1
|
Santino P, Martignani E, Miretti S, Baratta M, Accornero P. Mechanisms of modulation of the Egr gene family in mammary epithelial cells of different species. Gen Comp Endocrinol 2017; 247:87-96. [PMID: 28118985 DOI: 10.1016/j.ygcen.2017.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/10/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
In the adult female, within the estrous cycle, the mammary gland undergoes multiple rounds of growth, with increased cellular proliferation, and involution, with increased apoptosis. The increase in proliferation is elicited by endocrine (Estrogen, Progesterone), as well as locally produced (epidermal growth factor, insulin-like growth factor, etc) growth factors. Among the genes that are modulated during cellular proliferation, immediate early genes play a fundamental role, being rapidly upregulated and then downregulated within the G0/G1 phase of the cell cycle, allowing the progression to the subsequent phases. Egrs (1-4) are immediate early genes that encode for transcription factors that promote, within different cell types and depending on the strength and duration of the stimuli, several different responses like mitogenesis, differentiation, apoptosis or even anti-apoptosis. In this work we have studied the mechanisms of modulation of the Egr family, in mammary epithelial cells of different origin (bovine, canine, feline, murine). Following stimulation with growth medium, Egr mRNA expression showed a strong upregulation reaching a peak at 45-60min, that rapidly declined. Among several cytokines, particularly important for mammary morphogenesis, that we have tested (EGF, IGF-I, insulin, estrogen, progesterone), only EGF upregulated Egrs to levels close to those elicited by growth medium. In order to understand how the Egr transcription factors were regulated, we have inhibited Erk 1/2 and PI3K, molecules that drive two major intracellular signaling pathways. Inhibition of the Erk 1/2 pathway totally abolished Egr upregulation mediated by growth medium or EGF. On the other hand, the PI3K-Akt pathway played a minor role on Egr levels, with a strong inhibitory effect on cat GH2 cells only, that could be ascribed to reduced Erk phosphorylation following PI3K inhibition. Finally we showed that addition of growth medium also upregulated that the mammary luminal marker cytokeratin 18, but only in the murine NMuMG cell line. This is the first manuscript describing how the Egr transcription factors are expressed in mammary epithelial cells of domestic animals and which growth factors and signaling pathways modulate their expression.
Collapse
Affiliation(s)
- P Santino
- Dipartimento di Scienze Veterinarie, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - E Martignani
- Dipartimento di Scienze Veterinarie, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - S Miretti
- Dipartimento di Scienze Veterinarie, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - M Baratta
- Dipartimento di Scienze Veterinarie, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - P Accornero
- Dipartimento di Scienze Veterinarie, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| |
Collapse
|
2
|
Griger J, Schneider R, Lahmann I, Schöwel V, Keller C, Spuler S, Nazare M, Birchmeier C. Loss of Ptpn11 (Shp2) drives satellite cells into quiescence. eLife 2017; 6:21552. [PMID: 28463680 PMCID: PMC5441871 DOI: 10.7554/elife.21552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/29/2017] [Indexed: 12/20/2022] Open
Abstract
The equilibrium between proliferation and quiescence of myogenic progenitor and stem cells is tightly regulated to ensure appropriate skeletal muscle growth and repair. The non-receptor tyrosine phosphatase Ptpn11 (Shp2) is an important transducer of growth factor and cytokine signals. Here we combined complex genetic analyses, biochemical studies and pharmacological interference to demonstrate a central role of Ptpn11 in postnatal myogenesis of mice. Loss of Ptpn11 drove muscle stem cells out of the proliferative and into a resting state during muscle growth. This Ptpn11 function was observed in postnatal but not fetal myogenic stem cells. Furthermore, muscle repair was severely perturbed when Ptpn11 was ablated in stem cells due to a deficit in stem cell proliferation and survival. Our data demonstrate a molecular difference in the control of cell cycle withdrawal in fetal and postnatal myogenic stem cells, and assign to Ptpn11 signaling a key function in satellite cell activity. DOI:http://dx.doi.org/10.7554/eLife.21552.001
Collapse
Affiliation(s)
- Joscha Griger
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Robin Schneider
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Ines Lahmann
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Verena Schöwel
- Muscle Research Unit, Experimental and Clinical Research Center, Charité Medical Faculty and Max Delbrück Center for Molecular Medicine Berlin, Berlin, Germany
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, United States
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Charité Medical Faculty and Max Delbrück Center for Molecular Medicine Berlin, Berlin, Germany
| | - Marc Nazare
- Medicinal Chemistry, Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
3
|
Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates. PLoS One 2015; 10:e0113192. [PMID: 25692293 PMCID: PMC4334649 DOI: 10.1371/journal.pone.0113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/28/2014] [Indexed: 11/29/2022] Open
Abstract
Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1) in thirteen clinical C. albicans isolates. Four nucleotide (nt) exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G) at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%). In addition adhesion to and infection of human endothelial cells was increased (difference 60%), and C3b surface deposition was less effective (difference 27%). Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence.
Collapse
|
4
|
Matsuo T, Dat LT, Komatsu M, Yoshimaru T, Daizumoto K, Sone S, Nishioka Y, Katagiri T. Early growth response 4 is involved in cell proliferation of small cell lung cancer through transcriptional activation of its downstream genes. PLoS One 2014; 9:e113606. [PMID: 25411851 PMCID: PMC4239076 DOI: 10.1371/journal.pone.0113606] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
Small cell lung cancer (SCLC) is aggressive, with rapid growth and frequent bone metastasis; however, its detailed molecular mechanism remains poorly understood. Here, we report the critical role of early growth factor 4 (EGR4), a DNA-binding, zinc-finger transcription factor, in cell proliferation of SCLC. EGR4 overexpression in HEK293T cells conferred significant upregulation of specific splice variants of the parathyroid hormone-related protein (PTHrP) gene, resulting in enhancement of the secretion of PTHrP protein, a known mediator of osteolytic bone metastasis. More importantly, depletion of EGR4 expression by siRNA significantly suppressed growth of the SCLC cell lines, SBC-5, SBC-3 and NCI-H1048. On the other hand, introduction of EGR4 into NIH3T3 cells significantly enhanced cell growth. We identified four EGR4 target genes, SAMD5, RAB15, SYNPO and DLX5, which were the most significantly downregulated genes upon depletion of EGR4 expression in all of the SCLC cells examined, and demonstrated the direct recruitment of EGR4 to their promoters by ChIP and luciferase reporter analysis. Notably, knockdown of the expression of these genes by siRNA remarkably suppressed the growth of all the SCLC cells. Taken together, our findings suggest that EGR4 likely regulates the bone metastasis and proliferation of SCLC cells via transcriptional regulation of several target genes, and may therefore be a promising target for the development of anticancer drugs for SCLC patients.
Collapse
Affiliation(s)
- Taisuke Matsuo
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Le Tan Dat
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
- Department of Medical Oncology, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Kei Daizumoto
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Saburo Sone
- Department of Medical Oncology, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Medical Oncology, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
- * E-mail:
| |
Collapse
|
5
|
Veyrac A, Besnard A, Caboche J, Davis S, Laroche S. The transcription factor Zif268/Egr1, brain plasticity, and memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:89-129. [PMID: 24484699 DOI: 10.1016/b978-0-12-420170-5.00004-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The capacity to remember our past experiences and organize our future draws on a number of cognitive processes that allow our brain to form and store neural representations that can be recalled and updated at will. In the brain, these processes require mechanisms of neural plasticity in the activated circuits, brought about by cellular and molecular changes within the neurons activated during learning. At the cellular level, a wealth of experimental data accumulated in recent years provides evidence that signaling from synapses to nucleus and the rapid regulation of the expression of immediate early genes encoding inducible, regulatory transcription factors is a key step in the mechanisms underlying synaptic plasticity and the modification of neural networks required for the laying down of memories. In the activated neurons, these transcriptional events are thought to mediate the activation of selective gene programs and subsequent synthesis of proteins, leading to stable functional and structural remodeling of the activated networks, so that the memory can later be reactivated upon recall. Over the past few decades, novel insights have been gained in identifying key transcriptional regulators that can control the genomic response of synaptically activated neurons. Here, as an example of this approach, we focus on one such activity-dependent transcription factor, Zif268, known to be implicated in neuronal plasticity and memory formation. We summarize current knowledge about the regulation and function of Zif268 in different types of brain plasticity and memory processes.
Collapse
Affiliation(s)
- Alexandra Veyrac
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| | - Antoine Besnard
- Harvard Stem Cell Institute, Harvard Medical School, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jocelyne Caboche
- INSERM, UMRS 952, Physiopathologie des Maladies du Système Nerveux Central, Paris, France; CNRS, UMR7224, Physiopathologie des Maladies du Système Nerveux Central, Paris, France; UPMC University Paris 6, Paris, France
| | - Sabrina Davis
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| | - Serge Laroche
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| |
Collapse
|
6
|
Kosla J, Dvorakova M, Dvorak M, Cermak V. Effective myofibroblast dedifferentiation by concomitant inhibition of TGF-β signaling and perturbation of MAPK signaling. Eur J Cell Biol 2013; 92:363-73. [DOI: 10.1016/j.ejcb.2013.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 02/05/2023] Open
|
7
|
Pérez-Cadahía B, Drobic B, Davie JR. Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol 2011; 89:61-73. [PMID: 21326363 DOI: 10.1139/o10-138] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immediate-early genes have important roles in processes such as brain development, learning, and responses to drug abuse. Further, immediate-early genes play an essential role in cellular responses that contribute to long-term neuronal plasticity. Neuronal plasticity is a characteristic of the nervous system that is not limited to the first stages of brain development but persists in adulthood and seems to be an inherent feature of everyday brain function. The plasticity refers to the neuron's capability of showing short- or long-lasting phenotypic changes in response to different stimuli and cellular scenarios. In this review, we focus on the immediate-early genes encoding transcription factors (AP-1 and Egr) that are relevant for neuronal responses. Our current understanding of the mechanisms involved in the induction of the immediate-early genes is presented.
Collapse
Affiliation(s)
- Beatriz Pérez-Cadahía
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña, Spain
| | | | | |
Collapse
|
8
|
Cheval H, Chagneau C, Levasseur G, Veyrac A, Faucon-Biguet N, Laroche S, Davis S. Distinctive features of Egr transcription factor regulation and DNA binding activity in CA1 of the hippocampus in synaptic plasticity and consolidation and reconsolidation of fear memory. Hippocampus 2011; 22:631-42. [PMID: 21425206 DOI: 10.1002/hipo.20926] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2010] [Indexed: 01/17/2023]
Abstract
Activity-dependent regulation of Egr1/Zif268, a transcription factor (TF) of the Egr family, is essential for stabilization of dentate gyrus synaptic plasticity and consolidation and reconsolidation of several forms of memory. The gene can be rapidly induced in selective brain circuits after certain types of learning or after recall. Here, we focused on area CA1 and examined regulation of Egr1, Egr2, and Egr3 mRNA and protein, and their DNA binding activity to the Egr response element (ERE) at different times after LTP in vivo and after learning and recall of a fear memory. We found LTP in CA1 leads to rapid induction of the three Egrs, however only Egr1 protein was overexpressed without a co-ordinated change in binding activity, indicating a fundamental difference between CA1 and dentate gyrus LTP. Our investigations in fear memory reveal that both learning and retrieval lead to an increase in binding of constitutively expressed Egr1 and Egr3 to the ERE, but not Egr2. Memory recall was also associated with increased Egr1 protein translation. The nature and temporal dynamics of these changes and tests for interactions between TFs suggest that in addition to ERE-mediated transcription, Egr1 in CA1 may interact with the TF c-Fos to regulate genes via other DNA response elements.
Collapse
Affiliation(s)
- Hélène Cheval
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, F-91405, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Chen WJ, Miya M, Saitoh K, Mayden RL. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study. Gene 2008; 423:125-34. [PMID: 18703121 DOI: 10.1016/j.gene.2008.07.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/17/2008] [Accepted: 07/17/2008] [Indexed: 12/11/2022]
Abstract
After the completion of several entire genome projects and a remarkable increase in public genetic databases in the recent years the results of post-genomic analyses can facilitate a better understanding of the genomic evolution underlying the diversity of organisms and the complexity of gene function. This influx of genomic information and resources is also beneficial to the discipline of systematic biology. In this paper, we describe a set of 6 previous and 22 new PCR/sequencing primers for RAG1, Rhodopsin and four novel nuclear markers from IRBP, EGR1, EGR2B and EGR3 that we developed through an approach making use of public genetic/genomic data mining for one of the ongoing tree of life projects aimed at understanding the evolutionary relationships of the planet's largest clade of freshwater fishes--the Cypriniformes. The primers and laboratory protocols presented here were successfully tested in 33 species comprising all cypriniform family and subfamily groups. Phylogenetic performance of each gene, as well as their implications in the investigation of the evolution of cypriniform fishes were assessed and discussed.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103-2010, USA.
| | | | | | | |
Collapse
|
10
|
Stewart R, Wei W, Challa A, Armitage RJ, Arrand JR, Rowe M, Young LS, Eliopoulos A, Gordon J. CD154 tone sets the signaling pathways and transcriptome generated in model CD40-pluricompetent L3055 Burkitt's lymphoma cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:2705-12. [PMID: 17709483 DOI: 10.4049/jimmunol.179.5.2705] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activated B cells reacting to small amounts of CD40L (CD154) maintain homeostasis by suppressing default apoptosis. Additional outcomes, particularly differentiation, demand higher CD40 occupancy. Here, focusing on survival, we compared changes in the transcriptome of pleiotropically competent, early passage L3055 Burkitt's lymphoma cells confronted with low (picomolar) and high (nanomolar) concentrations of CD154 to gain insight into how a single receptor sets these distinct phenotypes. Of 267 genes altering transcriptional activity in response to strong CD154 tone, only 25 changed coordinately on low receptor occupancy. Seven of the top nine common up-regulated genes were targets of NF-kappaB. Direct measurement and functional inhibition of the NF-kappaB pathway revealed it to be central to a CD40-dependent survival signature. Although the canonical NF-kappaB axis was engaged by both signaling strengths equally, robust alternative pathway activation was a feature selective to a strong CD40 signal. Discriminatory exploitation of the two separate arms of NF-kappaB activation may indicate a principle whereby a cell senses and reacts differentially to shifting ligand availability. Identifying components selectively coupling CD40 to each axis could indicate targets for disruption in B cell pathologies underpinned by ectopic and/or hyper-CD154 activity such as neoplasia and some autoimmunities.
Collapse
Affiliation(s)
- Ross Stewart
- MRC Centre for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Panguluri SK, Li B, Hormann RE, Palli SR. Effect of ecdysone receptor gene switch ligands on endogenous gene expression in 293 cells. FEBS J 2007; 274:5669-89. [PMID: 17922837 DOI: 10.1111/j.1742-4658.2007.06089.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Regulated gene expression may substantially enhance gene therapy. Correlated with structural differences between insect ecdysteroids and mammalian steroids, the ecdysteroids appear to have a benign pharmacology without adversely interfering with mammalian signaling systems. Consequently, the ecdysone receptor-based gene switches are attractive for application in medicine. In the present study, the effect of inducers of ecdysone receptor switches on the expression of endogenous genes in HEK 293 cells was determined. Four ligand chemotypes, represented by a tetrahydroquinoline (RG-120499), one amidoketone (RG-121150), two ecdysteroids [20-hydroxyecdysone (20E) and ponasterone A (Pon A)], and four diacylhydrazines (RG-102240, RG-102277, RG-102398 and RG-100864), were tested in HEK 293 cells. The cells were exposed to ligands at concentrations of 1 microm (RG-120499) or 10 microm (all others) for 72 h and the total RNA was isolated and analyzed using microarrays. Microarray data showed that the tetrahydroquinoline ligand, RG-120499 caused cell death at concentrations > or = 10 microm. At 1 microm, this ligand caused changes in the expression of genes such as TNF, MAF, Rab and Reprimo. At 10 microm, the amidoketone, RG-121150, induced changes in the expression of genes such as v-jun, FBJ and EGR, but was otherwise noninterfering. Of the two steroids tested, 20E did not affect gene expression, but Pon A caused some changes in the expression of endogenous genes. At lower concentrations pharmacologically relevant for gene therapy, intrinsic gene expression effects of ecdysteroids and amidoketones may actually be insignificant. A fortiori, even at 10 microm, the four diacylhydrazine ligands did not cause significant changes in expression of endogenous genes in 293 cells and therefore should have minimum pleiotropic effects when used as ligands for the ecdysone receptor gene switch.
Collapse
Affiliation(s)
- Siva K Panguluri
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
12
|
Singh A, Svaren J, Grayson J, Suresh M. CD8 T cell responses to lymphocytic choriomeningitis virus in early growth response gene 1-deficient mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:3855-62. [PMID: 15356133 DOI: 10.4049/jimmunol.173.6.3855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous in vitro work has implicated a role for transcriptional factor early growth response gene 1 (EGR1) in regulating immune responses. However, the in vivo role of EGR1 in orchestrating T cell responses has not been studied. To investigate the importance of EGR1 in T cell immunity, we compared Ag-specific CD8 T cell responses between wild type (+/+) and EGR1-deficient (EGR1-/-) mice following an acute infection with lymphocytic choriomeningitis virus (LCMV). These studies revealed that the expansion of LCMV-specific CD8 T cells was substantially reduced in EGR1-/- mice, as compared with +/+ mice. The reduced numbers of LCMV-specific CD8 T cells in EGR1-/- mice were not due to an intrinsic T cell defect per se because purified EGR1-deficient T cells exhibited normal proliferative response to anti-CD3 stimulation in vitro, and underwent normal activation and expansion in response to LCMV upon adoptive transfer into T cell-deficient mice. Furthermore, adoptive transfer of CD8 T cells bearing a transgenic TCR into EGR1-/- mice showed that EGR1 deficiency in non-CD8 T cells impaired CD8 T cell expansion in vivo following an LCMV infection. Further investigations on accessory cells showed that bone marrow-derived dendritic cells from EGR1-/- mice did not exhibit detectable impairment to prime Ag-specific CD8 T cell responses in vivo. However, in LCMV-infected mice, EGR1 deficiency selectively impaired the maturation of CD8alpha(+ve) plasmacytoid dendritic cells. Taken together, our findings suggest that EGR1 might promote expansion of CD8 T cells during an acute viral infection by modulating the cues in the lymphoid microenvironment.
Collapse
Affiliation(s)
- Anju Singh
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
13
|
Mouillet JF, Sonnenberg-Hirche C, Yan X, Sadovsky Y. p300 regulates the synergy of steroidogenic factor-1 and early growth response-1 in activating luteinizing hormone-beta subunit gene. J Biol Chem 2003; 279:7832-9. [PMID: 14681221 DOI: 10.1074/jbc.m312574200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tight regulation of luteinizing hormone-beta subunit (LHbeta) expression is critical for differentiation and maturation of mammalian sexual organs and reproductive function. Two transcription factors, steroidogenic factor-1 (SF-1) and early growth response-1 (Egr-1), play a central role in activating LHbeta promoter, and the synergy between these two factors is essential in mediating gonadotropin-releasing hormone stimulation of LHbeta promoter. Here we demonstrate that the transcriptional co-activator p300 regulates this synergy. Overexpression of p300 results in strong stimulation of LHbeta promoter but only in the presence of both SF-1 and Egr-1, and not in the presence of other Egr proteins. Mutation of the binding sites for either SF-1 or Egr-1 completely abolishes the synergy between these two factors, as well as the influence of p300. Importantly, LHbeta promoter is precipitated using p300 antibodies in a chromatin immunoprecipitation assay with LbetaT2 gonadotropes, and this effect is enhanced by gonadotropin-releasing hormone. The influence of p300 on LHbeta promoter is potentiated by steroid receptor co-activator, as well as by E1A proteins, and attenuated by Smad nuclear interacting protein 1. Taken together, these results suggest that p300 is recruited to LHbeta promoter where it coordinates the functional synergy between SF-1 and Egr-1.
Collapse
Affiliation(s)
- Jean-François Mouillet
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
14
|
Terao A, Greco MA, Davis RW, Heller HC, Kilduff TS. Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain. Neuroscience 2003; 120:1115-24. [PMID: 12927216 DOI: 10.1016/s0306-4522(03)00395-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have documented changes in expression of the immediate early gene (IEG) c-fos and Fos protein in the brain between sleep and wakefulness. Such expression differences implicate changes in transcriptional regulation across behavioral states and suggest that other transcription factors may also be affected. In the current study, we examined the expression of seven fos/jun family member mRNAs (c-fos, fosB, fos related antigen (fra)1, fra-2, junB, c-jun, and junD) and three other IEG mRNAs (egr-1, egr-3, and nur77) in mouse brain following short-term (6 h) sleep deprivation (SD) and 4 h recovery sleep (RS) after SD. Gene expression was quantified in seven brain regions by real-time reverse transcription-polymerase chain reaction (RT-PCR). Multivariate analysis of variance revealed statistically significant variation in cerebral cortex, basal forebrain, thalamus and cerebellum. Levels of c-fos and fosB mRNA were elevated during SD in all four of these brain regions. In the cerebral cortex, junB mRNA was also elevated during SD whereas, in the basal forebrain, fra-1 and fra-2 mRNA levels increased in this condition. During RS, the only IEG mRNA to undergo significant increase was fra-2 in the cortex. C-jun and junD mRNAs were invariant across experimental conditions. These results indicate that the expression of fos/jun family members is diverse during SD. Among other IEGs, nur77 mRNA expression across conditions was similar to c-fos and fosB, egr-1 mRNA was elevated during SD in the cortex and basal forebrain, and egr-3 mRNA was elevated in the cortex during both SD and RS. The similarity of fosB and nur77 expression to c-fos expression indicates that these genes might also be useful markers of functional activity. Along with our previous results, the increased levels of fra-2 and egr-3 mRNAs during RS reported here suggest that increased mRNA expression during sleep is rare and may be anatomically restricted.
Collapse
Affiliation(s)
- A Terao
- Molecular Neurobiology Laboratory, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | | | | | | | | |
Collapse
|
15
|
Decker EL, Nehmann N, Kampen E, Eibel H, Zipfel PF, Skerka C. Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res 2003; 31:911-21. [PMID: 12560487 PMCID: PMC149206 DOI: 10.1093/nar/gkg186] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 12/10/2002] [Accepted: 12/10/2002] [Indexed: 02/02/2023] Open
Abstract
Activation of transcription factors by receptor mediated signaling is an essential step for T lymphocyte effector function. Following antigenic stimulation of T cells the two central cytokines IL-2 and TNFalpha are co-expressed and co-regulated. Two important transcription factors, i.e., early growth response (EGR) protein EGR-1 and nuclear factors of activated T cells (NFAT) protein NFATc, regulate transcription of the human IL-2 cytokine and the same combination of EGR and NFAT proteins seems relevant for coordinated cytokine expression. Here we demonstrate that the zinc finger protein EGR-1 and two members of the NFAT protein family bind simultaneously to adjacent elements position -168 to -150 within the TNFalpha promoter. Both promoter sites are important for TNFalpha gene transcription as shown by transfection assays having the IL-2 and TNFalpha promoters linked to a luciferase reporter. The use of promoter deletion constructs with the zinc finger protein (ZIP), the NFAT binding element or a combination of both deleted show a functional cooperation of these elements and of their binding factors. These experiments demonstrate that EGR-1 as well as EGR-4 functionally cooperate with NFAT proteins and induce expression of both cytokine genes. Using tagged NFATc and NFATp in glutathione S-transferase pull down assays showed interaction and physical complex formation of each NFAT protein with recombinant, as well as native, EGR-1 and EGR-4 proteins. Thus EGR-NFAT interaction and complex formation seems essential for human cytokine expression as adjacent ZIP and NFAT elements are conserved in the IL-2 and TNFalpha gene promoters. Binding of regulatory EGR and NFAT factors to these sites and the functional interaction and formation of stable heterodimeric complexes indicate an important role of these factors for gene transcription.
Collapse
Affiliation(s)
- Eva L Decker
- Research Group of Biomolecular Medicine, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Bernhard-Nocht Strasse 74, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Hu YL, Lei ZM, Huang ZH, Rao CHV. Determinants of Transcription of the Chorionic Gonadotropin /Luteinizing Hormone Receptor Gene in Human Breast Cells. Breast J 2002; 5:186-193. [PMID: 11348283 DOI: 10.1046/j.1524-4741.1999.98067.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidemiological evidence suggests that the earlier in life a woman becomes pregnant, the lower her chances for developing breast cancer later in life. This protective effect appears to be due to pregnancy hormone hCG inducing the nonreversible differentiation of proliferative terminal end buds into secretory type lobules. Perhaps this and other actions of hCG are mediated by newly discovered hCG/LH receptors in human breast cells. Thus the hCG actions in breast are potentially important for breast cancer prevention. Because of this importance, we investigated the cis-acting elements and trans-acting proteins that determine the transcription of human chorionic gonadotropin (hCG)/luteinizing hormone (LH) receptor gene in MCF-7, MDA-MB-231, and normal human breast epithelial HMEC cells. These cells contained major-4.8 and 1.8 kb-and minor-9.0, 6.0, and 1.2 kb-hCG/LH receptor transcripts with significantly higher levels in MCF-7 cells. Nuclear run-on transcription, as well as transfection with a fusion construct of luciferase gene and the -2056 to -1 bp of the 5'-flanking region of hCG/LH receptor gene, revealed that MCF-7 cells were transcriptionally more active than the other breast cells. Sequential deletion of the 5'-flanking region revealed that breast cells contained a promoter at -184 to -1 bp. Electrophoretic gel mobility shift assays demonstrated that breast cell nuclear extracts contained Ap2 and Egr promoter binding proteins. Sp1 was also present, but it could not bind because of competition with Egr for binding to a partially overlapping Egr/Sp1 site. The higher levels of Ap2 and Egr binding proteins may explain higher transcription of hCG/LH receptor gene in MCF-7 cells than in the other breast cells.
Collapse
Affiliation(s)
- Y. L. Hu
- Division of Basic Science Research, Laboratory of Molecular Reproductive Biology and Medicine, Department of Obstetrics and Gynecology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | | | | | | |
Collapse
|
17
|
Goodarzi G, Mashimo T, Watabe M, Cuthbert AP, Newbold RF, Pai SK, Hirota S, Hosobe S, Miura K, Bandyopadhyay S, Gross SC, Balaji KC, Watabe K. Identification of tumor metastasis suppressor region on the short arm of human chromosome 20. Genes Chromosomes Cancer 2001; 32:33-42. [PMID: 11477659 DOI: 10.1002/gcc.1164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acquisition of metastatic ability by prostate cancer cells is the hallmark of their lethal trait and outcome. However, the genetic alterations underlying the clinical progression and pathogenesis of prostate cancer are not well understood. Several studies involving loss of heterozygosity (LOH) and comparative genomic hybridization analysis have identified distinctively altered regions on various human chromosomes, and genomic imbalance of chromosome 20 was implicated in progression and recurrence of prostate tumors. To examine the role of chromosome 20 in prostate neoplasms, we introduced this chromosome into highly metastatic rat prostate cancer cells using the microcell-mediated chromosome transfer technique. Introduction of the chromosome resulted in significant suppression of the metastatic ability of the hybrid cells, by as much as 98%, without any interference with the in vivo growth rate or tumorigenicity of primary tumor in SCID mice. Our STS-PCR analysis on 10 hybrid clones indicates that the suppressor activity of chromosome 20 is located in the p11.23-12 region. Further examination of the hybrid clones by experimental metastasis assay and histologic analysis as well as Matrigel invasion assay suggests the involvement of the suppressor region at an early stage of invasion and extravasation. We also investigated the status of the chromosome 20 suppressor region in pathology specimens from human prostate cancer patients and detected the frequent loss of this region in high-grade tumors. These results suggest the presence of a putative suppressor gene on human chromosome 20 that is functionally involved in development of prostate cancer metastases.
Collapse
Affiliation(s)
- G Goodarzi
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gosslar U, Schmid RM, Holzmann B. Regulation of Egr-1-dependent gene expression by the C-terminal activation domain. Biochem Biophys Res Commun 1999; 255:208-15. [PMID: 10049687 DOI: 10.1006/bbrc.1999.0182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study analyzes the role of the C-terminal activation domain for Egr-1 transcriptional activity using N-terminal deletion mutants. Mutant N372 comprising the entire C-terminal activation domain and partly truncated DNA-binding and nuclear translocation domains functioned as the transdominant repressor of Egr-1-dependent gene transcription. Activity of the SV40 promoter, however, was not affected by the N372 mutant. Analysis of additional Egr-1 mutants revealed that the transdominant negative effect of N372 was dependent on truncation of the zinc finger motifs that mediate DNA binding. Reconstitution of the zinc fingers was sufficient to generate Egr-1 proteins with potent transcriptional activity. The inhibitory mutant N372 is efficiently translocated to the nucleus, but fails to bind DNA and does not displace DNA-bound wildtype Egr-1. These results provide evidence for an Egr-1-specific cofactor that interacts with the C-terminal activation domain and is essential for Egr-1 transcriptional activity.
Collapse
Affiliation(s)
- U Gosslar
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität, Munich, Germany
| | | | | |
Collapse
|
19
|
Decker EL, Skerka C, Zipfel PF. The early growth response protein (EGR-1) regulates interleukin-2 transcription by synergistic interaction with the nuclear factor of activated T cells. J Biol Chem 1998; 273:26923-30. [PMID: 9756940 DOI: 10.1074/jbc.273.41.26923] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The early growth response-1 gene (EGR-1) is induced by a wide range of stimuli in diverse cell types; however, EGR-1-regulated genes display a highly restricted pattern of expression. Recently, an overlapping Sp1.EGR-1 binding site has been identified within the interleukin-2 (IL-2) gene promoter directly upstream of the binding site for the nuclear factor of activated T cells (NFAT). We used transfection assays to study how the abundantly and constitutively expressed Sp1 protein and the immediate early EGR-1 zinc finger protein regulate IL-2 gene expression. Here, we identify EGR-1 as an important activator of the IL-2 gene. In Jurkat T cells, EGR-1 but not Sp1 acts as a potent coactivator for IL-2 transcription, and in combination with NFATc, EGR-1 increases transcription of an IL-2 reporter construct 200-fold. Electrophoretic mobility shift assays reveal that recombinant EGR-1 and NFATc bind independently to their target sites within the IL-2 promoter, and the presence of both sites on the same DNA molecule is required for EGR-1.NFATc.DNA complex formation. The transcriptional synergy observed here for EGR-1 and NFATc explains how the abundant nuclear factor EGR-1 contributes to the expression of restrictively expressed genes.
Collapse
Affiliation(s)
- E L Decker
- Research Group of Biomolecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, D-20359 Hamburg, Germany
| | | | | |
Collapse
|
20
|
von der Kammer H, Mayhaus M, Albrecht C, Enderich J, Wegner M, Nitsch RM. Muscarinic acetylcholine receptors activate expression of the EGR gene family of transcription factors. J Biol Chem 1998; 273:14538-44. [PMID: 9603968 DOI: 10.1074/jbc.273.23.14538] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order to search for genes that are activated by muscarinic acetylcholine receptors (mAChRs), we used an mRNA differential display approach in HEK293 cells expressing m1AChR. The zinc-finger transcription factor genes Egr-1, Egr-2, and Egr-3 were identified. Northern blot analyses confirmed that mRNA levels of Egr-1, Egr-2, and Egr-3 increased readily after m1AChR stimulation and that a maximum was attained within 50 min. At that time, Egr-4 mRNA was also detectable. Western blots and electromobility shift assays demonstrated synthesis of EGR-1 and EGR-3, as well as binding to DNA recognition sites in response to m1AChR activation. Activation of m1AChR increased transcription from EGR-dependent promoters, including the acetylcholinesterase gene promoter. Activity-dependent regulation of Egr-1 mRNA expression and EGR-1 protein synthesis was also observed in cells expressing m2, m3, or m4AChR subtypes. Increased EGR-1 synthesis was mimicked by phorbol myristate acetate, but not by forskolin, and receptor-stimulated EGR-1 synthesis was partially inhibited by phorbol myristate acetate down-regulation. Together, our results demonstrate that muscarinic receptor signaling activates the EGR transcription factor family and that PKC may be involved in intracellular signaling. The data suggest that transcription of EGR-dependent target genes, including the AChE gene, can be under the control of extracellular and intracellular signals coupled to muscarinic receptors.
Collapse
Affiliation(s)
- H von der Kammer
- Center for Molecular Neurobiology and Alzheimer's Disease Research Group, University of Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Skerka C, Decker EL, Zipfel PF. Coordinate expression and distinct DNA-binding characteristics of the four EGR-zinc finger proteins in Jurkat T lymphocytes. Immunobiology 1997; 198:179-91. [PMID: 9442390 DOI: 10.1016/s0171-2985(97)80039-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Early Growth Response Genes (EGR-1 to AT133/EGR-4) encode a family of proteins that are composed of three homologous consecutive zinc fingers of the Cys2-His2 type and different flanking sequence. Upon growth stimulation of resting cells the four EGR-genes are simultaneously transcribed. We have analyzed the expression of the four EGR-proteins in Jurkat T cells and show by Western blot analysis that the four EGR-proteins are coordinately induced upon treatment with a combination of PHA and PMA. As the individual proteins are reported to bind to identical target sequences, we have analyzed the DNA-binding of the native proteins. Using nuclear extract in which we have demonstrated expression of all four EGR-proteins, only EGR-1, but no other member of this protein family is found to bind to the EGR-consensus site (GCG GGG GCG). In addition, DNA-binding of both native EGR-1 and of recombinant EGR-1 and AT133/EGR-4 proteins expressed in insect cells was analyzed. This comparison revealed distinct binding properties of recombinant EGR-1 and AT133/EGR-4 to oligonucleotides that include the EGR-consensus sites. The distinct binding affinities suggest that in vivo EGR-proteins bind to different target sequences and that each EGR-protein regulates distinct target genes. This is underlined by demonstrating that EGR-1 but not AT133/EGR-4 binds to a related G-rich promoter element with the sequence GGG GTG GGG. This G-rich sequence serves as an overlapping binding site for the two zinc finger proteins EGR-1 and Sp1. As similar overlapping binding sites for EGR-1 and Sp1 have been identified in several human and mouse gene promoters, we raise the question whether the Sp1 binding sites described in a large number of eukaryotic gene promoters also represent binding sites for EGR-1.
Collapse
Affiliation(s)
- C Skerka
- Department of Molecular Biology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | |
Collapse
|
22
|
Zipfel PF, Decker EL, Holst C, Skerka C. The human zinc finger protein EGR-4 acts as autoregulatory transcriptional repressor. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1354:134-44. [PMID: 9396630 DOI: 10.1016/s0167-4781(97)00084-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human EGR-4 (AT133) gene represents one member of a family of four related zinc finger proteins, that are simultaneously and coordinately induced in resting cells upon growth stimulation. In order to characterise the function of the EGR-4 zinc finger protein, we have expressed the protein in the eukaryotic baculovirus system. The recombinant EGR-4 protein has a molecular mass of 78 kDa, as demonstrated by SDS-PAGE and Western blotting. DNA binding studies revealed that the EGR-4 protein binds to the EGR consensus motif GCGTGGGCG, but not to the G-rich regulatory ZIP-element of the human IL-2 gene, that is a binding site for EGR-1. EGR-4 functions as transcriptional repressor. Overexpression of EGR-4 mediates repression of a minimal c-fos promoter through a threefold EGR consensus site. Furthermore the EGR-4 protein displays autoregulatory activities. This protein downregulates expression of its own gene promoter in a dose dependent manner. A G-rich region in the EGR-4 promoter, located at position -106 to -82, could be identified as binding site for the recombinant EGR-4 protein. A comparison of the two related zinc finger proteins EGR-4 and EGR-1 revealed for each protein distinct and specific DNA binding- and transcriptional regulatory activities.
Collapse
Affiliation(s)
- P F Zipfel
- Bernhard Nocht Institute for Tropical Medicine, Department for Molecular Biology, Hamburg, Germany
| | | | | | | |
Collapse
|
23
|
Shao H, Kono DH, Chen LY, Rubin EM, Kaye J. Induction of the early growth response (Egr) family of transcription factors during thymic selection. J Exp Med 1997; 185:731-44. [PMID: 9034151 PMCID: PMC2196139 DOI: 10.1084/jem.185.4.731] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1996] [Revised: 12/09/1996] [Indexed: 02/03/2023] Open
Abstract
There is little known about the regulation of gene expression during TCR-mediated differentiation of immature CD4+8+ (double positive) thymocytes into mature T cells. Using the DPK CD4+8+ thymocyte precursor cell line, we demonstrate that the early growth response-1 gene (Erg-1), encoding a zinc finger transcription factor, is rapidly upregulated after TCR stimulation. We also report that Egr-1 is expressed by a subset of normal double positive thymocytes in the thymic cortex, as well by a majority of medullary single positive thymocytes. Expression of Egr-1 is dramatically reduced in the thymus of major histocompatibility complex knockout mice, but can be induced by anti-CD3 antibody stimulation of isolated thymocytes from these animals. These and other data suggest that high level expression of Egr-1 in the thymus is a consequence of selection. A similar pattern of expression is found for family members Egr-2 and Egr-3. Using the DPK cell line, we also demonstrate that expression of Egr-1, 2, and 3 is dependent upon ras activation, as is the initiation of differentiation to a single positive cell. In contrast, the calcineurin inhibitor cyclosporin A, which inhibits DPK cell differentiation as well as positive selection, inhibits expression of Egr-2 and Egr-3, but not Egr-1. The identification of the Egr family in this context represents the first report of a link between the two known signaling pathways involved in positive selection and downstream transcriptional regulators.
Collapse
Affiliation(s)
- H Shao
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
24
|
Ye Y, Raychaudhuri B, Gurney A, Campbell CE, Williams BR. Regulation of WT1 by phosphorylation: inhibition of DNA binding, alteration of transcriptional activity and cellular translocation. EMBO J 1996; 15:5606-15. [PMID: 8896454 PMCID: PMC452305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Phosphorylation is one of the major post-translational mechanisms by which the activity of transcription factors is regulated. We have investigated the role of phosphorylation in the regulation of nucleic acid binding activity and the nuclear translocation of WT1. Two recombinant WT1 proteins containing the DNA binding domain with or without a three amino acid (KTS) insertion (WT1ZF + KTS and WT1ZF - KTS) were strongly phosphorylated by protein kinase A (PKA) and protein kinase C (PKC) in vitro. Both PKA and PKC phosphorylation inhibited the ability of WT1ZF + KTS or WT1ZF - KTS to bind to a sequence derived from the WT1 promoter region in gel mobility shift assays. The binding of WT1ZF - KTS to an EGR1 consensus binding site was also inhibited by prior PKA and PKC phosphorylation. We also demonstrate the RNA binding activity of WT1, but this was not altered by phosphorylation. PKA activation by dibutyryl cAMP in WT1-transfected cells resulted in the reversal of WT1 suppression of a reporter construct. Although WT1 protein is predominantly localized to the nucleus, this expression pattern is altered upon PKA activation, resulting in the cytoplasmic retention of WT1. Accordingly, phosphorylation may play a role in modulating the transcriptional regulatory activity of WT1 through interference with nuclear translocation, as well as by inhibition of WT1 DNA binding.
Collapse
Affiliation(s)
- Y Ye
- Department of Cancer Biology, Cleveland Clinic Foundation, OH 44195-5001, USA
| | | | | | | | | |
Collapse
|
25
|
Holst C, Zipfel PF. A zinc finger gene from Onchocerca volvulus encodes a protein with a functional signal peptide and an unusual Ser-His finger motif. J Biol Chem 1996; 271:16725-33. [PMID: 8663215 DOI: 10.1074/jbc.271.28.16725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The filarial parasite Onchocerca volvulus is the causative agent of river blindness. In order to identify genes potentially involved in parasite development we cloned a zinc finger-encoding gene from this species. The ovzf-1 gene represents one member of a family of related zinc finger genes. The predicted ovzf-1 translation product of 447 amino acids includes a hydrophobic signal peptide, which is followed by 13 contiguous finger motifs. The domains of fingers II-XIII display several conserved amino acids and a typical Krüppel-like Cys2-His2 motif. The first finger domain has the two conserved Cys residues replaced with Ser residues; however, it includes all additional amino acids typical of zinc finger domains. The N-terminal domain functions as a signal peptide, as it directs secretion of a reporter protein and a truncated Ovzf protein. Expression of an Ovzf protein via the secretory pathway was also confirmed by demonstrating attachment of N-linked carbohydrates to the recombinant protein. Although the recombinant Ovzf protein also includes a signal peptide, immunofluorescence analyses localize it inside a specific compartment of the infected insect cell. Expression of ovzf mRNA is developmentally regulated; no specific transcript is detected in adult female worms but in the infective L3. Identification of a secreted protein that might function in modulating gene expression of host cells provides an interesting tool for the study of parasite-host interaction on a biochemical and molecular level.
Collapse
Affiliation(s)
- C Holst
- Department of Molecular Biology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, 20359 Hamburg, Germany
| | | |
Collapse
|
26
|
Frommer G, Vorbrüggen G, Pasca G, Jäckle H, Volk T. Epidermal egr-like zinc finger protein of Drosophila participates in myotube guidance. EMBO J 1996; 15:1642-9. [PMID: 8612588 PMCID: PMC450075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have cloned and molecularly characterized the Drosophila gene stripe (sr) required for muscle-pattern formation in the embryo. Through differential splicing, sr encodes two nuclear protein variants which contain a zinc finger DNA-binding domain in common with the early growth response (egr) family of vertebrate transcription factors. The sr transcripts and their protein products are exclusively expressed in the epidermal muscle attachment cells and their ectodermal precursors, but not in muscles or muscle precursors. The results suggest that sr activity induces a subset of ectodermal cells to develop into muscle attachment sites and to provide spatial cues necessary to orient myotubes along the basal surface of the epidermis to their targeted attachment cells.
Collapse
Affiliation(s)
- G Frommer
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | | | | | | | | |
Collapse
|
27
|
Skerka C, Decker EL, Zipfel PF. A regulatory element in the human interleukin 2 gene promoter is a binding site for the zinc finger proteins Sp1 and EGR-1. J Biol Chem 1995; 270:22500-6. [PMID: 7673240 DOI: 10.1074/jbc.270.38.22500] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Activation of the interleukin 2 (IL-2) gene after antigen recognition is a critical event for T cell proliferation and effector function. Prior studies have identified several transcription factors that contribute to the activity of the IL-2 promoter in stimulated T lymphocytes. Here we describe a novel regulatory element within the IL-2 promoter located immediately upstream of the nuclear factor of activated T cell (NFAT) domain. This region (termed the zinc finger protein binding region (ZIP)) serves as binding site for two differently regulated zinc finger proteins: the constitutively expressed transcription factor Sp1 and the inducible early growth response protein EGR-1. In unstimulated cells which do not secrete IL-2, only Sp1 binds to this region, while in stimulated IL-2 secreting cells the inducible EGR-1 protein recognizes this element. In Jurkat T cells, the ZIP site serves as an activator for IL-2 gene expression, and a combination of ZIP and NFAT binding sites is required for maximal IL-2 promoter activity. These results suggest a critical role of the ZIP site for IL-2 promoter activity.
Collapse
Affiliation(s)
- C Skerka
- Department of Molecular Biology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | |
Collapse
|
28
|
Gashler A, Sukhatme VP. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:191-224. [PMID: 7754034 DOI: 10.1016/s0079-6603(08)60815-6] [Citation(s) in RCA: 474] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A Gashler
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
29
|
Pieler T, Bellefroid E. Perspectives on zinc finger protein function and evolution--an update. Mol Biol Rep 1994; 20:1-8. [PMID: 7531280 DOI: 10.1007/bf00999848] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Complexity is one of the hallmarks that applies to C2H2 type zinc finger proteins (ZFPs). Structurally distinct clusters of zinc finger modules define an extremely large superfamily of nucleic acid binding proteins with several hundred, perhaps thousands of different members in vertebrates. Recent discoveries have provided new insights into the biochemistry of RNA and DNA recognition, into ZFP evolution and genomic organization, and also into basic aspects of their biological function. However, as much as we have learned, other fundamental questions about ZFP function remain highly enigmatic. This essay is meant to define what we personally feel are important questions, rather than trying to provide a comprehensive, encyclopaedic review.
Collapse
Affiliation(s)
- T Pieler
- Institut für Biochemie und Molekulare Zellbiologie, Göttingen, Germany
| | | |
Collapse
|
30
|
Perez-Castillo A, Pipaón C, García I, Alemany S. NGFI-A gene expression is necessary for T lymphocyte proliferation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36535-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Madden SL, Rauscher FJ. Positive and negative regulation of transcription and cell growth mediated by the EGR family of zinc-finger gene products. Ann N Y Acad Sci 1993; 684:75-84. [PMID: 8317848 DOI: 10.1111/j.1749-6632.1993.tb32272.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- S L Madden
- Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
32
|
Crosby SD, Veile RA, Donis-Keller H, Baraban JM, Bhat RV, Simburger KS, Milbrandt J. Neural-specific expression, genomic structure, and chromosomal localization of the gene encoding the zinc-finger transcription factor NGFI-C. Proc Natl Acad Sci U S A 1992; 89:4739-43. [PMID: 1584812 PMCID: PMC49159 DOI: 10.1073/pnas.89.10.4739] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nerve growth factor-induced clone C (NGFI-C) gene encodes a zinc-finger transcription factor that is rapidly induced by nerve growth factor in rat pheochromocytoma PC12 cells and by seizure in brain. NGFI-C is closely related to the previously described early response genes, nerve growth factor-induced clone A (NGFI-A or EGR1), EGR2, and EGR3. These four early response (immediate early) proteins all contain very similar zinc-finger DNA binding domains; in addition, analysis of the non-zinc-finger region revealed that they share an additional five highly homologous subdomains, four of which are within the amino terminus. The 5' flanking region of NGFI-C contains several cAMP response elements but does not contain any serum-response elements or CArG boxes [CC(A/T)6GG], cis-acting elements commonly involved in early response gene regulation. NGFI-C mRNA was detected in neural tissues of postnatal animals, but no expression was found in rat embryos. In situ hybridization demonstrated that NGFI-C is rapidly induced in the dentate gyrus of the hippocampus after seizure, but in contrast to NGFI-A, increases in NGFI-C mRNA were not detected in the overlying cortex. By using fluorescence in situ hybridization, NGFI-C was localized to human chromosome 2p13. This region contains a constitutive fragile site that is associated with chromosomal breakpoints and translocations characteristic of some chronic lymphocytic leukemias.
Collapse
Affiliation(s)
- S D Crosby
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | | | | | |
Collapse
|