1
|
Cao N, Zhu XM, Bao JD, Zhu LH, Liu H, Lin FC, Li L. Acyl-coenzyme A binding protein MoAcb1 regulates conidiation and pathogenicity in Magnaporthe oryzae. Front Microbiol 2023; 14:1179536. [PMID: 37187543 PMCID: PMC10175604 DOI: 10.3389/fmicb.2023.1179536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Magnaporthe oryzae is a filamentous fungus that causes rice blast. Rice blast seriously threatens the safety of food production. The normal synthesis and metabolism of fatty acids are extremely important for eukaryotes, and acyl-CoA is involved in fatty acid metabolism. Acyl-CoA binding (ACB) proteins specifically bind both medium-chain and long-chain acyl-CoA esters. However, the role of the Acb protein in plant-pathogenic fungi has not yet been investigated. Here, we identified MoAcb1, a homolog of the Acb protein in Saccharomyces cerevisiae. Disruption of MoACB1 causes delayed hyphal growth, significant reduction in conidial production and delayed appressorium development, glycogen availability, and reduced pathogenicity. Using immunoblotting and chemical drug sensitivity analysis, MoAcb1 was found to be involved in endoplasmic reticulum autophagy (ER-phagy). In conclusion, our results suggested that MoAcb1 is involved in conidia germination, appressorium development, pathogenicity and autophagy processes in M. oryzae.
Collapse
Affiliation(s)
- Na Cao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li-Hong Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hao Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Lin Li,
| |
Collapse
|
2
|
Neuropeptidergic control of neurosteroids biosynthesis. Front Neuroendocrinol 2022; 65:100976. [PMID: 34999057 DOI: 10.1016/j.yfrne.2021.100976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023]
Abstract
Neurosteroids are steroids synthesized within the central nervous system either from cholesterol or by metabolic reactions of circulating steroid hormone precursors. It has been suggested that neurosteroids exert pleiotropic activities within the central nervous system, such as organization and activation of the central nervous system and behavioral regulation. It is also increasingly becoming clear that neuropeptides exert pleiotropic activities within the central nervous system, such as modulation of neuronal functions and regulation of behavior, besides traditional neuroendocrinological functions. It was hypothesized that some of the physiological functions of neuropeptides acting within the central nervous system may be through the regulation of neurosteroids biosynthesis. Various neuropeptides reviewed in this study possibly regulate neurosteroids biosynthesis by controlling the activities of enzymes that catalyze the production of neurosteroids. It is now required to thoroughly investigate the neuropeptidergic control mechanisms of neurosteroids biosynthesis to characterize the physiological significance of this new neuroendocrinological phenomenon.
Collapse
|
3
|
Genes Encoding Microbial Acyl Coenzyme A Binding Protein/Diazepam-Binding Inhibitor Orthologs Are Rare in the Human Gut Microbiome and Show No Links to Obesity. Appl Environ Microbiol 2021; 87:e0047121. [PMID: 33837018 PMCID: PMC8174751 DOI: 10.1128/aem.00471-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acyl coenzyme A (CoA) binding protein (ACBP), also called diazepam-binding inhibitor (DBI), is a phylogenetically conserved protein that is expressed by all eukaryotic species as well as by some bacteria. Since elevated ACBP/DBI levels play a major role in the inhibition of autophagy, increase in appetite, and enhanced lipid storage that accompany obesity, we wondered whether ACBP/DBI produced by the human microbiome might affect host weight. We found that the genomes of bacterial commensals rarely contain ACBP/DBI homologues, which are rather encoded by genomes of some pathogenic or environmental taxa that were not prevalent in human feces. Exhaustive bioinformatic analyses of 1,899 gut samples from healthy individuals refuted the hypothesis that bacterial ACBP/DBI might affect the body mass index (BMI) in a physiological context. Thus, the physiological regulation of BMI is unlikely to be affected by microbial ACBP/DBI-like proteins. However, at the speculative level, it remains possible that ACBP/DBI produced by potential pathogenic bacteria might enhance their virulence by inhibiting autophagy and hence subverting innate immune responses. IMPORTANCE Acyl coenzyme A (CoA) binding protein (ACBP) can be encoded by several organisms across the domains of life, including microbes, and has shown to play major roles in human metabolic processes. However, little is known about its presence in the human gut microbiome and whether its microbial counterpart could also play a role in human metabolism. In the present study, we found that microbial ACBP/DBI sequences were rarely present in the gut microbiome across multiple metagenomic data sets. Microbes that carried ACBP/DBI in the human gut microbiome included Saccharomyces cerevisiae, Lautropia mirabilis, and Comamonas kerstersii, but these microorganisms were not associated with body mass index, further indicating an unconvincing role for microbial ACBP/DBI in human metabolism.
Collapse
|
4
|
Masmoudi-Kouki O, Namsi A, Hamdi Y, Bahdoudi S, Ghouili I, Chuquet J, Leprince J, Lefranc B, Ghrairi T, Tonon MC, Lizard G, Vaudry D. Cytoprotective and Neurotrophic Effects of Octadecaneuropeptide (ODN) in in vitro and in vivo Models of Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2020; 11:566026. [PMID: 33250858 PMCID: PMC7672186 DOI: 10.3389/fendo.2020.566026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Octadecaneuropeptide (ODN) and its precursor diazepam-binding inhibitor (DBI) are peptides belonging to the family of endozepines. Endozepines are exclusively produced by astroglial cells in the central nervous system of mammals, and their release is regulated by stress signals and neuroactive compounds. There is now compelling evidence that the gliopeptide ODN protects cultured neurons and astrocytes from apoptotic cell death induced by various neurotoxic agents. In vivo, ODN causes a very strong neuroprotective action against neuronal degeneration in a mouse model of Parkinson's disease. The neuroprotective activity of ODN is based on its capacity to reduce inflammation, apoptosis, and oxidative stress. The protective effects of ODN are mediated through its metabotropic receptor. This receptor activates a transduction cascade of second messengers to stimulate protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) signaling pathways, which in turn inhibits the expression of proapoptotic factor Bax and the mitochondrial apoptotic pathway. In N2a cells, ODN also promotes survival and stimulates neurite outgrowth. During the ODN-induced neuronal differentiation process, numerous mitochondria and peroxisomes are identified in the neurites and an increase in the amount of cholesterol and fatty acids is observed. The antiapoptotic and neurotrophic properties of ODN, including its antioxidant, antiapoptotic, and pro-differentiating effects, suggest that this gliopeptide and some of its selective and stable derivatives may have therapeutic value for the treatment of some neurodegenerative diseases.
Collapse
Affiliation(s)
- Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Amira Namsi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism/University Bourgogne Franche-Comté (UBFC)/Inserm, Dijon, France
| | - Yosra Hamdi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Seyma Bahdoudi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
| | - Ikram Ghouili
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Julien Chuquet
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
| | - Jérôme Leprince
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
- Normandy University, Regional Platform for Cell Imaging of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Benjamin Lefranc
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
- Normandy University, Regional Platform for Cell Imaging of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Marie-Christine Tonon
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism/University Bourgogne Franche-Comté (UBFC)/Inserm, Dijon, France
| | - David Vaudry
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
- Normandy University, Regional Platform for Cell Imaging of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
5
|
Aznar-Moreno JA, Venegas-Calerón M, Du ZY, Garcés R, Tanner JA, Chye ML, Martínez-Force E, Salas JJ. Characterization and function of a sunflower (Helianthus annuus L.) Class II acyl-CoA-binding protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110630. [PMID: 33180709 DOI: 10.1016/j.plantsci.2020.110630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 05/13/2023]
Abstract
Acyl-CoA-binding proteins (ACBP) bind to long-chain acyl-CoA esters and phospholipids, enhancing the activity of different acyltransferases in animals and plants. Nevertheless, the role of these proteins in the synthesis of triacylglycerols (TAGs) remains unclear. Here, we cloned a cDNA encoding HaACBP1, a Class II ACBP from sunflower (Helianthus annuus), one of the world's most important oilseed crop plants. Transcriptome analysis of this gene revealed strong expression in developing seeds from 16 to 30 days after flowering. The recombinant protein (rHaACBP1) was expressed in Escherichia coli and purified to be studied by in vitro isothermal titration calorimetry and for phospholipid binding. Its high affinity for saturated palmitoyl-CoA (16:0-CoA; KD 0.11 μM) and stearoyl-CoA (18:0-CoA; KD 0.13 μM) esters suggests that rHaACBP1 could act in acyl-CoA transfer pathways that involve saturated acyl derivatives. Furthermore, rHaACBP1 also binds to both oleoyl-CoA (18:1-CoA; KD 6.4 μM) and linoleoyl-CoA (18:2-CoA; KD 21.4 μM) esters, the main acyl-CoA substrates used to synthesise the TAGs that accumulate in sunflower seeds. Interestingly, rHaACBP1 also appears to bind to different species of phosphatidylcholines (dioleoyl-PC and dilinoleoyl-PC), glycerolipids that are also involved in TAG synthesis, and while it interacts with dioleoyl-PA, this is less prominent than its binding to the PC derivative. Expression of rHaACBP in yeast alters its fatty acid composition, as well as the composition and size of the host acyl-CoA pool. These results suggest that HaACBP1 may potentially fulfil a role in the transport and trafficking of acyl-CoAs during sunflower seed development.
Collapse
Affiliation(s)
- Jose A Aznar-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain
| | - Zhi-Yan Du
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain
| | - Julian A Tanner
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain.
| |
Collapse
|
6
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
7
|
Bahdoudi S, Ghouili I, Hmiden M, do Rego JL, Lefranc B, Leprince J, Chuquet J, do Rego JC, Marcher AB, Mandrup S, Vaudry H, Tonon MC, Amri M, Masmoudi-Kouki O, Vaudry D. Neuroprotective effects of the gliopeptide ODN in an in vivo model of Parkinson's disease. Cell Mol Life Sci 2018; 75:2075-2091. [PMID: 29264673 PMCID: PMC11105203 DOI: 10.1007/s00018-017-2727-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopamine (DA) neurons through apoptotic, inflammatory and oxidative stress mechanisms. The octadecaneuropeptide (ODN) is a diazepam-binding inhibitor (DBI)-derived peptide, expressed by astrocytes, which protects neurons against oxidative cell damages and apoptosis in an in vitro model of PD. The present study reveals that a single intracerebroventricular injection of 10 ng ODN 1 h after the last administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) prevented the degeneration of DA neurons induced by the toxin in the substantia nigra pars compacta of mice, 7 days after treatment. ODN-mediated neuroprotection was associated with a reduction of the number of glial fibrillary acidic protein-positive reactive astrocytes and a strong inhibition of the expression of pro-inflammatory genes such as interleukins 1β and 6, and tumor necrosis factor-α. Moreover, ODN blocked the inhibition of the anti-apoptotic gene Bcl-2, and the stimulation of the pro-apoptotic genes Bax and caspase-3, induced by MPTP in the substantia nigra pars compacta. ODN also decreased or even in some cases abolished MPTP-induced oxidative damages, overproduction of reactive oxygen species and accumulation of lipid oxidation products in DA neurons. Furthermore, DBI knockout mice appeared to be more vulnerable than wild-type animals to MPTP neurotoxicity. Taken together, these results show that the gliopeptide ODN exerts a potent neuroprotective effect against MPTP-induced degeneration of nigrostriatal DA neurons in mice, through mechanisms involving downregulation of neuroinflammatory, oxidative and apoptotic processes. ODN may, thus, reduce neuronal damages in PD and other cerebral injuries involving oxidative neurodegeneration.
Collapse
Affiliation(s)
- Seyma Bahdoudi
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Ikram Ghouili
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Mansour Hmiden
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Jean-Luc do Rego
- Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandy University, UNIROUEN, INSERM, 76821, Mont-Saint-Aignan, France
- Behavioral Analysis Platform (SCAC), Normandy University, 76183, Rouen, France
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandy University, UNIROUEN, INSERM, 76821, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandy University, UNIROUEN, INSERM, 76821, Mont-Saint-Aignan, France
| | - Julien Chuquet
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
| | - Jean-Claude do Rego
- Behavioral Analysis Platform (SCAC), Normandy University, 76183, Rouen, France
| | - Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandy University, UNIROUEN, INSERM, 76821, Mont-Saint-Aignan, France
| | - Marie-Christine Tonon
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia.
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France.
- Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandy University, UNIROUEN, INSERM, 76821, Mont-Saint-Aignan, France.
| |
Collapse
|
8
|
Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Prog Lipid Res 2016; 63:165-81. [DOI: 10.1016/j.plipres.2016.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/25/2016] [Accepted: 06/26/2016] [Indexed: 01/22/2023]
|
9
|
Aznar-Moreno JA, Venegas-Calerón M, Du ZY, Garcés R, Tanner JA, Chye ML, Martínez-Force E, Salas JJ. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:141-50. [PMID: 26938582 DOI: 10.1016/j.plaphy.2016.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 05/18/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered.
Collapse
Affiliation(s)
- Jose A Aznar-Moreno
- Department of Biochemistry & Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013 Seville, Spain
| | - Zhi-Yan Du
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013 Seville, Spain
| | - Julian A Tanner
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013 Seville, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013 Seville, Spain.
| |
Collapse
|
10
|
Takato H, Shimidzu M, Ashizawa Y, Takei H, Suzuki S. An acyl-CoA-binding protein from grape that is induced through ER stress confers morphological changes and disease resistance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:591-600. [PMID: 23261264 DOI: 10.1016/j.jplph.2012.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 05/18/2023]
Abstract
We here report characterization of a grape (Vitis vinifera) acyl-CoA-binding protein (VvACBP). Expression of VvACBP was detected in grape leaves exposed to tunicamycin-induced endoplasmic reticulum (ER) stress as well as cold and heat shock treatments. In tendrils and peduncles, however, high-temperature treatment induced BiP (luminal binding protein) expression, a marker of ER stress in berry skin, but not VvACBP expression. We hypothesize that VvACBP may be sorted to the periphery of plant cells. Transgenic Arabidopsis plants, expressing VvACBP, exhibited slowed-down floral transition. The gene expression of proteins related to the photoperiodic pathway, CONSTANS, FLOWERING LOCUS T (FT), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), was down-regulated in transgenic seedlings. These results underscore the possibility that VvACBP may affect the regulation of floral transition in Arabidopsis by suppressing the photoperiodic pathway. The transgenic Arabidopsis plants also exhibited morphological changes such as thicker inflorescences and rosette leaves. In addition, the rosette leaves of the transgenic plants had higher anthocyanin, total phenol, and chlorophyll contents than those of the control plants. Finally, the transgenic plants showed disease resistance to Pseudomonas syringae and Colletotrichum higginsianum, suggesting that VvACBP may also enhance disease resistance in grapevine.
Collapse
Affiliation(s)
- Haruka Takato
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | |
Collapse
|
11
|
An Integrated Analysis of Lineage-specific Small Proteins Across Eight Eukaryotes Reveals Functional and Evolutionary Significance*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Do Rego JL, Seong JY, Burel D, Leprince J, Vaudry D, Luu-The V, Tonon MC, Tsutsui K, Pelletier G, Vaudry H. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides. Front Endocrinol (Lausanne) 2012; 3:4. [PMID: 22654849 PMCID: PMC3356045 DOI: 10.3389/fendo.2012.00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/05/2012] [Indexed: 12/30/2022] Open
Abstract
The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones, and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones, or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones, or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7α-hydroxypregnenolone (7α-OH-Δ(5)P), while prolactin produced by the adenohypophysis enhances the formation of 7α-OH-Δ(5)P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABA(A) receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocin, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
| | - Jae Young Seong
- Laboratory of G Protein-Coupled Receptors, Graduate School of Medicine, Korea University College of MedicineSeoul, Korea
| | - Delphine Burel
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Jerôme Leprince
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - David Vaudry
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Van Luu-The
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Marie-Christine Tonon
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda UniversityTokyo, Japan
- Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Georges Pelletier
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Hubert Vaudry
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
- *Correspondence: Hubert Vaudry, INSERM U982, European Institute for Peptide Research, IFRMP 23, University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| |
Collapse
|
13
|
Giuliani F, Grieve A, Rabouille C. Unconventional secretion: a stress on GRASP. Curr Opin Cell Biol 2011; 23:498-504. [DOI: 10.1016/j.ceb.2011.04.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/14/2011] [Accepted: 04/18/2011] [Indexed: 01/02/2023]
|
14
|
Abstract
While PCR primer design for the amplification of known sequences is usually quite straightforward, the design, and successful application of primers aimed at the detection of as yet unknown genes is often not. The search for genes that are presumed to be distantly related to a known gene sequence, such as homologous genes in different species, paralogs in the same genome, or novel pathogens in diverse hosts, often turns into the proverbial search for the needle in the haystack. PCR-based methods commonly used to address this issue involve the use of either consensus primers or degenerate primers, both of which have significant shortcomings regarding sensitivity and specificity. We have developed a novel primer design approach that diminishes these shortcomings and instead takes advantage of the strengths of both consensus and degenerate primer designs, by combining the two concepts into a Consensus-Degenerate Hybrid Oligonucleotide Primer (CODEHOP) approach. CODEHOP PCR primers contain a relatively short degenerate 3' core and a 5' nondegenerate clamp. The 3' degenerate core consists of a pool of primers containing all possible codons for a 3-4 aminoacid motif that is highly conserved in multiply aligned sequences from known members of a protein family. Each primer in the pool also contains a single 5' nondegenerate nucleotide sequence derived from a codon consensus across the aligned aminoacid sequences flanking the conserved motif. During the initial PCR amplification cycles, the degenerate core is responsible for specific binding to sequences encoding the conserved aminoacid motif. The longer consensus clamp region serves to stabilize the primer and allows the participation of all primers in the pool in the efficient amplification of products during later PCR cycles. We have developed an interactive web site and algorithm (iCODEHOP) for designing CODEHOP PCR primers from multiply aligned protein sequences, which is freely available online. Here, we describe the workflow of a typical CODEHOP PCR assay design and optimization and give a specific implementation example along with "best-practice" advice.
Collapse
Affiliation(s)
- Jeannette P Staheli
- Center for Childhood Infection and Prematurity Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | |
Collapse
|
15
|
Yurchenko OP, Weselake RJ. Involvement of low molecular mass soluble acyl-CoA-binding protein in seed oil biosynthesis. N Biotechnol 2010; 28:97-109. [PMID: 20933624 DOI: 10.1016/j.nbt.2010.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/11/2010] [Accepted: 09/29/2010] [Indexed: 01/03/2023]
Abstract
Acyl-CoA-binding protein (ACBP), a low molecular mass (m) (∼ 10 kDa) soluble protein ubiquitous in eukaryotes, plays an important housekeeping role in lipid metabolism by maintaining the intracellular acyl-CoA pool. ACBP is involved in lipid biosynthesis and transport, gene expression, and membrane biogenesis. In plants, low m ACBP and high m ACBPs participate in response mechanisms to biotic and abiotic factors, acyl-CoA transport in phloem, and biosynthesis of structural and storage lipids. In light of current research on the modification of seed oil, insight into mechanisms of substrate trafficking within lipid biosynthetic pathways is crucial for developing rational strategies for the production of specialty oils with the desired alterations in fatty acid composition. In this review, we summarize our knowledge of plant ACBPs with emphasis on the role of low m ACBP in seed oil biosynthesis, based on in vitro studies and analyses of transgenic plants. Future prospects and possible applications of low m ACBP in seed oil modification are discussed.
Collapse
Affiliation(s)
- Olga P Yurchenko
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta, Canada
| | | |
Collapse
|
16
|
Burgardt NI, Ferreyra RG, Falomir-Lockhart L, Córsico B, Ermácora MR, Ceolín M. Biophysical characterisation and urea-induced unfolding of recombinant Yarrowia lipolytica sterol carrier protein-2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1115-22. [PMID: 19376277 DOI: 10.1016/j.bbapap.2009.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 03/18/2009] [Accepted: 04/06/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Noelia I Burgardt
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | | | | | | | | | | |
Collapse
|
17
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Staheli JP, Ryan JT, Bruce AG, Boyce R, Rose TM. Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) for the detection of novel viruses in non-human primates. Methods 2009; 49:32-41. [PMID: 19477279 DOI: 10.1016/j.ymeth.2009.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/20/2009] [Accepted: 05/20/2009] [Indexed: 11/19/2022] Open
Abstract
Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) have proven to be a powerful tool for the identification of novel genes. CODEHOPs are designed from highly-conserved regions of multiply-aligned protein sequences from members of a gene family and are used in PCR amplification to identify distantly-related genes. The CODEHOP approach has been used to identify novel pathogens by targeting amino acid motifs conserved in specific pathogen families. We initiated a program utilizing the CODEHOP approach to develop PCR-based assays targeting a variety of viral families that are pathogens in non-human primates. We have also developed and further improved a computer program and website to facilitate the design of CODEHOP PCR primers. Here, we detail the method for the development of pathogen-specific CODEHOP PCR assays using the papillomavirus family as a target. Papillomaviruses constitute a diverse virus family infecting a wide variety of mammalian species, including humans and non-human primates. We demonstrate that our pan-papillomavirus CODEHOP assay is broadly reactive with all major branches of the virus family and show its utility in identifying a novel non-human primate papillomavirus in cynomolgus macaques.
Collapse
Affiliation(s)
- Jeannette P Staheli
- Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, 1900 Ninth Ave., 8th Floor, Seattle, WA 98101-1304, USA
| | | | | | | | | |
Collapse
|
19
|
Faergeman NJ, Wadum M, Feddersen S, Burton M, Kragelund BB, Knudsen J. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA. Mol Cell Biochem 2007; 299:55-65. [PMID: 17013545 DOI: 10.1007/s11010-005-9040-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Besides serving as essential substrates for beta-oxidation and synthesis of triacylglycerols and more complex lipids like sphingolipids and sterol esters, long-chain fatty acyl-CoA esters are increasingly being recognized as important regulators of enzyme activities and gene transcription. Acyl-CoA binding protein, ACBP, has been proposed to play a pivotal role in the intracellular trafficking and utilization of long-chain fatty acyl-CoA esters. Depletion of acyl-CoA binding protein in yeast results in aberrant organelle morphology incl. fragmented vacuoles, multi-layered plasma membranes and accumulation of vesicles of variable sizes. In contrast to synthesis and turn-over of glycerolipids, the levels of very-long-chain fatty acids, long-chain bases and ceramide are severely affected by Acb1p depletion, suggesting that Acb1p, rather than playing a general role, serves specific roles in cellular lipid metabolism.
Collapse
Affiliation(s)
- Nils J Faergeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | | | | | | | | | | |
Collapse
|
20
|
Ferreyra RG, Burgardt NI, Milikowski D, Melen G, Kornblihtt AR, Dell' Angelica EC, Santomé JA, Ermácora MR. A yeast sterol carrier protein with fatty-acid and fatty-acyl-CoA binding activity. Arch Biochem Biophys 2006; 453:197-206. [PMID: 16890184 DOI: 10.1016/j.abb.2006.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 11/22/2022]
Abstract
The 14-kDa sterol carrier protein 2 (SCP2) domain is present in Eukaria, Bacteria and Archaea, and has been implicated in the transport and metabolism of lipids. We report the cloning, expression, purification and physicochemical characterization of a SCP2 from the yeast Yarrowia lipolytica (YLSCP2). Analytical size-exclusion chromatography, circular dichroism and fluorescence spectra, indicate that recombinant YLSCP2 is a well-folded monomer. Thermal unfolding experiments show that SCP2 maximal stability is at pH 7.0-9.0. YLSCP2 binds cis-parinaric acid and palmitoyl-CoA with KD values of 81+/-40 nM and 73+/-33 nM, respectively, sustaining for the first time the binding of fatty acids and their CoA esters to a nonanimal SCP2. The role of yeast SCP2 and other lipid binding proteins in transport, storage and peroxisomal oxidation of fatty acids is discussed.
Collapse
Affiliation(s)
- Raúl G Ferreyra
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Acyl-CoA-binding protein (ACBP) is a 10 kDa protein that binds C12-C22 acyl-CoA esters with high affinity. In vitro and in vivo experiments suggest that it is involved in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, regulation of the intracellular acyl-CoA pool size, donation of acyl-CoA esters for beta-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified in all four eukaryotic kingdoms, Animalia, Plantae, Fungi and Protista, and eleven eubacterial species. ACBP homologues were not detected in any other known bacterial species, or in archaea. Nearly all of the ACBP-containing bacteria are pathogenic to plants or animals, suggesting that an ACBP gene could have been acquired from a eukaryotic host by horizontal gene transfer. Many bacterial, fungal and higher eukaryotic species only harbour a single ACBP homologue. However, a number of species, ranging from protozoa to vertebrates, have evolved two to six lineage-specific paralogues through gene duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage-specific paralogues have evolved altered functions. The appearance of ACBP very early on in evolution points towards a fundamental role of ACBP in acyl-CoA metabolism, including ceramide synthesis and in signalling.
Collapse
Affiliation(s)
- Mark Burton
- *Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Timothy M. Rose
- †Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA, 98195, U.S.A
| | - Nils J. Færgeman
- *Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jens Knudsen
- *Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- To whom correspondence should be addressed (email )
| |
Collapse
|
22
|
Liu M, Zhang TY, Xu WH. A cDNA encoding diazepam-binding inhibitor/acyl-CoA-binding protein in Helicoverpa armigera: molecular characterization and expression analysis associated with pupal diapause. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:168-76. [PMID: 15993651 DOI: 10.1016/j.cca.2005.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 05/29/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
The diazepam binding inhibitor (DBI) or the acyl-CoA-binding protein (ACBP) is a 9-10 kDa highly conserved multifunctional protein that plays important roles in GABA(A) receptor activity regulation, lipid absorption and steroidogenesis in various organisms. To study the functions of DBI/ACBP in insect development or diapause, we cloned the cDNA from Helicoverpa armigera (Har) utilizing rapid amplification of cDNA ends (RACE). By homology search, Har-DBI/ACBP is conserved with the DBI/ACBPs known from other insects. Northern blot analysis showed that DBI/ACBP gene expressed in nonneural and neural tissues. RT-PCR combined Southern blot analysis revealed that DBI/ACBP mRNA in the brain of nondiapause individual was much higher than that in the brain of diapausing insects. At early and middle stages of 6th instar larvae, the level of DBI/ACBP mRNA was higher in the midgut of diapause type than that in nondiapause type and low at late 6th instar larval stage and early pupal stage in both types. In the prothoracic gland (PG), DBI/ACBP expression appeared at a high level at middle and late stages of 6th larval instar in both nondiapause and diapause types, and declined after pupation. In vitro experiments revealed that DBI/ACBP mRNA in PG could be stimulated by synthetic H. armigera diapause hormone (Har-DH), suggesting that Har-DH may stimulate the PG to produce ecdysteroids by the DBI/ACBP signal pathway. By in vitro assay, we also found that FGIN-1-27, which has similar functions to DBI/ACBP in ecdysteroidogenesis, could induce PG ecdysteroidogenesis effectively, suggesting that DBI/ACBP regulates biosynthesis of ecdysteroids in PG. Thus, DBI/ACBP indeed plays a key role in metabolism and development in H. armigera.
Collapse
Affiliation(s)
- Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China
| | | | | |
Collapse
|
23
|
Marino F, Cosentino M, Ferrari M, Cattaneo S, Frigo G, Fietta AM, Lecchini S, Frigo GM. Intracellular calcium changes induced by the endozepine triakontatetraneuropeptide in human polymorphonuclear leukocytes: role of protein kinase C and effect of calcium channel blockers. Cell Commun Signal 2004; 2:6. [PMID: 15228623 PMCID: PMC449738 DOI: 10.1186/1478-811x-2-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Accepted: 06/30/2004] [Indexed: 11/23/2022] Open
Abstract
Background The endozepine triakontatetraneuropeptide (TTN) induces intracellular calcium ([Ca++]i) changes followed by activation in human polymorphonuclear leukocytes (PMNs). The present study was undertaken to investigate the role of protein kinase (PK) C in the modulation of the response to TTN by human PMNs, and to examine the pharmacology of TTN-induced Ca++ entry through the plasma membrane of these cells. Results The PKC activator 12-O-tetradecanoylphorbol-13-acetate (PMA) concentration-dependently inhibited TTN-induced [Ca++]i rise, and this effect was reverted by the PKC inhibitors rottlerin (partially) and Ro 32-0432 (completely). PMA also inhibited TTN-induced IL-8 mRNA expression. In the absence of PMA, however, rottlerin (but not Ro 32-0432) per se partially inhibited TTN-induced [Ca++]i rise. The response of [Ca++]i to TTN was also sensitive to mibefradil and flunarizine (T-type Ca++-channel blockers), but not to nifedipine, verapamil (L-type) or ω-conotoxin GVIA (N-type). In agreement with this observation, PCR analysis showed the expression in human PMNs of the mRNA for all the α1 subunits of T-type Ca++ channels (namely, α1G, α1H, and α1I). Conclusions In human PMNs TTN activates PKC-modulated pathways leading to Ca++ entry possibly through T-type Ca++ channels.
Collapse
Affiliation(s)
- Franca Marino
- Department of Clinical Medicine, Section of Experimental and Clinical Pharmacology, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Department of Clinical Medicine, Section of Experimental and Clinical Pharmacology, University of Insubria, Varese, Italy
| | - Marco Ferrari
- Department of Clinical Medicine, Section of Experimental and Clinical Pharmacology, University of Insubria, Varese, Italy
| | - Simona Cattaneo
- Department of Clinical Medicine, Section of Experimental and Clinical Pharmacology, University of Insubria, Varese, Italy
| | - Giuseppina Frigo
- Department of Clinical Medicine, Section of Experimental and Clinical Pharmacology, University of Insubria, Varese, Italy
| | - Anna M Fietta
- Department of Hematological, Pneumological and Cardiovascular Sciences, University of Pavia, Pavia, Italy
| | - Sergio Lecchini
- Department of Clinical Medicine, Section of Experimental and Clinical Pharmacology, University of Insubria, Varese, Italy
| | - Gian Mario Frigo
- Department of Internal Medicine and Therapeutics, Section of Pharmacology and Toxicology, University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Leung KC, Li HY, Mishra G, Chye ML. ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA. PLANT MOLECULAR BIOLOGY 2004; 55:297-309. [PMID: 15604682 DOI: 10.1007/s11103-004-0642-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, fatty acids synthesized in the chloroplasts are exported as acyl-CoA esters to the endoplasmic reticulum (ER). Cytosolic 10-kDa acyl-CoA-binding proteins (ACBPs), prevalent in eukaryotes, are involved in the storage and intracellular transport of acyl-CoAs. We have previously characterized Arabidopsis thaliana cDNAs encoding membrane-associated ACBPs with ankyrin repeats, designated ACBP1 and ACBP2, which show conservation to cytosolic ACBPs at the acyl-CoA-binding domain. Analysis of the Arabidopsis genome has revealed the presence of three more genes encoding putative proteins with acyl-CoA-binding domains, designated ACBP3, ACBP4 and ACBP5. Homologues of ACBP1 to ACBP5 have not been reported in any other organism. We show by reverse-transcriptase polymerase chain reaction (RT-PCR) analysis that ACBP3 , ACBP4 and ACBP5 are expressed in all plant organs, like ACBP1 and ACBP2 . ACBP4 and ACBP5 that share 81.4 identity and which contain kelch motifs were further investigated. To demonstrate their function in binding acyl-CoA, we have expressed them as (His)6-tagged recombinant proteins in Escherichia coli for in vitro binding assays. Both (His)6-ACBP4 and (His)6-ACBP5 bind [14C]oleoyl-CoA with high affinity, [14C]palmitoyl-CoA with lower affinity and did not bind [14C]arachidonyl-CoA. Eight mutant forms of each protein with single amino acid substitutions within the acyl-CoA-binding domain were produced and analyzed. On binding assays, all mutants were impaired in oleoyl-CoA binding. Hence, these novel ACBPs with kelch motifs have functional acyl-CoA-binding domains that bind oleoyl-CoA. Their predicted cytosol localization suggests that they could maintain an oleoyl-CoA pool in the cytosol or transport oleoyl-CoA from the plastids to the ER in plant lipid metabolism.
Collapse
Affiliation(s)
- Ka-Chun Leung
- Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | |
Collapse
|
25
|
Marino F, Cosentino M, Fietta AM, Ferrari M, Cattaneo S, Frigo G, Lecchini S, Frigo GM. Interleukin-8 production induced by the endozepine triakontatetraneuropeptide in human neutrophils: role of calcium and pharmacological investigation of signal transduction pathways. Cell Signal 2003; 15:511-7. [PMID: 12639714 DOI: 10.1016/s0898-6568(02)00134-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endozepine triakontatetraneuropeptide (TTN) induces intracellular calcium ([Ca(2+)](i)) changes and is chemotactic for human neutrophils (PMNs). Because interleukin-8 (IL-8) production is Ca(2+) dependent and can be induced by chemotactic stimuli, we have investigated the ability of TTN to induce IL-8 production in PMNs, as well as the signal transduction mechanisms involved. Our results show that TTN increases IL-8 release and IL-8 mRNA expression in a concentration- and time-dependent fashion, and these effects are prevented by the Ca(2+) chelator BAPTA-AM. TTN-induced [Ca(2+)](i) changes and IL-8 mRNA expression are sensitive to pertussis toxin, to the phospholipase C (PLC) inhibitor U73122 (but not to its inactive analogue U73343) and to the protein kinase C (PKC) inhibitor calphostin C. It is therefore suggested that TTN-induced IL-8 production in human PMNs results from a G protein-operated, PLC-activated [Ca(2+)](i) rise, and PKC contributes to this effect. These findings further support the possible role of TTN in the modulation of the inflammatory processes.
Collapse
Affiliation(s)
- Franca Marino
- Laboratory of Pharmacology, Faculty of Medicine, University of Insubria, Via Ottorino Rossi n. 9, 21100 Varese, VA, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2003; 27:35-64. [PMID: 12697341 DOI: 10.1016/s0168-6445(03)00017-2] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Peroxisomal fatty acid degradation in the yeast Saccharomyces cerevisiae requires an array of beta-oxidation enzyme activities as well as a set of auxiliary activities to provide the beta-oxidation machinery with the proper substrates. The corresponding classical and auxiliary enzymes of beta-oxidation have been completely characterized, many at the structural level with the identification of catalytic residues. Import of fatty acids from the growth medium involves passive diffusion in combination with an active, protein-mediated component that includes acyl-CoA ligases, illustrating the intimate linkage between fatty acid import and activation. The main factors involved in protein import into peroxisomes are also known, but only one peroxisomal metabolite transporter has been characterized in detail, Ant1p, which exchanges intraperoxisomal AMP with cytosolic ATP. The other known transporter is Pxa1p-Pxa2p, which bears similarity to the human adrenoleukodystrophy protein ALDP. The major players in the regulation of fatty acid-induced gene expression are Pip2p and Oaf1p, which unite to form a transcription factor that binds to oleate response elements in the promoter regions of genes encoding peroxisomal proteins. Adr1p, a transcription factor, binding upstream activating sequence 1, also regulates key genes involved in beta-oxidation. The development of new, postgenomic-era tools allows for the characterization of the entire transcriptome involved in beta-oxidation and will facilitate the identification of novel proteins as well as the characterization of protein families involved in this process.
Collapse
Affiliation(s)
- J Kalervo Hiltunen
- Biocenter Oulu and Department of Biochemistry, P.O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
27
|
Li HY, Chye ML. Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2. PLANT MOLECULAR BIOLOGY 2003; 51:483-92. [PMID: 12650615 DOI: 10.1023/a:1022330304402] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cytosolic acyl-CoA binding proteins bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and pool formers. Recently, we have characterized Arabidopsis thaliana cDNAs encoding novel forms of ACBP, designated ACBP1 and ACBP2, that contain a hydrophobic domain at the N-terminus and show conservation at the acyl-CoA binding domain to cytosolic ACBPs. We have previously demonstrated that ACBP1 is membrane-associated in Arabidopsis. Here, western blot analysis of anti-ACBP2 antibodies on A. thaliana protein showed that ACBP2 is located in the microsome-containing membrane fraction and in the subcellular fraction containing large particles (mitochondria, chloroplasts and peroxisomes), resembling the subcellular localization of ACBP1. To further investigate the subcellular localization of ACBP2, we fused ACBP2 translationally in-frame to GFP. By means of particle gene bombardment, ACBP2-GFP and ACBP1-GFP fusion proteins were observed transiently expressed at the plasma membrane and at the endoplasmic reticulum in onion epidermal cells. GFP fusions with deletion derivatives of ACBPI or ACBP2 lacking the transmembrane domain were impaired in membrane targeting. Our investigations also showed that when the transmembrane domain of ACBP1 or that of ACBP2 was fused with GFP, the fusion protein was targeted to the plasma membrane, thereby establishing their role in membrane targeting. The localization of ACBP1-GFP is consistent with our previous observations using immunoelectron microscopy whereby ACBPI was localized to the plasma membrane and vesicles. We conclude that ACBP2, like ACBP1, is a membrane protein that likely functions in membrane-associated acyl-CoA transfer/metabolism.
Collapse
Affiliation(s)
- Hong-Ye Li
- Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | |
Collapse
|
28
|
Abstract
Long-chain fatty acids are a vital metabolic energy source and are building blocks of membrane lipids. The yeast Saccharomyces cerevisiae is a valuable model system for elucidation of gene-function relationships in such eukaryotic processes as fatty acid metabolism. Yeast degrades fatty acids only in the peroxisome, and recently, genes encoding core and auxiliary enzymes of peroxisomal beta-oxidation have been identified. Mechanisms involved in fatty acid induction of gene expression have been described, and novel fatty acid-responsive genes have been discovered via yeast genome analysis. In addition, a number of genes essential for synthesis of the variety of fatty acids in yeast have been cloned. Advances in understanding such processes in S. cerevisiae will provide helpful insights to functional genomics approaches in more complex organisms.
Collapse
Affiliation(s)
- P J Trotter
- The Division of Nutritional Sciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
29
|
Yang Y, Pritchard PH, Bhuiyan J, Seccombe DW, Moghadasian MH. Overexpression of acyl-coA binding protein and its effects on the flux of free fatty acids in McA-RH 7777 cells. Lipids 2001; 36:595-600. [PMID: 11485163 DOI: 10.1007/s11745-001-0762-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Overexpression of acyl-CoA binding protein (ACBP) was induced in a rat hepatoma cell line (McA-RH 7777) by stable integration of rat ACBP cDNA. The transfected cells (ACBP-27) had 3.5-fold higher concentrations of ACBP than control cells (14 vs. 4 ng/microg DNA). Both ACBP-27 and control cells were cultured in the presence of various concentrations of radiolabeled palmitic acid; and the effects of ACBP on lipogenesis and beta-oxidation were studied. Incubation of the cells with 100 microM palmitic acid resulted in 42% greater incorporation of the fatty acid in ACBP-27 cells as compared to that in the control cells. This increased incorporation of the fatty acid was observed predominantly in the triglyceride fraction. Higher concentrations of palmitic acid (200 to 400 microM) were associated with a significant decrease in the production of 14CO2 in the ACBP-27 cell line than in the control cells, while lower concentrations had no effect. Our data suggest a role for ACBP in the partitioning of fatty acids between esterification reactions leading to the formation of neutral lipids and beta-oxidation. ACBP may play a regulatory role by influencing this important branch point in intermediary lipid metabolism.
Collapse
Affiliation(s)
- Y Yang
- Department of Pathology and Laboratory Medicine, St Paul's Hospital and the University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
30
|
Chye ML, Li HY, Yung MH. Single amino acid substitutions at the acyl-CoA-binding domain interrupt 14[C]palmitoyl-CoA binding of ACBP2, an Arabidopsis acyl-CoA-binding protein with ankyrin repeats. PLANT MOLECULAR BIOLOGY 2000; 44:711-21. [PMID: 11202434 DOI: 10.1023/a:1026524108095] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cytosolic acyl-CoA-binding proteins (ACBPs) are small proteins (ca. 10 kDa) that bind long-chain acyl-CoAs and are involved in the storage and intracellular transport of acyl-CoAs. Previously, we have characterized an Arabidopsis thaliana cDNA encoding a novel membrane-associated ACBP, designated ACBP1, demonstrating the existence of a new form of ACBP in plants (M.-L. Chye, Plant Mol. Biol. 38 (1998) 827-838). ACBP1 likely participates in intermembrane lipid transport from the ER to the plasma membrane, where it could maintain a membrane-associated acyl pool (Chye et al., Plant J. 18 (1999) 205-214). Here we report the isolation of cDNAs encoding ACBP2 (Mr 38,479) that shows conservation in the acyl-CoA-binding domain to previously reported ACBPs, and contains ankyrin repeats at its carboxy terminus. These repeats, which likely mediate protein-protein interactions, could constitute a potential docking site in ACBP2 for an enzyme that uses acyl-CoAs as substrate, in vitro binding assays on recombinant (His)6-ACBP2 expressed in Escherichia coli show that it binds 14[C]palmitoyl-CoA preferentially to 14[C]oleoyl-CoA. Analysis of the acyl-CoA-binding domain in ACBP2 was carried out by in vitro mutagenesis. Mutant forms of recombinant (His)6-ACBP2 with single amino acid substitutions at conserved residues within the acyl-CoA-binding domain were less effective in binding 14[C]palmitoyl-CoA. Northern blot analysis showed that the 1.6 kb ACBP2 mRNA, like that of ACBP1, is expressed in all plant organs. Analysis of the ACBP2 promoter revealed that, like the ACBP1 promoter, it lacks a TATA box suggesting the possibility of a housekeeping function for ACBP2 in plant lipid metabolism.
Collapse
MESH Headings
- Acyl Coenzyme A/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Ankyrins/genetics
- Arabidopsis/genetics
- Arabidopsis Proteins
- Binding Sites/genetics
- Binding, Competitive
- Blotting, Northern
- Carbon Radioisotopes
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Fatty Acid-Binding Proteins
- Histidine/genetics
- Molecular Sequence Data
- Neoplasm Proteins
- Palmitoyl Coenzyme A/metabolism
- Plant Proteins
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repetitive Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- M L Chye
- Department of Botany, University of Hong Kong, China.
| | | | | |
Collapse
|
31
|
Chye ML. Arabidopsis cDNA encoding a membrane-associated protein with an acyl-CoA binding domain. PLANT MOLECULAR BIOLOGY 1998; 38:827-38. [PMID: 9862500 DOI: 10.1023/a:1006052108468] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Acyl-CoA binding proteins (ACBPs) are small (ca. 10 kDa) highly-conserved cytosolic proteins that bind long-chain acyl-CoAs. A novel cDNA encoding ACBP1, a predicted membrane protein of 24.1 kDa with an acyl-CoA binding protein domain at its carboxy terminus, was cloned from Arabidopsis thaliana. At this domain, ACBP1 showed 47% amino acid identity to Brassica ACBP and 35% to 40% amino acid identity to yeast, Drosophila, bovine and human ACBPs. Recombinant (His)6-ACBP1 fusion protein was expressed in Escherichia coli and was shown to bind 14[C]oleoyl-CoA. A hydrophobic domain, absent in the 10 kDa ACBPs, was located at the amino terminus of ACBP1. Using antipeptide polyclonal antibodies in western blot analysis, ACBP1 was shown to be a membrane-associated glycosylated protein with an apparent molecular mass of 33 kDa. The ACBP1 protein was also shown to accumulate predominantly in siliques and was localized to the seed within the silique. These results suggest that the biological role of ACBP1 is related to lipid metabolism in the seed, presumably in which acyl-CoA esters are involved. Northern blot analysis showed that the 1.4 kb ACBP1 mRNA was expressed in silique, root, stem, leaf and flower. Results from Southern blot analysis of genomic DNA suggest the presence of at least two genes encoding ACBPs in Arabidopsis.
Collapse
Affiliation(s)
- M L Chye
- Department of Botany, University of Hong Kong, China
| |
Collapse
|
32
|
Do-Rego JL, Mensah-Nyagan AG, Feuilloley M, Ferrara P, Pelletier G, Vaudry H. The endozepine triakontatetraneuropeptide diazepam-binding inhibitor [17-50] stimulates neurosteroid biosynthesis in the frog hypothalamus. Neuroscience 1998; 83:555-70. [PMID: 9460762 DOI: 10.1016/s0306-4522(97)00362-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurons and glial cells are capable of synthesizing various bioactive steroids, but the neuronal mechanisms controlling neurosteroid-secreting cells are poorly understood. In the present study, we have investigated the possible effect of an endogenous ligand of benzodiazepine receptors, the triakontatetraneuropeptide [17-50] (TTN), on steroid biosynthesis in the frog hypothalamus. Immunohistochemical studies revealed that most hypothalamic neurons expressing 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase also contained peripheral-type benzodiazepine receptor-like immunoreactivity. Confocal laser scanning microscopic analysis revealed that the peripheral-type benzodiazepine receptor-immunoreactive material was located both in the cytoplasm and at the periphery of the cell bodies. By using the pulse-chase technique, TTN was found to stimulate the conversion of [3H]pregnenolone into various steroids, including 17-hydroxypregnenolone, 5 alpha-dihydrotestosterone and 17-hydroxyprogesterone, in a dose-dependent manner. The peripheral-type benzodiazepine receptor agonist Ro5-4864 mimicked the stimulatory effect of TTN on the formation of neurosteroids. The peripheral-type benzodiazepine receptor antagonist PK11195 significantly reduced the effect of TTN on neurosteroid synthesis, while the central-type benzodiazepine receptor antagonist flumazenil did not affect the formation of neurosteroids evoked by TTN. These data indicate that TTN stimulates the biosynthesis of 3-keto-17 alpha-hydroxysteroids in frog hypothalamic neurons through activation of peripheral-type benzodiazepine receptors likely located at the plasma membrane level.
Collapse
Affiliation(s)
- J L Do-Rego
- European Institute for Peptide Research (IFRMP no 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U 413, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
33
|
Gossett RE, Edmondson RD, Jolly CA, Cho TH, Russell DH, Knudsen J, Kier AB, Schroeder F. Structure and function of normal and transformed murine acyl-CoA binding proteins. Arch Biochem Biophys 1998; 350:201-13. [PMID: 9473293 DOI: 10.1006/abbi.1997.0521] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acyl-CoA binding protein (ACBP) is a ubiquitous cytosolic protein found in high levels in tumorigenic cells. However, the molecular basis for the elevated levels of ACBP in malignant cells, ligand binding characteristics, and function in microsomal phospholipid synthesis have not been resolved. To address whether tumorigenic ACBP differs from the native protein, ACBP was purified from LM cells, a tumorigenic subline of mouse L-929 fibroblasts, and its primary structure was examined by delayed-extraction MALDI-linear TOF mass spectrometry. Proteolytic digestion and peptide sequence analysis confirmed that ACBP from LM cells was identical to native mouse ACBP (based on cDNA-derived amino acid sequence) with no amino acid substitutions, deletions, or posttranslational modifications. A fluorescent binding assay revealed that mouse ACBP bound cis-parinaroyl-CoA with high affinity, Kd 7.6 +/- 2.3 nM, at a single binding site. Furthermore, mouse ACBP enhanced microsomal phosphatidic acid formation from oleoyl-CoA 2.3-fold. Mouse ACBP also inhibited microsomal phospholipid acyl chain remodeling of choline-containing phospholipids, phosphatidylcholine and sphingomyelin, by 50 and 64%, respectively. These effects were specific compared to those of native rat liver or recombinant rat ACBP. Mouse and rat ACBPs differed by three amino acid substitutions at positions 4, 68, and 78. Although these small differences in amino acid sequence did not alter binding affinity for cis-parinaroyl-CoA, rat liver ACBP stimulated utilization of oleoyl-CoA 3.8-fold by microsomal glycerol-3-phosphate acyltransferase, significantly higher than that observed with mouse ACBP, but did not alter microsomal phospholipid acyl chain remodeling from oleoyl-CoA. In addition, these ACBPs protected oleoyl-CoA against hydrolysis. Finally, both mouse and rat ACBP shifted the incorporation of oleoyl-CoA from microsomal phospholipid acyl chain remodeling to phosphatidic acid biosynthesis. These data for the first time show a role for ACBP in stimulating microsomal phosphatidic acid biosynthesis and acyl chain remodeling in vitro. While ACBP from tumorigenic cells did not differ from normal, ACBPs from different murine species displayed subtle differences in their effects on microsomal phospholipid metabolism in vitro.
Collapse
Affiliation(s)
- R E Gossett
- Department of Veterinary Pathobiology, Texas A & M University, TVMC, College Station, Texas 77843-4467, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Børsting C, Hummel R, Schultz ER, Rose TM, Pedersen MB, Knudsen J, Kristiansen K. Saccharomyces carlsbergensis contains two functional genes encoding the acyl-CoA binding protein, one similar to the ACB1 gene from S. cerevisiae and one identical to the ACB1 gene from S. monacensis. Yeast 1997; 13:1409-21. [PMID: 9434347 DOI: 10.1002/(sici)1097-0061(199712)13:15<1409::aid-yea188>3.0.co;2-a] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces carlsbergensis is an amphiploid, and it has previously been suggested that the genomes of S. carlsbergensis originate from S. cerevisiae and S. monacensis. We have cloned the ACB1 genes encoding the acyl-CoA binding protein (ACBP) from S. carlsbergensis, S. cerevisiae and S. monacensis. Two genes were found in S. carlsbergensis and named ACB1 type 1 and type 2, respectively. The type 1 gene is identical to the S. cerevisiae ACB1 gene except for three substitutions, one single base pair deletion and one double base pair insertion, all located in the promoter region. The type 2 gene is completely identical to the S. monacensis ACB1 gene. These findings substantiate the notion that S. carlsbergensis is a hybrid between S. cerevisiae and S. monacensis. Both ACB1 type 1 and type 2 are actively transcribed in S. carlsbergensis and transcription is initiated at sites identical to those used for transcriptional initiation of the ACB1 genes in S. cerevisiae and S. monacensis, respectively. Two polyadenylation sites, spaced 225 bp apart, are present in the S. cerevisiae ACB1 gene. The upstream polyadenylation site is used exclusively during exponential growth, whereas both sites are utilized during later stages of growth.
Collapse
Affiliation(s)
- C Børsting
- Department of Molecular Biology, Odense University, Denmark.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The nucleotide sequences of five major regions from chromosome VII of Saccharomyces cerevisiae have been determined and analysed. These regions represent 203 kilobases corresponding to approximately one-fifth of the complete yeast chromosome VII. Two fragments originate from the left arm of this chromosome. The first one of about 15.8 kb starts approximately 75 kb from the left telomere and is bordered by the SK18 chromosomal marker. The second fragment covers the 72.6 kb region between the chromosomal markers CYH2 and ALG2. On the right chromosomal arm three regions, a 70.6 kb region between the MSB2 and the KSS1 chromosomal markers and two smaller regions dominated by the KRE11 marker and another one in the vicinity of the SER2 marker were sequenced. We found a total of 114 open reading frames (ORFs), 13 of which were completely overlapping with larger ORFs running in the opposite direction. A total of 44 yeast genes, the physiological functions of which are known, could be precisely mapped on this chromosome. Of the remaining 57 ORFs, 26 shared sequence homologies with known genes, among which were 13 other S. cerevisiae genes and five genes from other organisms. No homology with any sequence in the databases could be found for 31 ORFs. Furthermore, five Ty elements were found, one of which may not be functional due to a frame shift in its Ty1B amino acid sequence. The five chromosomal regions harboured five potential ARS elements and one sigma element together with eight tRNA genes and two snRNAs, one of which is encoded by an intron of a protein-coding gene.
Collapse
Affiliation(s)
- M Rieger
- Genotype GmbH, Wilhelmsfeld, Germany
| | | | | | | |
Collapse
|
36
|
Chen ZW, Bergman T, Jörnvall H, Bonetto V, Norberg A, Mutt V, Longone P, Costa E, Efendic S, Ostenson CG. Full-length and N-terminally truncated chicken intestinal diazepam-binding inhibitor. Purification, structural characterization and influence on insulin release. REGULATORY PEPTIDES 1997; 69:63-8. [PMID: 9178347 DOI: 10.1016/s0167-0115(97)02126-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two forms of diazepam-binding inhibitor (DBI) have been purified from chicken intestine and identified as the intact avian polypeptide (residues 1-86) and a truncated variant (residues 35-86). At 10 nM concentration, both the intact and the truncated peptide suppress in vitro-monitored glucose-induced insulin release by 50 (p < 0.02) and 64% (p < 0.01) respectively. The truncation starts at a segment. -Thr-Val-Gly-Asp-, that is strictly conserved between characterized DBI species, indicating special restrictions on the structure. However, overall DBI conservation appears to be complex. A number of differently bioactive fragments with separate processings and tissue distributions have been observed, suggesting multiple functions of DBI and its sub-segments.
Collapse
Affiliation(s)
- Z W Chen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kolmer M, Pelto-Huikko M, Parvinen M, Höög C, Alho H. The transcriptional and translational control of diazepam binding inhibitor expression in rat male germ-line cells. DNA Cell Biol 1997; 16:59-72. [PMID: 9022045 DOI: 10.1089/dna.1997.16.59] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The diazepam binding inhibitor [DBI, also known as acyl-CoA-binding protein, (ACBP), or endozepine] is a 10-kD protein that has been suggested to be involved in the regulation of several biological processes such as acyl-CoA metabolism, steroidogenesis, insulin secretion, and gamma-aminobutyric acid type A (GABA(A))/benzodiazepine receptor modulation. DBI has been cloned from vertebrates, insects, plants, and yeasts. In mammals, DBI is expressed in almost all the tissues studied. Nevertheless, DBI expression is restricted to specific cell types. Here we have studied DBI gene expression in the germ-line cells of rat testis. The DBI gene was intensively transcribed in postmeiotic round spermatids from stages VI to VIII of the seminiferous epithelial cycle. A prominent, spermatid-specific upstream transcription initiation site was identified in addition to the multiple common transcriptional initiation sites found in the somatic tissues. However, no DBI protein was detected in round spermatids, suggesting that the DBI transcripts were translationally arrested. The DBI protein was detected in the late spermatogenic stages starting from elongating spermatids from step 18 (stage VI) onward. The DBI protein was also detected in mature spermatozoa and in ejaculated human sperms. The majority of DBI was located at the middle piece of the spermatozoons tail enriched with mitochondria. On the basis of this observation and the well-established role of DBI in acyl-CoA metabolism, we propose that DBI expression in spermatozoa reflects the usage of fatty acids as a primary energy source by spermatozoa. The biological function of DBI in spermatozoa could thus be related to the motility function of sperm.
Collapse
Affiliation(s)
- M Kolmer
- University of Tampere, Medical School, Finland
| | | | | | | | | |
Collapse
|
38
|
Schjerling CK, Hummel R, Hansen JK, Borsting C, Mikkelsen JM, Kristiansen K, Knudsen J. Disruption of the gene encoding the acyl-CoA-binding protein (ACB1) perturbs acyl-CoA metabolism in Saccharomyces cerevisiae. J Biol Chem 1996; 271:22514-21. [PMID: 8798418 DOI: 10.1074/jbc.271.37.22514] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ACB1 gene encoding the acyl-CoA-binding protein (ACBP) was disrupted in Saccharomyces cerevisiae. The disruption did not affect the growth rate on glucose but reduced the growth rate on ethanol slightly. Although the growth rate of the acb1-disrupted cells was unaffected or only slightly affected, the acb1-disrupted strain was unable to compete with wild type cells when grown in mixed culture. The acyl-CoA level in the disrupted cells was increased from 1.5- to 2.5-fold during exponential growth. The increase in the acyl-CoA level was caused solely by an increase in de novo synthesized stearoyl-CoA. Experiments with purified yeast fatty acid synthetase show that it will synthesize long chain acyl-CoAs in the absence of acyl-CoA-binding protein. The addition of ACBP to the incubation medium resulted in a dramatic decrease in the chain length of the synthesized acyl-CoA esters. Despite the fact that the stearoyl-CoA concentration was increased 7-fold and the Delta9-desaturase mRNA level was increased 3-fold, the synthesis of oleic acid was unchanged in the acb1-disrupted strain. The results strongly indicate that ACBP in yeast is involved in the transport of newly synthesized acyl-CoA esters from the fatty acid synthetase to acyl-CoA-consuming processes.
Collapse
Affiliation(s)
- C K Schjerling
- Institute of Biochemistry, University of Odense, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
39
|
Gossett RE, Frolov AA, Roths JB, Behnke WD, Kier AB, Schroeder F. Acyl-CoA binding proteins: multiplicity and function. Lipids 1996; 31:895-918. [PMID: 8882970 DOI: 10.1007/bf02522684] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The physiological role of long-chain fatty acyl-CoA is thought to be primarily in intermediary metabolism of fatty acids. However, recent data show that nM to microM levels of these lipophilic molecules are potent regulators of cell functions in vitro. Although long-chain fatty acyl-CoA are present at several hundred microM concentration in the cell, very little long-chain fatty acyl-CoA actually exists as free or unbound molecules, but rather is bound with high affinity to membrane lipids and/or proteins. Recently, there is growing awareness that cytosol contains nonenzymatic proteins also capable of binding long-chain fatty acyl-CoA with high affinity. Although the identity of the cytosolic long-chain fatty acyl-CoA binding protein(s) has been the subject of some controversy, there is growing evidence that several diverse nonenzymatic cytosolic proteins will bind long-chain fatty acyl-CoA. Not only does acyl-CoA binding protein specifically bind medium and long-chain fatty acyl-CoA (LCFA-CoA), but ubiquitous proteins with multiple ligand specificities such as the fatty acid binding proteins and sterol carrier protein-2 also bind LCFA-CoA with high affinity. The potential of these acyl-CoA binding proteins to influence the level of free LCFA-CoA and thereby the amount of LCFA-CoA bound to regulatory sites in proteins and enzymes is only now being examined in detail. The purpose of this article is to explore the identity, nature, function, and pathobiology of these fascinating newly discovered long-chain fatty acyl-CoA binding proteins. The relative contributions of these three different protein families to LCFA-CoA utilization and/or regulation of cellular activities are the focus of new directions in this field.
Collapse
Affiliation(s)
- R E Gossett
- Department of Pathobiology, Texas A&M University, TVMC, College Station 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
40
|
McHale MW, Kroening KD, Bernlohr DA. Identification of a class of
Saccharomyces cerevisiae
mutants defective in fatty acid repression of gene transcription and analysis of the
frm2
Gene. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(19960330)12:4<319::aid-yea914>3.0.co;2-#] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Michael W. McHale
- Department of Biochemistry, University of Minnesota, 1479 Gortner Avenue, St Paul, MN 55108, U.S.A
| | - K. Dubear Kroening
- Department of Biochemistry, University of Minnesota, 1479 Gortner Avenue, St Paul, MN 55108, U.S.A
| | - David A. Bernlohr
- Department of Biochemistry, University of Minnesota, 1479 Gortner Avenue, St Paul, MN 55108, U.S.A
- Institute of Human Genetics, University of Minnesota, 1479 Gortner Avenue, St Paul, MN 55108, U.S.A
| |
Collapse
|
41
|
Swinnen JV, Esquenet M, Rosseels J, Claessens F, Rombauts W, Heyns W, Verhoeven G. A human gene encoding diazepam-binding inhibitor/acy1-CoA-binding protein: transcription and hormonal regulation in the androgen-sensitive human prostatic adenocarcinoma cell line LNCaP. DNA Cell Biol 1996; 15:197-208. [PMID: 8634149 DOI: 10.1089/dna.1996.15.197] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Diazepam-binding inhibitor (DBI)/acyl-CoA-binding protein (ACBP) is a highly conserved 10-kD polypeptide expressed in various organs and implicated in the regulation of multiple biological processes such as GABAA/benzodiazepine receptor modulation, acyl-CoA metabolism, steroidogenesis, and insulin secretion. To extend our knowledge about the biology of DBI/ACBP and to elucidate the molecular mechanisms responsible for regulating DBI/ACBP gene expression, we have studied the androgen-regulated expression of DBI/ACBP transcripts in the human prostatic adenocarcinoma cell line LNCaP and have cloned and characterized a human gene encoding DBI/ACBP. Northern blotting, reverse transcription-assisted polymerase chain reaction (RT-PCR), ribonuclease protection, and 5' RACE analysis (rapid amplification of cDNA ends) of DBI/ACBP transcripts in LNCaP cells revealed androgen-regulated expression of multiple transcripts originating from multiple transcription start sites and alternative processing. The most abundant type of transcripts (referred to as type 1 transcripts) encodes genuine DBI/ACBP of 86 amino acids, while the minor type (type 2 transcripts) harbors an insertion of 86 bases and might encode an unrelated protein of 67 amino acids. Examination of a cloned DBI/ACBP gene revealed a structural organization of four exons present in all transcripts and one alternatively used exon present only in type 2 transcripts. The promoter region is located in a CpG island and lacks a canonical TATA box. Transient transfection of DBI/ACBP promoter fragments into LNCaP cells demonstrated that a region of 1.1 kb upstream of the translation start site is able to drive high-level expression of luciferase in LNCaP cells in an androgen-regulated fashion. Taken together these data indicate that the isolated human gene encoding DBI/ACBP is functional, has a high degree of structural similarity with the corresponding rat gene, exhibits hallmarks of a typical housekeeping gene, and harbors cis-acting elements that are at least partially responsible for androgen-regulated transcription in LNCaP cells.
Collapse
Affiliation(s)
- J V Swinnen
- Laboratory for Experimental Medicine and Endocrinology, Faculty of Medicine, Onderwijs en Navorsing, Gasthuisberg, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Kolmer M, Rovio A, Alho H. The characterization of two diazepam binding inhibitor (DBI) transcripts in humans. Biochem J 1995; 306 ( Pt 2):327-30. [PMID: 7534063 PMCID: PMC1136524 DOI: 10.1042/bj3060327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the expression of diazepam binding inhibitor (DBI) (also called acyl-CoA-binding protein or endozepine) transcripts in different human tissues and tissue culture cell lines by reverse-transcriptase assisted PCR and RNase protection assay. Two different DBI transcripts capable of encoding polypeptides of 86 and 104 amino acids were detected in all the human tissues and cell lines studied. The transcript coding for the 86 amino acid DBI polypeptide was found to represent the majority of the total DBI transcript pool.
Collapse
Affiliation(s)
- M Kolmer
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | |
Collapse
|
43
|
Gersuk VH, Rose TM, Todaro GJ. Molecular cloning and chromosomal localization of a pseudogene related to the human acyl-CoA binding protein/diazepam binding inhibitor. Genomics 1995; 25:469-76. [PMID: 7789980 DOI: 10.1016/0888-7543(95)80047-p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The acyl-CoA binding protein (ACBP) and the diazepam binding inhibitor (DBI) or endozepine are independent isolates of a single 86-amino-acid, 10-kDa protein. ACBP/DBI is highly conserved between species and has been identified in several diverse organisms, including human, cow, rat, frog, duck, insects, plants, and yeast. Although the genomic locus has not yet been cloned in humans, complementary DNA clones with different 5' ends have been isolated and characterized. These cDNA clones appear to be encoded by a single gene. However, Southern blot analyses, in situ hybridizations, and somatic cell hybrid chromosomal mapping all suggest that there are multiple ACBP/DBI-related sequences in the genome. To identify potential members of this gene family, degenerate oligonucleotides corresponding to highly conserved regions of ACBP/DBI were used to screen a human genomic DNA library using the polymerase chain reaction. A novel gene, DBIP1, that is closely related to ACBP/DBI but is clearly distinct was identified. DBIP1 bears extensive sequence homology to ACBP/DBI but lacks the introns predicted by rat and duck genomic sequence studies. A 1-base deletion in the coding region results in a frameshift and, along with the absence of introns and the lack of a detectable transcript, suggests that DBIP1 is a pseudogene. ACBP/DBI has previously been mapped to chromosome 2, although this was recently disputed, and a chromosome 6 location was suggested. We show that ACBP/DBI is correctly placed on chromosome 2 and that the gene identified on chromosome 6 is DBIP1.
Collapse
Affiliation(s)
- V H Gersuk
- Virginia Mason Research Center, Department of Immunology, Seattle, Washington 98101, USA
| | | | | |
Collapse
|
44
|
Tissue-specific expression of the diazepam-binding inhibitor in Drosophila melanogaster: cloning, structure, and localization of the gene. Mol Cell Biol 1994. [PMID: 7935415 DOI: 10.1128/mcb.14.10.6983] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diazepam-binding inhibitor (DBI; also called acyl coenzyme A-binding protein or endozepine) is a 10-kDa polypeptide found in organisms ranging from yeasts to mammals. It has been shown that DBI and its processing products are involved in various specific biological processes such as GABAA/benzodiazepine receptor modulation, acyl coenzyme A metabolism, steroidogenesis, and insulin secretion. We have cloned and sequenced the Drosophila melanogaster gene and cDNA encoding DBI. The Drosophila DBI gene encodes a protein of 86 amino acids that shows 51 to 56% identity with previously known DBI proteins. The gene is composed of one noncoding 5' and two coding exons and is localized on the chromosomal map at position 65E. Several transcription initiation sites were detected by RNase protection and primer extension experiments. Computer analysis of the promoter region revealed features typical of housekeeping genes, such as the lack of TATA and CCAAT elements. However, in its low GC content and lack of a CpG island, the region resembles promoters of tissue-specific genes. Northern (RNA) analysis revealed that the expression of the DBI gene occurred from the larval stage onwards throughout the adult stage. In adult flies, DBI mRNA and immunoreactivity were detected in the cardia, part of the Malpighian tubules, the fat body, and gametes of both sexes. Developmentally regulated expression, disappearing during metamorphosis, was detected in the larval and pupal brains. No expression was detected in the adult nervous system. On the basis of the expression of DBI in some but not all tissues with high energy consumption, we propose that in D. melanogaster, DBI is involved in energy metabolism in a manner that depends on the substrate used for energy production.
Collapse
|
45
|
Kolmer M, Roos C, Tirronen M, Myöhänen S, Alho H. Tissue-specific expression of the diazepam-binding inhibitor in Drosophila melanogaster: cloning, structure, and localization of the gene. Mol Cell Biol 1994; 14:6983-95. [PMID: 7935415 PMCID: PMC359229 DOI: 10.1128/mcb.14.10.6983-6995.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The diazepam-binding inhibitor (DBI; also called acyl coenzyme A-binding protein or endozepine) is a 10-kDa polypeptide found in organisms ranging from yeasts to mammals. It has been shown that DBI and its processing products are involved in various specific biological processes such as GABAA/benzodiazepine receptor modulation, acyl coenzyme A metabolism, steroidogenesis, and insulin secretion. We have cloned and sequenced the Drosophila melanogaster gene and cDNA encoding DBI. The Drosophila DBI gene encodes a protein of 86 amino acids that shows 51 to 56% identity with previously known DBI proteins. The gene is composed of one noncoding 5' and two coding exons and is localized on the chromosomal map at position 65E. Several transcription initiation sites were detected by RNase protection and primer extension experiments. Computer analysis of the promoter region revealed features typical of housekeeping genes, such as the lack of TATA and CCAAT elements. However, in its low GC content and lack of a CpG island, the region resembles promoters of tissue-specific genes. Northern (RNA) analysis revealed that the expression of the DBI gene occurred from the larval stage onwards throughout the adult stage. In adult flies, DBI mRNA and immunoreactivity were detected in the cardia, part of the Malpighian tubules, the fat body, and gametes of both sexes. Developmentally regulated expression, disappearing during metamorphosis, was detected in the larval and pupal brains. No expression was detected in the adult nervous system. On the basis of the expression of DBI in some but not all tissues with high energy consumption, we propose that in D. melanogaster, DBI is involved in energy metabolism in a manner that depends on the substrate used for energy production.
Collapse
Affiliation(s)
- M Kolmer
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | | | | | |
Collapse
|
46
|
Knudsen J, Faergeman NJ, Skøtt H, Hummel R, Børsting C, Rose TM, Andersen JS, Højrup P, Roepstorff P, Kristiansen K. Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size. Biochem J 1994; 302 ( Pt 2):479-85. [PMID: 8093000 PMCID: PMC1137253 DOI: 10.1042/bj3020479] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acyl-CoA-binding protein (ACBP) is a 10 kDa protein characterized in vertebrates. We have isolated two ACBP homologues from the yeast Saccharomyces carlsbergensis, named yeast ACBP types 1 and 2. Both proteins contain 86 amino acid residues and are identical except for four conservative substitutions. In comparison with human ACBP, yeast ACBPs exhibit 48% (type 1) and 49% (type 2) conservation of amino acid residues. The amino acid sequence of S. carlsbergensis ACBP type 1 was found to be identical with the one ACBP present in Saccharomyces cerevisiae. A recombinant form of this protein was expressed in Escherichia coli and S. cerevisiae, purified, and its acyl-CoA-binding properties were characterized by isoelectric focusing and microcalorimetric analyses. The yeast ACBP was found to bind acyl-CoA esters with high affinity (Kd 0.55 x 10(-10) M). Overexpression of yeast ACBP in S. cerevisiae resulted in a significant expansion of the intracellular acyl-CoA pool. Finally, Southern-blotting analysis of the two genes encoding ACBP types 1 and 2 in S. carlsbergensis strongly indicated that this species is a hybrid between S. cerevisiae and Saccharomyces monacensis.
Collapse
Affiliation(s)
- J Knudsen
- Institute of Biochemistry, Odense University, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hills MJ, Dann R, Lydiate D, Sharpe A. Molecular cloning of a cDNA from Brassica napus L. for a homologue of acyl-CoA-binding protein. PLANT MOLECULAR BIOLOGY 1994; 25:917-20. [PMID: 8075407 DOI: 10.1007/bf00028886] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cDNA encoding an acyl-CoA-binding protein (ACBP) homologue has been cloned from a lambda gt11 library made from mRNA isolated from developing seeds of oilseed rape (Brassica napus L.). The derived amino acid sequence reveals a protein 92 amino acids in length which is highly conserved when compared with ACBP sequences from yeast, cow, man and fruit fly. Southern blot analysis of Brassica napus genomic DNA revealed the presence of 6 genes, 3 derived from the Brassica rapa parent and 3 from Brassica oleracea. Northern blot analysis showed that ACBP genes are expressed strongly in developing embryo, flowers and cotyledons of seedlings and to a lesser extent in leaves and roots.
Collapse
Affiliation(s)
- M J Hills
- Department of Brassica and Oilseeds Research, John Innes Centre, Colney, Norwich, UK
| | | | | | | |
Collapse
|
48
|
Lihrmann I, Plaquevent JC, Tostivint H, Raijmakers R, Tonon MC, Conlon JM, Vaudry H. Frog diazepam-binding inhibitor: peptide sequence, cDNA cloning, and expression in the brain. Proc Natl Acad Sci U S A 1994; 91:6899-903. [PMID: 8041717 PMCID: PMC44305 DOI: 10.1073/pnas.91.15.6899] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Three peptides derived from diazepam-binding inhibitor (DBI) were isolated in pure form from the brain of the frog Rana ridibunda. The primary structures of these peptides showed that they correspond to mammalian DBI-(1-39), DBI-(58-87), and DBI-(70-87). A set of degenerate primers, whose design was based on the amino acid sequence data, was used to screen a frog brain cDNA library. The cloned cDNA encodes an 87-amino acid polypeptide, which exhibits 68% similarity with porcine and bovine DBI. Frog DBI contains two paired basic amino acids (Lys-Lys) at positions 14-15 and 62-63 and a single cysteine within the biologically active region of the molecule. Northern blot analysis showed that DBI mRNA is expressed at a high level in the brain but is virtually absent in peripheral tissues. The distribution of DBI mRNA and DBI-like immunoreactivity in the frog brain was studied by in situ hybridization and immunocytochemistry. Both approaches revealed that the DBI gene is expressed in ependymal cells and circumventricular organs lining the ventricular cavity. Since amphibia diverged from mammals at least 250 million years ago, the data show that evolutionary pressure has acted to conserve the structure of DBI in the vertebrate phylum. The distribution of both DBI mRNA and DBI-like immunoreactivity indicates that DBI is selectively expressed in glial cells.
Collapse
Affiliation(s)
- I Lihrmann
- European Institute for Peptide Research, Institut National de la Santé de la Recherche Médicale Unité 413, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Johnson D, Knoll L, Rowley N, Gordon J. Genetic analysis of the role of Saccharomyces cerevisiae acyl-CoA synthetase genes in regulating protein N-myristoylation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32414-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
50
|
Rose TM, Schultz ER, Sasaki GC, Kolattukudy PE, Shoyab M. Nucleotide sequence and genomic structure of duck acyl-CoA binding protein/diazepam-binding inhibitor: co-localization with S-acyl fatty acid synthase thioesterase. DNA Cell Biol 1994; 13:669-78. [PMID: 8024707 DOI: 10.1089/dna.1994.13.669] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A computer-aided homology search of the GenBank nucleotide database using the amino acid sequence of human acyl CoA-binding protein (ACBP)/diazepam-binding inhibitor (DBI)-endozepine as a probe revealed that a genomic fragment containing the gene encoding the mallard duck (Anas platyrhynchos) S-acyl fatty acid synthase thioesterase also contains sequences which encode the duck homolog of ACBP/DBI. The duck ACBP/DBI gene is positioned downstream of the thioesterase gene in a tail-to-tail orientation separated from the 3' end of the thioesterase gene by only several hundred nucleotides. Three exons were identified that have strong homology to the published cDNA sequences of human and bovine ACBP/DBI. These exons define all of the coding region except for the amino-terminal domain, which was subsequently cloned by polymerase chain reaction (PCR) amplification. The encoded amino acid sequence of the duck ACBP/DBI is 62-68% homologous to mammalian ACBP/DBI sequences. While the mammalian ACBP/DBI is expressed mainly in the liver, with smaller amounts in the brain and heart, mRNA transcripts of duck ACBP/DBI were detected only in the brain with no evidence for expression in the liver or heart. The close proximity of the genes for ACBP/DBI and S-acyl fatty acid synthase thioesterase raises the possibility of co-regulation of expression.
Collapse
Affiliation(s)
- T M Rose
- PathoGenesis Corporation, Seattle, WA 98119
| | | | | | | | | |
Collapse
|