc.m804573200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagens are often considered a metazoan hallmark, with the fibril-forming fibrillar collagens present from sponges to human. From evolutionary studies, three fibrillar collagen clades (named A, B, and C) have been defined and shown to be present in mammals, whereas the emergence of the A and B clades predates the protostome/deuterostome split. Moreover, several C clade fibrillar collagen chains are present in some invertebrate deuterostome genomes but not in protostomes whose genomes have been sequenced. The newly sequenced genomes of the choanoflagellate Monosiga brevicollis, the demosponge Amphimedon queenslandica, and the cnidarians Hydra magnipapillata (Hydra) and Nematostella vectensis (sea anemone) allow us to have a better understanding of the origin and evolution of fibrillar collagens. Analysis of these genomes suggests that an ancestral fibrillar collagen gene arose at the dawn of the Metazoa, before the divergence of sponge and eumetazoan lineages. The duplication events leading to the formation of the three fibrillar collagen clades (A, B, and C) occurred before the eumetazoan radiation. Interestingly, only the B clade fibrillar collagens preserved their characteristic modular structure from sponge to human. This observation is compatible with the suggested primordial function of type V/XI fibrillar collagens in the initiation of the formation of the collagen fibrils.
Collapse
Affiliation(s)
- Jean-Yves Exposito
- Institut de Biologie et Chimie des Protéines (IBCP), 7 passage du Vercors, Lyon, F69367, France, CNRS, UMR 5086.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The collagen family of extracellular matrix proteins has played a fundamental role in the evolution of multicellular animals. At the present, 28 triple helical proteins have been named as collagens and they can be divided into several subgroups based on their structural and functional properties. In tissues, the cells are anchored to collagenous structures. Often the interaction is indirect and mediated by matrix glycoproteins, but cells also express receptors, which have the ability to directly bind to the triple helical domains in collagens. Some receptors bind to sites that are abundant in all collagens. However, increasing evidence indicates that the coevolution of collagens and cell adhesion mechanisms has given rise to receptors that bind to specific motifs in collagens. These receptors may also recognize the different members of the large collagen family in a selective manner. This review summarizes the present knowledge about the properties of collagen subtypes as cell adhesion proteins.
Collapse
Affiliation(s)
- Jyrki Heino
- Department of Biochemistry and Food Chemistry, University of Turku, Arcanum, Vatselankatu 2, FI-20014 Turku, Finland.
| |
Collapse
|
29
|
Phylogenetic position of sponges in early metazoan evolution and bionic applications of siliceous sponge spicules. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0402-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Huxley-Jones J, Robertson DL, Boot-Handford RP. On the origins of the extracellular matrix in vertebrates. Matrix Biol 2006; 26:2-11. [PMID: 17055232 DOI: 10.1016/j.matbio.2006.09.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/30/2006] [Accepted: 09/06/2006] [Indexed: 11/27/2022]
Abstract
Extracellular matrix (ECM) is a key metazoan characteristic. In addition to providing structure and orientation to tissues, it is involved in many cellular processes such as adhesion, migration, proliferation and differentiation. Here we provide a comprehensive analysis of ECM molecules focussing on when vertebrate specific matrices evolved. We identify 60 ECM genes and 20 associated processing enzymes in the genome of the urochordate Ciona intestinalis. A comparison with vertebrate and protostome genomes has permitted the identification of both a core set of metazoan matrix genes and vertebrate-specific innovations in the ECM. We have identified a few potential cases of de novo vertebrate ECM gene innovation, but the majority of ECM genes have resulted from duplication of pre-existing genes present in the ancestral vertebrate. In conclusion, the modern complexity we see in vertebrate ECM has come about largely by duplication and modification of pre-existing matrix molecules. Extracellular matrix genes and their processing enzymes appear to be over-represented in the vertebrate genome suggesting that these genes played an active role enabling and underpinning the evolution of vertebrates.
Collapse
Affiliation(s)
- Julie Huxley-Jones
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
31
|
Abstract
Sponges are considered the oldest living animal group and provide important insights into the earliest evolutionary processes in the Metazoa. This paper reviews the evidence that sponge stem cells have essential roles in cellular specialization, embryogenesis and Bauplan formation. Data indicate that sponge archaeocytes not only represent germ cells but also totipotent stem cells. Marker genes have been identified which are expressed in totipotent stem cells and gemmule cells. Furthermore, genes are described for the three main cell lineages in sponge, which share a common origin from archaeocytes and result in the differentiation of skeletal, epithelial, and contractile cells.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
| |
Collapse
|
32
|
Aouacheria A, Cluzel C, Lethias C, Gouy M, Garrone R, Exposito JY. Invertebrate Data Predict an Early Emergence of Vertebrate Fibrillar Collagen Clades and an Anti-incest Model. J Biol Chem 2004; 279:47711-9. [PMID: 15358765 DOI: 10.1074/jbc.m408950200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrillar collagens are involved in the formation of striated fibrils and are present from the first multicellular animals, sponges, to humans. Recently, a new evolutionary model for fibrillar collagens has been suggested (Boot-Handford, R. P., Tuckwell, D. S., Plumb, D. A., Farrington Rock, C., and Poulsom, R. (2003) J. Biol. Chem. 278, 31067-31077). In this model, a rare genomic event leads to the formation of the founder vertebrate fibrillar collagen gene prior to the early vertebrate genome duplications and the radiation of the vertebrate fibrillar collagen clades (A, B, and C). Here, we present the modular structure of the fibrillar collagen chains present in different invertebrates from the protostome Anopheles gambiae to the chordate Ciona intestinalis. From their modular structure and the use of a triple helix instead of C-propeptide sequences in phylogenetic analyses, we were able to show that the divergence of A and B clades arose early during evolution because alpha chains related to these clades are present in protostomes. Moreover, the event leading to the divergence of B and C clades from a founder gene arose before the appearance of vertebrates; altogether these data contradict the Boot-Handford model. Moreover, they indicate that all the key steps required for the formation of fibrils of variable structure and functionality arose step by step during invertebrate evolution.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Institut de Biologie et Chimie des Protéines, CNRS, Unité Mixte de Recherche 5086, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Université Claude Bernard-Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
33
|
Müller WEG, Schwertner H, Müller IM. Porifera a reference phylum for evolution and bioprospecting: the power of marine genomics. Keio J Med 2004; 53:159-165. [PMID: 15477729 DOI: 10.2302/kjm.53.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The term Urmetazoa, as the hypothetical metazoan ancestor, was introduced to highlight the finding that all metazoan phyla including the Porifera [sponges] derived from one common ancestor. Analyses of sponge genomes, from Demospongiae, Calcarea and Hexactinellida have permitted the reconstruction of the evolutionary trail from Fungi to Metazoa. This has provided evidence that the characteristic evolutionary novelties of Metazoa existing in Porifera share high sequence similarities and in some aspects also functional similarities to related polypeptides found in other metazoan phyla. It is surprising that the genome of Porifera is large and comprises substantially more genes than Protostomia and Deuterostomia. On the basis of solid taxonomy and ecological data, the high value of this phylum for human application becomes obvious especially with regard to the field of chemical ecology and the hope to find novel potential drugs for clinical use. In addition, the benefit of efforts in understanding molecular biodiversity with focus on sponges can be seen in the fact that these animals as "living fossils" allow to stethoscope into the past of our globe especially with respect to the evolution of Metazoa.
Collapse
Affiliation(s)
- Werner E G Müller
- Institute for Physiological Chemistry, Department of Applied Molecular Biology, University, Duesbergweg, Mainz, Germany.
| | | | | |
Collapse
|
34
|
Cole AG, Hall BK. Cartilage is a metazoan tissue; integrating data from nonvertebrate sources. ACTA ZOOL-STOCKHOLM 2004. [DOI: 10.1111/j.0001-7272.2004.00159.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Miura-Yokota Y, Matsubara Y, Ebihara T, Hattori S, Irie S. A cysteine-activated protease isolated from Todarodes pacificus squid degrades collagen below its denaturation temperature. Connect Tissue Res 2004; 45:109-21. [PMID: 15763926 DOI: 10.1080/03008200490464857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Collagen purified from the mantle muscle of the Japanese common squid, Todarodes pacificus, showed autodegradation during incubation under acidic conditions at 25 degrees C, without the addition of exogenous enzymes. This suggests that the collagenolytic proteases bind to collagen tightly through the steps of collagen preparation. Collagenolytic activity also was detected in a crude extract of mantle muscle, and leupeptin and E-64 were observed to inhibit collagenolytic activity within the collagen fraction and muscle extract. We purified these collagenolytic cysteine proteases by leupeptin column chromatography and cellulose acetate membrane electrophoresis. Optimal enzymatic activity was observed at pH 3.5, and collagenolytic activity was completely suppressed at neutral or alkaline pH. The purified enzymes were 28 kDa and 25 kDa in size, and both had gelatinolytic activity, as detected by gelatin zymography, and cut the specific site of denatured collagen alpha chain. The purified enzymes degraded squid collagen at 25 degrees C, which is 2.5 degrees lower than the temperature at which squid collagen normally denatures; however, the proteases were ineffective at 20 degrees C. Interestingly, the isolated proteases were capable of digesting both squid and bovine gelatin. In this article, we describe collagenolytic cysteine proteases that bind to the collagen of Todarodes pacificus, thereby digesting it by attacking microunfolding regions generated by incubation 2-3 degrees C below the denaturation temperature.
Collapse
|
36
|
Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM. Bauplan of Urmetazoa: Basis for Genetic Complexity of Metazoa. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:53-92. [PMID: 15219781 DOI: 10.1016/s0074-7696(04)35002-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sponges were first grouped to the animal-plants or plant-animals then to the Zoophyta or Mesozoa and finally to the Parazoa. Only after the application of molecular biological techniques was it possible to place the Porifera monophyletically with the other metazoan phyla, justifying a unification of all multicellular animals to only one kingdom, the Metazoa. The first strong support came from the discovery that cell-cell and cell-matrix adhesion molecules that were cloned from sponges and were subsequently expressed share a high DNA sequence and protein function similarity with the corresponding molecules of other metazoans. Besides these evolutionary novelties for Metazoa, sponges also have morphogens and transcription factors in common with other metazoan phyla. Surprisingly, even those elements exist in Porifera, which are characteristic for pattern and axis formation. Recent studies showed that epithelial layers of sponges are sealed against the extracellular milieu through tight-junction proteins. The cell culture system from sponges, the primmorphs, was suitable for understanding morphogenetic events. Finally, stem cell marker genes were isolated, which underscored that sponge cells have the capacity to differentiate. In the relatively short period of time, approximately 200 million years, the basic pathways had to be established that allowed the transition for multicellular organisms to a colonial system through the formation of adhesion molecules; based on the development of a complex immune system and the apoptotic machinery of an integrated system, the Urmetazoa, which evolved approximately 800 million years ago, could be reached. Hence, the Bauplan of the hypothetical Urmetazoa can now be constructed according to genomic regulatory systems similar to those found in higher Metazoa. These data caused a paradigmatic change; the Porifera are complex and simple but by far not primitive.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, D-55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Müller WE, Krasko A, Le Pennec G, Steffen R, Wiens M, Ammar MSA, Müller IM, Schröder HC. Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein--collagen--myotrophin. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 33:195-221. [PMID: 14518374 DOI: 10.1007/978-3-642-55486-5_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Werner E Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Koch M, Laub F, Zhou P, Hahn RA, Tanaka S, Burgeson RE, Gerecke DR, Ramirez F, Gordon MK. Collagen XXIV, a vertebrate fibrillar collagen with structural features of invertebrate collagens: selective expression in developing cornea and bone. J Biol Chem 2003; 278:43236-44. [PMID: 12874293 DOI: 10.1074/jbc.m302112200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue-specific assembly of fibers composed of the major collagen types I and II depends in part on the formation of heterotypic fibrils, using the quantitatively minor collagens V and XI. Here we report the identification of a new fibrillar-like collagen chain that is related to the fibrillar alpha1(V), alpha1(XI), and alpha2(XI) collagen polypeptides and which is coexpressed with type I collagen in the developing bone and eye. The new collagen was designated the alpha1(XXIV) chain and consists of a long triple helical domain flanked by typical propeptide-like sequences. The carboxyl propeptide is classic, with 8 conserved cysteine residues. The amino-terminal peptide contains a thrombospodin-N-terminal-like (TSP) motif and a highly charged segment interspersed with several tyrosine residues, like the fibril diameter-regulating collagen chains alpha1(V) and alpha1(XI). However, a short imperfection in the triple helix makes alpha1(XXIV) unique from other chains of the vertebrate fibrillar collagen family. The triple helical interruption and additional select features in both terminal peptides are common to the fibrillar chains of invertebrate organisms. Based on these data, we propose that collagen XXIV is an ancient molecule that may contribute to the regulation of type I collagen fibrillogenesis at specific anatomical locations during fetal development.
Collapse
Affiliation(s)
- Manuel Koch
- Institute for Biochemistry II, University of Cologne, Joseph-Stelzmann Strasse 52, Cologne 50931, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Andrup L, Jensen GB, Wilcks A, Smidt L, Hoflack L, Mahillon J. The patchwork nature of rolling-circle plasmids: comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid 2003; 49:205-32. [PMID: 12749835 DOI: 10.1016/s0147-619x(03)00015-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacillus thuringiensis, the entomopathogenic bacteria from the Bacillus cereus group, harbors numerous extrachromosomal molecules whose sizes vary from 2 to more than 200kb. Apart from the genes coding for the biopesticide delta-endotoxins located on large plasmids, little information has been obtained on these plasmids and their contribution to the biology of their host. In this paper, we embarked on a detailed comparison of six small rolling-circle replicating (RCR) plasmids originating from two major B. thuringiensis strains. The complete nucleotide sequences of plasmid pGI1, pGI2, pGI3, pTX14-1, pTX14-2, and pTX14-3 have been obtained and compared. Replication functions, comprising, for each plasmid, the gene encoding the Rep-protein, double-strand origin of replication (dso), single-strand origin of replication (sso), have been identified and analyzed. Two new families, or homology groups, of RCR plasmids originated from the studies of these plasmids (Group VI based on pGI3 and Group VII based on pTX14-3). On five of the six plasmids, loci involved in conjugative mobilization (Mob-genes and origin of transfer (oriT)) were identified. Plasmids pTX14-1, pTX14-2, and pTX14-3 each harbor an ORF encoding a polypeptide containing a central domain with repetitive elements similar to eukaryotic collagen (Gly-X-Y triplets). These genes were termed bcol for Bacillus-collagen-like genes.
Collapse
Affiliation(s)
- Lars Andrup
- National Institute of Occupational Health, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
40
|
Müller WEG, Müller IM. Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 37:1-33. [PMID: 15825638 DOI: 10.1007/978-3-642-55519-0_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sponges [phylum Porifera] form the basis of the metazoan kingdom and represent the evolutionary earliest phylum still extant. Hence, as living fossils, they are the taxon closest related to the hypothetical ancestor of all Metazoa, the Urmetazoa. Until recently, it was still unclear whether sponges are provided with a defined body plan. Only after the cloning, expression and functional studies of characteristic metazoan genes, could it be demonstrated that these animals comprise the structural elements which allow the sponge cells to organize themselves according to a body plan. Adhesion molecules involved in cell-cell and cell-matrix interactions have been identified. Among the cell-cell adhesion molecules the aggregation factor (AF) is the prominent particle. It is composed of a core protein that is associated with the adhesion molecules, a 36 kDa as well as a 86 kDa polypeptide. A galectin functions as a linker of the AF to the cell-membrane-associated receptor, the aggregation receptor (AR). The most important extracellular matrix molecules are collagen- and fibronectin-like molecules. These proteins interact with the cell-membrane receptors, the integrins. In addition, a neuronal receptor has been identified, which--together with the identified neuroactive molecules--indicate the existence of a primordial neuronal network already in Porifera. The primmorph system, aggregated cells that retain the capacity to proliferate and differentiate, has been used to demonstrate that a homeobox-containing gene, Iroquois, is expressed during canal formation in primmorphs. The formation of a body plan in sponges is supported by skeletal elements, the spicules, which are composed in Demospongiae as well as in Hexactinellida of amorphous, noncrystalline silica. In Demospongiae the spicule formation is under enzymic control of silicatein. Already at least one morphogen has been identified in sponges, myotrophin, which is likely to be involved in the axis formation. Taken together, these elements support the recent conclusions that sponges are not merely nonorganized cell aggregates, but already complex animals provided with a defined body plan.
Collapse
Affiliation(s)
- W E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | |
Collapse
|
41
|
Exposito JY, Cluzel C, Garrone R, Lethias C. Evolution of collagens. THE ANATOMICAL RECORD 2002; 268:302-16. [PMID: 12382326 DOI: 10.1002/ar.10162] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The extracellular matrix is often defined as the substance that gives multicellular organisms (from plants to vertebrates) their structural integrity, and is intimately involved in their development. Although the general functions of extracellular matrices are comparable, their compositions are quite distinct. One of the specific components of metazoan extracellular matrices is collagen, which is present in organisms ranging from sponges to humans. By comparing data obtained in diploblastic, protostomic, and deuterostomic animals, we have attempted to trace the evolution of collagens and collagen-like proteins. Moreover, the collagen story is closely involved with the emergence and evolution of metazoa. The collagen triple helix is one of numerous modules that arose during the metazoan radiation which permit the formation of large multimodular proteins. One of the advantages of this module is its involvement in oligomerization, in which it acts as a structural organizer that is not only relatively resistant to proteases but also permits the creation of multivalent supramolecular networks.
Collapse
Affiliation(s)
- Jean-Yves Exposito
- Institut de Biologie et Chimie des Protéines, Université Claude Bernard, Lyon, France.
| | | | | | | |
Collapse
|
42
|
Rigo C, Hartmann DJ, Bairati A. Electrophoretic and immunochemical study of collagens from Sepia officinalis cartilage. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1572:77-84. [PMID: 12204335 DOI: 10.1016/s0304-4165(02)00280-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electrophoretic and Western blot studies were conducted on collagen fractions extracted from Sepia officinalis (cuttlefish) cartilage using a modified salt precipitation method developed for the isolation of vertebrate collagens. The antibodies used had been raised in rabbit against the following types of collagen: Sepia I-like; fish I; human I; chicken I, II, and IX; rat V; and calf IX and XI. The main finding was that various types of collagen are present in Sepia cartilage, as they are in vertebrate hyaline cartilage. However, the main component of Sepia cartilage is a heterochain collagen similar to vertebrate type I, and this is associated with minor forms similar to type V/XI and type IX. The cephalopod type I-like heterochain collagen can be considered a first step toward the evolutionary development of a collagen analogous to the typical collagen of vertebrate cartilage (type II homochain). The type V/XI collagen present in molluscs, and indeed all phyla from the Porifera upwards, may represent an ancestral collagen molecule conserved relatively unchanged throughout evolution. Type IX-like collagen seems to be essential for the formation of cartilaginous tissue.
Collapse
Affiliation(s)
- C Rigo
- Istologia Anatomia Umana, Dipartimento di Fisiologia e Biochimica Generali, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | |
Collapse
|
43
|
Dubois GM, Haftek Z, Crozet C, Garrone R, Le Guellec D. Structure and spatio temporal expression of the full length DNA complementary to RNA coding for alpha2 type I collagen of zebrafish. Gene 2002; 294:55-65. [PMID: 12234667 DOI: 10.1016/s0378-1119(02)00770-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Twenty distinct genetic types of collagen have been identified up to now. Their structure and function are not completely elucidated. We have chosen zebrafish as a model to bring information about the role of collagen during embryogenesis. In the present study, we isolated four overlapping DNA complementary to RNA clones covering the 4879 nucleotides of a zebrafish messenger RNA (mRNA) encoding a fibrillar procollagen chain. The comparison of its primary structure with known other vertebrate collagens allowed to conclude that it encodes collagen pro-alpha2(I) chain. The 5' untranslated region showed a typical stem-loop structure with three ATG codons which is found in mammals types I and III collagen chains (but not in type II), which are expressed in the same tissues. This suggests that the supposed regulatory role of the stem loop structure could be tissue specific. The comparison of the Gly-Gly doublets found along the helical domain of several species allowed to speculate that the Gly-Gly repeats could be a poikilotherm feature. Expression of pro-alpha2(I) was examined during zebrafish development by reverse transcriptase-polymerase chain reaction and in situ hybridization on whole embryo and tissue section. Col1a2 was expressed as early as stage10 h post fertilization (hpf) and two peaks of expression were observed at 20 and 48 hpf. alpha2 mRNAs, whose presence suggests a collagen synthesis, were detected principally in the superficial cell layers surrounding 20-72 hpf embryos which are characterized by an acellular collagen stratum. At 26-30 days, fibroblasts invade the dermis and take over from the epithelial cells to synthesize collagen. This suggests a fine regulation of collagen synthesis in these cells that remains to be elucidated. alpha2 mRNA were also detected in other tissues such as the tail fin primordium and the notochord primordium suggesting a participation of type I collagen in a pathway for notochord and tail formation.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Collagen/genetics
- Collagen Type I/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- In Situ Hybridization
- Mammals/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repetitive Sequences, Amino Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Ghislaine Morvan Dubois
- Institut de Biologie et Chimie des Protéines, CNRS, UMR 5086, 7 passage du Vercors, 69367, Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
44
|
Swatschek D, Schatton W, Kellermann J, Müller WEG, Kreuter J. Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 2002; 53:107-13. [PMID: 11777758 DOI: 10.1016/s0939-6411(01)00192-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A previously described isolation procedure for collagen of the marine sponge Chondrosia reniformis Nardo was modified for scaling-up reasons yielding 30% of collagen (freeze-dried collagen in relation to freeze-dried sponge). Light microscope observations showed fibrous structures. Transmission electron microscopy studies proved the collagenous nature of this material: high magnifications showed the typical periodic banding-pattern of collagen fibres. However, the results of the amino acid analysis differed from most publications, presumably due to impurities that still were present. In agreement with earlier studies, sponge collagen was insoluble in dilute acid mediums and all solvents investigated. Dispersion of collagen was facilitated when dilute basic mediums were employed. The acid-base properties of the material were investigated by titration. Furthermore, a sponge extract was incorporated in two different formulations and compared with their extract-free analogues and a commercially available collagen containing product with respect to their effects on biophysical skin parameters. None of the preparations had a noticeable influence on the physiological skin surface pH. Skin hydration increased only slightly. However, all tested formulations showed a significant increase of lipids measured by sebumetry.
Collapse
Affiliation(s)
- Dieter Swatschek
- Institute of Pharmaceutical Technology, Johann Wolfgang Goethe 1-1 University, Biocenter, Marie-Curie-Strasse 9, 60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
45
|
King N, Carroll SB. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci U S A 2001; 98:15032-7. [PMID: 11752452 PMCID: PMC64978 DOI: 10.1073/pnas.261477698] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of the Metazoa from protozoans is one of the major milestones in life's history. The genetic and developmental events involved in this evolutionary transition are unknown but may have involved the evolution of genes required for signaling and gene regulation in metazoans. The genome of animal ancestors may be reconstructed by identification of animal genes that are shared with related eukaryotes, particularly those that share a more recent ancestry and cell biology with animals. The choanoflagellates have long been suspected to be closer relatives of animals than are fungi, the closest outgroup of animals for which comparative genomic information is available. Phylogenetic analyses of choanoflagellate and animal relationships based on small subunit rDNA sequence, however, have yielded ambiguous and conflicting results. We find that analyses of four conserved proteins from a unicellular choanoflagellate, Monosiga brevicollis, provide robust support for a close relationship between choanoflagellates and Metazoa, suggesting that comparison of the complement of expressed genes from choanoflagellates and animals may be informative concerning the early evolution of metazoan genomes. We have discovered in M. brevicollis the first receptor tyrosine kinase (RTK), to our knowledge, identified outside of the Metazoa, MBRTK1. The architecture of MBRTK1, which includes multiple extracellular ligand-binding domains, resembles that of RTKs in sponges and humans and suggests the ability to receive and transduce signals. Thus, choanoflagellates express genes involved in animal development that are not found in other eukaryotes and that may be linked to the origin of the Metazoa.
Collapse
Affiliation(s)
- N King
- Howard Hughes Medical Institute, University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
46
|
Sarras MP, Deutzmann R. Hydra and Niccolo Paganini (1782-1840)--two peas in a pod? The molecular basis of extracellular matrix structure in the invertebrate, Hydra. Bioessays 2001; 23:716-24. [PMID: 11494320 DOI: 10.1002/bies.1101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The body wall of Hydra is organized as an epithelial bilayer with an intervening extracellular matrix (ECM). Molecular and biochemical analyses of Hydra ECM have established that it contains components similar to those seen in more complicated vertebrates such as human. In terms of biophysical parameters, Hydra ECM is highly flexible; a property that facilitates continuous movements along the organism's longitudinal and radial axis. A more rigid ECM, as in vertebrates, would not be compatible with this degree of movement. The flexible nature of Hydra ECM can now be explained in part by the unique structure of the organism's collagens. Interestingly, some aspects of the structural features of Hydra collagens mimic what is seen in Ehlers-Danlos syndrome, an inherited condition in humans that results in an abnormally flexible ECM that can be debilitating in extreme cases. This review will focus on structure-function relationships of the ECM of Hydra.
Collapse
Affiliation(s)
- M P Sarras
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66160, USA.
| | | |
Collapse
|
47
|
Nikko E, Van de Vyver G, Richelle-Maurer E. Retinoic acid down-regulates the expression of EmH-3 homeobox-containing gene in the freshwater sponge Ephydatia muelleri. Mech Ageing Dev 2001; 122:779-94. [PMID: 11337008 DOI: 10.1016/s0047-6374(01)00235-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of retinoic acid (RA), a common morphogen and gene expression regulator in vertebrates, were studied in the freshwater sponge Ephydatia muelleri, both on morphogenesis and on the expression of EmH-3 homeobox-containing gene. At 0.3 microM, RA had no noticeable influence on sponge development, slightly up-regulating EmH-3 expression. In contrast, in sponges reared in 10, 8 microM and to a lesser extent 2 microM RA, there was a strong down-regulation of EmH-3 expression after hatching. This induced modifications in cell composition and morphology, greatly disturbing normal development. Archaeocytes kept the features found in newly hatched sponges while choanocytes and a functional aquiferous system were completely absent. The inhibition of morphogenesis and down-regulation of EmH-3 expression were reversible when sponges were no longer subjected to RA. After RA removal, EmH-3 expression returned to the high values found in untreated sponges, archaeocytes differentiated into choanocytes and sponges achieved a normal development. These results clearly show that, in freshwater sponges, the most primitive metazoan, RA may also act as a morphogen, regulating the expression of a homeobox-containing gene. They demonstrate that the expression of EmH-3 is necessary for the differentiation of archaeocytes into choanocytes and hence for the formation of a complete functional aquiferous system.
Collapse
Affiliation(s)
- E Nikko
- Laboratoire de Physiologie Cellulaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, CP 300, Rue des professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium.
| | | | | |
Collapse
|
48
|
Müller WE. Review: How was metazoan threshold crossed? The hypothetical Urmetazoa. Comp Biochem Physiol A Mol Integr Physiol 2001; 129:433-60. [PMID: 11423315 DOI: 10.1016/s1095-6433(00)00360-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The origin of Metazoa remained--until recently--the most enigmatic of all phylogenetic problems. Sponges [Porifera] as "living fossils", positioned at the base of multicellular animals, have been used to answer basic questions in metazoan evolution by molecular biological techniques. During the last few years, cDNAs/genes coding for informative proteins have been isolated and characterized from sponges, especially from the marine demosponges Suberites domuncula and Geodia cydonium. The analyses of their deduced amino acid sequences allowed a molecular biological resolution of the monophyly of Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin and galectin as prominent examples, cell-surface receptors (tyrosine kinase receptors), elements of nerve system/sensory cells (metabotropic glutamate receptor), homologs/modules of an immune system [immunoglobulin-like molecules, SRCR- and SCR-repeats, cytokines, (2-5)A synthetase], as well as morphogens (myotrophin) classify the Porifera as true Metazoa. As "living fossils", provided with simple, primordial molecules allowing cell-cell and cell-matrix adhesion, as well as processes of signal transduction as known in a more complex manner from higher Metazoa, sponges also show peculiarities. Tissues of sponges are rich in telomerase activity, suggesting a high plasticity in the determination of cell lineages. It is concluded that molecular biological studies with sponges as models will not only help to understand the evolution to the Metazoa but also the complex, hierarchical regulatory network of cells in higher Metazoa [reviewed in Progress in Molecular Subcellular Biology, vols. 19, 21 (1998) Springer Verlag]. The hypothetical ancestral animal, the Urmetazoa, from which the metazoan lineages diverged (more than 600 MYA), may have had the following characteristics: cell adhesion molecules with intracellular signal transduction pathways, morphogens/growth factors forming gradients, a functional immune system, and a primordial nerve cell/receptor system.
Collapse
Affiliation(s)
- W E Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
| |
Collapse
|
49
|
Deutzmann R, Fowler S, Zhang X, Boone K, Dexter S, Boot-Handford RP, Rachel R, Sarras MP. Molecular, biochemical and functional analysis of a novel and developmentally important fibrillar collagen (Hcol-I) in hydra. Development 2000; 127:4669-80. [PMID: 11023869 DOI: 10.1242/dev.127.21.4669] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The body wall of hydra (a member of the phylum Cnidaria) is structurally reduced to an epithelial bilayer with an intervening extracellular matrix (ECM). Previous studies have established that cell-ECM interactions are important for morphogenesis and cell differentiation in this simple metazoan. The ECM of hydra is particularly interesting because it represents a primordial form of matrix. Despite progress in our understanding of hydra ECM, we still know little about the nature of hydra collagens. In the current study we provide a molecular, biochemical and functional analysis of a hydra fibrillar collagen that has similarity to vertebrate type I and type II collagens. This fibrillar collagen has been named hydra collagen-I (Hcol-I) because of its structure and because it is the first ECM collagen to be identified in hydra. It represents a novel member of the collagen family. Similar to vertebrate type I and II collagens, Hcol-I contains an N-terminal propeptide-like domain, a triple helical domain containing typical Gly-X-Y repeats and a C-terminal propeptide domain. The overall identity to vertebrate fibrillar collagens is about 30%, while the identity of the C-terminal propeptide domain is 50%. Because the N-terminal propeptide domain is retained after post-translational processing, Hcol-I does not form thick fibers as seen in vertebrates. This was confirmed using transmission electron microscopy to study rotary shadow images of purified Hcol-I. In addition, absence of crucial lysine residues and an overall reduction in proline content, results in reduced crosslinking of fibrils and increased flexibility of the molecule, respectively. These structural changes in Hcol-I help to explain the flexible properties of hydra ECM. Immunocytochemical studies indicate that Hcol-I forms the 10 nm fibrils that comprise the majority of molecules in the central fibrous zone of hydra ECM. The central fibrous zone resides between the two subepithelial zones where hydra laminin is localized. While previous studies have shown that basal lamina components like laminin are expressed by the endoderm, in situ hybridisation studies show that Hcol-I mRNA expression is restricted to the ectoderm. Hcol-I expression is upregulated during head regeneration, and antisense studies using thio-oligonucleotides demonstrated that blocking the translation of Hcol-I leads to a reversible inhibition of head morphogenesis during this regenerative process. Taken in total, the data presented in this study indicate that Hcol-I is required for morphogensis in hydra and represents a novel fibrillar collagen whose structural characteristics help to explain the unique biophysical properties of hydra ECM. Interestingly, the structure of Hcol-I mimics what is seen in Ehlers-Danlos syndrome type VII in humans; an inherited pathological condition that leads to joint and skin abnormalities. Hcol-I therefore illustrates an adaptive trait in which the normal physiological situation in hydra translates into a pathological condition in humans.
Collapse
Affiliation(s)
- R Deutzmann
- Institut fur Biochemie I, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, Müller IM, Müller WE. Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 2000; 14:2022-31. [PMID: 11023986 DOI: 10.1096/fj.00-0043com] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The body wall of sponges (Porifera), the lowest metazoan phylum, is formed by two epithelial cell layers of exopinacocytes and endopinacocytes, both of which are associated with collagen fibrils. Here we show that a myotrophin-like polypeptide from the sponge Suberites domuncula causes the expression of collagen in cells from the same sponge in vitro. The cDNA of the sponge myotrophin was isolated; the potential open reading frame of 360 nt encodes a 120 aa long protein (Mr of 12,837). The sequence SUBDOMYOL shares high similarity with the known metazoan myotrophin sequences. The expression of SUBDOMYOL is low in single cells but high after formation of primmorph aggregates as well as in intact animals. Recombinant myotrophin was found to stimulate protein synthesis by fivefold, as analyzed by incorporation studies using [3H] lysine. In addition, it is shown that after incubation of single cells with myotrophin, the primmorphs show an unusual elongated, oval-shaped appearance. It is demonstrated that in the presence of recombinant myotrophin, the cells up-regulate the expression of the collagen gene. The cDNA for S. domuncula collagen was isolated; the deduced aa sequence shows that the collagenous internal domain is rather short, with only 24 G-x-y collagen triplets. We conclude that the sponge myotrophin causes in homologous cells the same/similar effect as the cardiac myotrophin in mammalian cells, where it is involved in initiation of cardial ventricular hypertrophy. We assume that an understanding of sponge molecular cell biology will also contribute to a further elucidation of human diseases, here of the cardiovascular system.
Collapse
Affiliation(s)
- H C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|