1
|
Ferruzo PYM, Boell VK, Russo LC, Oliveira CC, Forti FL. DUSP3 modulates IRES-dependent translation of mRNAs through dephosphorylation of the HNRNPC protein in cells under genotoxic stimulus. Biol Cell 2024; 116:e2300128. [PMID: 38538536 DOI: 10.1111/boc.202300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND INFORMATION The dual-specificity phosphatase 3 (DUSP3) regulates cell cycle progression, proliferation, senescence, and DNA repair pathways under genotoxic stress. This phosphatase interacts with HNRNPC protein suggesting an involvement in the regulation of HNRNPC-ribonucleoprotein complex stability. In this work, we investigate the impact of DUSP3 depletion on functions of HNRNPC aiming to suggest new roles for this enzyme. RESULTS The DUSP3 knockdown results in the tyrosine hyperphosphorylation state of HNRNPC increasing its RNA binding ability. HNRNPC is present in the cytoplasm where it interacts with IRES trans-acting factors (ITAF) complex, which recruits the 40S ribosome on mRNA during protein synthesis, thus facilitating the translation of mRNAs containing IRES sequence in response to specific stimuli. In accordance with that, we found that DUSP3 is present in the 40S, monosomes and polysomes interacting with HNRNPC, just like other previously identified DUSP3 substrates/interacting partners such as PABP and NCL proteins. By downregulating DUSP3, Tyr-phosphorylated HNRNPC preferentially binds to IRES-containing mRNAs within ITAF complexes preferentially in synchronized or stressed cells, as evidenced by the higher levels of proteins such as c-MYC and XIAP, but not their mRNAs such as measured by qPCR. Under DUSP3 absence, this increased phosphorylated-HNRNPC/RNA interaction reduces HNRNPC-p53 binding in presence of RNAs releasing p53 for specialized cellular responses. Similarly, to HNRNPC, PABP physically interacts with DUSP3 in an RNA-dependent manner. CONCLUSIONS AND SIGNIFICANCE Overall, DUSP3 can modulate cellular responses to genotoxic stimuli at the translational level by maintaining the stability of HNRNPC-ITAF complexes and regulating the intensity and specificity of RNA interactions with RRM-domain proteins.
Collapse
Affiliation(s)
- Pault Y M Ferruzo
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Viktor K Boell
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Lilian C Russo
- Laboratory of Genome Instability, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carla C Oliveira
- Laboratory of Post-transcriptional Control of Gene Expression, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fabio L Forti
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Dantsuji S, Ohno M, Taniguchi I. The hnRNP C tetramer binds to CBC on mRNA and impedes PHAX recruitment for the classification of RNA polymerase II transcripts. Nucleic Acids Res 2023; 51:1393-1408. [PMID: 36620872 PMCID: PMC9943658 DOI: 10.1093/nar/gkac1250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
In eukaryotic cells, various classes of RNAs are exported to the cytoplasm by class-specific factors. Accumulating evidence has shown that export factors affect the fate of RNA, demonstrating the importance of proper RNA classification upon export. We previously reported that RNA polymerase II transcripts were classified after synthesis depending on their length, and identified heterogeneous nuclear ribonucleoprotein (hnRNP) C as the key classification factor. HnRNP C inhibits the recruitment of PHAX, an adapter protein for spliceosomal U snRNA export, to long transcripts, navigating these RNAs to the mRNA export pathway. However, the mechanisms by which hnRNP C inhibits PHAX recruitment to mRNA remain unknown. We showed that the cap-binding complex, a bridging factor between m7G-capped RNA and PHAX, directly interacted with hnRNP C on mRNA. Additionally, we revealed that the tetramer-forming activity of hnRNP C and its strong RNA-binding activity were crucial for the inhibition of PHAX binding to longer RNAs. These results suggest that mRNA is wrapped around the hnRNP C tetramer without a gap from the cap, thereby impeding the recruitment of PHAX. The results obtained on the mode of length-specific RNA classification by the hnRNP C tetramer will provide mechanistic insights into hnRNP C-mediated RNA biogenesis.
Collapse
Affiliation(s)
- Sayaka Dantsuji
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Mutsuhito Ohno
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | | |
Collapse
|
3
|
Mo L, Meng L, Huang Z, Yi L, Yang N, Li G. An analysis of the role of HnRNP C dysregulation in cancers. Biomark Res 2022; 10:19. [PMID: 35395937 PMCID: PMC8994388 DOI: 10.1186/s40364-022-00366-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/20/2022] [Indexed: 12/21/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins C (HnRNP C) is part of the hnRNP family of RNA-binding proteins. The relationship between hnRNP C and cancers has been extensively studied, and dysregulation of hnRNP C has been found in many cancers. According to existing public data, hnRNP C could promote the maturation of new heterogeneous nuclear RNAs (hnRNA s, also referred to as pre-mRNAs) into mRNAs and could stabilize mRNAs, controlling their translation. This paper reviews the regulation and dysregulation of hnRNP C in cancers. It interacts with some cancer genes and other biological molecules, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and double-stranded RNAs (dsRNAs). Even directly binds to them. The effects of hnRNP C on biological processes such as alternative cleavage and polyadenylation (APA) and N6-methyladenosine (m6A) modification differ among cancers. Its main function is regulating stability and level of translation of cancer genes, and the hnRNP C is regarded as a candidate biomarker and might be valuable for prognosis evaluation.
Collapse
Affiliation(s)
- Liyi Mo
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lijuan Meng
- Department of Ultrasonography, Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhicheng Huang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Nanyang Yang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guoqing Li
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Rosales M, Rodríguez-Ulloa A, Besada V, Ramón AC, Pérez GV, Ramos Y, Guirola O, González LJ, Zettl K, Wiśniewski JR, Perera Y, Perea SE. Phosphoproteomic Landscape of AML Cells Treated with the ATP-Competitive CK2 Inhibitor CX-4945. Cells 2021; 10:cells10020338. [PMID: 33562780 PMCID: PMC7915770 DOI: 10.3390/cells10020338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Casein kinase 2 (CK2) regulates a plethora of proteins with pivotal roles in solid and hematological neoplasia. Particularly, in acute myeloid leukemia (AML) CK2 has been pointed as an attractive therapeutic target and prognostic marker. Here, we explored the impact of CK2 inhibition over the phosphoproteome of two cell lines representing major AML subtypes. Quantitative phosphoproteomic analysis was conducted to evaluate changes in phosphorylation levels after incubation with the ATP-competitive CK2 inhibitor CX-4945. Functional enrichment, network analysis, and database mining were performed to identify biological processes, signaling pathways, and CK2 substrates that are responsive to CX-4945. A total of 273 and 1310 phosphopeptides were found differentially modulated in HL-60 and OCI-AML3 cells, respectively. Despite regulated phosphopeptides belong to proteins involved in multiple biological processes and signaling pathways, most of these perturbations can be explain by direct CK2 inhibition rather than off-target effects. Furthermore, CK2 substrates regulated by CX-4945 are mainly related to mRNA processing, translation, DNA repair, and cell cycle. Overall, we evidenced that CK2 inhibitor CX-4945 impinge on mediators of signaling pathways and biological processes essential for primary AML cells survival and chemosensitivity, reinforcing the rationale behind the pharmacologic blockade of protein kinase CK2 for AML targeted therapy.
Collapse
Affiliation(s)
- Mauro Rosales
- Department of Animal and Human Biology, Faculty of Biology, University of Havana (UH), Havana 10400, Cuba;
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
| | - Arielis Rodríguez-Ulloa
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Vladimir Besada
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Ailyn C. Ramón
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
| | - George V. Pérez
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
| | - Yassel Ramos
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Osmany Guirola
- Bioinformatics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba;
| | - Luis J. González
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Katharina Zettl
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Yasser Perera
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Lengshuitan District, Yongzhou 425000, China
- Correspondence: (Y.P.); (S.E.P.)
| | - Silvio E. Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
- Correspondence: (Y.P.); (S.E.P.)
| |
Collapse
|
5
|
Abstract
In eukaryotic cells, many RNA species are exported from the nucleus to the cytoplasms. Different RNA species form distinct ribonucleoprotein (RNP) complexes for export, indicating specific RNA recognition by export proteins. Specific RNA recognition is usually achieved by specific RNA sequences or structures, but we have recently reported a molecular mechanism by which the formation of export RNP complexes is specified by RNA length. ( 1) RNA polymerase II (Pol II) synthesizes not only mRNAs but also shorter RNAs, including spliceosomal U snRNAs. Although the key U snRNA export factor, PHAX, can bind to mRNA in vitro, PHAX is excluded from mRNA in vivo. The heterotetramer of the heterogeneous nuclear RNP (hnRNP) C1/C2 specifically binds Pol II transcripts longer than 200-300 nt, and funnels them into the mRNA export pathway by inhibiting their binding by PHAX, whereas shorter transcripts not bound by the heterotetramer are committed to the U snRNA export pathway. Although this finding reveals a novel function of the C1/C2 heterotetramer and highlights the biological importance of RNA recognition by length, it has raised a number of new questions, some of which will be discussed in this article, together with some historical background of this finding.
Collapse
Affiliation(s)
- Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Shen Q, Liu Z, Song F, Xie Q, Hanley-Bowdoin L, Zhou X. Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a geminivirus β-satellite. PLANT PHYSIOLOGY 2011; 157:1394-406. [PMID: 21885668 PMCID: PMC3252149 DOI: 10.1104/pp.111.184648] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/29/2011] [Indexed: 05/19/2023]
Abstract
The βC1 protein of tomato yellow leaf curl China β-satellite functions as a pathogenicity determinant. To better understand the molecular basis of βC1 in pathogenicity, a yeast two-hybrid screen of a tomato (Solanum lycopersicum) cDNA library was carried out using βC1 as bait. βC1 interacted with a tomato SUCROSE-NONFERMENTING1-related kinase designated as SlSnRK1. Their interaction was confirmed using a bimolecular fluorescence complementation assay in Nicotiana benthamiana cells. Plants overexpressing SnRK1 were delayed for symptom appearance and contained lower levels of viral and satellite DNA, while plants silenced for SnRK1 expression developed symptoms earlier and accumulated higher levels of viral DNA. In vitro kinase assays showed that βC1 is phosphorylated by SlSnRK1 mainly on serine at position 33 and threonine at position 78. Plants infected with βC1 mutants containing phosphorylation-mimic aspartate residues in place of serine-33 and/or threonine-78 displayed delayed and attenuated symptoms and accumulated lower levels of viral DNA, while plants infected with phosphorylation-negative alanine mutants contained higher levels of viral DNA. These results suggested that the SlSnRK1 protein attenuates geminivirus infection by interacting with and phosphorylating the βC1 protein.
Collapse
|
7
|
Heyd F, Lynch KW. Degrade, move, regroup: signaling control of splicing proteins. Trends Biochem Sci 2011; 36:397-404. [PMID: 21596569 PMCID: PMC3155649 DOI: 10.1016/j.tibs.2011.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 11/23/2022]
Abstract
With recent advances in microarrays and sequencing it is now relatively straightforward to compare pre-mRNA splicing patterns in different cellular conditions on a genome-wide scale. Such studies have revealed extensive changes in cellular splicing programs in response to stimuli such as neuronal depolarization, DNA damage, immune signaling and cellular metabolic changes. However, for many years our understanding of the signaling pathways responsible for such splicing changes was greatly lacking. Excitingly, over the past few years this gap has begun to close. Recent studies now suggest notable trends in the mechanisms that link cellular stimuli to downstream alternative splicing events. These include regulated synthesis or degradation of splicing factors, differential protein-protein interactions, altered nuclear translocation and changes in transcription elongation.
Collapse
Affiliation(s)
- Florian Heyd
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
8
|
Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y, Beach TG, Buratti E, Baralle F, Morita M, Nakano I, Oda T, Tsuchiya K, Akiyama H. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 2008; 64:60-70. [PMID: 18546284 PMCID: PMC2674108 DOI: 10.1002/ana.21425] [Citation(s) in RCA: 606] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE TAR DNA-binding protein of 43kDa (TDP-43) is deposited as cytoplasmic and intranuclear inclusions in brains of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Previous studies reported that abnormal phosphorylation takes place in deposited TDP-43. The aim of this study was to identify the phosphorylation sites and responsible kinases, and to clarify the pathological significance of phosphorylation of TDP-43. METHODS We generated multiple antibodies specific to phosphorylated TDP-43 by immunizing phosphopeptides of TDP-43, and analyzed FTLD-U and ALS brains by immunohistochemistry, immunoelectron microscopy, and immunoblots. In addition, we performed investigations aimed at identifying the responsible kinases, and we assessed the effects of phosphorylation on TDP-43 oligomerization and fibrillization. RESULTS We identified multiple phosphorylation sites in carboxyl-terminal regions of deposited TDP-43. Phosphorylation-specific antibodies stained more inclusions than antibodies to ubiquitin and, unlike existing commercially available anti-TDP-43 antibodies, did not stain normal nuclei. Ultrastructurally, these antibodies labeled abnormal fibers of 15nm diameter and on immunoblots recognized hyperphosphorylated TDP-43 at 45kDa, with additional 18 to 26kDa fragments in sarkosyl-insoluble fractions from FTLD-U and ALS brains. The phosphorylated epitopes were generated by casein kinase-1 and -2, and phosphorylation led to increased oligomerization and fibrillization of TDP-43. INTERPRETATION These results suggest that phosphorylated TDP-43 is a major component of the inclusions, and that abnormal phosphorylation of TDP-43 is a critical step in the pathogenesis of FTLD-U and ALS. Phosphorylation-specific antibodies will be powerful tools for the investigation of these disorders.
Collapse
Affiliation(s)
- Masato Hasegawa
- Department of Molecular Neurobiology, Tokyo Institute of Psychiatry, Tokyo Metropolitan Organization for Medical Research, Kamikitazawa, Setagaya-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dörr J, Kartarius S, Götz C, Montenarh M. Contribution of the individual subunits of protein kinase CK2 and of hPrp3p to the splicing process. Mol Cell Biochem 2008; 316:187-93. [DOI: 10.1007/s11010-008-9820-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 05/29/2008] [Indexed: 11/24/2022]
|
10
|
Wheeler JX, Whiting G, Rijpkema S. Proteomic analysis of the response of the human neutrophil-like cell line NB-4 after exposure to anthrax lethal toxin. Proteomics Clin Appl 2007; 1:1266-79. [PMID: 21136624 DOI: 10.1002/prca.200700074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Indexed: 12/19/2022]
Abstract
We used 2-D DIGE to analyze the early response of NB-4 cells, a human promyelotic leukemia cell line, exposed to lethal toxin from Bacillus anthracis at the proteome level. After a 2 h exposure, cells were still viable and 43% of spots (n = 1042) showed a significant change in protein level. We identified 59 spots whose expression had changed significantly, and these reflected cytoskeleton damage, mitochondrial lysis and endoplasmic reticulum stress. Actin filament assembly was disrupted as evidenced by an increase in both actin subunits and phosphorylated cofilin, whilst levels of tropomyosin, tropomodulin and actin related protein 2/3 complex subunit decreased. Lower levels of ATP synthase subunits and mitochondrial inner membrane protein were identified as markers of mitochondrial lysis. Levels of various stress response proteins rose and, uniquely, levels of Ca(2+) binding proteins such as translationally controlled tumor protein rose and hippocalcin-like protein 1 decreased. This response may have mitigated effects brought about by mitochondrial lysis and endoplasmic reticulum stress, and delayed or prevented apoptosis in NB-4 cells. These results resemble findings of similar proteomics studies in murine macrophages, although quantitative differences were observed.
Collapse
Affiliation(s)
- Jun X Wheeler
- Laboratory of Molecular Structure, National Institute for Biological Standards and Control, Potters Bar, UK
| | | | | |
Collapse
|
11
|
Jakubiec A, Jupin I. Regulation of positive-strand RNA virus replication: the emerging role of phosphorylation. Virus Res 2007; 129:73-9. [PMID: 17764774 PMCID: PMC7132427 DOI: 10.1016/j.virusres.2007.07.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/20/2007] [Accepted: 07/20/2007] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation is a reversible post-translational modification that plays a fundamental role in the regulation of many cellular processes. Phosphorylation can modulate protein properties such as enzymatic activity, stability, subcellular localization or interaction with binding partners. The importance of phosphorylation of the replication proteins of negative-strand RNA viruses has previously been documented but recent evidence suggests that replication of positive-strand RNA viruses – the largest class of viruses, including significant human, animal and plant pathogens – may also be regulated by phosphorylation events. The objective of this review is to summarize current knowledge regarding the various regulatory roles played by phosphorylation of nonstructural viral proteins in the replication of positive-strand RNA viruses.
Collapse
Affiliation(s)
| | - Isabelle Jupin
- Corresponding author. Tel.: +33 1 44 27 40 99; fax: +33 1 44 27 57 16.
| |
Collapse
|
12
|
Abstract
Just as the blood-brain barrier (BBB) is not a static barrier, the adipocytes are not inert storage depots. Adipokines are peptides or polypeptides produced by white adipose tissue; they play important roles in normal physiology as well as in the metabolic syndrome. Adipokines secreted into the circulation can interact with the BBB and exert potent CNS effects. The specific transport systems for two important adipokines, leptin and tumor necrosis factor alpha, have been characterized during the past decade. By contrast, transforming growth factor beta-1 and adiponectin do not show specific permeation across the BBB, but modulate endothelial functions. Still others, like interleukin-6, may reach the brain but are rapidly degraded. This review summarizes current knowledge and recent findings of the rapidly growing family of adipokines and their interactions with the BBB.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, United States.
| | | |
Collapse
|
13
|
Rahman-Roblick R, Johannes Roblick U, Hellman U, Conrotto P, Liu T, Becker S, Hirschberg D, Jörnvall H, Auer G, Wiman KG. p53 targets identified by protein expression profiling. Proc Natl Acad Sci U S A 2007; 104:5401-6. [PMID: 17372198 PMCID: PMC1828709 DOI: 10.1073/pnas.0700794104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p53 triggers cell cycle arrest and apoptosis through transcriptional regulation of specific target genes. We have investigated the effect of p53 activation on the proteome using 2D gel electrophoresis analysis of mitomycin C-treated HCT116 colon carcinoma cells carrying wild-type p53. Approximately 5,800 protein spots were separated in overlapping narrow-pH-range gel strips, and 115 protein spots showed significant expression changes upon p53 activation. The identity of 55 protein spots was obtained by mass spectrometry. The majority of the identified proteins have no previous connection to p53. The proteins fall into different functional categories, such as mRNA processing, translation, redox regulation, and apoptosis, consistent with the idea that p53 regulates multiple cellular pathways. p53-dependent regulation of five of the up-regulated proteins, eIF5A, hnRNP C1/C2, hnRNP K, lamin A/C, and Nm23-H1, and two of the down-regulated proteins, Prx II and TrpRS, was examined in further detail. Analysis of mRNA expression levels demonstrated both transcription-dependent and transcription-independent regulation among the identified targets. Thus, this study reveals protein targets of p53 and highlights the role of transcription-independent effects for the p53-induced biological response.
Collapse
Affiliation(s)
- Rubaiyat Rahman-Roblick
- *Department of Oncology–Pathology, Cancer Center Karolinska, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Uwe Johannes Roblick
- *Department of Oncology–Pathology, Cancer Center Karolinska, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Department of Surgery, University of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany; and
| | - Ulf Hellman
- Ludwig Institute for Cancer Research, Box 595, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Paolo Conrotto
- Ludwig Institute for Cancer Research, Box 595, Uppsala University, SE-751 24 Uppsala, Sweden
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli Strasse 10, 8093 Zürich, Switzerland
| | - Tao Liu
- *Department of Oncology–Pathology, Cancer Center Karolinska, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Susanne Becker
- *Department of Oncology–Pathology, Cancer Center Karolinska, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Daniel Hirschberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gert Auer
- *Department of Oncology–Pathology, Cancer Center Karolinska, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Klas G. Wiman
- *Department of Oncology–Pathology, Cancer Center Karolinska, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Lynch KW. Regulation of alternative splicing by signal transduction pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:161-74. [PMID: 18380346 DOI: 10.1007/978-0-387-77374-2_10] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alternative splicing is now recognized as a ubiquitous mechanism for controlling gene expression in a tissue-specific manner. A growing body of work from the past few years as begun to also highlight the existence of networks of signal-responsive alternative splicing in a variety of cell types. While the mechanisms by which signal transduction pathways influence the splicing machinery are relatively poorly understood, a few themes have begun to emerge for how extracellular stimuli can be communicated to specific RNA-binding proteins that control splice site selection by the spliceosome. This chapter describes our current understanding of signal-induced alternative splicing with an emphasis on these emerging themes and the likely directions for future research.
Collapse
Affiliation(s)
- Kristen W Lynch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75390-9038, USA.
| |
Collapse
|
15
|
Maracchioni A, Totaro A, Angelini DF, Di Penta A, Bernardi G, Carrì MT, Achsel T. Mitochondrial damage modulates alternative splicing in neuronal cells: implications for neurodegeneration. J Neurochem 2006; 100:142-53. [PMID: 17064354 DOI: 10.1111/j.1471-4159.2006.04204.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondrial damage is linked to many neurodegenerative conditions, such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. These diseases are associated with changes in the splicing pattern of individual mRNAs. Here, we tested the hypothesis that mitochondrial damage modulates alternative splicing, not only of a few mRNAs, but in a general manner. We incubated cultured human neuroblastoma cells with the chemical agent paraquat (a neurotoxin that interferes with mitochondrial function, causing energy deficit and oxidative stress) and analysed the splicing pattern of 13 genes by RT-PCR. For all mRNAs that are alternatively spliced, we observed a dose- and time-dependent increase of the smaller isoforms. In contrast, splicing of all constitutive splicing exons that we monitored did not change. Using other drugs, we show that the modulation of alternative splicing correlates with ATP depletion, not with oxidative stress. Such drastic changes in alternative splicing are not observed in cell lines of non-neuronal origin, suggesting a selective susceptibility of neuronal cells to modulation of splicing. As a significant percentage of all mammalian mRNAs undergo alternative splicing, we predict that mitochondrial failure will unbalance a vast number of isoform equilibriums, which would give an important contribution to neurodegeneration.
Collapse
Affiliation(s)
- Alessia Maracchioni
- Department of Experimental Neurosciences, European Centre for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Mehta A, Trotta CR, Peltz SW. Derepression of the Her-2 uORF is mediated by a novel post-transcriptional control mechanism in cancer cells. Genes Dev 2006; 20:939-53. [PMID: 16598037 PMCID: PMC1472302 DOI: 10.1101/gad.1388706] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcripts harboring 5' upstream open reading frames (uORFs) are often found in genes controlling cell growth including receptors, oncogenes, or growth factors. uORFs can modulate translation or RNA stability and mediate inefficient translation of these potent proteins under normal conditions. In dysregulated cancer cells, where the gene product, for example Her-2 receptor, is overexpressed, post-transcriptional processes must exist that serve to override the inhibitory effects of the uORFs. The 5' untranslated region (UTR) of Her-2 mRNA contains a short uORF that represses translation of the downstream coding region. We demonstrate that in Her-2 overexpressing breast cancer cells, the 3' UTR of the Her-2 mRNA can override translational inhibition mediated by the Her-2 uORF. Within this 3' UTR, a translational derepression element (TDE) that binds to a 38-kDa protein was identified. These results define a novel biological mechanism in which translational control of genes harboring a 5' uORF can be modulated by elements in their 3' UTRs.
Collapse
Affiliation(s)
- Anuradha Mehta
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA.
| | | | | |
Collapse
|
17
|
Yang R, Weber DJ, Carrier F. Post-transcriptional regulation of thioredoxin by the stress inducible heterogenous ribonucleoprotein A18. Nucleic Acids Res 2006; 34:1224-36. [PMID: 16513844 PMCID: PMC1388095 DOI: 10.1093/nar/gkj519] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thioredoxin (TRX) is a key protein of the cellular redox metabolism, which expression is increased in several tumors especially gastric tumors. Even though ultraviolet (UV) and hypoxia specifically induce TRX, the mechanisms that lead to increased TRX levels are still ill defined. Here, we show that the heterogenous ribonucleoprotein A18 (hnRNP A18) RNA Binding Domain (RBD) and the arginine, glycine (RGG) rich domain can bind TRX 3′-untranslated region (3′-UTR) independently but both domains are required for maximal binding. Immunoprecipitation (IP) of hnRNP A18-mRNAs complexes and co-localization of hnRNP A18 and TRX transcripts on ribosomal fractions confirm the interaction of hnRNP A18 with TRX transcripts in cells. Moreover, down regulation of hnRNP A18 correlates with a significant reduction of TRX protein levels. In addition, hnRNP A18 increases TRX translation and interacts with the eukaryotic Initiation Factor 4G (eIF4G), a component of the general translational machinery. Furthermore, hnRNP A18 phosphorylation by the hypoxia inducible GSK3β increases hnRNP A18 RNA binding activity in vitro and in RKO cells in response to UV radiation. These data support a regulatory role for hnRNP A18 in TRX post-transcriptional expression possibly through a kissing loop model bridging TRX 3′- and 5′-UTRs through eIF4G.
Collapse
Affiliation(s)
| | | | - France Carrier
- To whom correspondence should be addressed at Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St. Baltimore, MD 21201, USA. Tel: +1 410 706 5105; Fax: +1 410 706 8297;
| |
Collapse
|
18
|
Whitson SR, LeStourgeon WM, Krezel AM. Solution structure of the symmetric coiled coil tetramer formed by the oligomerization domain of hnRNP C: implications for biological function. J Mol Biol 2005; 350:319-37. [PMID: 15936032 DOI: 10.1016/j.jmb.2005.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 04/28/2005] [Accepted: 05/03/2005] [Indexed: 11/16/2022]
Abstract
During active cell division, heterogeneous nuclear ribonucleoprotein (hnRNP) C is one of the most abundant proteins in the nucleus. hnRNP C exists as a stable tetramer that binds about 230 nucleotides of pre-mRNA and functions in vivo to package nascent transcripts and nucleate assembly of the 40 S hnRNP complex. Previous studies have shown that monomers lacking or possessing mutant oligomerization domains bind RNA with low affinity, strongly suggesting a cooperative protomer-RNA binding mode. In order to understand the role of the oligomerization domain in defining the biological functions and structure of hnRNP C tetramers, we have determined the high-resolution NMR structure of the oligomerization interface that is formed at the core of the complex, examining specific molecular interactions that drive assembly and contribute to the structural integrity of the tetramer. The determined structure reveals an antiparallel four-helix coiled coil, where classically described knobs-into-holes packing interactions at interhelical contact surfaces are optimized so that side-chains interdigitate to create an even distribution of hydrophobic surfaces along the core. While the stoichiometry of the complex appears to be primarily specified by occlusion of hydrophobic surfaces, particularly the interfacial residue L198, from solvent, helix orientation is primarily determined by electrostatic attractions across helix interfaces. The creation of potential interaction surfaces for other hnRNP C domains along the coiled coil exterior and the assembly of oligomerization interfaces in an antiparallel orientation shape the tertiary fold of full-length monomers and juxtapose RNA-binding elements at distal surfaces of the tetrameric complex in the quaternary assembly. In addition, we discuss the specific challenges encountered in structure determination of this symmetric oligomer by NMR methods, specifically in sorting ambiguous interatomic distance constraints into classes that define different elements of the coiled coil structure.
Collapse
Affiliation(s)
- Stefanie R Whitson
- Department of Biological Sciences, 465 21st Ave. South, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
19
|
Kattapuram T, Yang S, Maki JL, Stone JR. Protein kinase CK1alpha regulates mRNA binding by heterogeneous nuclear ribonucleoprotein C in response to physiologic levels of hydrogen peroxide. J Biol Chem 2005; 280:15340-7. [PMID: 15687492 DOI: 10.1074/jbc.m500214200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At low concentrations, hydrogen peroxide (H(2)O(2)) is a positive endogenous regulator of mammalian cell proliferation and survival; however, the signal transduction pathways involved in these processes are poorly understood. In primary human endothelial cells, low concentrations of H(2)O(2) stimulated the rapid phosphorylation of the acidic C-terminal domain (ACD) of heterogeneous nuclear ribonucleoprotein C (hnRNP-C), a nuclear restricted pre-mRNA-binding protein, at Ser(240) and at Ser(225)-Ser(228). A kinase activity was identified in mouse liver that phosphorylates the ACD of hnRNP-C at Ser(240) and at two sites at Ser(225)-Ser(228). The kinase was purified and identified by tandem mass spectrometry as protein kinase CK1alpha (formerly casein kinase 1alpha). Protein kinase CK1alpha immunoprecipitated from primary human endothelial cell nuclei also phosphorylated the ACD of hnRNP-C at these positions. Pretreatment of endothelial cells with the protein kinase CK1-specific inhibitor IC261 prevented the H(2)O(2)-stimulated phosphorylation of hnRNP-C. Utilizing phosphoserine-mimicking Ser-to-Glu point mutations, the effects of phosphorylation on hnRNP-C function were investigated by quantitative equilibrium fluorescence RNA binding analyses. Wild-type hnRNP-C1 and hnRNP-C1 modified at the basal sites of phosphorylation (S247E and S286E) both avidly bound RNA with similar binding constants. In contrast, hnRNP-C1 that was also modified at the CK1alpha phosphorylation sites exhibited a 14-500-fold decrease in binding affinity, demonstrating that CK1alpha-mediated phosphorylation modulates the mRNA binding ability of hnRNP-C.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Casein Kinase Ialpha/metabolism
- Casein Kinase Ialpha/physiology
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Chromatography, Ion Exchange
- Electrophoresis, Gel, Two-Dimensional
- Endothelium, Vascular/cytology
- Escherichia coli/metabolism
- Evolution, Molecular
- Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism
- Humans
- Hydrogen Peroxide/pharmacology
- Immunoprecipitation
- Indoles/pharmacology
- Kinetics
- Liver/metabolism
- Mice
- Molecular Sequence Data
- Phloroglucinol/analogs & derivatives
- Phloroglucinol/pharmacology
- Phosphorylation
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Serine/chemistry
- Spectrometry, Fluorescence
Collapse
Affiliation(s)
- Taj Kattapuram
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
20
|
Lee HH, Chien CL, Liao HK, Chen YJ, Chang ZF. Nuclear efflux of heterogeneous nuclear ribonucleoprotein C1/C2 in apoptotic cells: a novel nuclear export dependent on Rho-associated kinase activation. J Cell Sci 2004; 117:5579-89. [PMID: 15494373 DOI: 10.1242/jcs.01482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a proteomic approach, we searched for protein changes dependent on Rho-associated kinase (ROCK) during phorbol-12-myristate-13-acetate (PMA)-induced apoptosis. We found that heterogeneous nuclear ribonucleoprotein C1 and C2 (hnRNP C1/C2), two nuclear restricted pre-mRNA binding proteins, are translocated to the cytosolic compartment in a ROCK-dependent manner in PMA-induced pro-apoptotic cells, where nuclear envelopes remain intact. The subcellular localization change of hnRNP C1/C2 appears to be dependent on ROCK-mediated cytoskeletal change and independent of caspase execution and new protein synthesis. Such a ROCK-dependent translocation is also seen in TNFalpha-induced apoptotic NIH3T3 cells. By overexpressing the dominant active form of ROCK, we showed that a ROCK-mediated signal is sufficient to induce translocation of hnRNP C1/C2. Deletion experiments indicated that the C-terminal 40-amino-acid region of hnRNP C1/C2 is required for ROCK-responsive translocation. By using nuclear yellow fluorescent protein (YFP) fusion, we determined that the C-terminal 40-amino-acid region of hnRNP C1/C2 is a novel nuclear export signal responsive to ROCK-activation. We conclude that a novel nuclear export is activated by the ROCK signaling pathway to exclude hnRNP C1/C2 from nucleus, by which the compartmentalization of specific hnRNP components is disturbed in apoptotic cells.
Collapse
Affiliation(s)
- Hsiao-Hui Lee
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1 Jen Ai Road Sec.1, Taipei, 100, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
21
|
Lindquist JN, Parsons CJ, Stefanovic B, Brenner DA. Regulation of alpha1(I) collagen messenger RNA decay by interactions with alphaCP at the 3'-untranslated region. J Biol Chem 2004; 279:23822-9. [PMID: 14973140 DOI: 10.1074/jbc.m314060200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver fibrosis is characterized by an increased deposition of extracellular matrix proteins, including collagen type I, by activated hepatic stellate cells (HSCs). Previous studies have shown that this increase is mediated primarily by a post-transcriptional mechanism. In particular, the RNA-binding protein alphaCP binds to the alpha1(I) collagen 3'-untranslated region (UTR) and stabilizes this RNA in activated, but not quiescent, HSCs. This study examines the role of alphaCP in the decay of transcripts containing the collagen 3'-UTR in extracts obtained from NIH fibroblasts and quiescent and activated HSCs. Using an in vitro decay system, alphaCP binding activity was competed out with the addition of wild type oligonucleotides, but not with mutant oligonucleotides. Competition of alphaCP binding activity increased the rate of decay of wild type transcripts containing the alphaCP 3'-UTR binding site, but not of transcripts containing a mutated binding site. Quiescent HSC extracts contain no alphaCP binding activity and have no difference in the rate of decay of transcripts with wild type and mutant binding sites for alphaCP. The addition of recombinant alphaCP was sufficient to increase the half-life of the wild type transcript, whereas that of the mutant transcript was minimally changed. In vitro decay assays performed with activated HSC extracts that contain alphaCP binding activity demonstrate a markedly reduced decay rate of wild type compared with mutant transcripts. In vivo small interfering RNA experiments targeting alphaCP showed a reduction of the binding activity of alphaCP and a concomitant reduction in intracellular levels of alpha1(I) collagen messenger RNA. In conclusion, this study demonstrates the direct role of alphaCP in the stabilization of alpha1(I) collagen messenger RNA by blocking RNA degradation in activated HSCs.
Collapse
Affiliation(s)
- Jeffrey N Lindquist
- Biochemistry and Biophysics and Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
22
|
Cunningham O, Andolfo A, Santovito ML, Iuzzolino L, Blasi F, Sidenius N. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. EMBO J 2004; 22:5994-6003. [PMID: 14609946 PMCID: PMC275445 DOI: 10.1093/emboj/cdg588] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR/CD87) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions in extracellular proteolysis, cell adhesion, cell migration and proliferation. We now report that cell surface uPAR dimerizes and that dimeric uPAR partitions preferentially to detergent-resistant lipid rafts. Dimerization of uPAR did not require raft partitioning as the lowering of membrane cholesterol failed to reduce dimerization and as a transmembrane uPAR chimera, which does not partition to lipid rafts, also dimerized efficiently. While uPA bound to uPAR independently of its membrane localization and dimerization status, uPA-induced uPAR cleavage was strongly accelerated in lipid rafts. In contrast to uPA, the binding of Vn occurred preferentially to raft- associated dimeric uPAR and was completely blocked by cholesterol depletion.
Collapse
Affiliation(s)
- Orla Cunningham
- Molecular Genetics Unit, Department of Molecular Biology and Functional Genomics, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Soret J, Tazi J. Phosphorylation-dependent control of the pre-mRNA splicing machinery. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 31:89-126. [PMID: 12494764 DOI: 10.1007/978-3-662-09728-1_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- J Soret
- Institut de Génétique Moléculaire, UMR5535 du CNRS, IFR 24, 1919 Route de Mende, 34293 Montpellier, France
| | | |
Collapse
|
24
|
Stone JR, Collins T. Rapid phosphorylation of heterogeneous nuclear ribonucleoprotein C1/C2 in response to physiologic levels of hydrogen peroxide in human endothelial cells. J Biol Chem 2002; 277:15621-8. [PMID: 11877401 DOI: 10.1074/jbc.m112153200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrogen peroxide (H(2)O(2)) has been implicated as a signaling agent in numerous signal transduction pathways in mammalian cells. However, to date, no sensor for low concentrations (<10 microm) of H(2)O(2) has been identified. Using a functional proteomic approach, nuclear extracts from human umbilical vein endothelial cells were analyzed by two-dimensional PAGE with or without prior treatment with a low concentration of H(2)O(2). A protein doublet with a molecular mass of 39-41 kDa and a pI of approximately 5.0 was observed to be consistently altered by the treatment. Using proteolytic peptide mass fingerprinting, the protein was identified as heterogeneous nuclear ribonucleoprotein C1/C2, a nuclear restricted, pre-mRNA-binding protein. Upon two-dimensional PAGE, each heterogeneous nuclear ribonucleoprotein-C splice form was present as multiple spots because of differing levels of phosphorylation. Upon treatment with H(2)O(2), there was an increase in phosphorylation at 10-20 min, which partially reversed by 30 min. Subsequently, at 60 min after treatment, a population of unphosphorylated protein was transiently present. The effects were observed with as little as 1 microm H(2)O(2) and were maximal with 5-8 microm H(2)O(2). The H(2)O(2)-stimulated phosphorylation was inhibited by catalase, but not by the transcriptional inhibitor actinomycin D.
Collapse
Affiliation(s)
- James R Stone
- Department of Pathology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
25
|
Tan JH, Kajiwara Y, Shahied L, Li J, McAfee JG, LeStourgeon WM. The bZIP-like motif of hnRNP C directs the nuclear accumulation of pre-mRNA and lethality in yeast. J Mol Biol 2001; 305:829-38. [PMID: 11162095 DOI: 10.1006/jmbi.2000.4332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hnRNP C protein tetramer cooperatively binds 230 nt increments of pre-mRNA in vitro in a salt-resistant manner and is located along the length of vertebrate transcripts in vivo. Based on these and other findings it has been suggested that hnRNP C functions as a chaperonin to maintain long lengths of RNA topologically single-stranded and accessible to splicing factors. We report here that human C protein is lethal when expressed in the yeast Saccharomyces cerevisiae. Through a series of fluorescent immunolocalization studies, lethality was observed to be associated with the rapid nuclear accumulation of both C protein and yeast pre-mRNA. Studies using various protein constructs and the two hybrid assay reveal that these events are dependent on the basic 40 residue high-affinity RNA binding domain and its contiguous leucine zipper-like motif (the bZLM, residues 140-214). Additionally, equilibrium binding studies have shown that the bZLM is the determinant of C protein's salt-resistant RNA binding mode. Taken together, these findings further distinguish the bZIP-like domain as the major determinant of C protein's high-affinity interaction with RNA, oligomerization, and its highly cooperative RNA binding activity. Finally, these findings indicate that yeast and vertebrates may possess a conserved mechanism for general import of RNP although a true homolog to vertebrate C protein appears not to exist in yeast. Lethality is likely due to the absence in yeast of specific mechanisms for the removal of human C protein from nascent transcripts.
Collapse
Affiliation(s)
- J H Tan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | | | | | |
Collapse
|
26
|
Williamson DJ, Banik-Maiti S, DeGregori J, Ruley HE. hnRNP C is required for postimplantation mouse development but Is dispensable for cell viability. Mol Cell Biol 2000; 20:4094-105. [PMID: 10805751 PMCID: PMC85779 DOI: 10.1128/mcb.20.11.4094-4105.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hnRNP C1 and C2 proteins are among the most abundant proteins in the nucleus, and as ubiquitous components of RNP complexes, they have been implicated in many aspects of mRNA biogenesis. In this report, we have characterized a null mutation induced in embryonic stem cells by insertion of the U3His gene trap retrovirus into the first intron of the hnRNP C1/C2 gene. cDNAs encoding murine hnRNP C1 and C2 were characterized, and the predicted protein sequences were found to be highly conserved among vertebrates. A human consensus sequence, generated from over 400 expressed sequence tags, suggests two revisions to the previously published human sequence. In addition, alternatively spliced transcripts, expressed only by the murine gene, encode four novel proteins: variants of C1 and C2 with either seven additional amino acids or one fewer amino acid in a region between the oligomerization and C-terminal acidic domains. The disrupted gene was transmitted into the germ line and is tightly linked to a recessive, embryonic lethal phenotype. Homozygous mutant embryos fail to develop beyond the egg cylinder stage and are resorbed by 10.5 days of gestation, a phenotype consistent with a fundamental role in cellular metabolism. However, hnRNP C1 and C2 are not required for cell viability. Embryonic stem cell lines established from homozygous mutant blastocysts did not express detectable levels of either protein yet were able to grow and differentiate in vitro, albeit more slowly than wild-type cells. These results indicate that the C1 and C2 hnRNPs are not required for any essential step in mRNA biogenesis; however, the proteins may influence the rate and/or fidelity of one or more steps.
Collapse
Affiliation(s)
- D J Williamson
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | | | |
Collapse
|
27
|
Brackenridge S, Proudfoot NJ. Recruitment of a basal polyadenylation factor by the upstream sequence element of the human lamin B2 polyadenylation signal. Mol Cell Biol 2000; 20:2660-9. [PMID: 10733568 PMCID: PMC85481 DOI: 10.1128/mcb.20.8.2660-2669.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated how the upstream sequence element (USE) of the lamin B2 poly(A) signal mediates efficient 3'-end formation. In vitro analysis demonstrates that this USE increases both the efficiency of 3'-end cleavage and the processivity of poly(A) addition. Cross-linking using selectively labeled synthetic RNAs confirms that cleavage stimulation factor interacts with the sequences downstream of the cleavage site, while electrophoresis mobility shift assays demonstrate that the USE directly stabilizes the binding of the cleavage and polyadenylation specificity factor to the poly(A) signal. Thus in common with other poly(A) signals, the lamin B2 USE directly enhances the binding of basal poly(A) factors. In addition, a novel 55-kDa protein binds to the USE and the core poly(A) signal and appears to inhibit cleavage. The binding activity of this factor appears to change during the cell cycle, being greatest in S phase, when the lamin B2 gene is transcribed.
Collapse
Affiliation(s)
- S Brackenridge
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
28
|
Ruth JH, Esnault S, Jarzembowski JA, Malter JS. Calcium ionophore upregulation of AUUUA-specific binding protein activity is contemporaneous with granulocyte macrophage colony-stimulating factor messenger RNA stabilization in AML14.3D10 cells. Am J Respir Cell Mol Biol 1999; 21:621-8. [PMID: 10536121 DOI: 10.1165/ajrcmb.21.5.3694] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eosinophils produce granulocyte macrophage colony-stimulating factor (GM-CSF), which enhances their survival and function. In T cells and fibroblasts, GM-CSF production is controlled predominantly by variable messenger RNA (mRNA) stability involving 3' untranslated region (3' UTR) adenosine-uridine-rich elements (AREs) and sequence-specific mRNA binding proteins. However, the mode of regulation of this critical cytokine remains unknown in eosinophils. Therefore, we measured GM-CSF mRNA decay in an eosinophil-like cell line (AML14.3D10) and, with a radiolabeled GM-CSF RNA probe, asked whether ARE-specific, mRNA binding proteins were present in cytoplasmic lysates of these cells. Human GM-CSF mRNA transfected into unstimulated AML14.3D10 cells decayed with a half-life of 6 min, which increased to 14 min after 1 h, and to 22 min after 2 h, of ionophore-mediated activation. GM-CSF RNA mobility shift assays using cytoplasmic extracts from resting or ionophore-stimulated AML14.3D10 cells revealed multiple RNA-protein complexes of 55, 60, 85, 100, and 125 kD. A 47-kD complex was also detected with an 80-base RNA probe containing four consecutive AUUUA motifs. On the basis of competition studies, all of the observed binding protein activities interacted with the 3' UTR AREs. In addition, binding activity increased 2.5-fold in cytoplasmic lysates from cells stimulated with calcium ionophore for 2 h, contemporaneous with GM-CSF mRNA stabilization. These data provide direct evidence that ionophore stabilizes GM-CSF mRNA in AML14.3D10 cells and simultaneously increases the activity of a series of AUUUA-specific mRNA binding proteins. We conclude that the interaction of AU-specific binding proteins may stabilize GM-CSF mRNA in activated eosinophil-like cell lines.
Collapse
Affiliation(s)
- J H Ruth
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
29
|
Park JW, Bae YS. Phosphorylation of ribosomal protein L5 by protein kinase CKII decreases its 5S rRNA binding activity. Biochem Biophys Res Commun 1999; 263:475-81. [PMID: 10491318 DOI: 10.1006/bbrc.1999.1345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently reported that ribosomal protein L5 associates with the beta subunit of protein kinase CKII (CKII) (Kim, J.-M., Cha, J. -Y., Marshak, D. R., and Bae, Y.-S. (1996) Biochem. Biophys. Res. Commun. 226, 180-186). In this study, we demonstrate that CKII is able to catalyze the phosphorylation of the human L5 protein in vitro, which results in a decrease in 5S rRNA binding activity. Phosphoamino acid analysis indicated that the phosphorylation occurs on serine residues. Sequence analysis of cyanogen bromide-digested phosphopeptides and analysis of L5 deletion mutants indicates that the main phosphorylated residues are located within two fragments corresponding of residues 142-200 and residues 272-297 of the human L5. Based on our present results, we suggest that the phosphorylation of L5 by CKII is one of the mechanisms that regulates nucleolar targeting of 5S rRNA and/or ribosome assembly in the cell.
Collapse
Affiliation(s)
- J W Park
- College of Natural Sciences, Kyungpook National University, Taegu, 702-701, Korea
| | | |
Collapse
|
30
|
Sella O, Gerlitz G, Le SY, Elroy-Stein O. Differentiation-induced internal translation of c-sis mRNA: analysis of the cis elements and their differentiation-linked binding to the hnRNP C protein. Mol Cell Biol 1999; 19:5429-40. [PMID: 10409733 PMCID: PMC84385 DOI: 10.1128/mcb.19.8.5429] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous reports we showed that the long 5' untranslated region (5' UTR) of c-sis, the gene encoding the B chain of platelet-derived growth factor, has translational modulating activity due to its differentiation-activated internal ribosomal entry site (D-IRES). Here we show that the 5' UTR contains three regions with a computer-predicted Y-shaped structure upstream of an AUG codon, each of which can confer some degree of internal translation by itself. In nondifferentiated cells, the entire 5' UTR is required for maximal basal IRES activity. The elements required for the differentiation-sensing ability (i.e., D-IRES) were mapped to a 630-nucleotide fragment within the central portion of the 5' UTR. Even though the region responsible for IRES activation is smaller, the full-length 5' UTR is capable of mediating the maximal translation efficiency in differentiated cells, since only the entire 5' UTR is able to confer the maximal basal IRES activity. Interestingly, a 43-kDa protein, identified as hnRNP C, binds in a differentiation-induced manner to the differentiation-sensing region. Using UV cross-linking experiments, we show that while hnRNP C is mainly a nuclear protein, its binding activity to the D-IRES is mostly nuclear in nondifferentiated cells, whereas in differentiated cells such binding activity is associated with the ribosomal fraction. Since the c-sis 5' UTR is a translational modulator in response to cellular changes, it seems that the large number of cross-talking structural entities and the interactions with regulated trans-acting factors are important for the strength of modulation in response to cellular changes. These characteristics may constitute the major difference between strong IRESs, such as those seen in some viruses, and IRESs that serve as translational modulators in response to developmental signals, such as that of c-sis.
Collapse
Affiliation(s)
- O Sella
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
31
|
Pancetti F, Bosser R, Krehan A, Pyerin W, Itarte E, Bachs O. Heterogeneous nuclear ribonucleoprotein A2 interacts with protein kinase CK2. Biochem Biophys Res Commun 1999; 260:17-22. [PMID: 10381337 DOI: 10.1006/bbrc.1999.0849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The catalytic subunit of protein kinase CK2 (CK2alpha) was found associated with heterogeneous nuclear ribonucleoprotein particles (hnRNPs) that contain the core proteins A2 and C1-C2. High levels of CK2 activity were also detected in these complexes. Phosphopeptide patterns of hnRNP A2 phosphorylated in vivo and in vitro by protein kinase CK2 were similar, suggesting that this kinase can phosphorylate hnRNPA2 in vivo. Binding experiments using human recombinant hnRNP A2, free human recombinant CK2alpha or CK2beta subunits, reconstituted CK2 holoenzyme and purified native rat liver CK2 indicated that hnRNP A2 associated with both catalytic and regulatory CK2 subunits, and that the interaction was independent of the presence of RNA. However, the capability of hnRNP A2 to bind to CK2 holoenzyme was lower than its binding to the isolated subunits. These data indicate that the association of CK2alpha with CK2beta interferes with the subsequent binding of hnRNP A2. HnRNP A2 inhibited the autophosphorylation of CK2beta. This effect was stronger with reconstituted human recombinant CK2 than with purified native rat liver CK2.
Collapse
Affiliation(s)
- F Pancetti
- Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Chen CD, Kobayashi R, Helfman DM. Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene. Genes Dev 1999; 13:593-606. [PMID: 10072387 PMCID: PMC316507 DOI: 10.1101/gad.13.5.593] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the rat beta-tropomyosin (beta-TM) gene, exons 6 and 7 are spliced alternatively in a mutually exclusive manner. Exon 6 is included in mRNA encoding nonmuscle TM-1, whereas exon 7 is used in mRNA encoding skeletal muscle beta-TM. Previously, we demonstrated that a six nucleotide mutation at the 5' end of exon 7, designated as ex-1, activated exon 7 splicing in nonmuscle cells. In this study, we show that the activating effect of this mutation is not the result of creating an exonic splicing enhancer (ESE) or disrupting a putative secondary structure. The sequence in exon 7 acts as a bona fide exonic splicing silencer (ESS), which is bound specifically by a trans-acting factor. Isolation and peptide sequencing reveal that this factor is hnRNP H, a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. Binding of hnRNP H correlates with the ESS activity. Furthermore, addition of antibodies that specifically recognizes hnRNP H to the splicing reactions or partial depletion of hnRNP H from nuclear extract activates exon 7 splicing in vitro and this effect can be reversed by addition of purified recombinant hnRNP H. These results indicate that hnRNP H participates in exclusion of exon 7 in nonmuscle cells. The involvement of hnRNP H in the activity of an ESS may represent a prototype for the regulation of tissue- and developmental-specific alternative splicing.
Collapse
Affiliation(s)
- C D Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
33
|
Misteli T, Cáceres JF, Clement JQ, Krainer AR, Wilkinson MF, Spector DL. Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo. J Cell Biol 1998; 143:297-307. [PMID: 9786943 PMCID: PMC2132840 DOI: 10.1083/jcb.143.2.297] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/1998] [Revised: 09/04/1998] [Indexed: 11/26/2022] Open
Abstract
Expression of most RNA polymerase II transcripts requires the coordinated execution of transcription, splicing, and 3' processing. We have previously shown that upon transcriptional activation of a gene in vivo, pre-mRNA splicing factors are recruited from nuclear speckles, in which they are concentrated, to sites of transcription (Misteli, T., J.F. Cáceres, and D.L. Spector. 1997. Nature. 387:523-527). This recruitment process appears to spatially coordinate transcription and pre-mRNA splicing within the cell nucleus. Here we have investigated the molecular basis for recruitment by analyzing the recruitment properties of mutant splicing factors. We show that multiple protein domains are required for efficient recruitment of SR proteins from nuclear speckles to nascent RNA. The two types of modular domains found in the splicing factor SF2/ ASF exert distinct functions in this process. In living cells, the RS domain functions in the dissociation of the protein from speckles, and phosphorylation of serine residues in the RS domain is a prerequisite for this event. The RNA binding domains play a role in the association of splicing factors with the target RNA. These observations identify a novel in vivo role for the RS domain of SR proteins and suggest a model in which protein phosphorylation is instrumental for the recruitment of these proteins to active sites of transcription in vivo.
Collapse
Affiliation(s)
- T Misteli
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
34
|
Shahied-Milam L, Soltaninassab SR, Iyer GV, LeStourgeon WM. The heterogeneous nuclear ribonucleoprotein C protein tetramer binds U1, U2, and U6 snRNAs through its high affinity RNA binding domain (the bZIP-like motif). J Biol Chem 1998; 273:21359-67. [PMID: 9694897 DOI: 10.1074/jbc.273.33.21359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on UV cross-linking experiments, it has been reported that the C protein tetramer of 40 S heterogeneous nuclear ribonucleoprotein complexes specifically interacts with stem-loop I of U2 small nuclear RNA (snRNA) (Temsamani, J., and Pederson, T. (1996) J. Biol. Chem. 271, 24922-24926), that C protein disrupts U4:U6 snRNA complexes (Forne, T., Rossi, F., Labourier, E., Antoine, E., Cathala, G., Brunel, C., and Tazi, J. (1995) J. Biol. Chem. 270, 16476-16481), that U6 snRNA may modulate C protein phosphorylation (Mayrand, S. H., Fung, P. A., and Pederson, T. (1996) Mol. Cell. Biol. 16, 1241-1246), and that hyperphosphorylated C protein lacks pre-mRNA binding activity. These findings suggest that snRNA-C protein interactions may function to recruit snRNA to, or displace C protein from, splice junctions. In this study, both equilibrium and non-equilibrium RNA binding assays reveal that purified native C protein binds U1, U2, and U6 snRNA with significant affinity ( approximately 7.5-50 nM) although nonspecifically. Competition binding assays reveal that U2 snRNA (the highest affinity snRNA substrate) is ineffective in C protein displacement from branch-point/splice junctions or as a competitor of C protein's self-cooperative RNA binding mode. Additionally, C protein binds snRNA through its high affinity bZLM and mutations in the RNA recognition motif at suggested RNA binding sites primarily affect protein oligomerization.
Collapse
Affiliation(s)
- L Shahied-Milam
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
35
|
Perrotti D, Bonatti S, Trotta R, Martinez R, Skorski T, Salomoni P, Grassilli E, Lozzo RV, Cooper DR, Calabretta B. TLS/FUS, a pro-oncogene involved in multiple chromosomal translocations, is a novel regulator of BCR/ABL-mediated leukemogenesis. EMBO J 1998; 17:4442-55. [PMID: 9687511 PMCID: PMC1170776 DOI: 10.1093/emboj/17.15.4442] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The leukemogenic potential of BCR/ABL oncoproteins depends on their tyrosine kinase activity and involves the activation of several downstream effectors, some of which are essential for cell transformation. Using electrophoretic mobility shift assays and Southwestern blot analyses with a double-stranded oligonucleotide containing a zinc finger consensus sequence, we identified a 68 kDa DNA-binding protein specifically induced by BCR/ABL. The peptide sequence of the affinity-purified protein was identical to that of the RNA-binding protein FUS (also called TLS). Binding activity of FUS required a functional BCR/ABL tyrosine kinase necessary to induce PKCbetaII-dependent FUS phosphorylation. Moreover, suppression of PKCbetaII activity in BCR/ABL-expressing cells by treatment with the PKCbetaII inhibitor CGP53353, or by expression of a dominant-negative PKCbetaII, markedly impaired the ability of FUS to bind DNA. Suppression of FUS expression in myeloid precursor 32Dcl3 cells transfected with a FUS antisense construct was associated with upregulation of the granulocyte-colony stimulating factor receptor (G-CSFR) and downregulation of interleukin-3 receptor (IL-3R) beta-chain expression, and accelerated G-CSF-stimulated differentiation. Downregulation of FUS expression in BCR/ABL-expressing 32Dcl3 cells was associated with suppression of growth factor-independent colony formation, restoration of G-CSF-induced granulocytic differentiation and reduced tumorigenic potential in vivo. Together, these results suggest that FUS might function as a regulator of BCR/ABL leukemogenesis, promoting growth factor independence and preventing differentiation via modulation of cytokine receptor expression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation
- Cell Division
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Gene Expression Regulation, Neoplastic
- Growth Substances/physiology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Heterogeneous-Nuclear Ribonucleoproteins
- Humans
- Leukemia, Myeloid/enzymology
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Mice
- Mice, Inbred ICR
- Mice, SCID
- Molecular Sequence Data
- Phosphorylation
- Protein Kinase C/physiology
- Protein-Tyrosine Kinases/biosynthesis
- Proto-Oncogenes/physiology
- RNA-Binding Protein FUS
- Ribonucleoproteins/biosynthesis
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Signal Transduction
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D Perrotti
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
König H, Ponta H, Herrlich P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J 1998; 17:2904-13. [PMID: 9582284 PMCID: PMC1170631 DOI: 10.1093/emboj/17.10.2904] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing of pre-mRNA is a fundamental mechanism of differential gene expression in that it can give rise to functionally distinct proteins from a single gene, according to the developmental or physiological state of cells in multicellular organisms. In the pre-mRNA of the cell surface molecule CD44, the inclusion of up to 10 variant exons (v1-v10) is regulated during development, upon activation of lymphocytes and dendritic cells, and during tumour progression. Using minigene constructs containing CD44 exon v5, we have discovered exonic RNA elements that couple signal transduction to alternative splicing. They form a composite splice regulator encompassing an exon recognition element and splice silencer elements. Both type of elements are necessary to govern cell type-specific inclusion of the exon as well as inducible inclusion in T cells after stimulation by concanavalin A, by Ras signalling or after activation of protein kinase C by phorbol ester. Inducible splicing does not depend on de novo protein synthesis. The coupling of signal transduction to alternative splicing by such elements probably represents the mechanism whereby splice patterns of genes are established during development and can be changed under physiological and pathological conditions.
Collapse
Affiliation(s)
- H König
- Forschungzentrum Karlsruhe, Institut für Genetik, Karlsruhe, Germany
| | | | | |
Collapse
|
37
|
Abstract
The possible existence in eukaryotic cells of an internal, non-chromatin nuclear structural framework that facilitates gene readout as a set of spatially concerted reactions has become a popular but controversial theater of investigation. This article endeavors to present a circumspect review of the nuclear matrix concept as we presently know it, framed around two contrasting hypotheses: (1) that an internal nuclear framework actively enhances gene expression (in much the same way the cytoskeleton mediates cell locomotion, mitosis and intracellular vesicular traffic) versus (2) that the interphase chromosomes have fixed, inherited positions and that the DNA replication, transcripton and RNA processing machinery diffusionally arrives at sites of gene readout, with some aspects of nuclear structure thus being more a result than a cause of gene expression. On balance, the available information suggests that interactions among various gene expression machines may contribute to isolated nuclear matrix preparations. Some components of isolated nuclear matrix preparations may also reflect induced or reconfigured protein-protein associations. The protein characterization and ultrastructural analysis of the isolated nuclear matrix has advanced significantly in recent years, although controversies remain. Important new clues are now coming in from promising contemporary lines of research that report on nuclear structure in living cells.
Collapse
Affiliation(s)
- T Pederson
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA.
| |
Collapse
|
38
|
Romero F, Germani A, Puvion E, Camonis J, Varin-Blank N, Gisselbrecht S, Fischer S. Vav binding to heterogeneous nuclear ribonucleoprotein (hnRNP) C. Evidence for Vav-hnRNP interactions in an RNA-dependent manner. J Biol Chem 1998; 273:5923-31. [PMID: 9488731 DOI: 10.1074/jbc.273.10.5923] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vav proto-oncogene is exclusively expressed in hematopoietic cells and encodes a 95-kDa protein that contains multiple structural domains. Vav is involved in the expansion of T and B cells, in antigen-mediated proliferative responses, and in the induction of intrathymic T cell maturation. It becomes rapidly and transiently tyrosine-phosphorylated upon triggering of a large number of surface receptors and catalyzes GDP/GTP exchange on Rac-1. We now provide evidence for the specific interaction of Vav with heterogeneous nuclear ribonucleoprotein (hnRNP) C. Vav and hnRNP C interact both in vivo and in vitro mediated through the carboxyl Src homology 3 domain of Vav and the proline-rich motif located in the nuclear retention sequence of hnRNP C. More importantly, Vav-hnRNP C complexes are present in living hematopoietic cells and both proteins localize in the nuclei, mainly on perichromatic fibrils but also on clusters of interchromatin granules. The Vav-hnRNP C interaction is regulated by poly(U) RNA, although a basal association is still detected in the absence of RNA. Furthermore, RNA homopolymers differentially alter the binding affinity of Vav to hnRNP C and hnRNP K. We propose that Vav-hnRNP interactions may be established in an RNA-dependent manner.
Collapse
Affiliation(s)
- F Romero
- Institut Cochin de Genetique Moleculaire, U363 INSERM, Hopital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Deloulme JC, Prichard L, Delattre O, Storm DR. The prooncoprotein EWS binds calmodulin and is phosphorylated by protein kinase C through an IQ domain. J Biol Chem 1997; 272:27369-77. [PMID: 9341188 DOI: 10.1074/jbc.272.43.27369] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A growing family of proteins is regulated by protein kinase C and calmodulin through IQ domains, a regulatory motif originally identified in neuromodulin (Alexander, K. A., Wakim, B. T., Doyle, G. S., Walsh, K. A., and Storm, D. R. (1988) J. Biol. Chem. 263, 7544-7549). Here we report that EWS, a nuclear RNA-binding prooncoprotein, contains an IQ domain, is phosphorylated by protein kinase C, and interacts with calmodulin. Interestingly, PKC phosphorylation of EWS inhibits its binding to RNA homopolymers, and conversely, RNA binding to EWS interferes with PKC phosphorylation. Several other RNA-binding proteins, including TLS/FUS and PSF, co-purify with EWS. PKC phosphorylation of these proteins also inhibits their binding to RNA in vitro. These data suggest that PKC may regulate interactions of EWS and other RNA-binding proteins with their RNA targets and that IQ domains may provide a regulatory link between Ca2+ signal transduction pathways and RNA processing.
Collapse
Affiliation(s)
- J C Deloulme
- University of Washington, Department of Pharmacology, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
40
|
Heise T, Nath A, Jungermann K, Christ B. Purification of a RNA-binding protein from rat liver. Identification as ferritin L chain and determination of the RNA/protein binding characteristics. J Biol Chem 1997; 272:20222-9. [PMID: 9242700 DOI: 10.1074/jbc.272.32.20222] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In cultured rat hepatocytes the degradation of phosphoenolpyruvate carboxykinase mRNA might be regulated by protein(s), which by binding to the mRNA alter its stability. The 3'-untranslated region of phosphoenolpyruvate carboxykinase mRNA as a potential target was used to select RNA-binding protein(s) from rat liver by the use of gel retardation assays. A cytosolic protein was isolated, which bound to the phosphoenolpyruvate carboxykinase mRNA 3'-untranslated region and other in vitro synthesized RNAs. The protein was purified to homogeneity; it had an apparent molecular mass of 400 kDa and consisted of identical subunits with an apparent size of 24.5 kDa. Sequence analysis of a tryptic peptide from the 24.5-kDa protein revealed its identity with rat ferritin light chain. Binding of ferritin to RNA was abolished after phosphorylation with cAMP-dependent protein kinase and was augmented after dephosphorylation with alkaline phosphatase. Weak binding was observed in extracts from okadaic acid-treated cultured hepatocytes compared with untreated cells. Preincubation of ferritin with an anti-phosphoserine or an anti-phosphothreonine antibody attenuated binding to RNA, while an anti-phosphotyrosine antibody generated a supershift indicating that phosphoserine and phosphothreonine but not phosphotyrosine residues were in close proximity to the RNA-binding region. Ferritin is the iron storage protein in the liver. Binding of ferritin to RNA was diminished in the presence of increasing iron concentrations, whereas the iron chelator desferal was without effect. It is concluded that ferritin might function as RNA-binding protein and that it may have important functions in the general regulation of cellular RNA metabolism.
Collapse
Affiliation(s)
- T Heise
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
41
|
Nanbu R, Montero L, D'Orazio D, Nagamine Y. Enhanced stability of urokinase-type plasminogen activator mRNA in metastatic breast cancer MDA-MB-231 cells and LLC-PK1 cells down-regulated for protein kinase C--correlation with cytoplasmic heterogeneous nuclear ribonucleoprotein C. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:169-74. [PMID: 9249023 DOI: 10.1111/j.1432-1033.1997.00169.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In LLC-PK1 cells, urokinase-type plasminogen activator (uPA) mRNA has a short half-life of 70 min. We have previously demonstrated that most of the regulatory regions responsible for the rapid turnover of uPA mRNA in LLC-PK1 cells reside in its 3' untranslated region (3' UTR), where there are at least three regulatory sites, one of which is A+U-rich. This A+U-rich sequence mediates uPA mRNA stabilization induced by protein kinase C (PKC) down-regulation. In this work, we found that uPA mRNA is rather stable in MDA-MB-231 cells with a half-life of 17 h. We compared the stability of hybrid globin mRNA containing different parts of uPA mRNA in its 3' UTR and found that the A+U-rich sequence of uPA mRNA renders otherwise stable globin mRNA unstable in LLC-PK1 cells but not in MDA-MB-231 cells. We identified a cytoplasmic protein of 40 kDa (p40) which specifically interacts with the A+U-rich sequence. Levels of p40 activity as detected by ultraviolet cross-linking were higher in MDA-MB-231 and PKC-down-regulated LLC-PK1 cells than in untreated LLC-PK1 cells. Prior treatment of the cytoplasm with a specific antibody against heterogeneous nuclear ribonucleoprotein C (hnRNP C) significantly reduced p40 activity. These results suggest a correlation between the A+U-rich sequence-dependent uPA mRNA stabilization in vivo and the binding of hnRNP C to the A+U-rich sequence in vitro.
Collapse
Affiliation(s)
- R Nanbu
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
42
|
Liere K, Link G. Chloroplast endoribonuclease p54 involved in RNA 3'-end processing is regulated by phosphorylation and redox state. Nucleic Acids Res 1997; 25:2403-8. [PMID: 9171092 PMCID: PMC146767 DOI: 10.1093/nar/25.12.2403] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chloroplast RNA-binding protein p54 is an endoribonuclease required for 3'end-processing of plastid precursor transcripts. We find that purified p54 can serve as a phosphate acceptor for protein kinases in vitro. Both the processing and RNA-binding activities of p54 are enhanced by phosphorylation and decreased by dephosphorylation. In addition, the enzyme is activated by the oxidized form of glutathione and inhibited by the reduced form, whereas other redox reagents that were tested showed no effect. Kinase treatment of p54 prior to oxidation by glutathione resulted in highest levels of activation, suggesting that phosphorylation and redox state act together to control p54 activity in vitro and possibly also in vivo.
Collapse
Affiliation(s)
- K Liere
- Plant Cell Physiology and Molecular Biology, University of Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
43
|
Raffalli-Mathieu F, Geneste O, Lang MA. Characterization of two nuclear proteins that interact with cytochrome P-450 1A2 mRNA. Regulation of RNA binding and possible role in the expression of the Cyp1a2 gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:17-24. [PMID: 9128719 DOI: 10.1111/j.1432-1033.1997.00017.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulation of the expression of the cytochrome P-450 la2 gene (cyp1a2) occurs mainly at the transcriptional level, but the molecular events involved in the induction process are partly unknown. Some reports have proposed involvement of post-transcriptional mechanisms [Adesnik, M. & Atchison, M. (1986) Crit. Rev. Biochem. 19, 247-305; Silver, G. & Krauter, K. S. (1990) Mol. Cell. Biol. 10, 6765-6768]. Here we report the identification of two proteins in the nuclear fraction of mouse liver, with specific binding characteristics towards CYP1A2 mRNA. The proteins have apparent molecular masses of 37 kDa and 46 kDa and exhibit a high affinity for a poly(U) motif in the 3' untranslated region of CYP1A2 mRNA. This motif seems to be important for their specific and apparently competitive binding to CYP1A2 mRNA. Treatment of mice with an inducer of CYP1A2, 3-methylcholanthrene, increases the binding of the 46-kDa protein and decreases the binding of the 37-kDa protein to the mRNA, suggesting that changes in the binding of the proteins to the mRNA could play a role in the upregulation of CYP1A2 mRNA by 3-methylcholanthrene. Phosphorylation of the 46-kDa protein, or of an intermediary factor, may play a role in its binding activity. Furthermore, the 46-kDa but not the 37-kDa protein is recognized by a monoclonal antibody against the heterogeneous nuclear ribonucleoprotein C, a nuclear protein probably involved in pre-mRNA processing. While more work is needed to understand the function of the proteins that bind to the 3' untranslated region of CYP1A2, it is possible that the 37-kDa protein has a role in the maintenance of uninduced levels of CYP1A2 mRNA, while the 46-kDa protein could be important in the maturation of elevated levels of CYP1A2 pre-mRNA, during induction.
Collapse
|
44
|
Fung PA, Labrecque R, Pederson T. RNA-dependent phosphorylation of a nuclear RNA binding protein. Proc Natl Acad Sci U S A 1997; 94:1064-8. [PMID: 9037006 PMCID: PMC19744 DOI: 10.1073/pnas.94.4.1064] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human C1 heterogeneous nuclear ribonucleoprotein particle protein (hnRNP protein) undergoes a cycle of phosphorylation-dephosphorylation in HeLa cell nuclear extracts that modulates the binding of this protein to pre-mRNA. We now report that hyperphosphorylation of the C1 hnRNP protein is mediated by a kinase activity in nuclear extracts that is RNA-dependent. Although the basal phosphorylation of the C1 hnRNP protein in nuclear extracts reflects a casein kinase II-type activity, its RNA-dependent hyperphosphorylation appears to be mediated by a different kinase. This is indicated by the unresponsiveness of the RNA-stimulated hyperphosphorylation to casein kinase II inhibitors, and the distinct glycerol gradient sedimentation profiles of the basal versus RNA-stimulated C1 hnRNP protein phosphorylation activities from nuclear extracts. RNA-dependent phosphorylation was observed both for a histidine-tagged recombinant human C1 hnRNP protein added to nuclear extracts and also for the endogenous C1 hnRNP protein. Additional results rule out protein kinase A, protein kinase C, calmodulin-dependent protein kinase II, and double-stranded RNA-activated protein kinase as the enzymes responsible for the RNA-dependent hyperphosphorylation of the C1 hnRNP protein. These results reveal the existence in nuclear extracts of an RNA-dependent protein kinase activity that hyperphosphorylates a known pre-mRNA binding protein, and define an additional element to be integrated into the current picture of how nuclear proteins are regulated by phosphorylation.
Collapse
Affiliation(s)
- P A Fung
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | | | |
Collapse
|
45
|
Waterhouse N, Kumar S, Song Q, Strike P, Sparrow L, Dreyfuss G, Alnemri ES, Litwack G, Lavin M, Watters D. Heteronuclear ribonucleoproteins C1 and C2, components of the spliceosome, are specific targets of interleukin 1beta-converting enzyme-like proteases in apoptosis. J Biol Chem 1996; 271:29335-41. [PMID: 8910595 DOI: 10.1074/jbc.271.46.29335] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Apoptosis induced by a variety of agents results in the proteolytic cleavage of a number of cellular substrates by enzymes related to interleukin 1beta-converting enzyme (ICE). A small number of substrates for these enzymes have been identified to date, including enzymes involved in DNA repair processes: poly(ADP-ribose) polymerase and DNA-dependent protein kinase. We describe here for the first time the specific cleavage of the heteronuclear ribonucleoproteins (hnRNPs) C1 and C2 in apoptotic cells induced to undergo apoptosis by a variety of stimuli, including ionizing radiation, etoposide, and ceramide. No cleavage was observed in cells that are resistant to apoptosis induced by ionizing radiation. Protease inhibitor data implicate the involvement of an ICE-like protease in the cleavage of hnRNP C. Using recombinant ICE-like proteases and purified hnRNP C proteins in vitro, we show that the C proteins are cleaved by Mch3alpha and CPP32 and, to a lesser extent, by Mch2alpha, but not by ICE, Nedd2, Tx, or the cytotoxic T-cell protease granzyme B. The results described here demonstrate that the hnRNP C proteins, abundant nuclear proteins thought to be involved in RNA splicing, belong to a critical set of protein substrates that are cleaved by ICE-like proteases during apoptosis.
Collapse
Affiliation(s)
- N Waterhouse
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, P. O. Royal Brisbane Hospital, Herston, Brisbane, Queensland 4029, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Temsamani J, Pederson T. The C-group heterogeneous nuclear ribonucleoprotein proteins bind to the 5' stem-loop of the U2 small nuclear ribonucleoprotein particle. J Biol Chem 1996; 271:24922-6. [PMID: 8798770 DOI: 10.1074/jbc.271.40.24922] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The C-group heterogeneous nuclear ribonucleoprotein (hnRNP) proteins bind to nascent pre-messenger RNA. In vitro studies have indicated that the C hnRNP proteins bind particularly strongly to the intron polypyrimidine tract of pre-mRNA and may be important for pre-mRNA splicing. In addition, there is evidence that the interaction of the C hnRNP proteins with pre-mRNA is facilitated by the U1 and U2 small nuclear RNPs (snRNPs). In the present study, we have uncovered another feature of the C hnRNP proteins that may provide a unifying framework for these previous observations; the C hnRNP proteins bind to the 5' stem-loop of the U2 snRNP. This was detected by incubating human 32P-labeled U2 snRNP in micrococcal nuclease-treated HeLa nuclear extracts, followed by UV-mediated protein-RNA cross-linking, which revealed that C hnRNP proteins were cross-linked to 32P-nucleotides in the U2 snRNP. In similar experiments, no cross-linking of C hnRNP proteins to 32P-labeled U1 or U4 snRNPs was observed. The observed cross-linking of C hnRNP proteins to U2 snRNP was efficiently competed by excess U2 RNA and by poly(U) but not by poly(A). No competition was observed with an RNA molecule comprising U2 nucleotides 105-189, indicating that the C hnRNP protein interactive regions of U2 RNA reside solely in the 5' half of the molecule. Oligodeoxynucleotide-mediated RNase H cleavage experiments revealed that a 5' region of U2 RNA including nucleotides 15-28 is essential for the observed C hnRNP protein cross-linking. C hnRNP protein cross-linking to U2 snRNP was efficiently competed by a mini-RNA corresponding to the first 29 nucleotides of U2 RNA, whereas no competition was observed with a variant of this mini-RNA in which the UUUU loop of stem-loop I was mutationally configured into a single-stranded RNA by replacing the stem with non-pairing nucleotides. Competition experiments with another mutant mini-U2 RNA in which the UUUU loop was replaced by AAAA indicated that both the UUUU loop and the stem are important for C hnRNP protein cross-linking, a finding consistent with other recent data on the RNA sequence specificity of C hnRNP protein binding.
Collapse
Affiliation(s)
- J Temsamani
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | |
Collapse
|
47
|
Misteli T, Spector DL. Serine/threonine phosphatase 1 modulates the subnuclear distribution of pre-mRNA splicing factors. Mol Biol Cell 1996; 7:1559-72. [PMID: 8898362 PMCID: PMC276006 DOI: 10.1091/mbc.7.10.1559] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HeLa cell nuclei were permeabilized and reconstituted with nuclear extract to identify soluble nuclear factors which play a role in the organization of pre-mRNA splicing factors in the mammalian cell nucleus. Permeabilized nuclei reconstituted with nuclear extract were active in transcription and DNA replication and nuclear speckles containing pre-mRNA splicing factors were maintained over several hours independent of soluble nuclear components. The characteristic rounding up of nuclear speckles in response to inhibition of RNA polymerase II seen in vivo was reproduced in permeabilized cells and was strictly dependent on a catalytic activity present in the nuclear extract. By inhibitor titration experiments and sensitivity to inhibitor 2, this activity was identified as a member of the serine/threonine protein phosphatase 1 family (PP1). Interference with PP1 activity affected the distribution of pre-mRNA splicing factors in transcriptionally active, permeabilized cells, and excess PP1 activity caused increased dephosphorylation of SR proteins in nuclear speckles. These data show that the dynamic reorganization of the mammalian cell nucleus can be studied in permeabilized cells and that PP1 is involved in the rounding up of speckles as well as the overall organization of pre-mRNA splicing factors in the mammalian cell nucleus.
Collapse
Affiliation(s)
- T Misteli
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
48
|
Nakielny S, Dreyfuss G. The hnRNP C proteins contain a nuclear retention sequence that can override nuclear export signals. J Biophys Biochem Cytol 1996; 134:1365-73. [PMID: 8830767 PMCID: PMC2121000 DOI: 10.1083/jcb.134.6.1365] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nascent pre-mRNAs associate with the abundant heterogeneous nuclear RNP (hnRNP) proteins and remain associated with them throughout the time they are in the nucleus. The hnRNP proteins can be divided into two groups according to their nucleocytoplasmic transport properties. One group is completely restricted to the nucleus in interphase cells, whereas the other group, although primarily nuclear at steady state, shuttles between the nucleus and the cytoplasm. Nuclear export of the shuttling hnRNP proteins is mediated by nuclear export signals (NESs). Mounting evidence indicates that NES-bearing hnRNP proteins are mediators of mRNA export. The hnRNP C proteins are representative of the nonshuttling group of hnRNP proteins. Here we show that hnRNP C proteins are restricted to the nucleus not because they lack an NES, but because they bear a nuclear retention sequence (NRS) that is capable of overriding NESs. The NRS comprises approximately 78 amino acids and is largely within the auxiliary domain of hnRNP C1. We suggest that the removal of NRS-containing hnRNP proteins from pre-mRNA/mRNA is required for mRNA export from the nucleus and is an essential step in the pathway of gene expression.
Collapse
Affiliation(s)
- S Nakielny
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | |
Collapse
|
49
|
Das A, Peterson GC, Kanner SB, Frevert U, Parsons M. A major tyrosine-phosphorylated protein of Trypanosoma brucei is a nucleolar RNA-binding protein. J Biol Chem 1996; 271:15675-81. [PMID: 8663171 DOI: 10.1074/jbc.271.26.15675] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have previously identified a set of tyrosine-phosphorylated proteins with apparent molecular masses of 44-46 kDa as some of the major tyrosine phosphorylated species in the protozoan parasite Trypanosoma brucei. We now show that these molecules, herein named Nopp44/46, are localized in the nucleolus. Using monoclonal antibodies, we have isolated Nopp44/46 cDNA clones from expression libraries. Sequence analysis reveals that the predicted amino acid sequence of the molecule is composed of an N-terminal unique region, an internal acidic region, and C-terminal repeat region. Analysis of the cDNA clones and genomic Southern analysis indicated that Nopp44/46 belongs to a multigene family in which different gene copies are very similar but vary in the number of repeats. Interestingly, the repetitive amino acid sequence motif contains multiple RGG (Arg-Gly-Gly) boxes characteristic of RNA-binding proteins. In vitro binding experiments demonstrated that Nopp44/46 is indeed capable of binding nucleic acids. Competition experiments with different RNA homopolymers demonstrated that Nopp44/46 preferentially binds to poly(U). These studies suggest that Nopp44/46 may play a role in RNA metabolism in trypanosomes and raise the possibility that tyrosine phosphorylation may regulate the process.
Collapse
Affiliation(s)
- A Das
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
50
|
Hockman DJ, Schultz MC. Casein kinase II is required for efficient transcription by RNA polymerase III. Mol Cell Biol 1996; 16:892-8. [PMID: 8622691 PMCID: PMC231070 DOI: 10.1128/mcb.16.3.892] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Casein kinase II (CKII) is a ubiquitous and highly conserved serine/threonine protein kinase found in the nucleus and cytoplasm of most cells. Using a combined biochemical and genetic approach in the yeast Saccharomyces cerevisiae, we assessed the role of CKII in specific transcription by RNA polymerases I, II, and III. CKII is not required for basal transcription by RNA polymerases I and II but is important for polymerase III transcription. Polymerase III transcription is high in extracts with normal CKII activity but low in extracts from a temperature-sensitive mutant that has decreased CKII activity due to a lesion in the enzyme's catalytic alpha' subunit. Polymerase III transcription of 5S rRNA and tRNA templates in the temperature-sensitive extract is rescued by purified, wild-type CKII. An inhibitor of CKII represses polymerase III transcription in wild-type extract, and this repression is partly overcome by supplementing reaction mixtures with active CKII. Finally, we show that polymerase III transcription in vivo is impaired when CKII is inactivated. Our results demonstrate that CKII, an oncogenic protein kinase previously implicated in cell cycle and growth control, is required for high-level transcription by RNA polymerase III.
Collapse
Affiliation(s)
- D J Hockman
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|