1
|
Qu J, Schinkel M, Chiggiato L, Rosendo Machado S, Overheul GJ, Miesen P, van Rij RP. The Hsf1-sHsp cascade has pan-antiviral activity in mosquito cells. Commun Biol 2025; 8:123. [PMID: 39863754 PMCID: PMC11762766 DOI: 10.1038/s42003-024-07435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito. This Hsf1-sHsp cascade acts as an early response against chikungunya virus infection and shows pan-antiviral activity against chikungunya, Sindbis, and dengue virus as well as the insect-specific Agua Salud alphavirus in Ae. aegypti cells and against chikungunya virus and O'nyong-nyong virus in Aedes albopictus and Anopheles gambiae cells, respectively. Our comprehensive in vitro data suggest that Hsf1 could serve as a promising target for the development of novel intervention strategies to limit arbovirus transmission by mosquitoes.
Collapse
Affiliation(s)
- Jieqiong Qu
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michelle Schinkel
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa Chiggiato
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samara Rosendo Machado
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Nemudryi A, Nemudraia A, Nichols JE, Scherffius AM, Zahl T, Wiedenheft B. CRISPR-based engineering of RNA viruses. SCIENCE ADVANCES 2023; 9:eadj8277. [PMID: 37703376 PMCID: PMC10499312 DOI: 10.1126/sciadv.adj8277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
CRISPR RNA-guided endonucleases have enabled precise editing of DNA. However, options for editing RNA remain limited. Here, we combine sequence-specific RNA cleavage by CRISPR ribonucleases with programmable RNA repair to make precise deletions and insertions in RNA. This work establishes a recombinant RNA technology with immediate applications for the facile engineering of RNA viruses.
Collapse
Affiliation(s)
| | | | | | - Andrew M. Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | |
Collapse
|
3
|
Nemudryi A, Nemudraia A, Nichols JE, Scherffius AM, Zahl T, Wiedenheft B. CRISPR-based engineering of RNA viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541219. [PMID: 37292641 PMCID: PMC10245796 DOI: 10.1101/2023.05.19.541219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CRISPR RNA-guided endonucleases have enabled precise editing of DNA. However, options for editing RNA remain limited. Here, we combine sequence-specific RNA cleavage by CRISPR ribonucleases with programmable RNA repair to make precise deletions and insertions in RNA. This work establishes a new recombinant RNA technology with immediate applications for the facile engineering of RNA viruses. One-Sentence Summary Programmable CRISPR RNA-guided ribonucleases enable recombinant RNA technology.
Collapse
Affiliation(s)
- Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Joseph E Nichols
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Andrew M Scherffius
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| |
Collapse
|
4
|
Lin HC, Chiao DJ, Shu PY, Lin HT, Hsiung CC, Lin CC, Kuo SC. Development of a Novel Chikungunya Virus-Like Replicon Particle for Rapid Quantification and Screening of Neutralizing Antibodies and Antivirals. Microbiol Spectr 2023; 11:e0485422. [PMID: 36856407 PMCID: PMC10101068 DOI: 10.1128/spectrum.04854-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Chikungunya fever is a mosquito-transmitted infectious disease that induces rash, myalgia, and persistent incapacitating arthralgia. At present, no vaccines or antiviral therapies specific to Chikungunya virus (CHIKV) infection have been approved, and research is currently restricted to biosafety level 3 containment. CHIKV-like replicon particles (VRPs) are single-cycle infectious particles containing viral structure proteins, as well as a defective genome to provide a safe surrogate for living CHIKV to facilitate the testing of vaccines and antivirals. However, inefficient RNA transfection and the potential emergence of the competent virus through recombination in mammalian cells limit VRP usability. This study describes a transfection-free system for the safe packaging of CHIK VRP with all necessary components via transduction of mosquito cell lines using a single baculovirus vector. We observed the release of substantial quantities of mosquito cell-derived CHIK VRP (mos-CHIK VRP) from baculovirus-transduced mosquito cell lines. The VRPs were shown to recapitulate viral replication and subgenomic dual reporter expression (enhanced green fluorescent protein [eGFP] and luciferase) in infected host cells. Interestingly, the rapid expression kinetics of the VRP-expressing luciferase reporter (6 h) makes it possible to use mos-CHIK VRPs for the rapid quantification of VRP infection. Treatment with antivirals (suramin or 6-azauridine) or neutralizing antibodies (monoclonal antibodies [MAbs] or patient sera) was shown to inhibit mos-CHIK VRP infection in a dose-dependent manner. Ease of manufacture, safety, scalability, and high throughput make mos-CHIK VRPs a highly valuable vehicle for the study of CHIKV biology, the detection of neutralizing (NT) antibody activity, and the screening of antivirals against CHIKV. IMPORTANCE This study proposes a transfection-free system that enables the safe packaging of CHIK VRPs with all necessary components via baculovirus transduction. Those mosquito cell-derived CHIK VRP (mos-CHIK VRPs) were shown to recapitulate viral replication and subgenomic dual reporter (enhanced green fluorescent protein [eGFP] and luciferase) expression in infected host cells. Rapid expression kinetics of the VRP-expressing luciferase reporter (within hours) opens the door to using mos-CHIK VRPs for the rapid quantification of neutralizing antibody and antiviral activity against CHIKV. To the best of our knowledge, this is the first study to report a mosquito cell-derived alphavirus VRP system. Note that this system could also be applied to other arboviruses to model the earliest event in arboviral infection in vertebrates.
Collapse
Affiliation(s)
- Hui-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hui-Tsu Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chu Hsiung
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
Hetrick B, Chilin LD, He S, Dabbagh D, Alem F, Narayanan A, Luchini A, Li T, Liu X, Copeland J, Pak A, Cunningham T, Liotta L, Petricoin EF, Andalibi A, Wu Y. Development of a hybrid alphavirus-SARS-CoV-2 pseudovirion for rapid quantification of neutralization antibodies and antiviral drugs. CELL REPORTS METHODS 2022; 2:100181. [PMID: 35229082 PMCID: PMC8866097 DOI: 10.1016/j.crmeth.2022.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/24/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-pseudotyped viruses are commonly used for quantifying antiviral drugs and neutralizing antibodies. Here, we describe the development of a hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) pseudovirion, which is a non-replicating SARS-CoV-2 virus-like particle composed of viral structural proteins (S, M, N, and E) and an RNA genome derived from a fast-expressing alphaviral vector. We validated Ha-CoV-2 for rapid quantification of neutralization antibodies, antiviral drugs, and viral variants. In addition, as a proof of concept, we used Ha-CoV-2 to quantify the neutralizing antibodies from an infected and vaccinated individual and found that the one-dose vaccination with Moderna mRNA-1273 greatly increased the anti-serum titer by approximately 6-fold. The post-vaccination serum can neutralize all nine variants tested. These results demonstrate that Ha-CoV-2 can be used as a robust platform for the rapid quantification of neutralizing antibodies against SARS-CoV-2 and its emerging variants.
Collapse
Affiliation(s)
- Brian Hetrick
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Linda D Chilin
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Sijia He
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Deemah Dabbagh
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Farhang Alem
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Aarthi Narayanan
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Tuanjie Li
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joshua Copeland
- TruGenomix, Inc., 155 Gibbs Street, Room 559, Rockville, MD 20850, USA
| | - Angela Pak
- TruGenomix, Inc., 155 Gibbs Street, Room 559, Rockville, MD 20850, USA
| | - Tshaka Cunningham
- TruGenomix, Inc., 155 Gibbs Street, Room 559, Rockville, MD 20850, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Ali Andalibi
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
6
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
McMenamin AJ, Brutscher LM, Daughenbaugh KF, Flenniken ML. The Honey Bee Gene Bee Antiviral Protein-1 Is a Taxonomically Restricted Antiviral Immune Gene. FRONTIERS IN INSECT SCIENCE 2021; 1:749781. [PMID: 38468887 PMCID: PMC10926557 DOI: 10.3389/finsc.2021.749781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 03/13/2024]
Abstract
Insects have evolved a wide range of strategies to combat invading pathogens, including viruses. Genes that encode proteins involved in immune responses often evolve under positive selection due to their co-evolution with pathogens. Insect antiviral defense includes the RNA interference (RNAi) mechanism, which is triggered by recognition of non-self, virally produced, double-stranded RNAs. Indeed, insect RNAi genes (e.g., dicer and argonaute-2) are under high selective pressure. Honey bees (Apis mellifera) are eusocial insects that respond to viral infections via both sequence specific RNAi and a non-sequence specific dsRNA triggered pathway, which is less well-characterized. A transcriptome-level study of virus-infected and/or dsRNA-treated honey bees revealed increased expression of a novel antiviral gene, GenBank: MF116383, and in vivo experiments confirmed its antiviral function. Due to in silico annotation and sequence similarity, MF116383 was originally annotated as a probable cyclin-dependent serine/threonine-protein kinase. In this study, we confirmed that MF116383 limits virus infection, and carried out further bioinformatic and phylogenetic analyses to better characterize this important gene-which we renamed bee antiviral protein-1 (bap1). Phylogenetic analysis revealed that bap1 is taxonomically restricted to Hymenoptera and Blatella germanica (the German cockroach) and that the majority of bap1 amino acids are evolving under neutral selection. This is in-line with the results from structural prediction tools that indicate Bap1 is a highly disordered protein, which likely has relaxed structural constraints. Assessment of honey bee gene expression using a weighted gene correlation network analysis revealed that bap1 expression was highly correlated with several immune genes-most notably argonaute-2. The coexpression of bap1 and argonaute-2 was confirmed in an independent dataset that accounted for the effect of virus abundance. Together, these data demonstrate that bap1 is a taxonomically restricted, rapidly evolving antiviral immune gene. Future work will determine the role of bap1 in limiting replication of other viruses and examine the signal cascade responsible for regulating the expression of bap1 and other honey bee antiviral defense genes, including coexpressed ago-2, and determine whether the virus limiting function of bap1 acts in parallel or in tandem with RNAi.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
- Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Laura M. Brutscher
- Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
- Pollinator Health Center, Montana State University, Bozeman, MT, United States
| |
Collapse
|
8
|
McMenamin AJ, Parekh F, Lawrence V, Flenniken ML. Investigating Virus-Host Interactions in Cultured Primary Honey Bee Cells. INSECTS 2021; 12:653. [PMID: 34357313 PMCID: PMC8329929 DOI: 10.3390/insects12070653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Honey bee (Apis mellifera) health is impacted by viral infections at the colony, individual bee, and cellular levels. To investigate honey bee antiviral defense mechanisms at the cellular level we further developed the use of cultured primary cells, derived from either larvae or pupae, and demonstrated that these cells could be infected with a panel of viruses, including common honey bee infecting viruses (i.e., sacbrood virus (SBV) and deformed wing virus (DWV)) and an insect model virus, Flock House virus (FHV). Virus abundances were quantified over the course of infection. The production of infectious virions in cultured honey bee pupal cells was demonstrated by determining that naïve cells became infected after the transfer of deformed wing virus or Flock House virus from infected cell cultures. Initial characterization of the honey bee antiviral immune responses at the cellular level indicated that there were virus-specific responses, which included increased expression of bee antiviral protein-1 (GenBank: MF116383) in SBV-infected pupal cells and increased expression of argonaute-2 and dicer-like in FHV-infected hemocytes and pupal cells. Additional studies are required to further elucidate virus-specific honey bee antiviral defense mechanisms. The continued use of cultured primary honey bee cells for studies that involve multiple viruses will address this knowledge gap.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Verena Lawrence
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
9
|
Joosten J, Taşköprü E, Jansen PWTC, Pennings B, Vermeulen M, Van Rij RP. PIWI proteomics identifies Atari and Pasilla as piRNA biogenesis factors in Aedes mosquitoes. Cell Rep 2021; 35:109073. [PMID: 33951430 DOI: 10.1016/j.celrep.2021.109073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 01/29/2023] Open
Abstract
As in most arthropods, the PIWI-interacting RNA (piRNA) pathway in the vector mosquito Aedes aegypti is active in diverse biological processes in both soma and germline. To gain insights into piRNA biogenesis and effector complexes, we mapped the interactomes of the somatic PIWI proteins Ago3, Piwi4, Piwi5, and Piwi6 and identify numerous specific interactors as well as cofactors associated with multiple PIWI proteins. We describe the Piwi5 interactor AAEL014965, the direct ortholog of the Drosophila splicing factor pasilla. We find that Ae. aegypti Pasilla encodes a nuclear isoform and a cytoplasmic isoform, the latter of which is required for efficient piRNA production. In addition, we characterize a splice variant of the Tudor protein AAEL008101/Atari that associates with Ago3 and forms a scaffold for PIWI proteins and target RNAs to promote ping-pong amplification of piRNAs. Our study provides a useful resource for follow-up studies of somatic piRNA biogenesis, mechanism, and function in Aedes mosquitoes.
Collapse
Affiliation(s)
- Joep Joosten
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ezgi Taşköprü
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Bas Pennings
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Ronald P Van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Rescue of Infectious Sindbis Virus by Yeast Spheroplast-Mammalian Cell Fusion. Viruses 2021; 13:v13040603. [PMID: 33916100 PMCID: PMC8066160 DOI: 10.3390/v13040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Sindbis virus (SINV), a positive-sense single stranded RNA virus that causes mild symptoms in humans, is transmitted by mosquito bites. SINV reverse genetics have many implications, not only in understanding alphavirus transmission, replication cycle, and virus-host interactions, but also in biotechnology and biomedical applications. The rescue of SINV infectious particles is usually achieved by transfecting susceptible cells (BHK-21) with SINV-infectious mRNA genomes generated from cDNA constructed via in vitro translation (IVT). That procedure is time consuming, costly, and relies heavily on reagent quality. Here, we constructed a novel infectious SINV cDNA construct that expresses its genomic RNA in yeast cells controlled by galactose induction. Using spheroplasts made from this yeast, we established a robust polyethylene glycol-mediated yeast: BHK-21 fusion protocol to rescue infectious SINV particles. Our approach is timesaving and utilizes common lab reagents for SINV rescue. It could be a useful tool for the rescue of large single strand RNA viruses, such as SARS-CoV-2.
Collapse
|
11
|
Abstract
Recombinant viruses are the workhorse of modern neuroscience. Whether one would like to understand a neuron's morphology, natural activity patterns, molecular composition, connectivity or behavioural and physiologic function, most studies begin with the injection of an engineered virus, often an adeno-associated virus or herpes simplex virus, among many other types. Recombinant viruses currently enable some combination of cell type-specific, circuit-selective, activity-dependent and spatiotemporally resolved transgene expression. Viruses are now used routinely to study the molecular and cellular functions of a gene within an identified cell type in the brain, and enable the application of optogenetics, chemogenetics, calcium imaging and related approaches. These advantageous properties of engineered viruses thus enable characterization of neuronal function at unprecedented resolution. However, each virus has specific advantages and disadvantages, which makes viral tool selection paramount for properly designing and executing experiments within the central nervous system. In the current Review, we discuss the key principles and uses of engineered viruses and highlight innovations that are needed moving forward.
Collapse
Affiliation(s)
- Alexander R Nectow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Effects of Manipulating Fibroblast Growth Factor Expression on Sindbis Virus Replication In Vitro and in Aedes aegypti Mosquitoes. Viruses 2020; 12:v12090943. [PMID: 32858937 PMCID: PMC7552049 DOI: 10.3390/v12090943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 12/05/2022] Open
Abstract
Fibroblast growth factors (FGFs) are conserved among vertebrate and invertebrate animals and function in cell proliferation, cell differentiation, tissue repair, and embryonic development. A viral fibroblast growth factor (vFGF) homolog encoded by baculoviruses, a group of insect viruses, is involved in escape of baculoviruses from the insect midgut by stimulating basal lamina remodeling. This led us to investigate whether cellular FGF is involved in the escape of an arbovirus from mosquito midgut. In this study, the effects of manipulating FGF expression on Sindbis virus (SINV) replication and escape from the midgut of the mosquito vector Aedes aegypti were examined. RNAi-mediated silencing of either Ae. aegypti FGF (AeFGF) or FGF receptor (AeFGFR) expression reduced SINV replication following oral infection of Ae. aegypti mosquitoes. However, overexpression of baculovirus vFGF using recombinant SINV constructs had no effect on replication of these viruses in cultured mosquito or vertebrate cells, or in orally infected Ae. aegypti mosquitoes. We conclude that reducing FGF signaling decreases the ability of SINV to replicate in mosquitoes, but that overexpression of vFGF has no effect, possibly because endogenous FGF levels are already sufficient for optimal virus replication. These results support the hypothesis that FGF signaling, possibly by inducing remodeling of midgut basal lamina, is involved in arbovirus midgut escape following virus acquisition from a blood meal.
Collapse
|
13
|
Messinger J, Renger G. The reactivity of hydrazine with photosystem II strongly depends on the redox state of the water oxidizing system. FEBS Lett 2020; 277:141-6. [PMID: 2269344 PMCID: PMC7145458 DOI: 10.1016/0014-5793(90)80829-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The decay kinetics of the redox states S2 and S3 of the water-oxidizing enzyme have been analyzed in isolated spinach thylakoids in the absence and presence of the exogenous reductant hydrazine. In control samples without NH2NH2 a biphasic decay is observed. The rapid decline of S2 and S3 with YD as reductant exhibits practically the same kinetics with t1/2 = 6-7 s at pH = 7.2 and 7 degrees C. The slow reduction (order of 5-10 min at 7 degrees C) of S2 and S3 with endogenous electron donors other than YD is about twice as fast for S2 as for S3 under these conditions. In contrast, the hydrazine-induced reductive shifts of the formal redox states Si (i = 0...3) are characterized by a totally different kinetic pattern: (a) at 1 mM NH2NH2 and incubation on ice the decay of S2 is estimated to be at least 25 times faster (t1/2 less than or equal to 0.4 min) than the corresponding reaction of S3 (t1/2 approximately 13 min); (b) the NH2NH2-induced decay of S3 is even slower (about twice) than the transformation of S1 into the formal redox state 'S-1' (t1/2 approximately 6 min), which gives rise to the two-digit phase shift of the oxygen-yield pattern induced by a flash train in dark adapted thylakoids. (c) the NH2NH2-induced transformation S0----'S-2' [Renger, Messinger and Hanssum (1990) in: Curr.' Res. Photosynth. (Baltscheffsky, M., ed), Vol. 1, pp. 845-848, Kluwer, Dordrecht] is about three times faster (t1/2 approximately 2 min) than the reaction [see text]. Based on these results, the following dependence on the redox state Si of the reactivity towards NH2NH2 is obtained: S3 less than S1 less than S0 much less than S2. The implications of this surprising order of reactivity are discussed.
Collapse
Affiliation(s)
- J Messinger
- Max Volmer Institut für Biophysikalische und Physikalische Chemie, Technischen Universität, Berlin, Germany
| | | |
Collapse
|
14
|
A satellite repeat-derived piRNA controls embryonic development of Aedes. Nature 2020; 580:274-277. [PMID: 2269344 PMCID: PMC7145458 DOI: 10.1038/s41586-020-2159-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/21/2020] [Indexed: 01/15/2023]
Abstract
Tandem repeat elements such as the diverse class of satellite repeats occupy large parts of eukaryotic chromosomes, mostly at (peri)centromeric and (sub)telomeric regions1. Some elements, however, are located in euchromatic regions throughout the genome and were hypothesized to regulate gene expression in cis by modulating local chromatin structure, or in trans via repeat-derived transcripts2–4. Here we show that a satellite repeat in the mosquito Aedes aegypti promotes sequence-specific gene silencing via the expression of two PIWI-interacting RNAs (piRNAs). Whereas satellite repeats and piRNA sequences generally evolve extremely fast5–7, this locus was conserved for approximately 200 million years, suggesting a central function in mosquito biology. piRNA production commenced shortly after egg-laying, and inactivation of the more abundant of the piRNAs resulted in failure to degrade maternally provided transcripts and developmental arrest. Our results reveal a novel mechanism by which satellite repeats regulate global gene expression in trans via piRNA-mediated gene silencing that is essential for embryonic development.
Collapse
|
15
|
Development of encoded Broccoli RNA aptamers for live cell imaging of alphavirus genomic and subgenomic RNAs. Sci Rep 2020; 10:5233. [PMID: 32251299 PMCID: PMC7090087 DOI: 10.1038/s41598-020-61573-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/03/2020] [Indexed: 11/26/2022] Open
Abstract
Sindbis virus (SINV) can infect neurons and cause encephalomyelitis in mice. Nonstructural proteins are translated from genomic RNA and structural proteins from subgenomic RNA. While visualization of viral proteins in living cells is well developed, imaging of viral RNAs has been challenging. RNA aptamers that bind and activate conditional fluorophores provide a tool for RNA visualization. We incorporated cassettes of two F30-scaffolded dimers of the Broccoli aptamer into a SINV cDNA clone using sites in nsP3 (genomic RNA), the 3′UTR (genomic and subgenomic RNAs) and after a second subgenomic promoter resulting in 4–28 Broccoli copies. After addition of the cell-permeable 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI-1T) conditional fluorophore and laser excitation, infected cells emitted green fluorescence that correlated with Broccoli copy numbers. All recombinant viruses replicated well in BHK and undifferentiated neural cells but viruses with 14 or more Broccoli copies were attenuated in differentiated neurons and mice. The signal survived fixation and allowed visualization of viral RNAs in differentiated neurons and mouse brain, as well as BHK cells. Subgenomic RNA was diffusely distributed in the cytoplasm with genomic RNA also in perinuclear vesicle-like structures near envelope glycoproteins or mitochondria. Broccoli aptamer-tagging provides a valuable tool for live cell imaging of viral RNA.
Collapse
|
16
|
Joosten J, Miesen P, Taşköprü E, Pennings B, Jansen PWTC, Huynen MA, Vermeulen M, Van Rij RP. The Tudor protein Veneno assembles the ping-pong amplification complex that produces viral piRNAs in Aedes mosquitoes. Nucleic Acids Res 2019; 47:2546-2559. [PMID: 30566680 PMCID: PMC6411831 DOI: 10.1093/nar/gky1266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) comprise a class of small RNAs best known for suppressing transposable elements in germline tissues. The vector mosquito Aedes aegypti encodes seven PIWI genes, four of which are somatically expressed. This somatic piRNA pathway generates piRNAs from viral RNA during infection with cytoplasmic RNA viruses through ping-pong amplification by the PIWI proteins Ago3 and Piwi5. Yet, additional insights into the molecular mechanisms mediating non-canonical piRNA production are lacking. TUDOR-domain containing (Tudor) proteins facilitate piRNA biogenesis in Drosophila melanogaster and other model organisms. We thus hypothesized that Tudor proteins are required for viral piRNA production and performed a knockdown screen targeting all A. aegypti Tudor genes. Knockdown of the Tudor genes AAEL012437, Vreteno, Yb, SMN and AAEL008101-RB resulted in significantly reduced viral piRNA levels, with AAEL012437-depletion having the strongest effect. This protein, which we named Veneno, associates directly with Ago3 in an sDMA-dependent manner and localizes in cytoplasmic foci reminiscent of piRNA processing granules of Drosophila. Veneno-interactome analyses reveal a network of co-factors including the orthologs of the Drosophila piRNA pathway components Vasa and Yb, which in turn interacts with Piwi5. We propose that Veneno assembles a multi-protein complex for ping-pong dependent piRNA production from viral RNA.
Collapse
Affiliation(s)
- Joep Joosten
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ezgi Taşköprü
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Bas Pennings
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ronald P Van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
17
|
No evidence for viral small RNA production and antiviral function of Argonaute 2 in human cells. Sci Rep 2019; 9:13752. [PMID: 31551491 PMCID: PMC6760161 DOI: 10.1038/s41598-019-50287-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) has strong antiviral activity in a range of animal phyla, but the extent to which RNAi controls virus infection in chordates, and specifically mammals remains incompletely understood. Here we analyze the antiviral activity of RNAi against a number of positive-sense RNA viruses using Argonaute-2 deficient human cells. In line with absence of virus-derived siRNAs, Sindbis virus, yellow fever virus, and encephalomyocarditis virus replicated with similar kinetics in wildtype cells and Argonaute-2 deficient cells. Coxsackievirus B3 (CVB3) carrying mutations in the viral 3A protein, previously proposed to be a virus-encoded suppressor of RNAi in another picornavirus, human enterovirus 71, had a strong replication defect in wildtype cells. However, this defect was not rescued in Argonaute-2 deficient cells, arguing against a role of CVB3 3A as an RNAi suppressor. In agreement, neither infection with wildtype nor 3A mutant CVB3 resulted in small RNA production with the hallmarks of canonical vsiRNAs. Together, our results argue against strong antiviral activity of RNAi under these experimental conditions, but do not exclude that antiviral RNAi may be functional under other cellular, experimental, or physiological conditions in mammals.
Collapse
|
18
|
Boucontet L, Passoni G, Thiry V, Maggi L, Herbomel P, Levraud JP, Colucci-Guyon E. A Model of Superinfection of Virus-Infected Zebrafish Larvae: Increased Susceptibility to Bacteria Associated With Neutrophil Death. Front Immunol 2018; 9:1084. [PMID: 29881380 PMCID: PMC5976802 DOI: 10.3389/fimmu.2018.01084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022] Open
Abstract
Enhanced susceptibility to bacterial infection in the days following an acute virus infection such as flu is a major clinical problem. Mouse models have provided major advances in understanding viral-bacterial superinfections, yet interactions of the anti-viral and anti-bacterial responses remain elusive. Here, we have exploited the transparency of zebrafish to study how viral infections can pave the way for bacterial co-infections. We have set up a zebrafish model of sequential viral and bacterial infection, using sublethal doses of Sindbis virus and Shigella flexneri bacteria. This virus induces a strong type I interferons (IFN) response, while the bacterium induces a strong IL1β and TNFα-mediated inflammatory response. We found that virus-infected zebrafish larvae showed an increased susceptibility to bacterial infection. This resulted in the death with concomitant higher bacterial burden of the co-infected fish compared to the ones infected with bacteria only. By contrast, infecting with bacteria first and virus second did not lead to increased mortality or microbial burden. By high-resolution live imaging, we showed that neutrophil survival was impaired in Sindbis-then-Shigella co-infected fish. The two types of cytokine responses were strongly induced in co-infected fish. In addition to type I IFN, expression of the anti-inflammatory cytokine IL10 was induced by viral infection before bacterial superinfection. Collectively, these observations suggest the zebrafish larva as a useful animal model to address mechanisms underlying increased bacterial susceptibility upon viral infection.
Collapse
Affiliation(s)
- Laurent Boucontet
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Paris, France.,CNRS UMR 3738, Paris, France
| | - Gabriella Passoni
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Paris, France.,CNRS UMR 3738, Paris, France
| | - Valéry Thiry
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Paris, France.,CNRS UMR 3738, Paris, France
| | - Ludovico Maggi
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Paris, France.,CNRS UMR 3738, Paris, France
| | - Philippe Herbomel
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Paris, France.,CNRS UMR 3738, Paris, France
| | - Jean-Pierre Levraud
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Paris, France.,CNRS UMR 3738, Paris, France
| | - Emma Colucci-Guyon
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Paris, France.,CNRS UMR 3738, Paris, France
| |
Collapse
|
19
|
Deletion of Cytoplasmic Double-Stranded RNA Sensors Does Not Uncover Viral Small Interfering RNA Production in Human Cells. mSphere 2017; 2:mSphere00333-17. [PMID: 28815217 PMCID: PMC5557678 DOI: 10.1128/msphere.00333-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 02/03/2023] Open
Abstract
The contribution of the RNA interference (RNAi) pathway in antiviral immunity in vertebrates has been widely debated. It has been proposed that RNAi possesses antiviral activity in mammalian systems but that its antiviral effect is masked by the potent antiviral interferon response in differentiated mammalian cells. In this study, we show that inactivation of the interferon response is not sufficient to uncover antiviral activity of RNAi in human epithelial cells infected with three wild-type positive-sense RNA viruses. Antiviral immunity in insects and plants is mediated by the RNA interference (RNAi) pathway in which viral long double-stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer enzymes. Although this pathway is evolutionarily conserved, its involvement in antiviral defense in mammals is the subject of debate. In vertebrates, recognition of viral RNA induces a sophisticated type I interferon (IFN)-based immune response, and it has been proposed that this response masks or inhibits antiviral RNAi. To test this hypothesis, we analyzed viral small RNA production in differentiated cells deficient in the cytoplasmic RNA sensors RIG-I and MDA5. We did not detect 22-nucleotide (nt) viral siRNAs upon infection with three different positive-sense RNA viruses. Our data suggest that the depletion of cytoplasmic RIG-I-like sensors is not sufficient to uncover viral siRNAs in differentiated cells. IMPORTANCE The contribution of the RNA interference (RNAi) pathway in antiviral immunity in vertebrates has been widely debated. It has been proposed that RNAi possesses antiviral activity in mammalian systems but that its antiviral effect is masked by the potent antiviral interferon response in differentiated mammalian cells. In this study, we show that inactivation of the interferon response is not sufficient to uncover antiviral activity of RNAi in human epithelial cells infected with three wild-type positive-sense RNA viruses.
Collapse
|
20
|
Peikon ID, Kebschull JM, Vagin VV, Ravens DI, Sun YC, Brouzes E, Corrêa IR, Bressan D, Zador AM. Using high-throughput barcode sequencing to efficiently map connectomes. Nucleic Acids Res 2017; 45:e115. [PMID: 28449067 PMCID: PMC5499584 DOI: 10.1093/nar/gkx292] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/20/2017] [Accepted: 04/13/2017] [Indexed: 01/16/2023] Open
Abstract
The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence-an RNA 'barcode'-which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost.
Collapse
Affiliation(s)
- Ian D. Peikon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justus M. Kebschull
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Vasily V. Vagin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Diana I. Ravens
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yu-Chi Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Dario Bressan
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Anthony M. Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
21
|
Tassetto M, Kunitomi M, Andino R. Circulating Immune Cells Mediate a Systemic RNAi-Based Adaptive Antiviral Response in Drosophila. Cell 2017; 169:314-325.e13. [PMID: 28388413 DOI: 10.1016/j.cell.2017.03.033] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/12/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
Effective antiviral protection in multicellular organisms relies on both cell-autonomous and systemic immunity. Systemic immunity mediates the spread of antiviral signals from infection sites to distant uninfected tissues. In arthropods, RNA interference (RNAi) is responsible for antiviral defense. Here, we show that flies have a sophisticated systemic RNAi-based immunity mediated by macrophage-like haemocytes. Haemocytes take up dsRNA from infected cells and, through endogenous transposon reverse transcriptases, produce virus-derived complementary DNAs (vDNA). These vDNAs template de novo synthesis of secondary viral siRNAs (vsRNA), which are secreted in exosome-like vesicles. Strikingly, exosomes containing vsRNAs, purified from haemolymph of infected flies, confer passive protection against virus challenge in naive animals. Thus, similar to vertebrates, insects use immune cells to generate immunological memory in the form of stable vDNAs that generate systemic immunity, which is mediated by the vsRNA-containing exosomes.
Collapse
Affiliation(s)
- Michel Tassetto
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94122-2280, USA
| | - Mark Kunitomi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94122-2280, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94122-2280, USA.
| |
Collapse
|
22
|
Nilaratanakul V, Hauer DA, Griffin DE. Development and characterization of Sindbis virus with encoded fluorescent RNA aptamer Spinach2 for imaging of replication and immune-mediated changes in intracellular viral RNA. J Gen Virol 2017; 98:992-1003. [PMID: 28555544 DOI: 10.1099/jgv.0.000755] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral RNA studies often rely on in situ hybridization and reverse transcriptase-PCR to provide snapshots of RNA dynamics in infected cells. To facilitate analysis of cellular RNAs, aptamers Spinach and Spinach2 that bind and activate the conditional fluorophore 3, 5-difluoro-4-hydroxybenzylidene imidazolinon have been developed. To determine the feasibility of applying this technology to viral RNA, we have used cDNA clones of the TE strain of Sindbis virus (SINV) to construct multiple viruses containing one or two copies of tRNA-scaffolded Spinach2 after a second subgenomic promoter, TEds-1Sp and TEds-2Sp within the 3'UTR, TE-1UTRSp, or after a second subgenomic promoter and in the 3'UTR, TEds-1Sp+1 UTRSp. TEds-1Sp+1 UTRSp gave the brightest signal and replicated well in cell culture, while TEds-2Sp was the dimmest and replicated poorly. Selection of baby hamster kidney cells infected with TEds-1Sp+1 UTRSp for improved signal intensity identified a virus with a stronger signal and point mutations in the tRNA scaffold. Imaging of SINV in BHK cells showed RNA to be concentrated in filopodia that contacted and transferred RNA to adjacent cells. The effect of treatment with anti-E2 antibody, which effects non-cytolytic clearance of SINV from neurons, on viral RNA was cell-type-dependent. In antibody-treated BHK cells, intracellular viral RNA increased and spread of infection continued. In undifferentiated and differentiated AP7 neuronal cells antibody treatment induced viral RNA clearance. Both viruses with two inserted aptamers were prone to deletion. These studies form the basis for further development of aptamer-labelled viral RNAs that will facilitate functional studies on the dynamics of infection and clearance.
Collapse
Affiliation(s)
- Voraphoj Nilaratanakul
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debra A Hauer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
23
|
Passoni G, Langevin C, Palha N, Mounce BC, Briolat V, Affaticati P, De Job E, Joly JS, Vignuzzi M, Saleh MC, Herbomel P, Boudinot P, Levraud JP. Imaging of viral neuroinvasion in the zebrafish reveals that Sindbis and chikungunya viruses favour different entry routes. Dis Model Mech 2017; 10:847-857. [PMID: 28483796 PMCID: PMC5536907 DOI: 10.1242/dmm.029231] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Alphaviruses, such as chikungunya virus (CHIKV) and Sindbis virus (SINV), are vector-borne pathogens that cause acute illnesses in humans and are sometimes associated with neuropathies, especially in infants and elderly patients. Little is known about their mechanism of entry into the central nervous system (CNS), even for SINV, which has been used extensively as a model for viral encephalopathies. We previously established a CHIKV infection model in the optically transparent zebrafish larva; here we describe a new SINV infection model in this host. We imaged in vivo the onset and progression of the infection caused by intravenous SINV inoculation. Similar to that described for CHIKV, infection in the periphery was detected early and was transient, whereas CNS infection started at later time points and was persistent or progressive. We then tested the possible mechanisms of neuroinvasion by CHIKV and SINV. Neither virus relied on macrophage-mediated transport to access the CNS. CHIKV, but not SINV, always infects endothelial cells of the brain vasculature. By contrast, axonal transport was much more efficient with SINV than CHIKV, both from the periphery to the CNS and between neural tissues. Thus, the preferred mechanisms of neuroinvasion by these two related viruses are distinct, providing a powerful imaging-friendly system to compare mechanisms and prevention methods of encephalopathies.
Collapse
Affiliation(s)
- Gabriella Passoni
- Virology and Molecular Immunology, INRA, Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas F-78352, France.,Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, Paris F-75015, France
| | - Christelle Langevin
- Virology and Molecular Immunology, INRA, Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas F-78352, France
| | - Nuno Palha
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, Paris F-75015, France
| | - Bryan C Mounce
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, Paris F-75015, France
| | - Valérie Briolat
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, Paris F-75015, France
| | - Pierre Affaticati
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette F-91190, France
| | - Elodie De Job
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette F-91190, France
| | - Jean-Stéphane Joly
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette F-91190, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, Paris F-75015, France
| | - Maria-Carla Saleh
- Viruses and RNA Interference, Institut Pasteur, CNRS UMR 3569, Paris F-75015, France
| | - Philippe Herbomel
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, Paris F-75015, France
| | - Pierre Boudinot
- Virology and Molecular Immunology, INRA, Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas F-78352, France
| | - Jean-Pierre Levraud
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, Paris F-75015, France
| |
Collapse
|
24
|
Kebschull JM, Garcia da Silva P, Zador AM. A New Defective Helper RNA to Produce Recombinant Sindbis Virus that Infects Neurons but does not Propagate. Front Neuroanat 2016; 10:56. [PMID: 27252627 PMCID: PMC4877524 DOI: 10.3389/fnana.2016.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
Recombinant Sindbis viruses are important tools in neuroscience because they combine rapid and high transgene expression with a capacity to carry large transgenes. Currently, two packaging systems based on the defective helper (DH) RNAs DH(26S)5’SIN and DH-BB(tRNA;TE12) are available for generating recombinant Sindbis virus that is neurotropic (able to infect neurons and potentially other cells). Both systems produce a fraction of viral particles that can propagate beyond the primary infected neuron. When injected into mouse brain, viruses produced using these DH RNAs produce transgene expression at the injection site, but also elsewhere in the brain. Such ectopic labeling caused recombinant Sindbis viruses to be classified as anterograde viruses with limited retrograde spread, and can complicate the interpretation of neuroanatomical and other experiments. Here we describe a new DH RNA, DH-BB(5’SIN;TE12ORF), that can be used to produce virus that is both neurotropic and propagation-incompetent. We show in mice that DH-BB(5’SIN;TE12ORF)-packaged virus eliminates infection of cells outside the injection site. We also provide evidence that ectopically labeled cells observed in previous experiments with recombinant Sindbis virus resulted from secondary infection by propagation-competent virus, rather than from inefficient retrograde spread. Virus produced with our new packaging system retains all the advantages of previous recombinant Sindbis viruses, but minimizes the risks of confounding results with unwanted ectopic labeling. It should therefore be considered in future studies in which a neurotropic, recombinant Sindbis virus is needed.
Collapse
Affiliation(s)
- Justus M Kebschull
- Watson School of Biological SciencesCold Spring Harbor, NY, USA; Cold Spring Harbor LaboratoryCold Spring Harbor, NY, USA
| | - Pedro Garcia da Silva
- Cold Spring Harbor LaboratoryCold Spring Harbor, NY, USA; Champalimaud Center for the UnknownLisbon, Portugal
| | | |
Collapse
|
25
|
Toribio R, Díaz-López I, Boskovic J, Ventoso I. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation. Nucleic Acids Res 2016; 44:4368-80. [PMID: 26984530 PMCID: PMC4872096 DOI: 10.1093/nar/gkw172] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/29/2016] [Indexed: 02/05/2023] Open
Abstract
During translation initiation, eukaryotic initiation factor 2 (eIF2) delivers the Met-tRNA to the 40S ribosomal subunit to locate the initiation codon (AUGi) of mRNA during the scanning process. Stress-induced eIF2 phosphorylation leads to a general blockade of translation initiation and represents a key antiviral pathway in mammals. However, some viral mRNAs can initiate translation in the presence of phosphorylated eIF2 via stable RNA stem-loop structures (DLP; Downstream LooP) located in their coding sequence (CDS), which promote 43S preinitiation complex stalling on the initiation codon. We show here that during the scanning process, DLPs of Alphavirus mRNA become trapped in ES6S region (680–914 nt) of 18S rRNA that are projected from the solvent side of 40S subunit. This trapping can lock the progress of the 40S subunit on the mRNA in a way that places the upstream initiator AUGi on the P site of 40S subunit, obviating the participation of eIF2. Notably, the DLP structure is released from 18S rRNA upon 60S ribosomal subunit joining, suggesting conformational changes in ES6Ss during the initiation process. These novel findings illustrate how viral mRNA is threaded into the 40S subunit during the scanning process, exploiting the topology of the 40S subunit solvent side to enhance its translation in vertebrate hosts.
Collapse
Affiliation(s)
- René Toribio
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Irene Díaz-López
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jasminka Boskovic
- Structural Biology and Biocomputing Programme, Electron Microscopy Unit, Spanish Nacional Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Iván Ventoso
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
26
|
Steel JJ, Geiss BJ. A novel system for visualizing alphavirus assembly. J Virol Methods 2015; 222:158-63. [PMID: 26122073 DOI: 10.1016/j.jviromet.2015.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/06/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
Alphaviruses are small, enveloped RNA viruses that form infectious particles by budding through the cellular plasma membrane. To help visualize and understand the intracellular assembly of alphavirus virions we have developed a bimolecular fluorescence complementation-based system (BiFC) that allows visualization of capsid and E2 subcellular localization and association in live cells. In this system, N- or C-terminal Venus fluorescent protein fragments (VN- and VC-) are fused to the N-terminus of the capsid protein on the Sindbis virus structural polyprotein, which results in the formation of fluorescent capsid-like structures in the absence of viral genomes that associate with the plasma membrane of cells. Mutation of the capsid autoprotease active site blocks structural polyprotein processing and alters the subcellular distribution of capsid fluorescence. Incorporating mCherry into the extracellular domain of the E2 glycoprotein allows the visualization of E2 glycoprotein localization and showed a close association of the E2 and capsid proteins at the plasma membrane as expected. These results suggest that this system is a useful new tool to study alphavirus assembly in live cells and may be useful in identifying molecules that inhibit alphavirus virion formation.
Collapse
Affiliation(s)
- J Jordan Steel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
27
|
Haac ME, Anderson MAE, Eggleston H, Myles KM, Adelman ZN. The hub protein loquacious connects the microRNA and short interfering RNA pathways in mosquitoes. Nucleic Acids Res 2015; 43:3688-700. [PMID: 25765650 PMCID: PMC4402513 DOI: 10.1093/nar/gkv152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/16/2015] [Indexed: 01/28/2023] Open
Abstract
Aedes aegypti mosquitoes vector several arboviruses of global health significance, including dengue viruses and chikungunya virus. RNA interference (RNAi) plays an important role in antiviral immunity, gene regulation and protection from transposable elements. Double-stranded RNA binding proteins (dsRBPs) are important for efficient RNAi; in Drosophila functional specialization of the miRNA, endo-siRNA and exo-siRNA pathway is aided by the dsRBPs Loquacious (Loqs-PB, Loqs-PD) and R2D2, respectively. However, this functional specialization has not been investigated in other dipterans. We were unable to detect Loqs-PD in Ae. aegypti; analysis of other dipteran genomes demonstrated that this isoform is not conserved outside of Drosophila. Overexpression experiments and small RNA sequencing following depletion of each dsRBP revealed that R2D2 and Loqs-PA cooperate non-redundantly in siRNA production, and that these proteins exhibit an inhibitory effect on miRNA levels. Conversely, Loqs-PB alone interacted with mosquito dicer-1 and was essential for full miRNA production. Mosquito Loqs interacted with both argonaute 1 and 2 in a manner independent of its interactions with dicer. We conclude that the functional specialization of Loqs-PD in Drosophila is a recently derived trait, and that in other dipterans, including the medically important mosquitoes, Loqs-PA participates in both the miRNA and endo-siRNA based pathways.
Collapse
Affiliation(s)
- Mary Etna Haac
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michelle A E Anderson
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Heather Eggleston
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kevin M Myles
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zach N Adelman
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
28
|
Beal J, Wagner TE, Kitada T, Azizgolshani O, Parker JM, Densmore D, Weiss R. Model-driven engineering of gene expression from RNA replicons. ACS Synth Biol 2015; 4:48-56. [PMID: 24877739 DOI: 10.1021/sb500173f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA replicons are an emerging platform for engineering synthetic biological systems. Replicons self-amplify, can provide persistent high-level expression of proteins even from a small initial dose, and, unlike DNA vectors, pose minimal risk of chromosomal integration. However, no quantitative model sufficient for engineering levels of protein expression from such replicon systems currently exists. Here, we aim to enable the engineering of multigene expression from more than one species of replicon by creating a computational model based on our experimental observations of the expression dynamics in single- and multireplicon systems. To this end, we studied fluorescent protein expression in baby hamster kidney (BHK-21) cells using a replicon derived from Sindbis virus (SINV). We characterized expression dynamics for this platform based on the dose-response of a single species of replicon over 50 h and on a titration of two cotransfected replicons expressing different fluorescent proteins. From this data, we derive a quantitative model of multireplicon expression and validate it by designing a variety of three-replicon systems, with profiles that match desired expression levels. We achieved a mean error of 1.7-fold on a 1000-fold range, thus demonstrating how our model can be applied to precisely control expression levels of each Sindbis replicon species in a system.
Collapse
Affiliation(s)
- Jacob Beal
- Raytheon BBN Technologies, Cambridge, Massachusetts United States
| | - Tyler E. Wagner
- Center
of Synthetic Biology, Boston University, Boston, Massachusetts 02215, United States
| | - Tasuku Kitada
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Odisse Azizgolshani
- Department
of Chemistry and Biochemistry, University of California Los Angeles, Los
Angeles, California 90095-1570, United States
| | - Jordan Moberg Parker
- Department
of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, 609 Young Drive, Box 148906, Los Angeles, California 90095-1570, United States
| | - Douglas Densmore
- Center
of Synthetic Biology, Boston University, Boston, Massachusetts 02215, United States
| | - Ron Weiss
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
van Mierlo JT, Overheul GJ, Obadia B, van Cleef KWR, Webster CL, Saleh MC, Obbard DJ, van Rij RP. Novel Drosophila viruses encode host-specific suppressors of RNAi. PLoS Pathog 2014; 10:e1004256. [PMID: 25032815 PMCID: PMC4102588 DOI: 10.1371/journal.ppat.1004256] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/03/2014] [Indexed: 12/24/2022] Open
Abstract
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors. Viruses and their hosts can engage in an evolutionary arms race. Viruses may select for hosts with more effective immune responses, whereas the immune response of the host may select for viruses that evade the immune system. These viral counter-defenses may in turn drive adaptations in host immune genes. A potential outcome of this perpetual cycle is that the interaction between virus and host becomes more specific. In insects, the host antiviral RNAi machinery exerts strong evolutionary pressure that has led to the evolution of viral proteins that can antagonize the RNAi response. We have identified novel viruses that infect different fruit fly species and we show that the RNAi suppressor proteins of these viruses can be specific to their host. Furthermore, we show that these proteins can enhance virus replication in a host-specific manner. These results are in line with the hypothesis that virus-host co-evolution shapes the genomes of both virus and host. Moreover, our results suggest that RNAi suppressor proteins have the potential to determine host specificity of viruses.
Collapse
Affiliation(s)
- Joël T. van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Benjamin Obadia
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Koen W. R. van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Claire L. Webster
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Darren J. Obbard
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DJO); (RPvR)
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail: (DJO); (RPvR)
| |
Collapse
|
30
|
Hu K. Vectorology and factor delivery in induced pluripotent stem cell reprogramming. Stem Cells Dev 2014; 23:1301-15. [PMID: 24625220 PMCID: PMC4046209 DOI: 10.1089/scd.2013.0621] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/13/2014] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10-30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
31
|
Kueberuwa G, Cawood R, Tedcastle A, Seymour LW. Tissue-specific attenuation of oncolytic sindbis virus without compromised genetic stability. Hum Gene Ther Methods 2014; 25:154-65. [PMID: 24568203 DOI: 10.1089/hgtb.2013.202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wild-type Sindbis virus (SV) shows promise as an oncolytic agent, although potential off-target replication is a safety concern. To remove possible pathology reflecting virus replication in liver, muscle, and/or hematopoietic cells, microRNA (miR)-response elements (MREs) to liver-specific miR122, muscle-specific miR133a and miR206, or hematopoietic-specific miR142-3p were inserted into the Sindbis viral genome. We compared the effectiveness of MREs in two distinct genomic locations and found better tissue-specific attenuation when they were inserted into the structural polyprotein coding region (up to 6000-fold selectivity with miR142-3p) rather than into the 3' untranslated region (up to 850-fold with miR142-3p). While this degree of tissue-specific attenuation may be effective for relieving pathology in vivo, genetic instability of RNA viruses raises concerns over the mutation or loss of MREs conferring safety. Genetically modified SVs containing a reporter transgene, used as a surrogate for virus replication, mutated quickly in vitro, losing 50% transgene sequence within 6.2 passages. Using a shorter insert containing MREs but no transgene, complete genetic stability was observed over at least 10 passages. We conclude that SV may be genetically modified to improve clinical properties, but attention must be paid to ensure that genetic stability is sufficient for intended applications.
Collapse
Affiliation(s)
- Gray Kueberuwa
- Department of Oncology, University of Oxford , Headington, Oxford OX3 7DQ, United Kingdom
| | | | | | | |
Collapse
|
32
|
Steel JJ, Franz AWE, Sanchez-Vargas I, Olson KE, Geiss BJ. Subgenomic reporter RNA system for detection of alphavirus infection in mosquitoes. PLoS One 2013; 8:e84930. [PMID: 24367703 PMCID: PMC3868651 DOI: 10.1371/journal.pone.0084930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/29/2013] [Indexed: 01/01/2023] Open
Abstract
Current methods for detecting real-time alphavirus (Family Togaviridae) infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes.
Collapse
Affiliation(s)
- J. Jordan Steel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alexander W. E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Irma Sanchez-Vargas
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ken E. Olson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brian J. Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
33
|
Flenniken ML, Andino R. Non-specific dsRNA-mediated antiviral response in the honey bee. PLoS One 2013; 8:e77263. [PMID: 24130869 PMCID: PMC3795074 DOI: 10.1371/journal.pone.0077263] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/01/2013] [Indexed: 12/22/2022] Open
Abstract
Honey bees are essential pollinators of numerous agricultural crops. Since 2006, honey bee populations have suffered considerable annual losses that are partially attributed to Colony Collapse Disorder (CCD). CCD is an unexplained phenomenon that correlates with elevated incidence of pathogens, including RNA viruses. Honey bees are eusocial insects that live in colonies of genetically related individuals that work in concert to gather and store nutrients. Their social organization provides numerous benefits, but also facilitates pathogen transmission between individuals. To investigate honey bee antiviral defense mechanisms, we developed an RNA virus infection model and discovered that administration of dsRNA, regardless of sequence, reduced virus infection. Our results suggest that dsRNA, a viral pathogen associated molecular pattern (PAMP), triggers an antiviral response that controls virus infection in honey bees.
Collapse
Affiliation(s)
- Michelle L. Flenniken
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (MLF); (RA)
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MLF); (RA)
| |
Collapse
|
34
|
Paran N, Lustig S, Zvi A, Erez N, Israely T, Melamed S, Politi B, Ben-Nathan D, Schneider P, Lachmi B, Israeli O, Stein D, Levin R, Olshevsky U. Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response. Virol J 2013; 10:229. [PMID: 23842430 PMCID: PMC3722049 DOI: 10.1186/1743-422x-10-229] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/05/2013] [Indexed: 11/12/2022] Open
Abstract
Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104–120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope’s critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.
Collapse
Affiliation(s)
- Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. box 19, Ness-Ziona 74100, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Reagan KL, Machain-Williams C, Wang T, Blair CD. Immunization of mice with recombinant mosquito salivary protein D7 enhances mortality from subsequent West Nile virus infection via mosquito bite. PLoS Negl Trop Dis 2012; 6:e1935. [PMID: 23236530 PMCID: PMC3516580 DOI: 10.1371/journal.pntd.0001935] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mosquito salivary proteins (MSPs) modulate the host immune response, leading to enhancement of arboviral infections. Identification of proteins in saliva responsible for immunomodulation and counteracting their effects on host immune response is a potential strategy to protect against arboviral disease. We selected a member of the D7 protein family, which are among the most abundant and immunogenic in mosquito saliva, as a vaccine candidate with the aim of neutralizing effects on the mammalian immune response normally elicited by mosquito saliva components during arbovirus transmission. METHODOLOGY/PRINCIPAL FINDINGS We identified D7 salivary proteins of Culex tarsalis, a West Nile virus (WNV) vector in North America, and expressed 36 kDa recombinant D7 (rD7) protein for use as a vaccine. Vaccinated mice exhibited enhanced interferon-γ and decreased interleukin-10 expression after uninfected mosquito bite; however, we found unexpectedly that rD7 vaccination resulted in enhanced pathogenesis from mosquito-transmitted WNV infection. Passive transfer of vaccinated mice sera to naïve mice also resulted in increased mortality rates from subsequent mosquito-transmitted WNV infection, implicating the humoral immune response to the vaccine in enhancement of viral pathogenesis. Vaccinated mice showed decreases in interferon-γ and increases in splenocytes producing the regulatory cytokine IL-10 after WNV infection by mosquito bite. CONCLUSIONS/SIGNIFICANCE Vector saliva vaccines have successfully protected against other blood-feeding arthropod-transmitted diseases. Nevertheless, the rD7 salivary protein vaccine was not a good candidate for protection against WNV disease since immunized mice infected via an infected mosquito bite exhibited enhanced mortality. Selection of salivary protein vaccines on the bases of abundance and immunogenicity does not predict efficacy.
Collapse
Affiliation(s)
- Krystle L. Reagan
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carlos Machain-Williams
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tian Wang
- Department of Microbiology and Immunology, Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Carol D. Blair
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
36
|
van Mierlo JT, Bronkhorst AW, Overheul GJ, Sadanandan SA, Ekström JO, Heestermans M, Hultmark D, Antoniewski C, van Rij RP. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses. PLoS Pathog 2012; 8:e1002872. [PMID: 22916019 PMCID: PMC3420963 DOI: 10.1371/journal.ppat.1002872] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/08/2012] [Indexed: 12/05/2022] Open
Abstract
RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus infected Drosophila. Furthermore, we demonstrate that the Nora virus VP1 protein contains RNAi suppressive activity in vitro and in vivo that enhances pathogenicity of recombinant Sindbis virus in an RNAi dependent manner. Nora virus VP1 and the viral suppressor of RNAi of Cricket paralysis virus (1A) antagonized Argonaute-2 (AGO2) Slicer activity of RNA induced silencing complexes pre-loaded with a methylated single-stranded guide strand. The convergent evolution of AGO2 suppression in two unrelated insect RNA viruses highlights the importance of AGO2 in antiviral defense. Multi-cellular organisms require a potent immune response to ensure survival under the ongoing assault by microbial pathogens. Co-evolution of virus and host shapes the genome of both pathogen and host. Using Drosophila melanogaster as a model, we study virus-host interactions in infections by Nora virus, a non-lethal natural pathogen of fruit flies. Insects depend on the RNA interference (RNAi) pathway for antiviral defense. A hallmark of the antiviral RNAi response is the production of viral small RNAs during infection. We detected Nora virus small RNAs during infection of Drosophila, demonstrating that Nora virus is a target of the antiviral RNAi pathway. Furthermore, we show that Nora virus viral protein 1 (VP1) inhibits the catalytic activity of Argonaute-2, a key protein of the RNAi pathway. The 1A protein of Cricket paralysis virus suppresses RNAi via a similar mechanism. Importantly, whereas Nora virus persistently infects Drosophila, Cricket paralysis virus induces a lethal infection. Our findings thus indicate that two distantly related viruses independently evolved an RNAi suppressor protein that targets the Argonaute-2 protein. Altogether, our results emphasize the critical role of Argonaute-2 in insect antiviral defense, both in lethal and persistent infections.
Collapse
Affiliation(s)
- Joël T. van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Alfred W. Bronkhorst
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | | | | | - Marco Heestermans
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Christophe Antoniewski
- Drosophila Genetics and Epigenetics, Université Pierre et Marie Curie Paris VI, CNRS UMR 7622 - Biologie du Développement, Paris, France
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
37
|
Steel JJ, Henderson BR, Lama SBC, Olson KE, Geiss BJ. Infectious alphavirus production from a simple plasmid transfection+. Virol J 2011; 8:356. [PMID: 21771308 PMCID: PMC3156776 DOI: 10.1186/1743-422x-8-356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/19/2011] [Indexed: 11/10/2022] Open
Abstract
We have developed a new method for producing infectious double subgenomic alphaviruses from plasmids transfected into mammalian cells. A double subgenomic Sindbis virus (TE3'2J) was transcribed from a cytomegalovirus PolII promoter, which results in the production of infectious virus. Transfection of as little as 125 ng of plasmid is able to produce 1 × 108 plaque forming units/ml (PFU/ml) of infectious virus 48 hours post-transfection. This system represents a more efficient method for producing recombinant Sindbis viruses.
Collapse
Affiliation(s)
- J Jordan Steel
- Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
38
|
Phillips A, Mossel E, Sanchez-Vargas I, Foy B, Olson K. Alphavirus transducing system: tools for visualizing infection in mosquito vectors. J Vis Exp 2010:2363. [PMID: 21178952 DOI: 10.3791/2363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Alphavirus transducing systems (ATSs) are important tools for expressing genes of interest (GOI) during infection. ATSs are derived from cDNA clones of mosquito-borne RNA viruses (genus Alphavirus; family Togaviridae). The Alphavirus genus contains about 30 different mosquito-borne virus species. Alphaviruses are enveloped viruses and contain single-stranded RNA genomes (~11.7 Kb). Alphaviruses transcribe a subgenomic mRNA that encodes the structural proteins of the virus required for encapsidation of the genome and maturation of the virus. Alphaviruses are usually highly lytic in vertebrate cells, but persistently infect susceptible mosquito cells with minimal cytopathology. These attributes make them excellent tools for gene expression in mosquito vectors. The most common ATSs in use are derived from Sindbis virus (SINV). The broad species tropism of SINV allows for infection of insect, avian, and mammalian cells8. However, ATSs have been derived from other alphaviruses as well. Foreign gene expression is made possible by the insertion of an additional viral subgenomic RNA initiation site or promoter. ATSs in which an exogenous gene sequence is positioned 5' to the viral structural genes is used for stable protein expression in insects. ATSs, in which a gene sequence is positioned 3' to the structural genes, is used to trigger RNAi and silence expression of that gene in the insect. ATSs have proven to be valuable tools for understanding vector-pathogen interactions, molecular details of viral replication and maintenance infectious cycles. In particular, the expression of fluorescent and bioluminescent reporters has been instrumental tracking the viral infection in the vector and virus transmission. Additionally, the vector immune response has been described using two strains of SINV engineered to express GFP(2,9). Here, we present a method for the production of SINV containing a fluorescent reporter (GFP) from the cDNA infectious clone. Infectious, full-length RNA is transcribed from the linearized cDNA clone. Infectious RNA is introduced into permissive target cells by electroporation. Transfected cells generate infectious virus particles expressing the GOI. Harvested virus is used to infect mosquitoes, as described here, or other host species (not shown herein). Vector competence is assessed by detecting fluorescence outside the midgut or by monitoring virus transmission. Use of a fluorescent reporter as the GOI allows for convenient estimation of virus spread throughout a cell culture, for determination of rate of infection, dissemination in exposed mosquitoes, virus transmission from the mosquito and provides a rapid gauge of vector competence.
Collapse
Affiliation(s)
- Aaron Phillips
- Microbiology, Immunology, and Pathology, Colorado State University, USA
| | | | | | | | | |
Collapse
|
39
|
Wiley MR, Roberts LO, Adelman ZN, Myles KM. Double subgenomic alphaviruses expressing multiple fluorescent proteins using a Rhopalosiphum padi virus internal ribosome entry site element. PLoS One 2010; 5:e13924. [PMID: 21085714 PMCID: PMC2978087 DOI: 10.1371/journal.pone.0013924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 10/12/2010] [Indexed: 12/22/2022] Open
Abstract
Double subgenomic Sindbis virus (dsSINV) vectors are widely used for the expression of proteins, peptides, and RNA sequences. These recombinant RNA viruses permit high level expression of a heterologous sequence in a wide range of animals, tissues, and cells. However, the alphavirus genome structure and replication strategy is not readily amenable to the expression of more than one heterologous sequence. The Rhopalosiphum padi virus (RhPV) genome contains two internal ribosome entry site (IRES) elements that mediate cap-independent translation of the virus nonstructural and structural proteins. Most IRES elements that have been characterized function only in mammalian cells but previous work has shown that the IRES element present in the 5′ untranslated region (UTR) of the RhPV genome functions efficiently in mammalian, insect, and plant systems. To determine if the 5′ RhPV IRES element could be used to express more than one heterologous sequence from a dsSINV vector, RhPV 5′ IRES sequences were placed between genes for two different fluorescent marker proteins in the dsSINV, TE/3′2J/mcs. While mammalian and insect cells infected with recombinant viruses containing the RhPV sequences expressed both fluorescent marker proteins, only single marker proteins were routinely observed in cells infected with dsSINV vectors in which the RhPV IRES had been replaced by a luciferase fragment, an antisense RhPV IRES, or no intergenic sequence. Thus, we report development of a versatile tool for the expression of multiple sequences in diverse cell types.
Collapse
Affiliation(s)
- Michael R. Wiley
- Fralin Life Science Institute, Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Lisa O. Roberts
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Zach N. Adelman
- Fralin Life Science Institute, Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kevin M. Myles
- Fralin Life Science Institute, Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD, Ebel GD. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 2010; 4:e856. [PMID: 21049065 PMCID: PMC2964293 DOI: 10.1371/journal.pntd.0000856] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/24/2010] [Indexed: 12/02/2022] Open
Abstract
Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26–27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level. Cell culture systems are invaluable tools for studying virus-host interactions. These systems are typically easy to maintain and manipulate; however, they can fail to accurately mimic the host environment encountered by viruses. Therefore, defining the limitations of each system is critical to properly interpreting the results. C6/36 Aedes albopictus cells are commonly used to study arthropod-borne viruses (arboviruses), such as West Nile virus (WNV). Recent evidence suggests that the RNA interference (RNAi) pathway, a critical aspect of the cellular innate antiviral immune response in invertebrates, may not actively target WNV in C6/36 cells. However, it is unknown whether this observation is limited to WNV. Therefore, we examined small RNA populations from C6/36 and Drosophila melanogastor S2 cells infected with WNV, Sindbis virus and La Crosse virus by high-throughput sequencing. We demonstrate that the RNAi pathway actively targets each of the three viruses in S2 cells, but does not in C6/36 cells. These findings suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions.
Collapse
Affiliation(s)
- Doug E Brackney
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Alphavirus vectors for cancer therapy. Virus Res 2010; 153:179-96. [PMID: 20692305 DOI: 10.1016/j.virusres.2010.07.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/23/2022]
Abstract
Alphaviruses contain a single strand RNA genome that can be easily modified to express heterologous genes at very high levels in a broad variety of cells, including tumor cells. Alphavirus vectors can be used as viral particles containing a packaged vector RNA, or directly as nucleic acids in the form of RNA or DNA. In the latter case alphavirus RNA is cloned within a DNA vector downstream of a eukaryotic promoter. Expression mediated by these vectors is generally transient due to the induction of apoptosis. The high expression levels, induction of apoptosis, and activation of type I IFN response are the key features that have made alphavirus vectors very attractive for cancer treatment and vaccination. Alphavirus vectors have been successfully used as vaccines to induce protective and therapeutic immune responses against many tumor-associated antigens in animal models of mastocytoma, melanoma, mammary, prostate, and virally induced tumors. Alphavirus vectors have also shown a high antitumoral efficacy by expressing antitumoral molecules in tumor cells, which include cytokines, antiangiogenic factors or toxic proteins. In these studies induction of apoptosis in tumor cells contributed to the antitumoral efficacy by the release of tumor antigens that can be uptaken by antigen presenting cells, enhancing immune responses against tumors. The potential use of alphaviruses as oncolytic agents has also been evaluated for avirulent strains of Semliki Forest virus and Sindbis virus. The fact that this latter virus has a natural tropism for tumor cells has led to many studies in which this vector was able to reach metastatic tumors when administered systemically. Other "artificial" strategies to increase the tropism of alphavirus for tumors have also been evaluated and will be discussed.
Collapse
|
42
|
Sanz MA, Welnowska E, Redondo N, Carrasco L. Translation driven by picornavirus IRES is hampered from Sindbis virus replicons: rescue by poliovirus 2A protease. J Mol Biol 2010; 402:101-17. [PMID: 20643140 DOI: 10.1016/j.jmb.2010.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 01/08/2023]
Abstract
Alphavirus replicons are very useful for analyzing different aspects of viral molecular biology. They are also useful tools in the development of new vaccines and highly efficient expression of heterologous genes. We have investigated the translatability of Sindbis virus (SV) subgenomic mRNA bearing different 5'-untranslated regions, including several viral internal ribosome entry sites (IRESs) from picornaviruses, hepatitis C virus, and cricket paralysis virus. Our findings indicate that all these IRES-containing mRNAs are initially translated in culture cells transfected with the corresponding SV replicon but their translation is inhibited in the late phase of SV replication. Notably, co-expression of different poliovirus (PV) non-structural genes reveals that the protease 2A (2A(pro)) is able to increase translation of subgenomic mRNAs containing the PV or encephalomyocarditis virus IRESs but not of those of hepatitis C virus or cricket paralysis virus. A PV 2A(pro) variant deficient in eukaryotic initiation factor (eIF) 4GI cleavage or PV protease 3C, neither of which cleaves eIF4GI, does not increase picornavirus IRES-driven translation, whereas L protease from foot-and-mouth disease virus also rescues translation. These findings suggest that the replicative foci of SV-infected cells where translation takes place are deficient in components necessary to translate IRES-containing mRNAs. In the case of picornavirus IRESs, cleavage of eIF4GI accomplished by PV 2A(pro) or foot-and-mouth disease virus protease L rescues this inhibition. eIF4GI co-localizes with ribosomes both in cells electroporated with SV replicons bearing the picornavirus IRES and in cells co-electroporated with replicons that express PV 2A(pro). These findings support the idea that eIF4GI cleavage is necessary to rescue the translation driven by picornavirus IRESs in baby hamster kidney cells that express SV replicons.
Collapse
Affiliation(s)
- Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM,C/Nicolás Cabrera, 1,Universidad Autónoma,Cantoblanco, 28049 Madrid,Spain.
| | | | | | | |
Collapse
|
43
|
Host factors associated with the Sindbis virus RNA-dependent RNA polymerase: role for G3BP1 and G3BP2 in virus replication. J Virol 2010; 84:6720-32. [PMID: 20392851 DOI: 10.1128/jvi.01983-09] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sindbis virus (SINV) is the prototype member of the Alphavirus genus, whose members cause severe human diseases for which there is no specific treatment. To ascertain host factors important in the replication of the SINV RNA genome, we generated a SINV expressing nsP4, the viral RNA-dependent RNA polymerase, with an in-frame 3xFlag epitope tag. Proteomic analysis of nsP4-containing complexes isolated from cells infected with the tagged virus revealed 29 associated host proteins. Of these, 10 proteins were associated only at a later time of infection (12 h), 14 were associated both early and late, and five were isolated only at the earlier time (6 h postinfection). These results demonstrate the dynamic nature of the virus-host interaction that occurs over the course of infection and suggest that different host proteins may be required for the multiple functions carried out by nsP4. Two related proteins found in association with nsP4 at both times of infection, GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) and G3BP2 were also previously identified as associated with SINV nsP2 and nsP3. We demonstrate a likely overlapping role for these host factors in limiting SINV replication events. The present study also identifies 10 host factors associated with nsP4 6 h after infection that were not found to be associated with nsP2 or nsP3. These factors are candidates for playing important roles in the RNA replication process. Identifying host factors essential for replication should lead to new strategies to interrupt alphavirus replication.
Collapse
|
44
|
Cano-Monreal GL, Williams JC, Heidner HW. An arthropod enzyme, Dfurin1, and a vertebrate furin homolog display distinct cleavage site sequence preferences for a shared viral proprotein substrate. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:29. [PMID: 20578951 PMCID: PMC3014772 DOI: 10.1673/031.010.2901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/16/2008] [Indexed: 05/29/2023]
Abstract
Alphaviruses replicate in vertebrate and arthropod cells and utilize a cellular enzyme called furin to process the PE2 glycoprotein precursor during virus replication in both cell types. Furin cleaves PE2 at a site immediately following a highly conserved four residue cleavage signal. Prior studies demonstrated that the amino acid immediately adjacent to the cleavage site influenced PE2 cleavage differently in vertebrate and mosquito cells (HW Heidner et al. 1996 . Journal of Virology 70: 2069-2073.). This finding was tentatively attributed to potential differences in the substrate specificities of the vertebrate and arthropod furin enzymes or to differences in the carbohydrate processing phenotypes of arthropod and vertebrate cells. To further address this issue, we evaluated Sindbis virus replication and PE2 cleavage in the Chinese hamster, Cricetulus griseus Milne-Edwards (Rodentia: Cricetidae) ovary cells (CHO-K1) and in a CHO-K1-derived furin-negative cell line (RPE.40) engineered to stably express the Dfurin1 enzyme of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Expression of Dfurin1 enhanced Sindbis virus titers in RPE.40 cells by a factor of 10(2)-10(3), and this increase correlated with efficient cleavage of PE2. The PE2-cleavage phenotypes of viruses containing different amino acid substitutions adjacent to the furin cleavage site were compared in mosquito (C6/36), CHO-K1, and Dfurin1-expressing RPE.40 cells. This analysis confirmed that the substrate specificities of Dfurin1 and the putative mosquito furin homolog present in C6/36 cells are similar and suggested that the alternative PE2 cleavage phenotypes observed in vertebrate and arthropod cells were due to differences in substrate specificity between the arthropod and vertebrate furin enzymes and not to differences in host cell glycoprotein processing pathways.
Collapse
Affiliation(s)
- Gina L. Cano-Monreal
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249-0662
| | - Jacqueline C. Williams
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249-0662
| | - Hans W. Heidner
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249-0662
| |
Collapse
|
45
|
Sengul MS, Tu Z. Expression analysis and knockdown of two antennal odorant-binding protein genes in Aedes aegypti. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:171. [PMID: 21062207 PMCID: PMC3016889 DOI: 10.1673/031.010.14131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/22/2009] [Indexed: 05/30/2023]
Abstract
The presence and expression of odorant-binding proteins (OBPs) in the olfactory organs suggest that they play an important role in mosquito olfaction. However, no direct evidence has been found for their involvement in the host-seeking behavior of mosquitoes. It is important to establish a method in which a loss-of-function test can be performed to determine the possible role of these genes in olfaction. In this study, a double subgenomic Sindbis virus expression system was used to reduce the expression of two Obp genes in Aedes aegypti L (Diptera: Culicidae), AaegObp1 and AaegObp2. Quantitative real-time PCR analysis showed predominant expression of both genes in the female antennae, the primary olfactory tissue of mosquitoes. Moreover, at 11 days post virus-inoculation, the mRNA levels of AaegObp1 and AaegObp2 were significantly reduced in olfactory tissues of recombinant virus-inoculated female mosquitoes compared to that of controls by approximately 8 and 100-fold, respectively. These data suggest that the double subgenomic Sindbis virus expression system can be efficiently used to knockdown Obp gene expression in olfactory tissues of mosquitoes. We discuss the potential for a systematic analysis of the molecular players involved in mosquito olfaction using this newly developed technique. Such analysis will provide an important step to interfere with the host-seeking behavior of mosquitoes to prevent the transmission of diseases.
Collapse
Affiliation(s)
- Meryem S. Sengul
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Current address: Department of Biology, Bozok University, Yozgat, 66200, Turkey
| | - Zhijian Tu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
46
|
Traver BE, Anderson MAE, Adelman ZN. Homing endonucleases catalyze double-stranded DNA breaks and somatic transgene excision in Aedes aegypti. INSECT MOLECULAR BIOLOGY 2009; 18:623-33. [PMID: 19754740 PMCID: PMC3606018 DOI: 10.1111/j.1365-2583.2009.00905.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aedes aegypti is a major vector of arthropod-borne viruses such as yellow fever virus and dengue viruses. Efforts to discern the function of genes involved in important behaviours, such as vector competence and host seeking through reverse genetics, would greatly benefit from the ability to generate targeted gene disruptions. Homing endonucleases are selfish elements which catalyze double-stranded DNA (dsDNA) breaks in a sequence-specific manner. In this report we demonstrate that the homing endonucleases I-PpoI, I-SceI, I-CreI and I-AniI are all able to induce dsDNA breaks in adult female Ae. aegypti chromosomes as well as catalyze the somatic excision of a transgene. These experiments provide evidence that homing endonucleases can be used to manipulate the genome of this important disease vector.
Collapse
Affiliation(s)
| | | | - Zach N. Adelman
- corresponding author: Zach N. Adelman, 305 Fralin Life Science Institute, West Campus Dr., Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, , 540 231-6614 (phone), 540 231-9931 (fax)
| |
Collapse
|
47
|
Nanda K, Vancini R, Ribeiro M, Brown DT, Hernandez R. A high capacity Alphavirus heterologous gene delivery system. Virology 2009; 390:368-73. [DOI: 10.1016/j.virol.2009.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/11/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
|
48
|
Rausalu K, Iofik A, Ulper L, Karo-Astover L, Lulla V, Merits A. Properties and use of novel replication-competent vectors based on Semliki Forest virus. Virol J 2009; 6:33. [PMID: 19317912 PMCID: PMC2669057 DOI: 10.1186/1743-422x-6-33] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/24/2009] [Indexed: 12/27/2022] Open
Abstract
Background Semliki Forest virus (SFV) has a positive strand RNA genome and infects different cells of vertebrates and invertebrates. The 5' two-thirds of the genome encodes non-structural proteins that are required for virus replication and synthesis of subgenomic (SG) mRNA for structural proteins. SG-mRNA is generated by internal initiation at the SG-promoter that is located at the complementary minus-strand template. Different types of expression systems including replication-competent vectors, which represent alphavirus genomes with inserted expression units, have been developed. The replication-competent vectors represent useful tools for studying alphaviruses and have potential therapeutic applications. In both cases, the properties of the vector, such as its genetic stability and expression level of the protein of interest, are important. Results We analysed 14 candidates of replication-competent vectors based on the genome of an SFV4 isolate that contained a duplicated SG promoter or an internal ribosomal entry site (IRES)-element controlled marker gene. It was found that the IRES elements and the minimal -21 to +5 SG promoter were non-functional in the context of these vectors. The efficient SG promoters contained at least 26 residues upstream of the start site of SG mRNA. The insertion site of the SG promoter and its length affected the genetic stability of the vectors, which was always higher when the SG promoter was inserted downstream of the coding region for structural proteins. The stability also depended on the conditions used for vector propagation. A procedure based on the in vitro transcription of ligation products was used for generation of replication-competent vector-based expression libraries that contained hundreds of thousands of different genomes, and maintained genetic diversity and the ability to express inserted genes over five passages in cell culture. Conclusion The properties of replication-competent vectors of alphaviruses depend on the details of their construction. In the case of SFV4, such vectors should contain the SG promoter with structural characteristics for this isolate. The main factor for instability of SFV4-based replication-competent vectors was the deletion of genes of interest, since the resulting shorter genomes had a growth advantage over the original vector.
Collapse
Affiliation(s)
- Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
49
|
Suppression of RNA interference increases alphavirus replication and virus-associated mortality in Aedes aegypti mosquitoes. BMC Microbiol 2009; 9:49. [PMID: 19265532 PMCID: PMC2660349 DOI: 10.1186/1471-2180-9-49] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 03/05/2009] [Indexed: 01/06/2023] Open
Abstract
Background Arthropod-borne viruses (arboviruses) can persistently infect and cause limited damage to mosquito vectors. RNA interference (RNAi) is a mosquito antiviral response important in restricting RNA virus replication and has been shown to be active against some arboviruses. The goal of this study was to use a recombinant Sindbis virus (SINV; family Togaviridae; genus Alphavirus) that expresses B2 protein of Flock House virus (FHV; family Nodaviridae; genus Alphanodavirus), a protein that inhibits RNAi, to determine the effects of linking arbovirus infection with RNAi inhibition. Results B2 protein expression from SINV (TE/3'2J) inhibited the accumulation of non-specific small RNAs in Aedes aegypti mosquito cell culture and virus-specific small RNAs both in infected cell culture and Ae. aegypti mosquitoes. More viral genomic and subgenomic RNA accumulated in cells and mosquitoes infected with TE/3'2J virus expressing B2 (TE/3'2J/B2) compared to TE/3'2J and TE/3'2J virus expressing GFP. TE/3'2J/B2 exhibited increased infection rates, dissemination rates, and infectious virus titers in mosquitoes following oral bloodmeal. Following infectious oral bloodmeal, significantly more mosquitoes died when TE/3'2J/B2 was ingested. The virus was 100% lethal following intrathoracic inoculation of multiple mosquito species and lethality was dose-dependent in Ae. aegypti. Conclusion We show that RNAi is active in Ae. aegypti cell culture and that B2 protein inhibits RNAi in mosquito cells when expressed by a recombinant SINV. Also, SINV more efficiently replicates in mosquito cells when RNAi is inhibited. Finally, TE/3'2J/B2 kills mosquitoes in a dose-dependent manner independent of infection route and mosquito species.
Collapse
|
50
|
Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 2009; 458:346-50. [PMID: 19204732 PMCID: PMC3978076 DOI: 10.1038/nature07712] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 12/03/2008] [Indexed: 12/19/2022]
Abstract
Multicellular organisms evolved sophisticated defence systems to confer protection against pathogens. An important characteristic of these immune systems is their ability to act both locally at the site of infection and at distal uninfected locations. In insects, such as Drosophila melanogaster, RNA interference (RNAi) mediates antiviral immunity. However, the antiviral RNAi defence in flies seems to be a local, cell-autonomous process, as flies are thought to be unable to generate a systemic RNAi response. Here we show that a recently defined double-stranded RNA (dsRNA) uptake pathway is essential for effective antiviral RNAi immunity in adult flies. Mutant flies defective in this dsRNA uptake pathway were hypersensitive to infection with Drosophila C virus and Sindbis virus. Mortality in dsRNA-uptake-defective flies was accompanied by 100-to 10(5)-fold increases in viral titres and higher levels of viral RNA. Furthermore, inoculating naked dsRNA into flies elicited a sequence-specific antiviral immune response that required an intact dsRNA uptake pathway. These findings suggest that spread of dsRNA to uninfected sites is essential for effective antiviral immunity. Notably, infection with green fluorescent protein (GFP)-tagged Sindbis virus suppressed expression of host-encoded GFP at a distal site. Thus, similar to protein-based immunity in vertebrates, the antiviral RNAi response in flies also relies on the systemic spread of a virus-specific immunity signal.
Collapse
Affiliation(s)
- Maria-Carla Saleh
- Department of Microbiology and Immunology, University of California, San Francisco 94122-2280, USA
| | | | | | | | | | | | | | | | | |
Collapse
|