1
|
Bikle DD. Ligand-Independent Actions of the Vitamin D Receptor: More Questions Than Answers. JBMR Plus 2021; 5:e10578. [PMID: 34950833 PMCID: PMC8674770 DOI: 10.1002/jbm4.10578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Our predominant understanding of the actions of vitamin D involve binding of its ligand, 1,25(OH)D, to the vitamin D receptor (VDR), which for its genomic actions binds to discrete regions of its target genes called vitamin D response elements. However, chromatin immunoprecipitation‐sequencing (ChIP‐seq) studies have observed that the VDR can bind to many sites in the genome without its ligand. The number of such sites and how much they coincide with sites that also bind the liganded VDR vary from cell to cell, with the keratinocyte from the skin having the greatest overlap and the intestinal epithelial cell having the least. What is the purpose of the unliganded VDR? In this review, I will focus on two clear examples in which the unliganded VDR plays a role. The best example is that of hair follicle cycling. Hair follicle cycling does not need 1,25(OH)2D, and Vdr lacking the ability to bind 1,25(OH)2D can restore hair follicle cycling in mice otherwise lacking Vdr. This is not true for other functions of VDR such as intestinal calcium transport. Tumor formation in the skin after UVB radiation or the application of chemical carcinogens also appears to be at least partially independent of 1,25(OH)2D in that Vdr null mice develop such tumors after these challenges, but mice lacking Cyp27b1, the enzyme producing 1,25(OH)2D, do not. Examples in other tissues emerge when studies comparing Vdr null and Cyp27b1 null mice are compared, demonstrating a more severe phenotype with respect to bone mineral homeostasis in the Cyp27b1 null mouse, suggesting a repressor function for VDR. This review will examine potential mechanisms for these ligand‐independent actions of VDR, but as the title indicates, there are more questions than answers with respect to this role of VDR. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology University of California San Francisco, San Francisco VA Health Center San Francisco CA USA
| |
Collapse
|
2
|
Bikle DD. The Vitamin D Receptor as Tumor Suppressor in Skin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:285-306. [PMID: 32918224 DOI: 10.1007/978-3-030-46227-7_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cutaneous malignancies including melanomas and keratinocyte carcinomas (KC) are the most common types of cancer, occurring at a rate of over one million per year in the United States. KC, which include both basal cell carcinomas and squamous cell carcinomas, are substantially more common than melanomas and form the subject of this chapter. Ultraviolet radiation (UVR), both UVB and UVA, as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVB is also required for vitamin D synthesis in the skin. Keratinocytes are the major cell in the epidermis. These cells not only produce vitamin D but contain the enzymatic machinery to metabolize vitamin D to its active metabolite, 1,25(OH)2D, and express the receptor for this metabolite, the vitamin D receptor (VDR). This allows the cell to respond to the 1,25(OH)2D that it produces. Based on our own data and that reported in the literature, we conclude that vitamin D signaling in the skin suppresses UVR-induced epidermal tumor formation. In this chapter we focus on four mechanisms by which vitamin D signaling suppresses tumor formation. They are inhibition of proliferation/stimulation of differentiation with discussion of the roles of hedgehog, Wnt/β-catenin, and hyaluronan/CD44 pathways in mediating vitamin D regulation of proliferation/differentiation, regulation of the balance between oncogenic and tumor suppressor long noncoding RNAs, immune regulation, and promotion of DNA damage repair (DDR).
Collapse
Affiliation(s)
- Daniel D Bikle
- Medicine and Dermatology, VA Medical Center and University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Affiliation(s)
- Ivana Bozic
- Program for Evolutionary Dynamics and
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195
| | - Martin A. Nowak
- Program for Evolutionary Dynamics and
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
4
|
Abstracts. Toxicol Pathol 2016. [DOI: 10.1177/019262339202000415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Extended Abstracts. Toxicol Pathol 2016. [DOI: 10.1177/019262339702500633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Platform Presentations. Toxicol Pathol 2016. [DOI: 10.1177/019262339302100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Springer S, Yi KH, Park J, Rajpurohit A, Price AJ, Lauring J. Engineering targeted chromosomal amplifications in human breast epithelial cells. Breast Cancer Res Treat 2015; 152:313-21. [PMID: 26099605 PMCID: PMC4491111 DOI: 10.1007/s10549-015-3468-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 01/28/2023]
Abstract
Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including “sawtooth” patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes.
Collapse
Affiliation(s)
- Simeon Springer
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, CRB 1 Room 146, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Changes in gene copy number are among the most frequent mutational events in all genomes and were among the mutations for which a physical basis was first known. Yet mechanisms of gene duplication remain uncertain because formation rates are difficult to measure and mechanisms may vary with position in a genome. Duplications are compared here to deletions, which seem formally similar but can arise at very different rates by distinct mechanisms. Methods of assessing duplication rates and dependencies are described with several proposed formation mechanisms. Emphasis is placed on duplications formed in extensively studied experimental situations. Duplications studied in microbes are compared with those observed in metazoan cells, specifically those in genomes of cancer cells. Duplications, and especially their derived amplifications, are suggested to form by multistep processes often under positive selection for increased copy number.
Collapse
Affiliation(s)
- Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, California 95819-6077
| | - John R Roth
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| |
Collapse
|
9
|
Bikle DD, Elalieh H, Welsh J, Oh D, Cleaver J, Teichert A. Protective role of vitamin D signaling in skin cancer formation. J Steroid Biochem Mol Biol 2013; 136:271-9. [PMID: 23059470 PMCID: PMC3596439 DOI: 10.1016/j.jsbmb.2012.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 12/26/2022]
Abstract
Vitamin D sufficiency is associated with protection against malignancy in a number of tissues clinically, and a strong body of evidence from animal and cell culture studies supports this protective role. Cancers in the skin differ, however, in that higher serum levels of 25OHD are associated with increased basal cell carcinomas (BCC), the most common form of epidermal malignancy. This result may be interpreted as indicating the role of UVR (spectrum 280-320) in producing vitamin D in the skin as well as causing those DNA mutations and proliferative changes that lead to epidermal malignancies. Recent animal studies have shown that mice lacking the vitamin D receptor (VDR) are predisposed to developing skin tumors either from chemical carcinogens such as 7,12-dimethylbenzanthracene (DMBA) or chronic UVR exposure. Such studies suggest that vitamin D production and subsequent signaling through the VDR in the skin may have evolved in part as a protective mechanism against UVR induced epidermal cancer formation. In this manuscript we provide evidence indicating that vitamin D signaling protects the skin from cancer formation by controlling keratinocyte proliferation and differentiation, facilitating DNA repair, and suppressing activation of the hedgehog (Hh) pathway following UVR exposure. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Daniel D Bikle
- Department of Medicine, San Francisco VA Medical Center and University of California, San Francisco, CA, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Bikle DD. Protective actions of vitamin D in UVB induced skin cancer. Photochem Photobiol Sci 2013; 11:1808-16. [PMID: 22990497 DOI: 10.1039/c2pp25251a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-melanoma skin cancers (NMSC) are the most common type of cancer, occurring at a rate of over 1 million per year in the United States. Although their metastatic potential is generally low, they can and do metastasize, especially in the immune compromised host, and their surgical treatment is often quite disfiguring. Ultraviolet radiation (UVR) as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVR is also required for vitamin D synthesis in the skin. Based on our own data and that reported in the literature, we hypothesize that the vitamin D produced in the skin serves to suppress UVR epidermal tumor formation. In this review we will first discuss the evidence supporting the conclusion that the vitamin D receptor (VDR), with or without its ligand 1,25-dihydroxyvitamin D, limits the propensity for cancer formation following UVR. We will then explore three potential mechanisms for this protection: inhibition of proliferation and stimulation of differentiation, immune regulation, and stimulation of DNA damage repair (DDR).
Collapse
Affiliation(s)
- Daniel D Bikle
- Department of Medicine, San Francisco VA Medical Center and University of California, San Francisco, CA, USA.
| |
Collapse
|
11
|
Marotta M, Chen X, Inoshita A, Stephens R, Budd GT, Crowe JP, Lyons J, Kondratova A, Tubbs R, Tanaka H. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications. Breast Cancer Res 2012. [PMID: 23181561 PMCID: PMC4053137 DOI: 10.1186/bcr3362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Segmental duplications (low-copy repeats) are the recently duplicated genomic segments in the human genome that display nearly identical (> 90%) sequences and account for about 5% of euchromatic regions. In germline, duplicated segments mediate nonallelic homologous recombination and thus cause both non-disease-causing copy-number variants and genomic disorders. To what extent duplicated segments play a role in somatic DNA rearrangements in cancer remains elusive. Duplicated segments often cluster and form genomic blocks enriched with both direct and inverted repeats (complex genomic regions). Such complex regions could be fragile and play a mechanistic role in the amplification of the ERBB2 gene in breast tumors, because repeated sequences are known to initiate gene amplification in model systems. Methods We conducted polymerase chain reaction (PCR)-based assays for primary breast tumors and analyzed publically available array-comparative genomic hybridization data to map a common copy-number breakpoint in ERBB2-amplified primary breast tumors. We further used molecular, bioinformatics, and population-genetics approaches to define duplication contents, structural variants, and haplotypes within the common breakpoint. Results We found a large (> 300-kb) block of duplicated segments that was colocalized with a common-copy number breakpoint for ERBB2 amplification. The breakpoint that potentially initiated ERBB2 amplification localized in a region 1.5 megabases (Mb) on the telomeric side of ERBB2. The region is very complex, with extensive duplications of KRTAP genes, structural variants, and, as a result, a paucity of single-nucleotide polymorphism (SNP) markers. Duplicated segments are varied in size and degree of sequence homology, indicating that duplications have occurred recurrently during genome evolution. Conclusions Amplification of the ERBB2 gene in breast tumors is potentially initiated by a complex region that has unusual genomic features and thus requires rigorous, labor-intensive investigation. The haplotypes we provide could be useful to identify the potential association between the complex region and ERBB2 amplification.
Collapse
|
12
|
Shen L, Nishioka T, Guo J, Chen C. Geminin functions downstream of p53 in K-ras-induced gene amplification of dihydrofolate reductase. Cancer Res 2012; 72:6153-62. [PMID: 23026135 DOI: 10.1158/0008-5472.can-12-1862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA strand breakage and perturbation of cell-cycle progression contribute to gene amplification events that can drive cancer. In cells lacking p53, DNA damage does not trigger an effective cell-cycle arrest and in this setting promotes gene amplification. This is also increased in cells harboring oncogenic Ras, in which cell-cycle arrest is perturbed and ROS levels that cause DNA single strand breaks are elevated. This study focused on the effects of v-K-ras and p53 on Methotrexate (MTX)-mediated DHFR amplification. Rat lung epithelial cells expressing v-K-ras or murine lung cancer LKR cells harboring active K-ras continued cell-cycle progression when treated with MTX. However, upon loss of p53, amplification of DHFR and formation of MTX-resistant colonies occurred. Expression levels of cyclin A, Geminin, and Cdt1 were increased in v-K-ras transfectants. Geminin was sufficient to prevent the occurrence of multiple replications via interaction with Cdt1 after MTX treatment, and DHFR amplification proceeded in v-K-ras transfectants that possess a functional p53 in the absence of geminin. Taken together, our findings indicate that p53 not only regulates cell-cycle progression, but also functions through geminin to prevent DHFR amplification and protect genomic integrity.
Collapse
Affiliation(s)
- Ling Shen
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
13
|
Lack of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is accompanied by increased CK2α' levels. Mol Cell Biochem 2011; 356:139-47. [PMID: 21750982 DOI: 10.1007/s11010-011-0954-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 01/24/2023]
Abstract
DNA-PKcs is the catalytic subunit of DNA-dependent protein kinase, an enzyme necessary for non-homologous end-joining (NHEJ) and hence repair of DNA double strand breaks. Characterization of two isogenic cell lines, M059K and M059J, which are DNA-PKcs-proficient and -deficient, respectively, revealed that lack of DNA-PKcs is accompanied by an increase in the protein level of one of the catalytic isozymes of protein kinase CK2, i.e., CK2α' and a concomitant increase in CK2 activity. The increase was also detectable at the mRNA level as measured by quantitative real time PCR. However, no increase at the DNA level was observed either by comparative PCR or fluorescent in situ hybridization indicating that gene amplification is not involved. Interestingly, only CK2α' was increased and not the other two subunits of CK2, i.e., CK2β or CK2α. In addition, the increase in CK2α' protein level was also observed in a DNA-PKcs-deficient mouse cell line.
Collapse
|
14
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
15
|
Ruiz-Herrera A, Smirnova A, Khoriauli L, Nergadze SG, Mondello C, Giulotto E. Gene amplification in human cells knocked down for RAD54. Genome Integr 2011; 2:5. [PMID: 21418575 PMCID: PMC3074559 DOI: 10.1186/2041-9414-2-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/18/2011] [Indexed: 12/18/2022] Open
Abstract
Background In mammalian cells gene amplification is a common manifestation of genome instability promoted by DNA double-strand breaks (DSBs). The repair of DSBs mainly occurs through two mechanisms: non-homologous end-joining (NHEJ) and homologous recombination (HR). We previously showed that defects in the repair of DSBs via NHEJ could increase the frequency of gene amplification. In this paper we explored whether a single or a combined defect in DSBs repair pathways can affect gene amplification. Results We constructed human cell lines in which the expression of RAD54 and/or DNA-PKcs was constitutively knocked-down by RNA interference. We analyzed their radiosensitivity and their capacity to generate amplified DNA. Our results showed that both RAD54 and DNA-PKcs deficient cells are hypersensitive to γ-irradiation and generate methotrexate resistant colonies at a higher frequency compared to the proficient cell lines. In addition, the analysis of the cytogenetic organization of the amplicons revealed that isochromosome formation is a prevalent mechanism responsible for copy number increase in RAD54 defective cells. Conclusions Defects in the DSBs repair mechanisms can influence the organization of amplified DNA. The high frequency of isochromosome formation in cells deficient for RAD54 suggests that homologous recombination proteins might play a role in preventing rearrangements at the centromeres.
Collapse
Affiliation(s)
- Aurora Ruiz-Herrera
- Dipartimento di Genetica e Microbiologia "Adriano Buzzati-Traverso", Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Klein A, Li N, Nicholson JM, McCormack AA, Graessmann A, Duesberg P. Transgenic oncogenes induce oncogene-independent cancers with individual karyotypes and phenotypes. ACTA ACUST UNITED AC 2010; 200:79-99. [PMID: 20620590 DOI: 10.1016/j.cancergencyto.2010.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/25/2022]
Abstract
Cancers are clones of autonomous cells defined by individual karyotypes, much like species. Despite such karyotypic evidence for causality, three to six synergistic mutations, termed oncogenes, are generally thought to cause cancer. To test single oncogenes, they are artificially activated with heterologous promoters and spliced into the germ line of mice to initiate cancers with collaborating spontaneous oncogenes. Because such cancers are studied as models for the treatment of natural cancers with related oncogenes, the following must be answered: 1) which oncogenes collaborate with the transgenes in cancers; 2) how do single transgenic oncogenes induce diverse cancers and hyperplasias; 3) what maintains cancers that lose initiating transgenes; 4) why are cancers aneuploid, over- and underexpressing thousands of normal genes? Here we try to answer these questions with the theory that carcinogenesis is a form of speciation. We postulate that transgenic oncogenes initiate carcinogenesis by inducing aneuploidy. Aneuploidy destabilizes the karyotype by unbalancing teams of mitosis genes. This instability thus catalyzes the evolution of new cancer species with individual karyotypes. Depending on their degree of aneuploidy, these cancers then evolve new subspecies. To test this theory, we have analyzed the karyotypes and phenotypes of mammary carcinomas of mice with transgenic SV40 tumor virus- and hepatitis B virus-derived oncogenes. We found that (1) a given transgene induced diverse carcinomas with individual karyotypes and phenotypes; (2) these karyotypes coevolved with newly acquired phenotypes such as drug resistance; (3) 8 of 12 carcinomas were transgene negative. Having found one-to-one correlations between individual karyotypes and phenotypes and consistent coevolutions of karyotypes and phenotypes, we conclude that carcinogenesis is a form of speciation and that individual karyotypes maintain cancers as they maintain species. Because activated oncogenes destabilize karyotypes and are dispensable in cancers, we conclude that they function indirectly, like carcinogens. Such oncogenes would thus not be valid models for the treatment of cancers.
Collapse
Affiliation(s)
- Andreas Klein
- Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Institut für Biochemie, Monbijoustrasse 2, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Kwei KA, Kung Y, Salari K, Holcomb IN, Pollack JR. Genomic instability in breast cancer: pathogenesis and clinical implications. Mol Oncol 2010; 4:255-66. [PMID: 20434415 PMCID: PMC2904860 DOI: 10.1016/j.molonc.2010.04.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/27/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022] Open
Abstract
Breast cancer is a heterogeneous disease, appreciable by molecular markers, gene-expression profiles, and most recently, patterns of genomic alteration. In particular, genomic profiling has revealed three distinct patterns of DNA copy-number alteration: a "simple" type with few gains or losses of whole chromosome arms, an "amplifier" type with focal high-level DNA amplifications, and a "complex" type marked by numerous low-amplitude changes and copy-number transitions. The three patterns are associated with distinct gene-expression subtypes, and preferentially target different loci in the genome (implicating distinct cancer genes). Moreover, the different patterns of alteration imply distinct underlying mechanisms of genomic instability. The amplifier pattern may arise from transient telomere dysfunction, although new data suggest ongoing "amplifier" instability. The complex pattern shows similarity to breast cancers with germline BRCA1 mutation, which also exhibit "basal-like" expression profiles and complex-pattern genomes, implicating a possible defect in BRCA1-associated repair of DNA double-strand breaks. As such, targeting presumptive DNA repair defects represents a promising area of clinical investigation. Future studies should clarify the pathogenesis of breast cancers with amplifier and complex-pattern genomes, and will likely identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Kevin A Kwei
- Department of Pathology, Stanford University School of Medicine, CCSR-3245A, 269 Campus Drive, Stanford, CA 94305-5176, USA
| | | | | | | | | |
Collapse
|
18
|
MacLaren A, Slavin D, McGowan CH. Chk2 protects against radiation-induced genomic instability. Radiat Res 2009; 172:463-72. [PMID: 19772467 DOI: 10.1667/rr1603.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The murine Chk2 kinase is activated after exposure to ionizing radiation and is necessary for p53-dependent apoptosis, but the role Chk2 plays in determining genomic stability is poorly understood. By analyzing the sensitivity of Chk2-deficient murine and human cells to a range of DNA-damaging agents, we show that Chk2 deficiency results in resistance to agents that generate double-strand breaks but not to other forms of damage. Surprisingly, the absence of Chk2 results in increased sensitivity to UV-radiation-induced DNA damage. Defective apoptosis after radiation-induced DNA damage may result in genomic instability; therefore, the consequences of Chk2 deficiency on genomic instability were assayed using an in vitro screen. Gene amplification was not detected in untreated Chk2(-/-) cells, but the rate of gene amplification after irradiation was elevated and was similar to that found in p53 compromised cells. A synergistic increase in genomic instability was seen after disruption of both Chk2 and p53 function, indicating that the two proteins have non-redundant roles in regulating genome stability after irradiation. The data demonstrate that Chk2 functions to maintain genome integrity after radiation-induced damage and has important implications for the use of Chk2 inhibitors as adjuvant cancer therapy.
Collapse
Affiliation(s)
- Ann MacLaren
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
19
|
Shammas MA, Shmookler Reis RJ, Koley H, Batchu RB, Li C, Munshi NC. Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood 2009; 113:2290-7. [PMID: 19050310 PMCID: PMC2652372 DOI: 10.1182/blood-2007-05-089193] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 04/20/2008] [Indexed: 11/20/2022] Open
Abstract
A prominent feature of most if not all cancers is a striking genetic instability, leading to ongoing accrual of mutational changes, some of which underlie tumor progression, including acquisition of invasiveness, drug resistance, and metastasis. Thus, the molecular basis for the generation of this genetic diversity in cancer cells has important implications in understanding cancer progression. Here we report that homologous recombination (HR) activity is elevated in multiple myeloma (MM) cells and leads to an increased rate of mutation and progressive accumulation of genetic variation over time. We demonstrate that the inhibition of HR activity in MM cells by small inhibitory RNA (siRNAs) targeting recombinase leads to significant reduction in the acquisition of new genetic changes in the genome and, conversely, the induction of HR activity leads to significant elevation in the number of new mutations over time and development of drug resistance in MM cells. These data identify dysregulated HR activity as a key mediator of DNA instability and progression of MM, with potential as a therapeutic target.
Collapse
Affiliation(s)
- Masood A Shammas
- Department of Medicine, VA Health Care System and Harvard Medical School Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Taylor WR, Grabovich A. Targeting the Cell Cycle to Kill Cancer Cells. Pharmacology 2009. [DOI: 10.1016/b978-0-12-369521-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Dorn ES, Chastain PD, Hall JR, Cook JG. Analysis of re-replication from deregulated origin licensing by DNA fiber spreading. Nucleic Acids Res 2009; 37:60-9. [PMID: 19010964 PMCID: PMC2615611 DOI: 10.1093/nar/gkn912] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/22/2008] [Accepted: 10/29/2008] [Indexed: 01/12/2023] Open
Abstract
A major challenge each human cell-division cycle is to ensure that DNA replication origins do not initiate more than once, a phenomenon known as re-replication. Acute deregulation of replication control ultimately causes extensive DNA damage, cell-cycle checkpoint activation and cell death whereas moderate deregulation promotes genome instability and tumorigenesis. In the absence of detectable increases in cellular DNA content however, it has been difficult to directly demonstrate re-replication or to determine if the ability to re-replicate is restricted to a particular cell-cycle phase. Using an adaptation of DNA fiber spreading we report the direct detection of re-replication on single DNA molecules from human chromosomes. Using this method we demonstrate substantial re-replication within 1 h of S phase entry in cells overproducing the replication factor, Cdt1. Moreover, a comparison of the HeLa cancer cell line to untransformed fibroblasts suggests that HeLa cells produce replication signals consistent with low-level re-replication in otherwise unperturbed cell cycles. Re-replication after depletion of the Cdt1 inhibitor, geminin, in an untransformed fibroblast cell line is undetectable by standard assays but readily quantifiable by DNA fiber spreading analysis. Direct evaluation of re-replicated DNA molecules will promote increased understanding of events that promote or perturb genome stability.
Collapse
Affiliation(s)
- Elizabeth S. Dorn
- Department of Biochemistry and Biophysics and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Paul D. Chastain
- Department of Biochemistry and Biophysics and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Jonathan R. Hall
- Department of Biochemistry and Biophysics and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
22
|
Vitamin D Receptor, UVR, and Skin Cancer: A Potential Protective Mechanism. J Invest Dermatol 2008; 128:2357-61. [DOI: 10.1038/jid.2008.249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Albertson DG. Gene amplification in cancer. Trends Genet 2006; 22:447-55. [PMID: 16787682 DOI: 10.1016/j.tig.2006.06.007] [Citation(s) in RCA: 376] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/26/2006] [Accepted: 06/08/2006] [Indexed: 02/07/2023]
Abstract
Gene amplification is a copy number increase of a restricted region of a chromosome arm. It is prevalent in some tumors and is associated with overexpression of the amplified gene(s). Amplified DNA can be organized as extrachromosomal elements, as repeated units at a single locus or scattered throughout the genome. Common chromosomal fragile sites, defects in DNA replication or telomere dysfunction might promote amplification. Some regions of amplification are complex, yet elements of the pattern are reproduced in different tumor types. A genetic basis for amplification is suggested by its relative frequency in some tumor subtypes, and its occurrence in "early" preneoplastic lesions. Clinically, amplification has prognostic and diagnostic usefulness, and is a mechanism of acquired drug resistance.
Collapse
Affiliation(s)
- Donna G Albertson
- Cancer Research Institute and Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Li R, Hehlman R, Sachs R, Duesberg P. Chromosomal alterations cause the high rates and wide ranges of drug resistance in cancer cells. ACTA ACUST UNITED AC 2006; 163:44-56. [PMID: 16271955 DOI: 10.1016/j.cancergencyto.2005.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/30/2005] [Accepted: 05/02/2005] [Indexed: 11/30/2022]
Abstract
Conventional mutation-selection theories have failed to explain (i) how cancer cells become spontaneously resistant against cytotoxic drugs at rates of up to 10(-3) per cell generation, orders higher than gene mutation, even in cancer cells; (ii) why resistance far exceeds a challenging drug-a state termed multidrug resistance; (iii) why resistance is associated with chromosomal alterations and proportional to their numbers; and (iv) why resistance is totally dependent on aneuploidy. We propose here that cancer-specific aneuploidy generates drug resistance via chromosomal alterations. According to this mechanism, aneuploidy varies the numbers and structures of chromosomes automatically, because it corrupts the many teams of proteins that segregate, synthesize, and repair chromosomes. Aneuploidy is thus a steady source of chromosomal variation from which, in classical Darwinian terms, resistance-specific aneusomies are selected in the presence of chemotherapeutic drugs. Some of the thousands of unselected genes that hitchhike with resistance-specific aneusomies can thus generate multidrug resistance. To test this hypothesis, we determined the rates of chromosomal alterations in clonal cultures of human breast and colon cancer lines by dividing the fraction of nonclonal karyotypes by the number of generations of the clone. These rates were about 10(-2) per cell generation, orders higher than mutation. Chromosome numbers and structures were determined in metaphases hybridized with color-coded chromosome-specific DNA probes. Further, we tested puromycin-resistant subclones of these lines for resistance-specific aneusomies. Resistant subclones differed from parental lines in four to seven specific aneusomies, of which different subclones shared some. The degree of resistance was roughly proportional to the number of these aneusomies. Thus, aneuploidy is the primary cause of the high rates and wide ranges of drug resistance in cancer cells.
Collapse
Affiliation(s)
- Ruhong Li
- Department of Molecular and Cell Biology, Donner Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
25
|
Tolstonog GV, Li G, Shoeman RL, Traub P. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA. DNA Cell Biol 2005; 24:85-110. [PMID: 15699629 DOI: 10.1089/dna.2005.24.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic intermediate filament (cIF) proteins interact strongly with single-stranded (ss) DNAs and RNAs, particularly with G-rich sequences. To test the hypothesis that this interaction depends on special nucleotide sequences and, possibly, higher order structures of ssDNA, a random mixture of mouse genomic ssDNA fragments generated by a novel "whole ssDNA genome PCR" technique via RNA intermediates was subjected to three rounds of affinity binding to in vitro reconstituted vimentin IFs at physiological ionic strength with intermediate PCR amplification of the bound ssDNA segments. Nucleotide sequence and computer folding analysis of the vimentin-selected fragments revealed an enrichment in microsatellites, predominantly of the (GT)n type, telomere DNA, and C/T-rich sequences, most of which, however, were incapable of folding into stable stem-loop structures. Because G-rich sequences were underrepresented in the vimentin-bound fraction, it had to be assumed that such sequences require intramolecular folding or lateral assembly into multistrand structures to be able to stably interact with vimentin, but that this requirement was inadequately fulfilled under the conditions of the selection experiment. For that reason, the few vimentin-selected G-rich ssDNA fragments and a number of telomere models were analyzed for their capacity to form inter- and intramolecular Gquadruplexes (G4 DNAs) under optimized conditions and to interact as such with vimentin and its type III relatives, glial fibrillary acidic protein, and desmin. Band shift assays indeed demonstrated differential binding of the cIF proteins to parallel four-stranded G4 DNAs and, with lower affinity, to bimolecular G'2 and unimolecular G'4 DNA configurations, whereby the transition regions from four- to single-strandedness played an additional role in the binding reaction. In this respect, the binding activity of cIF proteins was comparable with that toward other noncanonical DNA structures, like ds/ss DNA forks, triplex DNA, four-way junction DNA and Z-DNA, which also involve configurational transitions in their interaction with the filament proteins. Association of the cIF proteins with the corresponding nonfolded G-rich ssDNAs was negligible. Considering the almost universal involvement of ssDNA regions and G-quadruplexes in nuclear processes, including DNA transcription and recombination as well as telomere maintenance and dynamics, it is plausible to presume that cIF proteins as complementary constituents of the nuclear matrix participate in the cell- and tissue-specific regulation of these processes.
Collapse
|
26
|
Palmiter RD. Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc Natl Acad Sci U S A 2004; 101:4918-23. [PMID: 15041749 PMCID: PMC387349 DOI: 10.1073/pnas.0401022101] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells protect themselves from zinc toxicity by inducing proteins such as metallothionein (MT) that bind it tightly, by sequestering it in organelles, or by exporting it. In this study, the interplay between zinc binding by MT and its efflux by zinc transporter 1 (ZnT1) was examined genetically. Inactivation of the Znt1 gene in baby hamster kidney (BHK) cells that do not express their Mt genes results in a zinc-sensitive phenotype and a high level of "free" zinc. Restoration of Mt gene expression increases resistance to zinc toxicity approximately 4-fold, but only slightly reduces free zinc levels. Expression of ZnT1 provides greater protection (approximately 7-fold) and lowers free zinc substantially. Selection for zinc resistance in BHK cells that cannot synthesize either MT or ZnT1 is ineffective. However, parental BHK cells that grow in high concentrations (>500 microM) of zinc can be selected; these cells have amplified their endogenous Znt1 genes. The Znt1 gene is also amplified in zinc-resistant mouse cells that cannot induce their Mt genes. However, if Mt genes can be expressed, then they are preferentially amplified. Thus, both ZnT1 and MT genes contribute to zinc resistance in BHK cells, whereas ZnT1 plays a larger role in regulating free zinc levels.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, Box 357370, University of Washington, Seattle, WA 98195-7370, USA.
| |
Collapse
|
27
|
Serra M, Reverter-Branchat G, Maurici D, Benini S, Shen JN, Chano T, Hattinger CM, Manara MC, Pasello M, Scotlandi K, Picci P. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol 2004; 15:151-60. [PMID: 14679136 DOI: 10.1093/annonc/mdh004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To evaluate the impact of dihydrofolate reductase (DHFR) and reduced folate carrier (RFC) genes on methotrexate (MTX) resistance in osteosarcoma cells in relation to retinoblastoma (RB1) gene status. MATERIALS AND METHODS A series of human osteosarcoma cell lines-either sensitive or resistant to MTX-and 16 osteosarcoma tumour samples were used in this study. RESULTS In U-2OS MTX-resistant variants, and in other RB1-positive cell lines, MTX resistance was associated with increased levels of DHFR and with a slight decrease of RFC gene expression. In Saos-2 MTX-resistant variants, and in another RB1-negative cell line, development of MTX resistance was associated with a decrease in expression of RFC, without any significant involvement of DHFR. In osteosarcoma clinical samples, amplification of the DHFR gene at clinical onset appeared to be more frequent in RB1-positive compared with RB1-negative tumours. CONCLUSIONS Amplification of the DHFR gene may occur more frequently in the presence of RB1-mediated negative regulation of its activity and can be present at clinical onset in osteosarcoma patients. Simultaneous evaluation of RFC, DHFR and RB1 gene status at the time of diagnosis may become the basis for the identification of potentially MTX-unresponsive osteosarcoma patients, who could benefit from treatment protocols with alternative antifolate drugs.
Collapse
Affiliation(s)
- M Serra
- Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Breast tumors display a wide variety of genomic alterations. This review focuses on DNA copy number variations in these tumors as measured by the recently developed microarray-based form of comparative genomic hybridization. The capabilities of this new technology are reviewed. Initial applications of array CGH to the analysis of breast cancer, and the mechanisms by which the particular types of copy number changes might arise are discussed.
Collapse
Affiliation(s)
- Donna G Albertson
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA.
| |
Collapse
|
29
|
Spruill MD, Song B, Whong WZ, Ong T. Proto-oncogene amplification and overexpression in cadmium-induced cell transformation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2002; 65:2131-2144. [PMID: 12515591 DOI: 10.1080/00984100290071379] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cadmium (Cd) is an essential material used in the battery, metal-coating, and alloy industries. In addition to these industrial uses, it is also a component of cigarette smoke. Therefore, exposure to cadmium is widespread and presents a considerable health concern. Cadmium is known to be a carcinogen; however, the possible mechanism of carcinogenesis with regards to the activation and inactivation of cancer-related genes has not yet been fully elucidated. In this study, amplification, expression, and point mutation of cancer-related genes associated with Cd-induced cell transformation in BALB/c-3T3 cells were studied. Six proto-oncogenes (K-ras, c-myc, c-fos, c-jun, c-sis, and erbB), as well as the p53 tumor suppressor, were investigated for gene amplification using differential polymerase chain reaction (PCR), while the expression of the proteins produced by these genes was evaluated by Western blot analysis. Point mutations in K-ras and p53 were studied by PCR restriction fragment length polymorphism analysis and DNA sequencing. There were no point mutations observed in codons 12, 13, and 61 of K-ras or in exons 4-10 of p53 and no observed differences in the levels of any of the proteins studied. Among 10 Cd-induced transformed cell lines, significant gene amplification was found for c-myc and c-jun in 50% and 80% of the cell lines, respectively. Chromosome painting was performed to confirm that this amplification was not simply due to additional copies of the chromosomes carrying these oncogenes. In addition, reverse-transcription PCR (RT-PCR) was performed to confirm increased expression of c-myc and c-jun. These results suggest that cell transformation induced by Cd may be attributed, at least in part, to gene amplification of c-myc and c-jun and that some of the Cd-transformed cells may possess neoplastic potential resulting from genomic instability.
Collapse
Affiliation(s)
- M D Spruill
- Health Effects Laboratory Division, Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | | | | | | |
Collapse
|
30
|
Masuda A, Takahashi T. Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene 2002; 21:6884-97. [PMID: 12362271 DOI: 10.1038/sj.onc.1205566] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chromosomal abnormality is one of the hallmarks of neoplastic cells, and the persistent presence of chromosome instability (CIN) has been demonstrated in human cancers, including lung cancer. Recent progress in molecular and cellular biology as well as cytogenetics has shed light on the underlying mechanisms and the biological and clinical significance of chromosome abnormalities and the CIN phenotype. Chromosome abnormalities can be classified broadly into numerical (i.e., aneuploidy) and structural alterations (e.g., deletion, translocation, homogenously staining region (HSR), double minutes (DMs)). However, both alterations usually occur in the same cells, suggesting some overlap in their underlying mechanisms. Missegregation of chromosomes may result from various causes, including defects of mitotic spindle checkpoint, abnormal centrosome formation and failure of cytokinesis, while structural alterations of chromosomes may be caused especially by failure in the repair of DNA double-strand breaks (DSBs) due to the impairment of DNA damage checkpoints and/or DSB repair systems. Recent studies also suggest that telomere erosion may be involved. The consequential acquisition of the CIN phenotype would give lung cancer cells an excellent opportunity to efficiently alter their characteristics so as to be more malignant and suitable to their microenvironment, thereby gaining a selective growth advantage.
Collapse
Affiliation(s)
- Akira Masuda
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | |
Collapse
|
31
|
Hollander MC, Fornace AJ. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene 2002; 21:6228-33. [PMID: 12214253 DOI: 10.1038/sj.onc.1205774] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomic instability has been a recognized feature of many human tumors for decades. Until recently, however, there was little insight into potential mechanisms for this phenomenon. Recent work has shown first, that increased centrosome numbers (also referred to as centrosome amplification) often accompany genomic instability and second, that when centrosome numbers are increased, cells become genetically unstable. Deletion of Gadd45a leads to centrosome amplification and consequent abnormal mitosis and aneuploidy. Gadd45a is known to be involved in a G2 checkpoint and may be involved in the normal progression from G2 to M and its coordination with S phase events. Whether these functions contribute to prevention of centrosome amplification is being investigated. However, potential mechanisms can be proposed based on known protein associations with Gadd45a, as well as proteins that regulate Gadd45a transcription and are also required for efficient coordination of centrosome duplication and DNA synthesis.
Collapse
|
32
|
Abstract
A pivotal study reveals a long-sought-after mechanism for gene amplification and provides important implications for oncogenesis.
Collapse
Affiliation(s)
- Thea D Tlsty
- Department of Pathology, UCSF Comprehensive Cancer Center, University of California at San Francisco, 94143, USA.
| |
Collapse
|
33
|
Münger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 2001; 20:7888-98. [PMID: 11753671 DOI: 10.1038/sj.onc.1204860] [Citation(s) in RCA: 418] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human papillomavirus (HPV) E7 protein is one of only two viral proteins that remain expressed in HPV-associated human cancers. HPV E7 proteins share structural and functional similarities with oncoproteins encoded by other small DNA tumor viruses such as adenovirus E1A and SV40 large tumor antigen. The HPV E7 protein plays an important role in the viral life cycle by subverting the tight link between cellular differentiation and proliferation in normal epithelium, thus allowing the virus to replicate in differentiating epithelial cells that would have normally withdrawn from the cell division cycle. The transforming activities of E7 largely reflect this important function.
Collapse
Affiliation(s)
- K Münger
- Department of Pathology and Harvard Center for Cancer Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Chen S, Bigner SH, Modrich P. High rate of CAD gene amplification in human cells deficient in MLH1 or MSH6. Proc Natl Acad Sci U S A 2001; 98:13802-7. [PMID: 11717437 PMCID: PMC61122 DOI: 10.1073/pnas.241508098] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
MutS and MutL homologs have been implicated in multiple genetic stabilization pathways. The activities participate in the correction of DNA biosynthetic errors, are involved in cellular responses to certain types of DNA damage, and serve to ensure the fidelity of genetic recombination. We show here that the rate of CAD (carbamyl-P synthetase/aspartate transcarbamylase/dihydroorotase) gene amplification is elevated 50- to 100-fold in human cell lines deficient in MLH1 or MSH6, as compared with mismatch repair-proficient control cells. Fluorescence in situ hybridization indicates that these amplification events are the probable consequence of unequal sister chromatid exchanges involving chromosome 2, as well as translocation events involving other chromosomes. These results implicate MutS alpha and MutL alpha in the suppression of gene amplification and suggest that defects in this genetic stabilization function may contribute to the cancer predisposition associated with mismatch repair deficiency.
Collapse
Affiliation(s)
- S Chen
- The Howard Hughes Medical Institute and Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
35
|
Tsodikov OV, Holbrook JA, Shkel IA, Record MT. Analytic binding isotherms describing competitive interactions of a protein ligand with specific and nonspecific sites on the same DNA oligomer. Biophys J 2001; 81:1960-9. [PMID: 11566770 PMCID: PMC1301671 DOI: 10.1016/s0006-3495(01)75847-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Many studies of specific protein-nucleic acid binding use short oligonucleotides or restriction fragments, in part to minimize the potential for nonspecific binding of the protein. However, when the specificity ratio is low, multiple nonspecifically bound proteins may occupy the region of DNA corresponding to one specific site; this situation was encountered in our recent calorimetric study of binding of integration host factor (IHF) protein to its specific 34-bp H' DNA site. Here, beginning from the analytical McGhee and von Hippel infinite-lattice nonspecific binding isotherm, we derive a novel analytic isotherm for nonspecific binding of a ligand to a finite lattice. This isotherm is an excellent approximation to the exact factorial-based Epstein finite lattice isotherm even for short lattices and therefore is of great practical significance for analysis of experimental data and for analytic theory. Using this isotherm, we develop an analytic treatment of the competition between specific and nonspecific binding of a large ligand to the same finite lattice (i.e., DNA oligomer) containing one specific and multiple overlapping nonspecific binding sites. Analysis of calorimetric data for IHF-H' DNA binding using this treatment yields enthalpies and binding constants for both specific and nonspecific binding and the nonspecific site size. This novel analysis demonstrates the potential contribution of nonspecific binding to the observed thermodynamics of specific binding, even with very short DNA oligomers, and the need for reverse (constant protein) titrations or titrations with nonspecific DNA to resolve specific and nonspecific contributions. The competition treatment is useful in analyzing low-specificity systems, including those where specificity is weakened by mutations or the absence of specificity factors.
Collapse
Affiliation(s)
- O V Tsodikov
- Department of Chemistry, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
36
|
Lin CT, Lyu YL, Xiao H, Lin WH, Whang-Peng J. Suppression of gene amplification and chromosomal DNA integration by the DNA mismatch repair system. Nucleic Acids Res 2001; 29:3304-10. [PMID: 11504867 PMCID: PMC55855 DOI: 10.1093/nar/29.16.3304] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mismatch repair (MMR)-deficient cells are shown to produce >15-fold more methotrexate-resistant colonies than MMR normal cells. The increased resistance to methotrexate is primarily due to gene amplification since all the resistant clones contain double-minute chromosomes and increased copy numbers of the DHFR gene. In addition, integration of linearized or retroviral DNAs into chromosomes is also significantly elevated in MMR-deficient cells. These results suggest that in addition to microsatellite instability and homeologous recombination, MMR is also involved in suppression of other genome instabilities such as gene amplification and chromosomal DNA integration.
Collapse
Affiliation(s)
- C T Lin
- National Health Research Institute, Cancer Research Division, Cooperative Laboratory, Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei 112, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
37
|
Piao CQ, Hei TK. Gene amplification and microsatellite instability induced in tumorigenic human bronchial epithelial cells by alpha particles and heavy ions. Radiat Res 2001; 155:263-267. [PMID: 11121244 DOI: 10.1667/0033-7587(2001)155[0263:gaamii]2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gene amplification and microsatellite alteration are useful markers of genomic instability in tumor and transformed cell lines. It has been suggested that genomic instability contributes to the progression of tumorigenesis by accumulating genetic changes. In this study, amplification of the carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase (CAD) gene in transformed and tumorigenic human bronchial epithelial (BEP2D) cells induced by either alpha particles or (56)Fe ions was assessed by measuring resistance to N-(phosphonacetyl)-l-aspartate (PALA). In addition, alterations of microsatellite loci located on chromosomes 3p and 18q were analyzed in a series of primary and secondary tumor cell lines generated in nude mice. The frequency of PALA-resistant colonies was 1-3 x 10(-3) in tumor cell lines, 5-8 x 10(-5) in transformed cells prior to inoculation into nude mice, and less than 10(-7) in control BEP2D cells. Microsatellite alterations were detected in all 11 tumor cell lines examined at the following loci: D18S34, D18S363, D18S877, D3S1038 and D3S1607. No significant difference in either PALA resistance or microsatellite instability was found in tumor cell lines that were induced by alpha particles compared to those induced by (56)Fe ions.
Collapse
MESH Headings
- Alpha Particles
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Aspartate Carbamoyltransferase/genetics
- Aspartic Acid/analogs & derivatives
- Aspartic Acid/pharmacology
- Bronchi/physiology
- Bronchi/radiation effects
- Bronchi/ultrastructure
- Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/radiation effects
- Chromosomes, Human, Pair 18/radiation effects
- Chromosomes, Human, Pair 3/radiation effects
- Dihydroorotase/genetics
- Drug Resistance, Neoplasm
- Epithelial Cells/physiology
- Epithelial Cells/radiation effects
- Epithelial Cells/ultrastructure
- Gene Amplification/radiation effects
- Heavy Ions
- Humans
- Iron
- Lung Neoplasms/genetics
- Mice
- Mice, Nude
- Microsatellite Repeats
- Multienzyme Complexes/genetics
- Neoplasm Proteins/genetics
- Neoplasms, Radiation-Induced/genetics
- Phosphonoacetic Acid/analogs & derivatives
- Phosphonoacetic Acid/pharmacology
- Tumor Cells, Cultured/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- C Q Piao
- Center for Radiological Research, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
38
|
Khan QA, Dipple A. Diverse chemical carcinogens fail to induce G 1 arrest in MCF-7 cells. Carcinogenesis 2000. [DOI: 10.1093/carcin/21.8.1611] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Khan QA, Dipple A. Diverse chemical carcinogens fail to induce G1 arrest in MCF-7 cells. Carcinogenesis 2000. [DOI: 10.1093/carcin/21.5.611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Singer MJ, Mesner LD, Friedman CL, Trask BJ, Hamlin JL. Amplification of the human dihydrofolate reductase gene via double minutes is initiated by chromosome breaks. Proc Natl Acad Sci U S A 2000; 97:7921-6. [PMID: 10859355 PMCID: PMC16646 DOI: 10.1073/pnas.130194897] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequence amplification is one of the most frequent manifestations of genomic instability in human tumors. We have shown previously that amplification of the dihydrofolate reductase (DHFR) gene in Chinese hamster cells is initiated by chromosome breaks, followed by bridge-breakage-fusion cycles that generate large intrachromosomal repeats; these are ultimately trimmed by an unknown process to smaller, more homogenous units manifested as homogenously staining chromosome regions (HSRs). However, in most human tumor cells, amplified DNA sequences are borne on unstable, extrachromosomal double minutes (DMs), which suggests the operation of a different amplification mechanism. In this study, we have isolated a large number of independent methotrexate-resistant human cell lines, all of which contained DHFR-bearing DMs. Surprisingly, all but one of these also had suffered partial or complete loss of one of the parental DHFR-bearing chromosomes. Cells in a few populations displayed what could be transient intermediates in the amplification process, including an initial HSR, its subsequent breakage, the appearance of DHFR-containing fragments, and, finally, DMs. Our studies suggest that HSRs and DMs both are initiated by chromosome breaks, but that cell types differ in how the extra sequences ultimately are processed and/or maintained.
Collapse
Affiliation(s)
- M J Singer
- Department of Molecular Biotechnology, University of Washington, Seattle, WA 98195-7730; and Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
41
|
Moore IK, Martin MP, Dorsey MJ, Paquin CE. Formation of circular amplifications in Saccharomyces cerevisiae by a breakage-fusion-bridge mechanism. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000; 36:113-120. [PMID: 11013409 DOI: 10.1002/1098-2280(2000)36:2<113::aid-em5>3.0.co;2-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Primary gene amplification, the mutation from one gene copy per genome to two or more copies per genome, is a major mechanism of oncogene overexpression in human cancers. Analysis of the structures of amplifications can provide important evidence about the mechanism of amplification formation. We report here the analysis of the structures of four independent spontaneous circular amplifications of ADH4:CUP1 in the yeast Saccharomyces cerevisiae. The structures of all four amplifications are consistent with their formation by a breakage-fusion-bridge (BFB) mechanism. All four of these amplifications include a centromere as predicted by the BFB model. All four of the amplifications have a novel joint located between the amplified DNA and the telomere, which results in a dicentric chromosome, and is adjacent to all the copies of the amplified DNA as predicted by the BFB model. In addition we demonstrated that two of the amplifications contain most of chromosome VII in an unrearranged form in a 1:1 ratio with the normal copy of chromosome VII, again consistent with the predictions of the BFB model. Finally, all four amplifications are circular, one stable endpoint for molecules after breakage- fusion-bridge.
Collapse
Affiliation(s)
- I K Moore
- Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
42
|
Peterson C, Kordich J, Milligan L, Bodor E, Siner A, Nagy K, Paquin CE. Mutations in RAD3, MSH2, and RAD52 affect the rate of gene amplification in the yeast Saccharomyces cerevisiae. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000; 36:325-334. [PMID: 11152565 DOI: 10.1002/1098-2280(2000)36:4<325::aid-em8>3.0.co;2-b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report here the use of the ADH4:CUP1 amplification detection system to identify five high amplification rate (HAR) strains of Saccharomyces cerevisiae that display 40- to 600-fold higher amplification rates than those of parental strains. We have identified a mutation in RAD3 DNA repair helicase gene in HAR strain B9-40 that results in a 40-fold increase in amplification rate. RAD3 is the functional homolog of the human XPD gene, suggesting that this model system will provide important candidates for genes that affect gene amplification in human cells. Isolation of the HAR strains has allowed us to test whether RAD52, which is essential for recombinational repair of DNA double-strand breaks, is also essential for amplification. Deletion of RAD52 in HAR strains B3-10 and B11-60 decreases amplification approximately 100-fold. In contrast, deletion of MSH2, which increases recombination between sequences with limited similarity, increases the amplification rate about 10-fold. These results suggest that recombination is an important step in amplification.
Collapse
Affiliation(s)
- C Peterson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0006, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Soulié P, Fourme E, Hamelin R, Asselain B, Salmon RJ, Dutrillaux B, Muleris M. TP53 status and gene amplification in human colorectal carcinomas. CANCER GENETICS AND CYTOGENETICS 1999; 115:118-22. [PMID: 10598144 DOI: 10.1016/s0165-4608(99)00073-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene amplification is one of the characteristics of cancer cells. In vitro studies suggested that alterations of the TP53 gene might be responsible for gene amplification. We have examined the presence of TP53 mutations and looked for cytogenetic evidence of gene amplification in a series of 79 primary colorectal carcinomas. Other parameters such as the pattern of cytogenetic alterations, microsatellite instability, tumor site, and histological staging were also considered. A multiparametric study supported by statistical analyses suggests the existence of two major pathways of colorectal carcinogenesis. No relationships could be established between the presence of TP53 alterations and gene amplification.
Collapse
|
44
|
Shammas MA, Shmookler Reis RJ. Recombination and its roles in DNA repair, cellular immortalization and cancer. AGE 1999; 22:71-88. [PMID: 23604399 PMCID: PMC3455241 DOI: 10.1007/s11357-999-0009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genetic recombination is the creation of new gene combinations in a cell or gamete, which differ from those of progenitor cells or parental gametes. In eukaryotes, recombination may occur at mitosis or meiosis. Mitotic recombination plays an indispensable role in DNA repair, which presumably directed its early evolution; the multiplicity of recombination genes and pathways may be best understood in this context, although they have acquired important additional functions in generating diversity, both somatically (increasing the immune repertoire) and in germ line (facilitating evolution). Chromosomal homologous recombination and HsRad51 recombinase expression are increased in both immortal and preimmortal transformed cells, and may favor the occurrence of multiple oncogenic mutations. Tumorigenesis in vivo is frequently associated with karyotypic instability, locus-specific gene rearrangements, and loss of heterozygosity at tumor suppressor loci - all of which can be recombinationally mediated. Genetic defects which increase the rate of somatic mutation (several of which feature elevated recombination) are associated with early incidence and high risk for a variety of cancers. Moreover, carcinogenic agents appear to quite consistently stimulate homologous recombination. If cells with high recombination arise, either spontaneously or in response to "recombinogens," and predispose to the development of cancer, what selective advantage could favor these cells prior to the occurrence of growth-promoting mutations? We propose that the augmentation of telomere-telomere recombination may provide just such an advantage, to hyper-recombinant cells within a population of telomerase-negative cells nearing their replicative (Hayflick) limit, by extending telomeres in some progeny cells and thus allowing their continued proliferation.
Collapse
Affiliation(s)
- Masood A. Shammas
- />Dept. of Geriatrics, University of Arkansas for Medical Sciences, USA
- />J.L. McClellan Veterans Medical Center — Research 151, 4300 West 7th Street, Little Rock, AR 72205
| | - Robert J. Shmookler Reis
- />Dept. of Geriatrics, University of Arkansas for Medical Sciences, USA
- />Dept. of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, USA
- />Dept. of Medicine, University of Arkansas for Medical Sciences, USA
- />J.L. McClellan Veterans Medical Center — Research 151, 4300 West 7th Street, Little Rock, AR 72205
| |
Collapse
|
45
|
Drews R, Kolker M, Moran C, Sachar D, Chan V, Schnipper L. Genetic analysis of adenovirus E1A: induction of genetic instability and altered cell morphologic and growth characteristics are segregatable functions. Mutat Res 1998; 421:9-25. [PMID: 9748479 DOI: 10.1016/s0027-5107(98)00149-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Single multifunctional oncoproteins contribute to genomic instability development, but relationships between one or more oncoprotein-associated activities and genetic changes accompanying tumor cell progression are uncertain. Using NIH 3T3 derivative EN/NIH 2-20 containing transcriptionally silent neomycin phosphotransferase gene (neo) integrants with undetectable spontaneous reactivations, we studied wild-type (WT) and mutant adenovirus E1A-induced neo reactivation by neo-allelic rearrangement. WT E1A expression, yielding differential splice transcripts 12S and 13S and resulting in altered cell morphologic and growth characteristics, produced neo reactivations in 9 of 21 subclones (median rate per cell, 35 x 10(-6); range, 0.33 x 10(-6) to 936 x 10(-6)). Only 3 of 17 cell lines expressing CTdl976, a '12S' functional equivalent inducing altered cell morphologic and growth characteristics while lacking the 13S trans activation domain, yielded neo reactivations (range, 0.33 x 10(-6) to 0.67 x 10(-6)). One of 21 subclones expressing NTdl646, an E1A mutant retaining the trans domain but lacking p300 binding activity and the ability to alter cell morphologic and growth characteristics, produced neo reactivations (8.7 x 10(-6)). Other E1A mutants, all lacking the ability to alter cell morphologic and growth characteristics while binding pRb but variously lacking the trans domain and binding for p107 and/or p300, displayed undetectable neo-reactivations. 98 EN/NIH 2-20 derivatives coexpressing complementary mutant E1As exhibited altered morphologic and growth features, but only 10 of these produced neo reactivations, and maximum rates (14 x 10(-6)) were substantially lower than those in comparably derived, morphologically altered E1AWT-expressing counterparts (497 x 10(-6)). These findings suggest that maximum rates of gene reactivations by genomic rearrangement require the collective activities of functional domains assembled in single multifunctional proteins (or complexes) while altered cell morphologic and growth characteristics may arise through comparable sets of functional domains distributed across more than one protein (or complex).
Collapse
Affiliation(s)
- R Drews
- Charles A. Dana Research Institute and the Harvard-Thorndike Laboratory of Beth Israel Deaconess Medical Center, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
1. The inherent or acquired resistance of certain tumors to cytotoxic drug therapy is a major clinical problem. 2. Resistance to the chemotherapeutic antimetabolites (e.g., methotrexate, 5-fluorouracil, tomudex and gemcitabine) is no exception. 3. Mechanisms of resistance include mutations, amplification of target genes, altered drug transport, differences in nucleoside and nucleobase salvage pathways, DNA damage-response pathways and cell cycle control pathways.
Collapse
Affiliation(s)
- A R Kinsella
- Department of Surgery, University of Liverpool, UK
| | | |
Collapse
|
47
|
Paulson TG, Almasan A, Brody LL, Wahl GM. Gene amplification in a p53-deficient cell line requires cell cycle progression under conditions that generate DNA breakage. Mol Cell Biol 1998; 18:3089-100. [PMID: 9566927 PMCID: PMC110691 DOI: 10.1128/mcb.18.5.3089] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amplification of genes involved in signal transduction and cell cycle control occurs in a significant fraction of human cancers. Loss of p53 function has been proposed to enable cells with gene amplification to arise spontaneously during growth in vitro. However, this conclusion derives from studies employing the UMP synthesis inhibitor N-phosphonacetyl-L-aspartate (PALA), which, in addition to selecting for cells containing extra copies of the CAD locus, enables p53-deficient cells to enter S phase and acquire the DNA breaks that initiate the amplification process. Thus, it has not been possible to determine if gene amplification occurs spontaneously or results from the inductive effects of the selective agent. The studies reported here assess whether p53 deficiency leads to spontaneous genetic instability by comparing cell cycle responses and amplification frequencies of the human fibrosarcoma cell line HT1080 when treated with PALA or with methotrexate, an antifolate that, under the conditions used, should not generate DNA breaks. p53-deficient HT1080 cells generated PALA-resistant variants containing amplified CAD genes at a frequency of >10(-5). By contrast, methotrexate selection did not result in resistant cells at a detectable frequency (<10(-9)). However, growth of HT1080 cells under conditions that induced DNA breakage prior to selection generated methotrexate-resistant clones containing amplified dihydrofolate reductase sequences at a high frequency. These data demonstrate that, under standard growth conditions, p53 loss is not sufficient to enable cells to produce the DNA breaks that initiate amplification. We propose that p53-deficient cells must proceed through S phase under conditions that induce DNA breakage for genetic instability to occur.
Collapse
Affiliation(s)
- T G Paulson
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE Bladder cancers are frequently treated with combination chemotherapy that includes methotrexate (MTX). The development of drug resistance is a common problem in treatment of bladder cancers. We tested if the status of p53 and/or pRb affects the development of MTX resistance in bladder epithelial cell lines. MATERIALS AND METHODS We used two isogeneic sets of cell lines in which we manipulated the status of p53 and/or pRb by transformation with Human Papillomavirus (HPV) E6 and/or E7 or with a transdominant TP53 mutant (TP53(143)). One series of isogeneic origin was derived from normal human uroepithelial cells (HUC), and the other was derived from a human transitional cell carcinoma (TCC). Cell lines with p53 and/or pRb alterations were cultured for six months while increasing the MTX concentration in each line, as resistance developed. RESULTS Two cell lines with both pRb and p53 alterations, alphaE6/E7-HUC and alphaE7-HUCp53mu, acquired the greatest resistance (750 nM) to MTX. One line with p53 loss, E6-TCC#10, acquired intermediate resistance (500 nM), while two lines, alphaE7-HUC and E7-TCC#10, with altered pRb but wildtype p53, showed low levels of MTX resistance (125 nM and 80 nM, respectively). Two clear mechanisms of MTX resistance were identified. All five MTX resistant cell lines showed altered uptake of MTX. In addition, two of five MTX resistant cell lines, both with altered p53, showed dihydrofolate reductase (DHFR) amplification. CONCLUSIONS p53 alteration increases the risk for development of drug resistance by both DHFR amplification and altered MTX transport in transformed human bladder epithelial cell lines.
Collapse
Affiliation(s)
- T R Yeager
- University of Wisconsin Comprehensive Cancer Center, Department of Human Oncology, Madison 53792, USA
| | | |
Collapse
|
49
|
Chernova OB, Chernov MV, Ishizaka Y, Agarwal ML, Stark GR. MYC abrogates p53-mediated cell cycle arrest in N-(phosphonacetyl)-L-aspartate-treated cells, permitting CAD gene amplification. Mol Cell Biol 1998; 18:536-45. [PMID: 9418900 PMCID: PMC121521 DOI: 10.1128/mcb.18.1.536] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/1997] [Accepted: 10/02/1997] [Indexed: 02/05/2023] Open
Abstract
Genomic instability, including the ability to undergo gene amplification, is a hallmark of neoplastic cells. Similar to normal cells, "nonpermissive" REF52 cells do not develop resistance to N-(phosphonacetyl)-L-aspartate (PALA), an inhibitor of the synthesis of pyrimidine nucleotides, through amplification of cad, the target gene, but instead undergo protective, long-term, p53-dependent cell cycle arrest. Expression of exogenous MYC prevents this arrest and allows REF52 cells to proceed to mitosis when pyrimidine nucleotides are limiting. This results in DNA breaks, leading to cell death and, rarely, to cad gene amplification and PALA resistance. Pretreatment of REF52 cells with a low concentration of PALA, which slows DNA replication but does not trigger cell cycle arrest, followed by exposure to a high, selective concentration of PALA, promotes the formation of PALA-resistant cells in which the physically linked cad and endogenous N-myc genes are coamplified. The activated expression of endogenous N-myc in these pretreated PALA-resistant cells allows them to bypass the p53-mediated arrest that is characteristic of untreated REF52 cells. Our data demonstrate that two distinct events are required to form PALA-resistant REF52 cells: amplification of cad, whose product overcomes the action of the drug, and increased expression of N-myc, whose product overcomes the PALA-induced cell cycle block. These paired events occur at a detectable frequency only when the genes are physically linked, as cad and N-myc are. In untreated REF52 cells overexpressing N-MYC, the level of p53 is significantly elevated but there is no induction of p21waf1 expression or growth arrest. However, after DNA is damaged, the activated p53 executes rapid apoptosis in these REF52/N-myc cells instead of the long-term protective arrest seen in REF52 cells. The predominantly cytoplasmic localization of stabilized p53 in REF52/N-myc cells suggests that cytoplasmic retention may help to inactivate the growth-suppressing function of p53.
Collapse
Affiliation(s)
- O B Chernova
- Department of Molecular Biology, Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
The past decade has witnessed an explosion of new information about the nature of DNA replication in eukaryotic cells. Much of this information has resulted from the advent of novel methods for identifying and characterizing origins of DNA replication in the genomes of viruses, plasmids, and cells. These methods can map with remarkable precision sites where replication begins. In addition, they provide assays for origin activity that can be used to identify the sequence of events leading to the formation and activation of prereplication complexes at specific sites in chromosomal DNA. I summarize briefly the current view of eukaryotic replication origins and the methods that have been used to identify and characterize them. Selected methods that show promise for future applications are then described in detail in subsequent articles.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2753, USA
| |
Collapse
|