1
|
Frooman MB, Choi K, Kahn MZ, Yang LY, Cunningham A, RisCassi JM, McShan AC. Identification and biophysical characterization of Plasmodium peptide binding by common African HLAs. Sci Rep 2025; 15:8614. [PMID: 40074802 PMCID: PMC11903679 DOI: 10.1038/s41598-025-92191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Human Leukocyte Antigens (HLA) are immunoreceptors that present peptide antigens at the cell surface to T cells as a primary mechanism of immune surveillance. Malaria, a disease associated with the Plasmodium parasite, claims > 600,000 lives per year globally with most deaths occurring in Africa. Development of efficacious prophylactic vaccines or therapeutic treatments for malaria has been hindered by the lack of a basic understanding of the role of HLA-mediated peptide antigen presentation during Plasmodium infection. In particular, there is (i) little understanding of which peptide antigens are presented by HLAs in the context of malaria, and (ii) a lack of structural insights into Plasmodium peptide antigen presentation by HLAs, which underpins peptide/HLA stability, specificity, cross-presentation across HLA alleles, and recognition by T cell receptors. To begin to address these knowledge gaps, we identify and characterize candidate peptide antigens derived from Plasmodium falciparum with potential for presentation by common class I HLA alleles. We computationally screen nine proteins from the P. falciparum proteome to predict eight peptides with potential for cross-presentation by common alleles in African populations, HLA-A*02:01 and HLA-B*08:01. We then validate the predictions by producing recombinant HLAs in complex with the eight identified peptides by in vitro refolding. We evaluate the folding and thermal stability of the resulting sixteen peptide/HLA complexes by CD spectroscopy and nanoDSF. In silico modeling of peptide/HLA complexes informs a plausible structural basis for mechanisms for cross-presentation of P. falciparum peptides across HLA-A*02:01 and HLA-B*08:01 alleles. Finally, we expand our identified P. falciparum peptides to cover a broader range of HLA alleles in malaria endemic populations with experimental validation provided for HLA-C*07:01 and HLA-E*01:03. Together, our results are a step forward towards a deeper understanding of the potential for multi-allele cross-presentation of peptides in malaria. These results further inform future development of multivalent vaccine strategies targeting HLA profiles in malaria endemic populations.
Collapse
Affiliation(s)
- Marielle B Frooman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Klara Choi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Maya Z Kahn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Li-Yen Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aubrielle Cunningham
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jenna M RisCassi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
3
|
Lefebvre MN, Surette FA, Anthony SM, Vijay R, Jensen IJ, Pewe LL, Hancox LS, Van Braeckel-Budimir N, van de Wall S, Urban SL, Mix MR, Kurup SP, Badovinac VP, Butler NS, Harty JT. Expeditious recruitment of circulating memory CD8 T cells to the liver facilitates control of malaria. Cell Rep 2021; 37:109956. [PMID: 34731605 PMCID: PMC8628427 DOI: 10.1016/j.celrep.2021.109956] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.
Collapse
Affiliation(s)
- Mitchell N Lefebvre
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Fionna A Surette
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Scott M Anthony
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Isaac J Jensen
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Lecia L Pewe
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Lisa S Hancox
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | | | - Stephanie van de Wall
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Stina L Urban
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Madison R Mix
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Samarchith P Kurup
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - John T Harty
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA.
| |
Collapse
|
4
|
Mandala WL, Harawa V, Dzinjalamala F, Tembo D. The role of different components of the immune system against Plasmodium falciparum malaria: Possible contribution towards malaria vaccine development. Mol Biochem Parasitol 2021; 246:111425. [PMID: 34666102 PMCID: PMC8655617 DOI: 10.1016/j.molbiopara.2021.111425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
Plasmodium falciparum malaria still remains a major global public health challenge with over 220 million new cases and well over 400,000 deaths annually. Most of the deaths occur in sub-Saharan Africa which bears 90 % of the malaria cases. Such high P. falciparum malaria-related morbidity and mortality rates pose a huge burden on the health and economic wellbeing of the countries affected. Lately, substantial gains have been made in reducing malaria morbidity and mortality through intense malaria control initiatives such as use of effective antimalarials, intensive distribution and use of insecticide-treated nets (ITNs), and implementation of massive indoor residual spraying (IRS) campaigns. However, these gains are being threatened by widespread resistance of the parasite to antimalarials, and the vector to insecticides. Over the years the use of vaccines has proven to be the most reliable, cost-effective and efficient method for controlling the burden and spread of many infectious diseases, especially in resource poor settings with limited public health infrastructure. Nonetheless, this had not been the case with malaria until the most promising malaria vaccine candidate, RTS,S/AS01, was approved for pilot implementation programme in three African countries in 2015. This was regarded as the most important breakthrough in the fight against malaria. However, RTS,S/AS01 has been found to have some limitations, the main ones being low efficacy in certain age groups, poor immunogenicity and need for almost three boosters to attain a reasonable efficacy. Thus, the search for a more robust and effective malaria vaccine still continues and a better understanding of naturally acquired immune responses to the various stages, including the transmissible stages of the parasite, could be crucial in rational vaccine design. This review therefore compiles what is currently known about the basic biology of P. falciparum and the natural malaria immune response against malaria and progress made towards vaccine development.
Collapse
Affiliation(s)
- Wilson L Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi; Malawi Liverpool Wellcome Trust, Blantyre, Malawi.
| | | | - Fraction Dzinjalamala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | | |
Collapse
|
5
|
Abuga KM, Jones-Warner W, Hafalla JCR. Immune responses to malaria pre-erythrocytic stages: Implications for vaccine development. Parasite Immunol 2020; 43:e12795. [PMID: 32981095 PMCID: PMC7612353 DOI: 10.1111/pim.12795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Radiation-attenuated sporozoites induce sterilizing immunity and remain the 'gold standard' for malaria vaccine development. Despite practical challenges in translating these whole sporozoite vaccines to large-scale intervention programmes, they have provided an excellent platform to dissect the immune responses to malaria pre-erythrocytic (PE) stages, comprising both sporozoites and exoerythrocytic forms. Investigations in rodent models have provided insights that led to the clinical translation of various vaccine candidates-including RTS,S/AS01, the most advanced candidate currently in a trial implementation programme in three African countries. With advances in immunology, transcriptomics and proteomics, and application of lessons from past failures, an effective, long-lasting and wide-scale malaria PE vaccine remains feasible. This review underscores the progress in PE vaccine development, focusing on our understanding of host-parasite immunological crosstalk in the tissue environments of the skin and the liver. We highlight possible gaps in the current knowledge of PE immunity that can impact future malaria vaccine development efforts.
Collapse
Affiliation(s)
- Kelvin Mokaya Abuga
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - William Jones-Warner
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Huang HY, Liang XY, Lin LY, Chen JT, Ehapo CS, Eyi UM, Li J, Jiang TT, Zheng YZ, Zha GC, Xie DD, He JQ, Chen WZ, Liu XZ, Mo HT, Chen XY, Lin M. Genetic polymorphism of Plasmodium falciparum circumsporozoite protein on Bioko Island, Equatorial Guinea and global comparative analysis. Malar J 2020; 19:245. [PMID: 32660484 PMCID: PMC7359586 DOI: 10.1186/s12936-020-03315-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/04/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Plasmodium falciparum circumsporozoite protein (PfCSP) is a potential malaria vaccine candidate, but various polymorphisms of the pfcsp gene among global P. falciparum population become the major barrier to the effectiveness of vaccines. This study aimed to investigate the genetic polymorphisms and natural selection of pfcsp in Bioko and the comparison among global P. falciparum population. METHODS From January 2011 to December 2018, 148 blood samples were collected from P. falciparum infected Bioko patients and 96 monoclonal sequences of them were successfully acquired and analysed with 2200 global pfcsp sequences mined from MalariaGEN Pf3k Database and NCBI. RESULTS In Bioko, the N-terminus of pfcsp showed limited genetic variations and the numbers of repetitive sequences (NANP/NVDP) were mainly found as 40 (35%) and 41 (34%) in central region. Most polymorphic characters were found in Th2R/Th3R region, where natural selection (p > 0.05) and recombination occurred. The overall pattern of Bioko pfcsp gene had no obvious deviation from African mainland pfcsp (Fst = 0.00878, p < 0.05). The comparative analysis of Bioko and global pfcsp displayed the various mutation patterns and obvious geographic differentiation among populations from four continents (p < 0.05). The global pfcsp C-terminal sequences were clustered into 138 different haplotypes (H_1 to H_138). Only 3.35% of sequences matched 3D7 strain haplotype (H_1). CONCLUSIONS The genetic polymorphism phenomena of pfcsp were found universal in Bioko and global isolates and the majority mutations located at T cell epitopes. Global genetic polymorphism and geographical characteristics were recommended to be considered for future improvement of malaria vaccine design.
Collapse
Affiliation(s)
- Hui-Ying Huang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Xue-Yan Liang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Li-Yun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Jiang-Tao Chen
- Department of Medical Laboratory, Huizhou Central Hospital, Huizhou, Guangdong Province, People's Republic of China
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Carlos Salas Ehapo
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Urbano Monsuy Eyi
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Ting-Ting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Yu-Zhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Guang-Cai Zha
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Dong-De Xie
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Jin-Quan He
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Wei-Zhong Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Xiang-Zhi Liu
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Huan-Tong Mo
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Xin-Yao Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China.
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
7
|
Heide J, Vaughan KC, Sette A, Jacobs T, Schulze Zur Wiesch J. Comprehensive Review of Human Plasmodium falciparum-Specific CD8+ T Cell Epitopes. Front Immunol 2019; 10:397. [PMID: 30949162 PMCID: PMC6438266 DOI: 10.3389/fimmu.2019.00397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Control of malaria is an important global health issue and there is still an urgent need for the development of an effective prophylactic vaccine. Multiple studies have provided strong evidence that Plasmodium falciparum-specific MHC class I-restricted CD8+ T cells are important for sterile protection against Plasmodium falciparum infection. Here, we present an interactive epitope map of all P. falciparum-specific CD8+ T cell epitopes published to date, based on a comprehensive data base (IEDB), and literature search. The majority of the described P. falciparum-specific CD8+ T cells were directed against the antigens CSP, TRAP, AMA1, and LSA1. Notably, most of the epitopes were discovered in vaccine trials conducted with malaria-naïve volunteers. Only few immunological studies of P. falciparum-specific CD8+ T cell epitopes detected in patients suffering from acute malaria or in people living in malaria endemic areas have been published. Further detailed immunological mappings of P. falciparum-specific epitopes of a broader range of P. falciparum proteins in different settings and with different disease status are needed to gain a more comprehensive understanding of the role of CD8+ T cell responses for protection, and to better guide vaccine design and to study their efficacy.
Collapse
Affiliation(s)
- Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Kerrie C Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute of Tropical Medicine, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
8
|
Pringle JC, Carpi G, Almagro-Garcia J, Zhu SJ, Kobayashi T, Mulenga M, Bobanga T, Chaponda M, Moss WJ, Norris DE. RTS,S/AS01 malaria vaccine mismatch observed among Plasmodium falciparum isolates from southern and central Africa and globally. Sci Rep 2018; 8:6622. [PMID: 29700348 PMCID: PMC5920075 DOI: 10.1038/s41598-018-24585-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022] Open
Abstract
The RTS,S/AS01 malaria vaccine encompasses the central repeats and C-terminal of Plasmodium falciparum circumsporozoite protein (PfCSP). Although no Phase II clinical trial studies observed evidence of strain-specific immunity, recent studies show a decrease in vaccine efficacy against non-vaccine strain parasites. In light of goals to reduce malaria morbidity, anticipating the effectiveness of RTS,S/AS01 is critical to planning widespread vaccine introduction. We deep sequenced C-terminal Pfcsp from 77 individuals living along the international border in Luapula Province, Zambia and Haut-Katanga Province, the Democratic Republic of the Congo (DRC) and compared translated amino acid haplotypes to the 3D7 vaccine strain. Only 5.2% of the 193 PfCSP sequences from the Zambia-DRC border region matched 3D7 at all 84 amino acids. To further contextualize the genetic diversity sampled in this study with global PfCSP diversity, we analyzed an additional 3,809 Pfcsp sequences from the Pf3k database and constructed a haplotype network representing 15 countries from Africa and Asia. The diversity observed in our samples was similar to the diversity observed in the global haplotype network. These observations underscore the need for additional research assessing genetic diversity in P. falciparum and the impact of PfCSP diversity on RTS,S/AS01 efficacy.
Collapse
Affiliation(s)
- Julia C Pringle
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Giovanna Carpi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jacob Almagro-Garcia
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.,Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK.,The Wellcome Trust Sanger Institute, Hinxton, UK
| | - Sha Joe Zhu
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Thierry Bobanga
- Université Protestante au Congo and University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - William J Moss
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Douglas E Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
9
|
Pichugin A, Zarling S, Perazzo L, Duffy PE, Ploegh HL, Krzych U. Identification of a Novel CD8 T Cell Epitope Derived from Plasmodium berghei Protective Liver-Stage Antigen. Front Immunol 2018; 9:91. [PMID: 29434602 PMCID: PMC5796907 DOI: 10.3389/fimmu.2018.00091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
We recently identified novel Plasmodium berghei (Pb) liver stage (LS) genes that as DNA vaccines significantly reduce Pb LS parasite burden (LPB) in C57Bl/6 (B6) mice through a mechanism mediated, in part, by CD8 T cells. In this study, we sought to determine fine antigen (Ag) specificities of CD8 T cells that target LS malaria parasites. Guided by algorithms for predicting MHC class I-restricted epitopes, we ranked sequences of 32 Pb LS Ags and selected ~400 peptides restricted by mouse H-2Kb and H-2Db alleles for analysis in the high-throughput method of caged MHC class I-tetramer technology. We identified a 9-mer H-2Kb restricted CD8 T cell epitope, Kb-17, which specifically recognized and activated CD8 T cell responses in B6 mice immunized with Pb radiation-attenuated sporozoites (RAS) and challenged with infectious sporozoites (spz). The Kb-17 peptide is derived from the recently described novel protective Pb LS Ag, PBANKA_1031000 (MIF4G-like protein). Notably, immunization with the Kb-17 epitope delivered in the form of a minigene in the adenovirus serotype 5 vector reduced LPB in mice infected with spz. On the basis of our results, Kb-17 peptide was available for CD8 T cell activation and recall following immunization with Pb RAS and challenge with infectious spz. The identification of a novel MHC class I-restricted epitope from the protective Pb LS Ag, MIF4G-like protein, is crucial for advancing our understanding of immune responses to Plasmodium and by extension, toward vaccine development against malaria.
Collapse
Affiliation(s)
- Alexander Pichugin
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Stasya Zarling
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Leah Perazzo
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Patrick Emmet Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, (NIH), Rockville, MD, United States
| | - Hidde Lolke Ploegh
- Program in Cellular and Molecular Medicine, Division of Molecular Biology, Department of Medicine, Boston Children's Hospital, Boston, MD, United States
| | - Urszula Krzych
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
10
|
Venkatraman N, Anagnostou N, Bliss C, Bowyer G, Wright D, Lövgren-Bengtsson K, Roberts R, Poulton I, Lawrie A, Ewer K, V S Hill A. Safety and immunogenicity of heterologous prime-boost immunization with viral-vectored malaria vaccines adjuvanted with Matrix-M™. Vaccine 2017; 35:6208-6217. [PMID: 28941620 DOI: 10.1016/j.vaccine.2017.09.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/09/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022]
Abstract
The use of viral vectors in heterologous prime-boost regimens to induce potent T cell responses in addition to humoral immunity is a promising vaccination strategy in the fight against malaria. We conducted an open-label, first-in-human, controlled Phase I study evaluating the safety and immunogenicity of Matrix-M adjuvanted vaccination with a chimpanzee adenovirus serotype 63 (ChAd63) prime followed by a modified vaccinia Ankara (MVA) boost eight weeks later, both encoding the malaria ME-TRAP antigenic sequence (a multiple epitope string fused to thrombospondin-related adhesion protein). Twenty-two healthy adults were vaccinated intramuscularly with either ChAd63-MVA ME-TRAP alone (n=6) or adjuvanted with 25μg (n=8) or 50μg (n=8) Matrix-M. Vaccinations appeared to be safe and generally well tolerated, with the majority of local and systemic adverse events being mild in nature. The addition of Matrix-M to the vaccine did not increase local reactogenicity; however, systemic adverse events were reported more frequently by volunteers who received adjuvanted vaccine in comparison to the control group. T cell ELISpot responses peaked at 7-days post boost vaccination with MVA ME-TRAP in all three groups. TRAP-specific IgG responses were highest at 28-days post boost with MVA ME-TRAP in all three groups. There were no differences in cellular and humoral immunogenicity at any of the time points between the control group and the adjuvanted groups. We demonstrate that Matrix-M can be safely used in combination with ChAd63-MVA ME-TRAP heterologous prime-boost immunization without any reduction in cellular or humoral immunogenicity. Clinical Trials Registration NCT01669512.
Collapse
Affiliation(s)
- Navin Venkatraman
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom.
| | - Nicholas Anagnostou
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom
| | - Carly Bliss
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK
| | - Georgina Bowyer
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK
| | - Danny Wright
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK
| | | | - Rachel Roberts
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom
| | - Ian Poulton
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom
| | - Alison Lawrie
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom
| | - Katie Ewer
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK
| | - Adrian V S Hill
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK
| |
Collapse
|
11
|
Kreutzfeld O, Müller K, Matuschewski K. Engineering of Genetically Arrested Parasites (GAPs) For a Precision Malaria Vaccine. Front Cell Infect Microbiol 2017; 7:198. [PMID: 28620583 PMCID: PMC5450620 DOI: 10.3389/fcimb.2017.00198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Continuous stage conversion and swift changes in the antigenic repertoire in response to acquired immunity are hallmarks of complex eukaryotic pathogens, including Plasmodium species, the causative agents of malaria. Efficient elimination of Plasmodium liver stages prior to blood infection is one of the most promising malaria vaccine strategies. Here, we describe different genetically arrested parasites (GAPs) that have been engineered in Plasmodium berghei, P. yoelii and P. falciparum and compare their vaccine potential. A better understanding of the immunological mechanisms of prime and boost by arrested sporozoites and experimental strategies to enhance vaccine efficacy by further engineering existing GAPs into a more immunogenic form hold promise for continuous improvements of GAP-based vaccines. A critical hurdle for vaccines that elicit long-lasting protection against malaria, such as GAPs, is safety and efficacy in vulnerable populations. Vaccine research should focus on solutions toward turning malaria into a vaccine-preventable disease, which would offer an exciting new path of malaria control.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| |
Collapse
|
12
|
Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVS. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep 2017; 7:46621. [PMID: 28422178 PMCID: PMC5395940 DOI: 10.1038/srep46621] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
The leading malaria vaccine in development is the circumsporozoite protein (CSP)-based particle vaccine, RTS,S, which targets the pre-erythrocytic stage of Plasmodium falciparum infection. It induces modest levels of protective efficacy, thought to be mediated primarily by CSP-specific antibodies. We aimed to enhance vaccine efficacy by generating a more immunogenic CSP-based particle vaccine and therefore developed a next-generation RTS,S-like vaccine, called R21. The major improvement is that in contrast to RTS,S, R21 particles are formed from a single CSP-hepatitis B surface antigen (HBsAg) fusion protein, and this leads to a vaccine composed of a much higher proportion of CSP than in RTS,S. We demonstrate that in BALB/c mice R21 is immunogenic at very low doses and when administered with the adjuvants Abisco-100 and Matrix-M it elicits sterile protection against transgenic sporozoite challenge. Concurrent induction of potent cellular and humoral immune responses was also achieved by combining R21 with TRAP-based viral vectors and protective efficacy was significantly enhanced. In addition, in contrast to RTS,S, only a minimal antibody response to the HBsAg carrier was induced. These studies identify an anti-sporozoite vaccine component that may improve upon the current leading malaria vaccine RTS,S. R21 is now under evaluation in Phase 1/2a clinical trials.
Collapse
Affiliation(s)
- Katharine A. Collins
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Rebecca Snaith
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Matthew G. Cottingham
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Sarah C. Gilbert
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Adrian V. S. Hill
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
13
|
López JA, González JM, Kettner A, Arévalo-Herrera M, Herrera S, Corradin G, Roggero MA. Synthetic polypeptides corresponding to the non-repeat regions from the circumsporozoite protein ofPlasmodium falciparum: recognition by human T-cells and immunogenicity in owl monkeys. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice. Vaccine 2016; 34:4501-4506. [PMID: 27502569 PMCID: PMC5009892 DOI: 10.1016/j.vaccine.2016.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 06/15/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Abstract
A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo.
Collapse
|
15
|
Hickey BW, Lumsden JM, Reyes S, Sedegah M, Hollingdale MR, Freilich DA, Luke TC, Charoenvit Y, Goh LM, Berzins MP, Bebris L, Sacci JB, De La Vega P, Wang R, Ganeshan H, Abot EN, Carucci DJ, Doolan DL, Brice GT, Kumar A, Aguiar J, Nutman TB, Leitman SF, Hoffman SL, Epstein JE, Richie TL. Mosquito bite immunization with radiation-attenuated Plasmodium falciparum sporozoites: safety, tolerability, protective efficacy and humoral immunogenicity. Malar J 2016; 15:377. [PMID: 27448805 PMCID: PMC4957371 DOI: 10.1186/s12936-016-1435-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this phase 1 clinical trial, healthy adult, malaria-naïve subjects were immunized with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) by mosquito bite and then underwent controlled human malaria infection (CHMI). The PfRAS model for immunization against malaria had previously induced >90 % sterile protection against homologous CHMI. This study was to further explore the safety, tolerability and protective efficacy of the PfRAS model and to provide biological specimens to characterize protective immune responses and identify protective antigens in support of malaria vaccine development. METHODS Fifty-seven subjects were screened, 41 enrolled and 30 received at least one immunization. The true-immunized subjects received PfRAS via mosquito bite and the mock-immunized subjects received mosquito bites from irradiated uninfected mosquitoes. Sera and peripheral blood mononuclear cells (PBMCs) were collected before and after PfRAS immunizations. RESULTS Immunization with PfRAS was generally safe and well tolerated, and repeated immunization via mosquito bite did not appear to increase the risk or severity of AEs. Local adverse events (AEs) of true-immunized and mock-immunized groups consisted of erythaema, papules, swelling, and induration and were consistent with reactions from mosquito bites seen in nature. Two subjects, one true- and one mock-immunized, developed large local reactions that completely resolved, were likely a result of mosquito salivary antigens, and were withdrawn from further participation as a safety precaution. Systemic AEs were generally rare and mild, consisting of headache, myalgia, nausea, and low-grade fevers. Two true-immunized subjects experienced fever, malaise, myalgia, nausea, and rigours approximately 16 h after immunization. These symptoms likely resulted from pre-formed antibodies interacting with mosquito salivary antigens. Ten subjects immunized with PfRAS underwent CHMI and five subjects (50 %) were sterilely protected and there was a significant delay to parasitaemia in the other five subjects. All ten subjects developed humoral immune responses to whole sporozoites and to the circumsporozoite protein prior to CHMI, although the differences between protected and non-protected subjects were not statistically significant for this small sample size. CONCLUSIONS The protective efficacy of this clinical trial (50 %) was notably less than previously reported (>90 %). This may be related to differences in host genetics or the inherent variability in mosquito biting behavior and numbers of sporozoites injected. Differences in trial procedures, such as the use of leukapheresis prior to CHMI and of a longer interval between the final immunization and CHMI in these subjects compared to earlier trials, may also have reduced protective efficacy. This trial has been retrospectively registered at ISRCTN ID 17372582, May 31, 2016.
Collapse
Affiliation(s)
- Bradley W. Hickey
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Joanne M. Lumsden
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD USA
| | - Sharina Reyes
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD USA
| | - Martha Sedegah
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Michael R. Hollingdale
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD USA
| | - Daniel A. Freilich
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Thomas C. Luke
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Yupin Charoenvit
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Lucy M. Goh
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Mara P. Berzins
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD USA
| | - Lolita Bebris
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD USA
| | - John B. Sacci
- />Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD USA
| | - Patricia De La Vega
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD USA
| | - Ruobing Wang
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD USA
| | - Harini Ganeshan
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD USA
| | - Esteban N. Abot
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD USA
| | - Daniel J. Carucci
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Denise L. Doolan
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Gary T. Brice
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Anita Kumar
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Joao Aguiar
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Thomas B. Nutman
- />Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Susan F. Leitman
- />Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD USA
| | - Stephen L. Hoffman
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Sanaria Inc., Rockville, MD USA
| | - Judith E. Epstein
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
| | - Thomas L. Richie
- />US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD USA
- />Sanaria Inc., Rockville, MD USA
| |
Collapse
|
16
|
Speake C, Pichugin A, Sahu T, Malkov V, Morrison R, Pei Y, Juompan L, Milman N, Zarling S, Anderson C, Wong-Madden S, Wendler J, Ishizuka A, MacMillen ZW, Garcia V, Kappe SHI, Krzych U, Duffy PE. Identification of Novel Pre-Erythrocytic Malaria Antigen Candidates for Combination Vaccines with Circumsporozoite Protein. PLoS One 2016; 11:e0159449. [PMID: 27434123 PMCID: PMC4951032 DOI: 10.1371/journal.pone.0159449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
Malaria vaccine development has been hampered by the limited availability of antigens identified through conventional discovery approaches, and improvements are needed to enhance the efficacy of the leading vaccine candidate RTS,S that targets the circumsporozoite protein (CSP) of the infective sporozoite. Here we report a transcriptome-based approach to identify novel pre-erythrocytic vaccine antigens that could potentially be used in combination with CSP. We hypothesized that stage-specific upregulated genes would enrich for protective vaccine targets, and used tiling microarray to identify P. falciparum genes transcribed at higher levels during liver stage versus sporozoite or blood stages of development. We prepared DNA vaccines for 21 genes using the predicted orthologues in P. yoelii and P. berghei and tested their efficacy using different delivery methods against pre-erythrocytic malaria in rodent models. In our primary screen using P. yoelii in BALB/c mice, we found that 16 antigens significantly reduced liver stage parasite burden. In our confirmatory screen using P. berghei in C57Bl/6 mice, we confirmed 6 antigens that were protective in both models. Two antigens, when combined with CSP, provided significantly greater protection than CSP alone in both models. Based on the observations reported here, transcriptional patterns of Plasmodium genes can be useful in identifying novel pre-erythrocytic antigens that induce protective immunity alone or in combination with CSP.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/therapeutic use
- Antigens, Protozoan/immunology
- Female
- Humans
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/therapeutic use
- Malaria, Falciparum/drug therapy
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Mice
- Mice, Inbred C57BL
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Plasmodium yoelii/immunology
- Protozoan Proteins/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Cate Speake
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Alexander Pichugin
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Tejram Sahu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vlad Malkov
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying Pei
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Laure Juompan
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Neta Milman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Stasya Zarling
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sharon Wong-Madden
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Wendler
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Andrew Ishizuka
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Zachary W. MacMillen
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Valentino Garcia
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Stefan H. I. Kappe
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Urszula Krzych
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Wamae KK, Ochola-Oyier LI. Implications from predicted B-cell and T-cell epitopes of Plasmodium falciparum merozoite proteins EBA175-RII and Rh5. Bioinformation 2016; 12:82-91. [PMID: 28149040 PMCID: PMC5267949 DOI: 10.6026/97320630012082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/21/2016] [Accepted: 03/25/2016] [Indexed: 11/23/2022] Open
Abstract
The leading circumsporozoite protein (CSP) based malaria vaccine, RTS,S, though promising, has shown limited efficacy in field studies. There is therefore, still a need to identify other malaria vaccine targets. Merozoite antigens are potential vaccine candidates, since naturally acquired antibodies generated against them inhibit erythrocyte invasion and in some cases result in the clinical protection from disease. We thus used in silico tools (BCPreds, NetMHCcons and NetMHCIIpan 3.0) to predict B-cell epitopes (BCEs) and T-cell epitopes (TCEs) in two merozoite invasion proteins, EBA175-RII and Rh5. Initially, we validated these tools using CSP to determine whether the algorithms could predict the epitopes in the RTS,S vaccine. In EBA175-RII, we prioritised three BCEs 15REKRKGMKWDCKKKNDRSNY34, 420SNRKLVGKINTNSNYVHRNKQ440 and 528WISKKKEEYNKQAKQYQEYQ547, a CD8+ epitope 553KMYSEFKSI561 and a CD4+ epitope 440QNDKLFRDEWWK VIKKD456. Three Rh5 epitopes were prioritised, a BCE 344SCYNNNFCNTNGIRYHYDEY363, a CD8+ epitope 198STYGKCIAV206 and a Rh5 CD4+ epitope 180TFLDYYKHLSYNSIYHKSSTY200. All these epitopes are in the region involved in the proteins' interaction with their erythrocyte receptors, thus enabling erythrocyte invasion. Therefore, upon validation of their immunogenicity, by ELISA using serum from a malaria endemic population, antibodies to these epitopes may inhibit erythrocyte invasion. All the epitopes we predicted in EBA175-RII and Rh5 are novel. We also identified polymorphic epitopes that may escape host immunity, as some variants were not predicted as epitopes, suggesting that they may not be immunogenic regions. We present a set of epitopes that following in vitro validation provide a set of molecules to screen as potential vaccine candidates.
Collapse
Affiliation(s)
- Kevin Kariuki Wamae
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Kenya
- KEMRI-Wellcome Trust Collaborative Programme,Kilifi, Kenya; P.O. Box 230, Kilifi – 80108, Kenya
| | - Lynette Isabella Ochola-Oyier
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Kenya
- KEMRI-Wellcome Trust Collaborative Programme,Kilifi, Kenya; P.O. Box 230, Kilifi – 80108, Kenya
| |
Collapse
|
18
|
Abstract
Although recent control measures have significantly reduced malaria cases and deaths in many endemic areas, an effective vaccine will be essential to eradicate this parasitic disease. Malaria vaccine strategies developed to date focus on different phases of the parasite's complex life cycle in the human host and mosquito vector, and include both subunit-based and whole-parasite vaccines. This review focuses on the 3 live-attenuated malaria vaccination strategies that have been tested in humans to date, and discusses their progress, challenges and the immune correlates of protection that have been identified.
Collapse
Key Words
- CPS, Chemoprophylaxis and Sporozoite immunization
- CQ, chloroquine
- CSP, circumsporozoite protein
- GAP, Genetically Attenuated Parasite
- ITV, Immunization-Treatment-Vaccination
- Malaria
- P. falciparum
- PfSPZ, P. falciparum sporozoite vaccine
- RAS, Radiation Attenuated Sporozoites
- attenuation
- i.d., intradermal
- i.v., intravenous
- pre-erythrocytic
- s.c., subcutaneous
- whole-parasite vaccines
Collapse
|
19
|
A phase Ia study to assess the safety and immunogenicity of new malaria vaccine candidates ChAd63 CS administered alone and with MVA CS. PLoS One 2014; 9:e115161. [PMID: 25522180 PMCID: PMC4270740 DOI: 10.1371/journal.pone.0115161] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/16/2014] [Indexed: 01/23/2023] Open
Abstract
Background Plasmodium falciparum (P. falciparum) malaria remains a significant cause of mortality and morbidity throughout the world. Development of an effective vaccine would be a key intervention to reduce the considerable social and economic impact of malaria. Methodology We conducted a Phase Ia, non-randomized, clinical trial in 24 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding the circumsporozoite protein (CS) of P. falciparum. Results ChAd63-MVA CS administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to CS. With a priming ChAd63 CS dose of 5×109 vp responses peaked at a mean of 1947 SFC/million PBMC (median 1524) measured by ELIspot 7 days after the MVA boost and showed a mixed CD4+/CD8+ phenotype. With a higher priming dose of ChAd63 CS dose 5×1010 vp T cell responses did not increase (mean 1659 SFC/million PBMC, median 1049). Serum IgG responses to CS were modest and peaked at day 14 post ChAd63 CS (median antibody concentration for all groups at day 14 of 1.3 µg/ml (range 0–11.9), but persisted throughout late follow-up (day 140 median antibody concentration groups 1B & 2B 0.9 µg/ml (range 0–4.7). Conclusions ChAd63-MVA is a safe and highly immunogenic delivery platform for the CS antigen in humans which warrants efficacy testing. Trial Registration ClinicalTrials.gov NCT01450280
Collapse
|
20
|
Krzych U, Zarling S, Pichugin A. Memory T cells maintain protracted protection against malaria. Immunol Lett 2014; 161:189-95. [PMID: 24709142 PMCID: PMC6499475 DOI: 10.1016/j.imlet.2014.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response.
Collapse
Affiliation(s)
- Urszula Krzych
- Department of Cellular Immunology, Branch of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States.
| | - Stasya Zarling
- Department of Cellular Immunology, Branch of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | - Alexander Pichugin
- Department of Cellular Immunology, Branch of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| |
Collapse
|
21
|
The whole parasite, pre-erythrocytic stage approach to malaria vaccine development: a review. Curr Opin Infect Dis 2014; 26:420-8. [PMID: 23982233 DOI: 10.1097/qco.0000000000000002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The whole sporozoite (SPZ) vaccine platform provides the only established approach for inducing high-level sustained protective immunity in humans against malaria. We introduce this platform, highlight literature published since 2011, and discuss the challenges of further development. RECENT FINDINGS There are three major approaches to development of a whole parasite vaccine to prevent malaria infection using the SPZ platform: radiation-attenuated sporozoites (irrSPZ), chemoprophylaxis with infectious sporozoites (CPS), and genetically attenuated parasites (GAPs). In all three, SPZ are administered to the vaccinee. All three protect animals against infection when administered by injection with a needle and syringe, and irrSPZ and CPS protect against Plasmodium falciparum malaria in humans when P. falciparum SPZ (PfSPZ) are administered by mosquito bite. Metabolically active, nonreplicating (radiation attenuated) aseptic, purified, cryopreserved PfSPZ (PfSPZ Vaccine), and infectious, aseptic, purified, cryopreserved PfSPZ administered with chemoprophylaxis (PfSPZ-CVac approach) administered by needle and syringe have entered clinical trials. Preliminary data indicate that the PfSPZ Vaccine is safe, well tolerated and highly protective when administered intravenously. SUMMARY With proof-of-concept now established for high-grade protection induced by parenteral administration of a whole sporozoite vaccine, pathways for further development are currently being defined. Demonstration of high-level, durable, cross-strain P. falciparum protection would set the stage for licensure of a vaccine that could lead to dramatic reductions in malaria morbidity and mortality, and eventually elimination of this ancient scourge.
Collapse
|
22
|
Sheehy SH, Spencer AJ, Douglas AD, Sim BKL, Longley RJ, Edwards NJ, Poulton ID, Kimani D, Williams AR, Anagnostou NA, Roberts R, Kerridge S, Voysey M, James ER, Billingsley PF, Gunasekera A, Lawrie AM, Hoffman SL, Hill AVS. Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe. PLoS One 2013; 8:e65960. [PMID: 23823332 PMCID: PMC3688861 DOI: 10.1371/journal.pone.0065960] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/29/2013] [Indexed: 11/18/2022] Open
Abstract
Background Controlled human malaria infection (CHMI) studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) provide a potentially more accurate, reproducible and practical alternative, allowing a known number of sporozoites to be administered simply by injection. Methodology We sought to assess the infectivity of PfSPZ Challenge administered in different dosing regimens to malaria-naive healthy adults (n = 18). Six participants received 2,500 sporozoites intradermally (ID), six received 2,500 sporozoites intramuscularly (IM) and six received 25,000 sporozoites IM. Findings Five out of six participants receiving 2,500 sporozoites ID, 3/6 participants receiving 2,500 sporozoites IM and 6/6 participants receiving 25,000 sporozoites IM were successfully infected. The median time to diagnosis was 13.2, 17.8 and 12.7 days for 2,500 sporozoites ID, 2,500 sporozoites IM and 25,000 sporozoites IM respectively (Kaplan Meier method; p = 0.024 log rank test). Conclusions 2,500 sporozoites ID and 25,000 sporozoites IM have similar infectivities. Given the dose response in infectivity seen with IM administration, further work should evaluate increasing doses of PfSPZ Challenge IM to identify a dosing regimen that reliably infects 100% of participants. Trial Registration ClinicalTrials.gov NCT01465048
Collapse
Affiliation(s)
- Susanne H. Sheehy
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | | | | | - B. Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | - Rhea J. Longley
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Nick J. Edwards
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Ian D. Poulton
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Domtila Kimani
- Centre for Geographical Medical Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Andrew R. Williams
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Nicholas A. Anagnostou
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel Roberts
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Kerridge
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Merryn Voysey
- Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Eric R. James
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | | | - Alison M. Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Adrian V. S. Hill
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Duffy PE, Sahu T, Akue A, Milman N, Anderson C. Pre-erythrocytic malaria vaccines: identifying the targets. Expert Rev Vaccines 2013; 11:1261-80. [PMID: 23176657 DOI: 10.1586/erv.12.92] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pre-erythrocytic malaria vaccines target Plasmodium during its sporozoite and liver stages, and can prevent progression to blood-stage disease, which causes a million deaths each year. Whole organism sporozoite vaccines induce sterile immunity in animals and humans and guide subunit vaccine development. A recombinant protein-in-adjuvant pre-erythrocytic vaccine called RTS,S reduces clinical malaria without preventing infection in field studies and additional antigens may be required to achieve sterile immunity. Although few vaccine antigens have progressed to human testing, new insights into parasite biology, expression profiles and immunobiology have offered new targets for intervention. Future advances require human trials of additional antigens, as well as platforms to induce the durable antibody and cellular responses including CD8(+) T cells that contribute to sterile protection.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology & Vaccinology, Division of Intramural Research, NIAID, NIH, Rockville, MD, USA.
| | | | | | | | | |
Collapse
|
24
|
Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. ADVANCES IN PARASITOLOGY 2013; 81:77-131. [PMID: 23384622 DOI: 10.1016/b978-0-12-407826-0.00003-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Population studies show that individuals acquire immunity to Plasmodium vivax more quickly than Plasmodium falciparum irrespective of overall transmission intensity, resulting in the peak burden of P. vivax malaria in younger age groups. Similarly, actively induced P. vivax infections in malaria therapy patients resulted in faster and generally more strain-transcending acquisition of immunity than P. falciparum infections. The mechanisms behind the more rapid acquisition of immunity to P. vivax are poorly understood. Natural acquired immune responses to P. vivax target both pre-erythrocytic and blood-stage antigens and include humoral and cellular components. To date, only a few studies have investigated the association of these immune responses with protection, with most studies focussing on a few merozoite antigens (such as the Pv Duffy binding protein (PvDBP), the Pv reticulocyte binding proteins (PvRBPs), or the Pv merozoite surface proteins (PvMSP1, 3 & 9)) or the circumsporozoite protein (PvCSP). Naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations. Although limited, these data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing.
Collapse
Affiliation(s)
- Ivo Mueller
- Walter + Eliza Hall Institute, Infection & Immunity Division, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Krzych U, Dalai S, Zarling S, Pichugin A. Memory CD8 T cells specific for plasmodia liver-stage antigens maintain protracted protection against malaria. Front Immunol 2012; 3:370. [PMID: 23233854 PMCID: PMC3517952 DOI: 10.3389/fimmu.2012.00370] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/20/2012] [Indexed: 01/15/2023] Open
Abstract
Immunologic memory induced by pathogenic agents or vaccinations is inextricably linked to long-lasting protection. Adequately maintained memory T and B cell pools assure a fast, effective, and specific response against re-infections. Studies of immune responses amongst residents of malaria endemic areas suggest that memory responses to Plasmodia antigens appear to be neither adequately developed nor maintained, because persons who survive episodes of childhood malaria remain vulnerable to persistent or intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodia sporozoites (γ-spz) induces sterile and long-lasting protection against experimental sporozoite challenge. Protection is associated with MHC-class I-dependent CD8 T cells, the key effectors against pre-erythrocytic stage infection. We have adopted the P. berghei γ-spz mouse model to study memory CD8 T cells that are specific for antigens expressed by Pb liver-stage (LS) parasites and are found predominantly in the liver. On the basis of phenotypic and functional characteristics, we have demonstrated that liver CD8 T cells form two subsets: CD44hiCD62LloKLRG-1+CD107+CD127−CD122loCD8 T effector/effector memory (TE/EM) cells that are the dominant IFN-γ producers and CD44hiCD62LhiKLRG-1−CD107−CD127+CD122hiCD8 T central memory (TCM) cells. In this review, we discuss our observations concerning the role of CD8 TE/EM and CD8 TCM cells in the maintenance of protracted protective immunity against experimental malaria infection. Finally, we present a hypothesis consistent with a model whereby intrahepatic CD8 TCM cells, that are maintained in part by LS-Ag depot and by IL-15-mediated survival and homeostatic proliferation, form a reservoir of cells ready for conscription to CD8 TE/EM cells needed to prevent re-infections.
Collapse
Affiliation(s)
- Urszula Krzych
- Department of Cellular Immunology, Branch of Military Malaria Vaccine Development, Walter Reed Army Institute of Research Silver Spring, MD, USA
| | | | | | | |
Collapse
|
26
|
Zeeshan M, Bora H, Sharma YD. Presence of memory T cells and naturally acquired antibodies in Plasmodium vivax malaria-exposed individuals against a group of tryptophan-rich antigens with conserved sequences. J Infect Dis 2012; 207:175-85. [PMID: 23087432 DOI: 10.1093/infdis/jis650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tryptophan-rich antigens of malarial parasites have been proposed to be the potential vaccine candidate antigens. Plasmodium vivax contains the largest number of such antigens, which need to be evaluated for their immune responses. METHODS Recombinant proteins of 15 P. vivax tryptophan-rich antigens (PvTRAgs) were expressed, purified, and used for the human humoral and cellular immune responses. Genetic polymorphism of these 15 genes was also determined among clinical P. vivax isolates. RESULTS The T lymphocytes of P. vivax exposed individuals expressed higher level of CD69 against all 15 PvTRAgs. These antigens also activated the large population of CD4(+) T cells and produced higher level of intracellular IL-2, INF-γ and IL-4. Although there was a mixed Th1 and Th2 response against these antigens, this response was biased toward Th2. The majority of P. vivax patients (75.7%-100%, n = 33) produced IgG antibodies against these antigens. Most of these antigens showed conserved T- and B-cell epitopes in the parasite population. CONCLUSIONS These results suggest the presence of memory T cells in humans against these antigens to generate faster and more specific immune responses to minimize the P. vivax infection. Further characterization of these PvTRAgs may lead to the identification of a potential therapeutic target.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | |
Collapse
|
27
|
Weiss WR, Jiang CG. Protective CD8+ T lymphocytes in primates immunized with malaria sporozoites. PLoS One 2012; 7:e31247. [PMID: 22355349 PMCID: PMC3280278 DOI: 10.1371/journal.pone.0031247] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/05/2012] [Indexed: 11/26/2022] Open
Abstract
Live attenuated malaria vaccines are more potent than the recombinant protein, bacterial or viral platform vaccines that have been tested, and an attenuated sporozoite vaccine against falciparum malaria is being developed for humans. In mice, attenuated malaria sporozoite vaccines induce CD8+ T cells that kill parasites developing in the liver. We were curious to know if CD8+ T cells were also important in protecting primates against malaria. We immunized 9 rhesus monkeys with radiation attenuated Plasmodium knowlesi sporozoites, and found that 5 did not develop blood stage infections after challenge with live sporozoites. We then injected 4 of these protected monkeys with cM-T807, a monoclonal antibody to the CD8 molecule which depletes T cells. The fifth monkey received equivalent doses of normal IgG. In 3 of the 4 monkeys receiving cM-T807 circulating CD8+ T cells were profoundly depleted. When re-challenged with live sporozoites all 3 of these depleted animals developed blood stage malaria. The fourth monkey receiving cM-T807 retained many circulating CD8+ T cells. This monkey, and the vaccinated monkey receiving normal IgG, did not develop blood stage malaria at re-challenge with live sporozoites. Animals were treated with antimalarial drugs and rested for 4 months. During this interval CD8+ T cells re-appeared in the circulation of the depleted monkeys. When all vaccinated animals received a third challenge with live sporozoites, all 5 monkeys were once again protected and did not develop blood stage malaria infections. These data indicate that CD8+ T cells are important effector cells protecting monkeys against malaria sporozoite infection. We believe that malaria vaccines which induce effector CD8+ T cells in humans will have the best chance of protecting against malaria.
Collapse
Affiliation(s)
- Walter R Weiss
- Infectious Disease Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | |
Collapse
|
28
|
Epstein JE, Tewari K, Lyke KE, Sim BKL, Billingsley PF, Laurens MB, Gunasekera A, Chakravarty S, James ER, Sedegah M, Richman A, Velmurugan S, Reyes S, Li M, Tucker K, Ahumada A, Ruben AJ, Li T, Stafford R, Eappen AG, Tamminga C, Bennett JW, Ockenhouse CF, Murphy JR, Komisar J, Thomas N, Loyevsky M, Birkett A, Plowe CV, Loucq C, Edelman R, Richie TL, Seder RA, Hoffman SL. Live Attenuated Malaria Vaccine Designed to Protect Through Hepatic CD8+ T Cell Immunity. Science 2011; 334:475-80. [PMID: 21903775 DOI: 10.1126/science.1211548] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- J E Epstein
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Camacho AGA, Teixeira LH, Bargieri DY, Boscardin SB, Soares IDS, Nussenzweig RS, Nussenzweig V, Rodrigues MM. TLR5-dependent immunogenicity of a recombinant fusion protein containing an immunodominant epitope of malarial circumsporozoite protein and the FliC flagellin of Salmonella Typhimurium. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:167-71. [DOI: 10.1590/s0074-02762011000900021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/27/2011] [Indexed: 01/05/2023] Open
|
30
|
Affiliation(s)
- Eleanor Riley
- Institute of Cell, Animal and Population Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|
31
|
Schwenk RJ, Richie TL. Protective immunity to pre-erythrocytic stage malaria. Trends Parasitol 2011; 27:306-14. [PMID: 21435951 DOI: 10.1016/j.pt.2011.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 01/23/2023]
Abstract
The development of a vaccine against malaria is a major research priority given the burden of disease, death and economic loss inflicted upon the tropical world by this parasite. Despite decades of effort, however, a vaccine remains elusive. The best candidate is a subunit vaccine termed RTS,S but this provides only partial protection against clinical disease. This review examines what is known about protective immunity against pre-erythrocytic stage malaria by considering the humoral and T cell-mediated immune responses that are induced by attenuated sporozoites and by the RTS,S vaccine. On the basis of these observations a set of research priorities are defined that are crucial for the development of a vaccine capable of inducing long-lasting and high-grade protection against malaria.
Collapse
Affiliation(s)
- Robert J Schwenk
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Division of Malaria Vaccine Development, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | |
Collapse
|
32
|
Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans? J Parasitol Res 2011; 2011:965369. [PMID: 21603205 PMCID: PMC3095412 DOI: 10.1155/2011/965369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/18/2011] [Indexed: 12/25/2022] Open
Abstract
In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.
Collapse
|
33
|
McCall MBB, Sauerwein RW. Interferon-γ--central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol 2010; 88:1131-43. [PMID: 20610802 DOI: 10.1189/jlb.0310137] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Immune responses against Plasmodium parasites, the causative organisms of malaria, are traditionally dichotomized into pre-erythrocytic and blood-stage components. Whereas the central role of cellular responses in pre-erythrocytic immunity is well established, protection against blood-stage parasites has generally been ascribed to humoral responses. A number of recent studies, however, have highlighted the existence of cellular immunity against blood-stage parasites, in particular, the prominence of IFN-γ production. Here, we have undertaken to chart the contribution of this prototypical cellular cytokine to immunity against pre-erythrocytic and blood-stage parasites. We summarize the various antiparasitic effector functions that IFN-γ serves to induce, review an array of data about its protective effects, and scrutinize evidence for any deleterious, immunopathological outcome in malaria patients. We discuss the activation and contribution of different cellular sources of IFN-γ production during malaria infection and its regulation in relation to exposure. We conclude that IFN-γ forms a central mediator of protective immune responses against pre-erythrocytic and blood-stage malaria parasites and identify a number of implications for rational malaria vaccine development.
Collapse
Affiliation(s)
- Matthew B B McCall
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
34
|
Stoyanov CT, Boscardin SB, Deroubaix S, Barba-Spaeth G, Franco D, Nussenzweig RS, Nussenzweig M, Rice CM. Immunogenicity and protective efficacy of a recombinant yellow fever vaccine against the murine malarial parasite Plasmodium yoelii. Vaccine 2010; 28:4644-52. [PMID: 20451637 PMCID: PMC2935264 DOI: 10.1016/j.vaccine.2010.04.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/02/2010] [Accepted: 04/23/2010] [Indexed: 11/29/2022]
Abstract
The live-attenuated yellow fever vaccine (YF17D) is one of the safest and most effective vaccines available today. Here, YF17D was genetically altered to express the circumsporozoite protein (CSP) from the murine malarial parasite Plasmodium yoelii. Reconstituted recombinant virus was viable and exhibited robust CSP expression. Immunization of naïve mice resulted in extensive proliferation of adoptively transferred CSP-specific transgenic CD8(+) T-cells. A single immunization of naïve mice with recombinant YF17D resulted in robust production of IFN-gamma by CD8(+) T-cells and IFN-gamma and IL-2 by CD4(+) T-cells. A prime-boost regimen consisting of recombinant virus followed by a low-dose of irradiated sporozoites conferred protection against challenge with P. yoelii. Taken together, these results show that recombinant YF17D can efficiently express CSP in culture, and prime a protective immune response in vivo.
Collapse
Affiliation(s)
- Cristina T. Stoyanov
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Silvia B. Boscardin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Stephanie Deroubaix
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Giovanna Barba-Spaeth
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - David Franco
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016
| | - Ruth S. Nussenzweig
- Department of Medical and Molecular Parasitology, Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Michel Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| |
Collapse
|
35
|
Guilbride DL, Gawlinski P, Guilbride PDL. Why functional pre-erythrocytic and bloodstage malaria vaccines fail: a meta-analysis of fully protective immunizations and novel immunological model. PLoS One 2010; 5:e10685. [PMID: 20502667 PMCID: PMC2873430 DOI: 10.1371/journal.pone.0010685] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 04/16/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. METHODOLOGY/PRINCIPAL FINDINGS We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. CONCLUSIONS/SIGNIFICANCE We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications for accelerated local eliminations of malaria, and significantly increases potential for eradication.
Collapse
|
36
|
McKee AS, MacLeod MKL, Kappler JW, Marrack P. Immune mechanisms of protection: can adjuvants rise to the challenge? BMC Biol 2010; 8:37. [PMID: 20385031 PMCID: PMC2864095 DOI: 10.1186/1741-7007-8-37] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 12/18/2022] Open
Abstract
For many diseases vaccines are lacking or only partly effective. Research on protective immunity and adjuvants that generate vigorous immune responses may help generate effective vaccines against such pathogens.
Collapse
Affiliation(s)
- Amy S McKee
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
37
|
Vekemans J, Leach A, Cohen J. Development of the RTS,S/AS malaria candidate vaccine. Vaccine 2009; 27 Suppl 6:G67-71. [DOI: 10.1016/j.vaccine.2009.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/25/2009] [Accepted: 10/02/2009] [Indexed: 01/01/2023]
|
38
|
Braga CJM, Massis LM, Sbrogio-Almeida ME, Alencar BCG, Bargieri DY, Boscardin SB, Rodrigues MM, Ferreira LCS. CD8+ T cell adjuvant effects of Salmonella FliCd flagellin in live vaccine vectors or as purified protein. Vaccine 2009; 28:1373-82. [PMID: 19932669 DOI: 10.1016/j.vaccine.2009.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 11/01/2009] [Accepted: 11/03/2009] [Indexed: 12/21/2022]
Abstract
Salmonella flagellin, the flagellum structural subunit, has received particular interest as a vaccine adjuvant conferring enhanced immunogenity to soluble proteins or peptides, both for activation of antibody and cellular immune responses. In the present study, we evaluated the Salmonella enterica FliCd flagellin as a T cell vaccine adjuvant using as model the 9-mer (SYVPSAEQI) synthetic H2(d)-restricted CD8(+) T cell-specific epitope (CS(280-288)) derived from the Plasmodium yoelii circumsporozoite (CS) protein. The FliCd adjuvant effects were determined under two different conditions: (i) as recombinant flagella, expressed by orally delivered live S. Dublin vaccine strains expressing the target CS(280-288) peptide fused at the central hypervariable domain, and (ii) as purified protein in acellular vaccines in which flagellin was administered to mice either as a recombinant protein fused or admixed with the target CS(280-288) peptide. The results showed that CS(280-288)-specific cytotoxic CD8(+) T cells were primed when BALB/c mice were orally inoculated with the expressing the CS(280-288) epitope S. Dublin vaccine strain. In contrast, mice immunized with purified FliCd admixed with the CS(280-288) peptide and, to a lesser extent, fused with the target peptide developed specific cytotoxic CD8(+) T cell responses without the need of a heterologous booster immunization. The CD8(+) T cell adjuvant effects of flagellin, either fused or not with the target peptide, correlated with the in vivo activation of CD11c(+) dendritic cells. Taken together, the present results demonstrate that Salmonella flagellins are flexible adjuvant and induce adaptative immune responses when administered by different routes or vaccine formulations.
Collapse
Affiliation(s)
- Catarina J M Braga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP 05008-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Audran R, Lurati-Ruiz F, Genton B, Blythman HE, Ofori-Anyinam O, Reymond C, Corradin G, Spertini F. The synthetic Plasmodium falciparum circumsporozoite peptide PfCS102 as a malaria vaccine candidate: a randomized controlled phase I trial. PLoS One 2009; 4:e7304. [PMID: 19798415 PMCID: PMC2749339 DOI: 10.1371/journal.pone.0007304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022] Open
Abstract
Background Fully efficient vaccines against malaria pre-erythrocytic stage are still lacking. The objective of this dose/adjuvant-finding study was to evaluate the safety, reactogenicity and immunogenicity of a vaccine candidate based on a peptide spanning the C-terminal region of Plasmodium falciparum circumsporozoite protein (PfCS102) in malaria naive adults. Methodology and Principal Findings Thirty-six healthy malaria-naive adults were randomly distributed into three dose blocks (10, 30 and 100 µg) and vaccinated with PfCS102 in combination with either Montanide ISA 720 or GSK proprietary Adjuvant System AS02A at days 0, 60, and 180. Primary end-point (safety and reactogenicity) was based on the frequency of adverse events (AE) and of abnormal biological safety tests; secondary-end point (immunogenicity) on P. falciparum specific cell-mediated immunity and antibody response before and after immunization. The two adjuvant formulations were well tolerated and their safety profile was good. Most AEs were local and, when systemic, involved mainly fatigue and headache. Half the volunteers in AS02A groups experienced severe AEs (mainly erythema). After the third injection, 34 of 35 volunteers developed anti-PfCS102 and anti-sporozoite antibodies, and 28 of 35 demonstrated T-cell proliferative responses and IFN-γ production. Five of 22 HLA-A2 and HLA-A3 volunteers displayed PfCS102 specific IFN-γ secreting CD8+ T cell responses. Responses were only marginally boosted after the 3rd vaccination and remained stable for 6 months. For both adjuvants, the dose of 10 µg was less immunogenic in comparison to 30 and 100 µg that induced similar responses. AS02A formulations with 30 µg or 100 µg PfCS102 induced about 10-folds higher antibody and IFN-γ responses than Montanide formulations. Conclusions/Significance PfCS102 peptide was safe and highly immunogenic, allowing the design of more advanced trials to test its potential for protection. Two or three immunizations with a dose of 30 µg formulated with AS02A appeared the most appropriate choice for such studies. Trial Registration Swissmedic.ch 2002 DR 1227
Collapse
Affiliation(s)
- Régine Audran
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Floriana Lurati-Ruiz
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Blaise Genton
- Department of Ambulatory Care and Community Medicine, Policlinique Médicale Universitaire, Lausanne, Switzerland
| | | | | | | | | | - François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Chinchilla M, Pasetti MF, Medina-Moreno S, Wang JY, Gomez-Duarte OG, Stout R, Levine MM, Galen JE. Enhanced immunity to Plasmodium falciparum circumsporozoite protein (PfCSP) by using Salmonella enterica serovar Typhi expressing PfCSP and a PfCSP-encoding DNA vaccine in a heterologous prime-boost strategy. Infect Immun 2007; 75:3769-79. [PMID: 17502396 PMCID: PMC1951980 DOI: 10.1128/iai.00356-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Salmonella enterica serovar Typhi strains that express and export a truncated version of Plasmodium falciparum circumsporozoite surface protein (tCSP) fused to Salmonella serovar Typhi cytolysin A (ClyA) were constructed as a first step in the development of a preerythrocytic malaria vaccine. Synthetic codon-optimized genes (t-csp1 and t-csp2), containing immunodominant B- and T-cell epitopes present in native P. falciparum circumsporozoite surface protein (PfCSP), were fused in frame to the carboxyl terminus of the ClyA gene (clyA::t-csp) in genetically stabilized expression plasmids. Expression and export of ClyA-tCSP1 and ClyA-tCSP2 by Salmonella serovar Typhi vaccine strain CVD 908-htrA were demonstrated by immunoblotting of whole-cell lysates and culture supernatants. The immunogenicity of these constructs was evaluated using a "heterologous prime-boost" approach consisting of mucosal priming with Salmonella serovar Typhi expressing ClyA-tCSP1 and ClyA-tCSP2, followed by parenteral boosting with PfCSP DNA vaccines pVR2510 and pVR2571. Mice primed intranasally on days 0 and 28 with CVD 908-htrA(pSEC10tcsp2) and boosted intradermally on day 56 with PfCSP DNA vaccine pVR2571 induced high titers of serum NANP immunoglobulin G (IgG) (predominantly IgG2a); no serological responses to DNA vaccination were observed in the absence of Salmonella serovar Typhi-PfCSP priming. Mice primed with Salmonella serovar Typhi expressing tCSP2 and boosted with PfCSP DNA also developed high frequencies of gamma interferon-secreting cells, which surpassed those produced by PfCSP DNA in the absence of priming. A prime-boost regimen consisting of mucosal delivery of PfCSP exported from a Salmonella-based live-vector vaccine followed by a parenteral PfCSP DNA boosting is a promising strategy for the development of a live-vector-based malaria vaccine.
Collapse
Affiliation(s)
- Magaly Chinchilla
- Center for Vaccine Development, University of Maryland, 685 W. Baltimore Street, HSF I, Room 480, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Multiple injections of gamma-radiation-attenuated Plasmodium sporozoites (gamma-spz) can induce long-lived, sterile immunity against pre-erythrocytic stages of malaria. Malaria antigen (Ag)-specific CD8 T cells that produce IFN-gamma are key effector cells in this model of protection. Although there have been numerous reports dealing with gamma-spz-induced CD8 T cells in the spleen, CD8 T cells most likely confer protection by targeting infected hepatocytes. Consequently, in this chapter we discuss observations and hypotheses concerning CD8 T cell responses that occur in the liver after an encounter with the Plasmodium parasite. Protracted protection against pre-erythrocytic stages requires memory CD8 T cells and we discuss evidence that gamma-spz-induced immunity is indeed accompanied by the presence of intrahepatic CD44hi CD45RBlo CD62lo CD122lo effector memory (EM) CD8 T cells and CD44hi CD45RBhi CD621hi CD122hi central memory (CM) CD8 T cells. In addition, the EM CD8 T cells rapidly release IFN-gamma in response to spz challenge. The possible role of Kupffer cells in the processing of spz Ags and the production of cytokines is also considered. Finally, we discuss evidence that is consistent with a model whereby intrahepatic CM CD8 T cells are maintained by IL-15 mediated-homeostatic proliferation while the EM CD8 T cells are conscripted from the CM pool in response to a persisting depot of liver-stage Ag.
Collapse
Affiliation(s)
- U Krzych
- Department of Immunology, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | |
Collapse
|
42
|
Lyke KE, Burges RB, Cissoko Y, Sangare L, Kone A, Dao M, Diarra I, Fernández-Vina MA, Plowe CV, Doumbo OK, Sztein MB. HLA-A2 supertype-restricted cell-mediated immunity by peripheral blood mononuclear cells derived from Malian children with severe or uncomplicated Plasmodium falciparum malaria and healthy controls. Infect Immun 2005; 73:5799-808. [PMID: 16113298 PMCID: PMC1231120 DOI: 10.1128/iai.73.9.5799-5808.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding HLA-restricted adaptive host immunity to defined epitopes of malarial antigens may be required for the development of successful malaria vaccines. Fourteen epitopes of preerythrocytic malarial antigens known to mediate cytotoxic T-lymphocyte responses against target cells expressing HLA-A2-restricted epitopes were synthesized and pooled based on antigen: thrombospondin-related anonymous protein (TRAP), circumsporozoite protein (CSP), and export protein 1 (Exp-1) peptides. HLA-A2 supertype (*0201, *0202, *0205, *6802) peripheral blood mononuclear cells collected from 774 Malian children, aged 3 months to 14 years, with severe Plasmodium falciparum malaria matched to uncomplicated malaria or healthy controls were stimulated with the HLA-A2-restricted peptide pools. Significant gamma interferon production, determined by enzyme-linked immunospot assay to at least one of the three peptide pools, was observed in 24/58 (41%) of the severe malaria cases, 24/57 (42%) of the uncomplicated malaria cases, and 34/51 (67%) of the healthy controls. Significant lymphoproliferation to these peptides was observed in 12/44 (27%) of the severe malaria cases, 13/55 (24%) of the uncomplicated malaria cases, and 18/50 (36%) of the healthy controls. Responses to individual peptide pools were limited. These studies confirm the presence of adaptive cell-mediated immunity to preerythrocytic malaria antigens in volunteers from Mali and demonstrate that suballeles of the HLA-A2 supertype can effectively present antigenic epitopes. However, whether these immune responses to TRAP, CSP, and Exp-1 malarial proteins play a substantial role in protection remains a matter of controversy.
Collapse
Affiliation(s)
- Kirsten E Lyke
- The University of Maryland at Baltimore, Center for Vaccine Development, 685 W. Baltimore St., HSF 480, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Richards RL, Rao M, Vancott TC, Matyas GR, Birx DL, Alving CR. Liposome-stabilized oil-in-water emulsions as adjuvants: increased emulsion stability promotes induction of cytotoxic T lymphocytes against an HIV envelope antigen. Immunol Cell Biol 2005; 82:531-8. [PMID: 15479439 DOI: 10.1111/j.0818-9641.2004.01282.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protective or therapeutic immunity against HIV infection is currently believed to require both antibody and CTL responses against the envelope protein. In the present study, the adjuvant activity of a unique oil-in-water emulsion, in which liposomes containing lipid A (LA) and encapsulated antigen served as the emulsifying agent, was examined in mice using oligomeric gp140 (ogp140) derived from the HIV-1 envelope as the antigen. Emulsions rendered either highly stable or unstable by altering the ratio of liposomes to oil were used to examine the effect of stability of the emulsion on adjuvant activity. Stable and unstable emulsions had similar potencies for inducing both IgG antibodies to ogp140 and antigen-specific T-lymphocyte proliferation. Stable emulsions, but not unstable emulsions, induced antigen-specific CTL responses, possibly because of the depot effect of the stable emulsions. Furthermore, stable emulsions induced lower IgG2a/IgG1 ratios than the unstable emulsions. We conclude that stable liposomal oil-in-water emulsions provide an effective means of obtaining both antibody and CTL responses against an HIV envelope antigen.
Collapse
Affiliation(s)
- Roberta L Richards
- Department of Membrane Biochemistry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Sedegah M, Charoenvit Y, Aguiar J, Sacci J, Hedstrom R, Kumar S, Belmonte A, Lanar DE, Jones TR, Abot E, Druilhe P, Corradin G, Epstein JE, Richie TL, Carucci DJ, Hoffman SL. Effect on antibody and T-cell responses of mixing five GMP-produced DNA plasmids and administration with plasmid expressing GM-CSF. Genes Immun 2004; 5:553-61. [PMID: 15318164 DOI: 10.1038/sj.gene.6364125] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One potential benefit of DNA vaccines is the capacity to elicit antibody and T-cell responses against multiple antigens at the same time by mixing plasmids expressing different proteins. A possible negative effect of such mixing is interference among plasmids regarding immunogenicity. In preparation for a clinical trial, we assessed the immunogenicity of GMP-produced plasmids encoding five Plasmodium falciparum proteins, PfCSP, PfSSP2, PfEXP1, PfLSA1, and PfLSA3, given as a mixture, or alone. The mixture induced higher levels of antibodies against whole parasites than did the individual plasmids, but was associated with a decrease in antibodies to individual P. falciparum proteins. T-cell responses were in general decreased by administration of the mixture. Immune responses to individual plasmids and mixtures were generally higher in inbred mice than in outbreds. In inbred BALB/c and C57BL/6 mice, coadministration of a plasmid expressing murine granulocyte-macrophage colony-stimulating factor (mGM-CSF), increased antibody and T-cell responses, but in outbred CD-1 mice, coadministration of mGM-CSF was associated with a decrease in antibody responses. Such variability in data from studies in different strains of mice underscores the importance of genetic background on immune response and carefully considering the goals of any preclinical studies of vaccine mixtures planned for human trials.
Collapse
Affiliation(s)
- M Sedegah
- 1Malaria Program, Naval Medical Research Center, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sun P, Schwenk R, White K, Stoute JA, Cohen J, Ballou WR, Voss G, Kester KE, Heppner DG, Krzych U. Protective immunity induced with malaria vaccine, RTS,S, is linked to Plasmodium falciparum circumsporozoite protein-specific CD4+ and CD8+ T cells producing IFN-gamma. THE JOURNAL OF IMMUNOLOGY 2004; 171:6961-7. [PMID: 14662904 DOI: 10.4049/jimmunol.171.12.6961] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Plasmodium falciparum circumsporozoite (CS) protein-based pre-erythrocytic stage vaccine, RTS,S, induces a high level of protection against experimental sporozoite challenge. The immune mechanisms that constitute protection are only partially understood, but are presumed to rely on Abs and T cell responses. In the present study we compared CS protein peptide-recalled IFN-gamma reactivity of pre- and RTS,S-immune lymphocytes from 20 subjects vaccinated with RTS,S. We observed elevated IFN-gamma in subjects protected by RTS,S; moreover, both CD4(+) and CD8(+) T cells produced IFN-gamma in response to CS protein peptides. Significantly, protracted protection, albeit observed only in two of seven subjects, was associated with sustained IFN-gamma response. This is the first study demonstrating correlation in a controlled Plasmodia sporozoite challenge study between protection induced by a recombinant malaria vaccine and Ag-specific T cell responses. Field-based malaria vaccine studies are in progress to validate the establishment of this cellular response as a possible in vitro correlate of protective immunity to exo-erythrocytic stage malaria vaccines.
Collapse
Affiliation(s)
- Peifang Sun
- Department of Immunology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rodrigues MM, Boscardin SB, Vasconcelos JR, Hiyane MI, Salay G, Soares IS. Importance of CD8 T cell-mediated immune response during intracellular parasitic infections and its implications for the development of effective vaccines. AN ACAD BRAS CIENC 2003; 75:443-68. [PMID: 14605680 DOI: 10.1590/s0001-37652003000400005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obligatory intracellular parasites such as Plasmodium sp, Trypanosoma cruzi, Toxoplasma gondii and Leishmania sp are responsible for the infection of hundreds of millions of individuals every year. These parasites can deliver antigens to the host cell cytoplasm that are presented through MHC class I molecules to protective CD8 T cells. The in vivo priming conditions of specific CD8 T cells during natural infection are largely unknown and remain as an area that has been poorly explored. The antiparasitic mechanisms mediated by CD8 T cells include both interferon-gamma-dependent and -independent pathways. The fact that CD8 T cells are potent inhibitors of parasitic development prompted many investigators to explore whether induction of these T cells can be a feasible strategy for the development of effective subunit vaccines against these parasitic diseases. Studies performed on experimental models supported the hypothesis that CD8 T cells induced by recombinant viral vectors or DNA vaccines could serve as the basis for human vaccination. Regimens of immunization consisting of two different vectors (heterologous prime-boost) are much more efficient in terms of expansion of protective CD8 T lymphocytes than immunization with a single vector. The results obtained using experimental models have led to clinical vaccination trials that are currently underway.
Collapse
Affiliation(s)
- Mauricio M Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-062 São Paulo, SP, Brasil.
| | | | | | | | | | | |
Collapse
|
47
|
Luke TC, Hoffman SL. Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine. J Exp Biol 2003; 206:3803-8. [PMID: 14506215 DOI: 10.1242/jeb.00644] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Annually, malaria causes >300 million clinical cases and 1 million deaths, is responsible for the loss of >1% of gross domestic product (GDP)in Africa and is a serious concern for travelers. An effective vaccine could have a dramatic impact on the disease. For 20 years, scientists have tried to develop modern, recombinant `subunit' malaria vaccines. This has been difficult. In fact, there is only one recombinant protein vaccine on the market for any disease, and no vaccines based on synthetic peptides,recombinant viruses, recombinant bacteria or DNA plasmids. Most vaccines are based on attenuated or inactivated whole pathogens or material derived directly from the infectious agent. It is in that context that our recent report summarizing the protection of humans with attenuated Plasmodium falciparum (Pf) sporozoites produced at four different sites over 25 years is important. In studies utilizing live mosquitoes as the vaccine delivery mechanism, there was complete protection against malaria in 93% of volunteers (13/14) and 94% of challenges (33/35). Sanaria's goal is to develop and commercialize a non-replicating, metabolically active Pfsporozoite vaccine.
Three practical questions must be addressed before manufacturing for clinical trials: (1) can one administer the vaccine by a route that is clinically practical; (2) can one produce adequate quantities of sporozoites;and (3) can sporozoites be produced with the physical characteristics that meet the regulatory, potency and safety requirements of regulatory authorities? Once these questions have been answered, Sanaria will demonstrate that the vaccine protects >90% of human recipients against experimental challenge with Pf sporozoites, can be produced with an efficiency that makes it economically feasible, and protects >90% of African infants and children from infection, and thus from severe morbidity and mortality. By producing a vaccine for travelers, Sanaria will provide the infrastructure,regulatory foundation and funds necessary to speed licensure, manufacturing and deployment of the vaccine for the infants and children who need it most.
Collapse
Affiliation(s)
- Thomas C Luke
- Uniformed University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
48
|
Chauhan VS, Bhardwaj D. Current status of malaria vaccine development. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 84:143-82. [PMID: 12934936 DOI: 10.1007/3-540-36488-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
There is an urgent need to develop an effective vaccine against malaria--a disease that has approximately 10% of the world population at risk of infection at any given time. The economic burden this disease puts on the medico-social set-up of countries in Sub-Saharan Africa and South East Asia is phenomenal. Increasing drug resistance and failure of vector control strategies have necessitated the search for a suitable vaccine that could be integrated into the extended program of immunization for countries in the endemic regions. Malaria vaccine development has seen a surge of activity in the last decade or so owing largely to the advances made in the fields of genetic engineering and biotechnology. This revolution has brought sweeping changes in the understanding of the biology of the parasite and has helped formulate newer more effective strategies to combat the disease. Latest developments in the field of malaria vaccine development will be discussed in this chapter.
Collapse
Affiliation(s)
- Virander Singh Chauhan
- Malaria Research Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | | |
Collapse
|
49
|
Reece WHH, Plebanski M, Akinwunmi P, Gothard P, Flanagan KL, Lee EAM, Cortina-Borja M, Hill AVS, Pinder M. Naturally exposed populations differ in their T1 and T2 responses to the circumsporozoite protein of Plasmodium falciparum. Infect Immun 2002; 70:1468-74. [PMID: 11854234 PMCID: PMC127745 DOI: 10.1128/iai.70.3.1468-1474.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Revised: 08/15/2001] [Accepted: 11/27/2001] [Indexed: 11/20/2022] Open
Abstract
T-cell responses directed against the circumsporozoite protein (CS) of Plasmodium falciparum can mediate protection against malaria. We determined the frequency of T cells reactive to different regions of the CS in the blood of donors naturally exposed to P. falciparum by examining T1 (gamma interferon [IFN-gamma] ELISPOT assay), T2 (interleukin 4 [IL-4] ELISPOT assay), and proliferative T-cell responses. The proliferative responses were weak, which confirmed previous observations. The responses to the CS in the IL-4 and IFN-gamma ELISPOT assays were also weak (<40 responding cells per 10(6) cells), much weaker than the response to the purified protein derivative of Mycobacterium tuberculosis in the same donors. Moreover, a response in one assay could not be used to predict a response in either of the other assays, suggesting that although these assays may measure different responding cells, all of the responses are weakly induced by natural exposure. Interestingly, the two different study populations used had significantly different T1 and T2 biases in their responses in the C terminus of the protein, suggesting that the extent of P. falciparum exposure can affect regulation of the immune system.
Collapse
Affiliation(s)
- W H H Reece
- Molecular Immunology Group, Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kemp K, Akanmori BD, Adabayeri V, Goka BQ, Kurtzhals JAL, Behr C, Hviid L. Cytokine production and apoptosis among T cells from patients under treatment for Plasmodium falciparum malaria. Clin Exp Immunol 2002; 127:151-7. [PMID: 11882046 PMCID: PMC1906283 DOI: 10.1046/j.1365-2249.2002.01714.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Available evidence suggests that Plasmodium falciparum malaria causes activation and reallocation of T cells, and that these in vivo primed cells re-emerge into the periphery following drug therapy. Here we have examined the cytokine production capacity and susceptibility to programmed cell death of peripheral T cells during and after the period of antimalarial treatment. A high proportion of peripheral CD3+ cells had an activated phenotype at and shortly after time of admission (day 0) and initiation of therapy. This activation peaked around day 2, and at this time-point peripheral T cells from the patients could be induced to produce cytokines at conditions of limited cytokine response in cells from healthy control donors. Activated CD8hi and TCR-gammadelta+ cells were the primary IFN-gamma producers, whereas CD4+ cells constituted an important source of TNF-alpha. The proportion of apoptotic T cells was elevated at admission and peaked 2 days later, while susceptibility to activation-induced cell death in vitro remained increased for at least 1 week after admission. Taken together, the data are consistent with the concept of malaria-induced reallocation of activated T cells to sites of inflammation, followed by their release back into the peripheral blood where they undergo apoptotic death to re-establish immunological homeostasis as inflammation subsides. However, the high proportion of pre-apoptotic cells from the time of admission suggests that apoptosis also contributes to the low frequency and number of T cells in the peripheral circulation during active disease.
Collapse
Affiliation(s)
- K Kemp
- Centre for Medical Parasitology at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet) and Institute for Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|