1
|
Ayers LW, Barbachano-Guerrero A, McAllister SC, Ritchie JA, Asiago-Reddy E, Bartlett LC, Cesarman E, Wang D, Rochford R, Martin JN, King CA. Mast Cell Activation and KSHV Infection in Kaposi Sarcoma. Clin Cancer Res 2018; 24:5085-5097. [PMID: 30084838 PMCID: PMC6191350 DOI: 10.1158/1078-0432.ccr-18-0873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Abstract
Purpose: Kaposi sarcoma (KS) is a vascular tumor initiated by infection of endothelial cells (ECs) with KS-associated herpesvirus (KSHV). KS is dependent on sustained proinflammatory signals provided by intralesional leukocytes and continued infection of new ECs. However, the sources of these cytokines and infectious virus within lesions are not fully understood. Here, mast cells (MCs) are identified as proinflammatory cells within KS lesions that are permissive for, and activated by, infection with KSHV.Experimental Design: Three validated MC lines were used to assess permissivity of MCs to infection with KSHV and to evaluate MCs activation following infection. Biopsies from 31 AIDS-KS cases and 11 AIDS controls were evaluated by IHC for the presence of MCs in KS lesions and assessment of MC activation state and infection with KSHV. Plasma samples from 26 AIDS-KS, 13 classic KS, and 13 healthy adults were evaluated for levels of MC granule contents tryptase and histamine.Results: In culture, MCs supported latent and lytic KSHV infection, and infection-induced MC degranulation. Within KS lesions, MCs were closely associated with spindle cells. Furthermore, MC activation was extensive within patients with KS, reflected by elevated circulating levels of tryptase and a histamine metabolite. One patient with clinical signs of extensive MC activation was treated with antagonists of MC proinflammatory mediators, which resulted in a rapid and durable regression of AIDS-KS lesions.Conclusions: Using complimentary in vitro and in vivo studies we identify MCs as a potential long-lived reservoir for KSHV and a source of proinflammatory mediators within the KS lesional microenvironment. In addition, we identify MC antagonists as a promising novel therapeutic approach for KS. Clin Cancer Res; 24(20); 5085-97. ©2018 AACR.
Collapse
Affiliation(s)
- Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | | | - Shane C McAllister
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Julie A Ritchie
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | | | - Linda C Bartlett
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Dongliang Wang
- Department of Public Health and Preventative Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Rosemary Rochford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Christine A King
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York.
| |
Collapse
|
2
|
Knight ZA, Schmidt SF, Birsoy K, Tan K, Friedman JM. A critical role for mTORC1 in erythropoiesis and anemia. eLife 2014; 3:e01913. [PMID: 25201874 PMCID: PMC4179304 DOI: 10.7554/elife.01913] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 09/04/2014] [Indexed: 12/31/2022] Open
Abstract
Red blood cells (RBC) must coordinate their rate of growth and proliferation with the availability of nutrients, such as iron, but the signaling mechanisms that link the nutritional state to RBC growth are incompletely understood. We performed a screen for cell types that have high levels of signaling through mTORC1, a protein kinase that couples nutrient availability to cell growth. This screen revealed that reticulocytes show high levels of phosphorylated ribosomal protein S6, a downstream target of mTORC1. We found that mTORC1 activity in RBCs is regulated by dietary iron and that genetic activation or inhibition of mTORC1 results in macrocytic or microcytic anemia, respectively. Finally, ATP competitive mTOR inhibitors reduced RBC proliferation and were lethal after treatment with phenylhydrazine, an inducer of hemolysis. These results identify the mTORC1 pathway as a critical regulator of RBC growth and proliferation and establish that perturbations in this pathway result in anemia. DOI:http://dx.doi.org/10.7554/eLife.01913.001 To multiply and grow, cells need to create more of the molecules—such as proteins—that make up their structure. This only happens if the cell has a good supply of the nutrients used to build the proteins. Red blood cells are particularly sensitive to the supply of nutrients, especially iron, which is a key component of the hemoglobin molecules that enable the cells to transport oxygen around the body. A lack of iron can lead to a shortage of red blood cells and a condition called anemia. People with mild forms of anemia may feel tired or weak, but more severe forms of anemia can cause heart problems and even death. A protein called mTOR forms part of a protein complex that helps alert the cells of many different organisms to the presence of nutrients. mTOR can add phosphate groups to ribosomes—the molecular machines that translate molecules of mRNA to build proteins. In 2012, researchers developed a technique called Phospho-Trap that can isolate these phosphorylated ribosomes from cells. Cells with an activated mTOR complex express more mTOR protein and in turn have more ribosomes that are modified. Examining the mRNA molecules associated with these ribosomes can reveal which proteins are produced in greater amounts in these cells. Previous experiments using Phospho-Trap found the proteins that make up hemoglobin in unexpectedly high amounts in the mouse brain. Now, Knight et al.—and other researchers involved in the 2012 work—have established that the hemoglobin was not coming from the brain cells but from immature red blood cells circulating within the brain. These immature blood cells were found to have a highly active mTOR complex that promotes the production of hemoglobin and new blood cells. Using genetic techniques in mice, Knight et al. found that the mTOR complex can cause anemia if it is underactive or overactive. Underactive mTOR complexes cause a type of anemia that produces small red blood cells and is usually triggered by a lack of iron. This made sense because mTOR is known to regulate both protein production and cell size. Boosting the activity of the mTOR complex leads to a type of anemia in which the cells are much larger than normal, and which is normally associated with inadequate amounts of folate and B12 vitamins. When Knight et al. gave mice a drug that inhibits the mTOR protein, the mice developed anemia that resolved when the treatment stopped. However, mice that were given the mTOR inhibitor at the same time as a drug that destroys red blood cells, all died within days. Clinical trials are currently testing mTOR inhibitors as a possible cancer treatment; however, a common side effect of chemotherapy is that it stops new red blood cells being produced. Knight et al. suggest that the red blood cells of patients in these clinical trials must be closely monitored before deciding whether to continue the treatment further. DOI:http://dx.doi.org/10.7554/eLife.01913.002
Collapse
Affiliation(s)
- Zachary A Knight
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Sarah F Schmidt
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Kivanc Birsoy
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Keith Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
3
|
Bertagnolo V, Brugnoli F, Grassilli S, Nika E, Capitani S. Vav1 in differentiation of tumoral promyelocytes. Cell Signal 2011; 24:612-20. [PMID: 22133616 DOI: 10.1016/j.cellsig.2011.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 02/06/2023]
Abstract
The multidomain protein Vav1, in addition to promote the acquisition of maturation related properties by normal hematopoietic cells, is a key player in the ATRA- and PMA-induced completion of the differentiation program of tumoral myeloid precursors derived from APL. This review is focussed on the role of Vav1 in differentiating promyelocytes, as part of interconnected networks of functionally related proteins ended to regulate different aspects of myeloid maturation. The role of Vav1 in determining actin cytoskeleton reorganization alternative to the best known function as a GEF for small G proteins is discussed, as well as the binding of Vav1 with cytoplasmic and nuclear signaling molecules which provides a new perspective in the modulation of nuclear architecture and activity. In particular, new hints are provided on the ability of Vav1 to determine the nuclear amount of proteins implicated in modulating mRNA production and stability and in regulating the ATRA-dependent protein expression also by direct interaction with transcription factors known to drive the ATRA-induced maturation of myeloid cells. The reviewed findings summarize the major advances in the understanding of additional, non conventional functions connected with the vast interactive potential of Vav1.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
4
|
Bertagnolo V, Grassilli S, D'Aguanno S, Brugnoli F, Bavelloni A, Faenza I, Nika E, Urbani A, Cocco L, Capitani S. Mass spectrometry-based identification of Y745 of Vav1 as a tyrosine residue crucial in maturation of acute promyelocytic leukemia-derived cells. J Proteome Res 2010; 9:752-60. [PMID: 20028078 DOI: 10.1021/pr900581y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vav1, whose physiological expression is restricted to hematopoietic system, is one of the signaling proteins up-regulated by all-trans retinoic acid (ATRA) in acute promyelocytic leukemia (APL)-derived precursors, in which it promotes the overcoming of the differentiation blockade. High levels of tyrosine phosphorylated Vav1 accumulate in differentiating APL-derived cells, suggesting that one or more Vav1 tyrosine residues are involved in neutrophil differentiation of tumoral promyelocytes. Here, we have found that phosphorylation of Vav1 Y174, that is known to regulate Vav1 activity in mature neutrophils, is up-regulated by ATRA in NB4 cells. Nevertheless, this tyrosine residue does not seem crucial for the agonist-induced phenotypical differentiation of APL-derived cells. Mass spectrometry analysis performed on Vav1 from differentiating NB4 cells allowed to identify the highly conserved Y745 residue as a phosphorylated tyrosine that plays crucial roles in the completion of the maturation program of this cell line. In fact, the overexpression of a mutated form of Vav1, in which Y745 was replaced with a phenylalanine, significantly reduced the ATRA-induced CD11b expression and essentially abrogated the differentiation-related acquisition of the migratory capability. Even though the intracellular signaling involving Vav1 phosphorylated in Y745 is unknown, the identification of a tyrosine residue essential for differentiation of tumoral precursors may constitute the basis to identify new specific targets for differentiation therapy of APL.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Signal Transduction Unit, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Vav1 and PU.1 are recruited to the CD11b promoter in APL-derived promyelocytes: role of Vav1 in modulating PU.1-containing complexes during ATRA-induced differentiation. Exp Cell Res 2009; 316:38-47. [PMID: 19747912 DOI: 10.1016/j.yexcr.2009.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/03/2009] [Accepted: 09/02/2009] [Indexed: 02/08/2023]
Abstract
Vav1 plays an important role in the all-trans retinoic acid (ATRA)-induced completion of the differentiation program of acute promyelocytic leukemia (APL)-derived cells, in which it strengthens the drug effects and is involved in the regulation of maturation-related proteins, such as the CD11b surface antigen. In both myeloid and lymphoid cells, accumulating data attribute to the multidomain protein Vav1 a functional relevance in the control of gene expression, by direct interaction with chromatin remodeling and/or transcriptional proteins. The present study provides evidence that, in the APL-derived NB4 cell line, Vav1 and the transcription factor PU.1 cooperate in regulating the ATRA-induced CD11b expression. Both chromatin immunoprecipitation (ChIP) experiments and electrophoretic mobility shift assays (EMSA) indicate that Vav1 and PU.1 are recruited to CD11b promoter. Even if the two proteins may participate in diverse protein/DNA complexes, the amounts of complexes including PU.1 seem to be dependent on the interaction of this transcription factor with tyrosine-phosphorylated Vav1. The reported data suggest that the ATRA-induced increase of Vav1 expression and tyrosine phosphorylation may be involved in recruiting PU.1 to its consensus sequence on the CD11b promoter and, ultimately, in regulating CD11b expression during the late stages of neutrophil differentiation of APL-derived promyelocytes.
Collapse
|
6
|
Bertagnolo V, Grassilli S, Bavelloni A, Brugnoli F, Piazzi M, Candiano G, Petretto A, Benedusi M, Capitani S. Vav1 Modulates Protein Expression During ATRA-Induced Maturation of APL-Derived Promyelocytes: A Proteomic-Based Analysis. J Proteome Res 2008; 7:3729-36. [DOI: 10.1021/pr7008719] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Valeria Bertagnolo
- Signal Transduction Unit-Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy, Laboratory of Cell Biology and Electron Microscopy, IOR, Bologna, Italy, Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genova, Italy, Mass Spectrometry Core Facility, G. Gaslini Children Hospital, Genova, Italy, MIUR ICSI (Interdisciplinary Center for the Study of Inflammation), University of Ferrara, Italy
| | - Silvia Grassilli
- Signal Transduction Unit-Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy, Laboratory of Cell Biology and Electron Microscopy, IOR, Bologna, Italy, Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genova, Italy, Mass Spectrometry Core Facility, G. Gaslini Children Hospital, Genova, Italy, MIUR ICSI (Interdisciplinary Center for the Study of Inflammation), University of Ferrara, Italy
| | - Alberto Bavelloni
- Signal Transduction Unit-Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy, Laboratory of Cell Biology and Electron Microscopy, IOR, Bologna, Italy, Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genova, Italy, Mass Spectrometry Core Facility, G. Gaslini Children Hospital, Genova, Italy, MIUR ICSI (Interdisciplinary Center for the Study of Inflammation), University of Ferrara, Italy
| | - Federica Brugnoli
- Signal Transduction Unit-Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy, Laboratory of Cell Biology and Electron Microscopy, IOR, Bologna, Italy, Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genova, Italy, Mass Spectrometry Core Facility, G. Gaslini Children Hospital, Genova, Italy, MIUR ICSI (Interdisciplinary Center for the Study of Inflammation), University of Ferrara, Italy
| | - Manuela Piazzi
- Signal Transduction Unit-Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy, Laboratory of Cell Biology and Electron Microscopy, IOR, Bologna, Italy, Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genova, Italy, Mass Spectrometry Core Facility, G. Gaslini Children Hospital, Genova, Italy, MIUR ICSI (Interdisciplinary Center for the Study of Inflammation), University of Ferrara, Italy
| | - Giovanni Candiano
- Signal Transduction Unit-Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy, Laboratory of Cell Biology and Electron Microscopy, IOR, Bologna, Italy, Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genova, Italy, Mass Spectrometry Core Facility, G. Gaslini Children Hospital, Genova, Italy, MIUR ICSI (Interdisciplinary Center for the Study of Inflammation), University of Ferrara, Italy
| | - Andrea Petretto
- Signal Transduction Unit-Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy, Laboratory of Cell Biology and Electron Microscopy, IOR, Bologna, Italy, Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genova, Italy, Mass Spectrometry Core Facility, G. Gaslini Children Hospital, Genova, Italy, MIUR ICSI (Interdisciplinary Center for the Study of Inflammation), University of Ferrara, Italy
| | - Mascia Benedusi
- Signal Transduction Unit-Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy, Laboratory of Cell Biology and Electron Microscopy, IOR, Bologna, Italy, Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genova, Italy, Mass Spectrometry Core Facility, G. Gaslini Children Hospital, Genova, Italy, MIUR ICSI (Interdisciplinary Center for the Study of Inflammation), University of Ferrara, Italy
| | - Silvano Capitani
- Signal Transduction Unit-Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy, Laboratory of Cell Biology and Electron Microscopy, IOR, Bologna, Italy, Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genova, Italy, Mass Spectrometry Core Facility, G. Gaslini Children Hospital, Genova, Italy, MIUR ICSI (Interdisciplinary Center for the Study of Inflammation), University of Ferrara, Italy
| |
Collapse
|
7
|
Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 2006; 22:851-868. [PMID: 16793553 DOI: 10.1016/j.molcel.2006.06.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/19/2006] [Accepted: 06/02/2006] [Indexed: 01/07/2023]
Abstract
SH2 domains are interaction modules uniquely dedicated to the recognition of phosphotyrosine sites and are embedded in proteins that couple protein-tyrosine kinases to intracellular signaling pathways. Here, we report a comprehensive bioinformatics, structural, and functional view of the human and mouse complement of SH2 domain proteins. This information delimits the set of SH2-containing effectors available for PTK signaling and will facilitate the systems-level analysis of pTyr-dependent protein-protein interactions and PTK-mediated signal transduction. The domain-based architecture of SH2-containing proteins is of more general relevance for understanding the large family of protein interaction domains and the modular organization of the majority of human proteins.
Collapse
Affiliation(s)
- Bernard A Liu
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Karl Jablonowski
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Monica Raina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Michael Arcé
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | - Piers D Nash
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
8
|
Opalinska JB, Machalinski B, Ratajczak J, Ratajczak MZ, Gewirtz AM. Multigene targeting with antisense oligodeoxynucleotides: an exploratory study using primary human leukemia cells. Clin Cancer Res 2005; 11:4948-54. [PMID: 16000594 DOI: 10.1158/1078-0432.ccr-05-0106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously reported that the c-myb and Vav proto-oncogenes are amenable to silencing with antisense oligodeoxynucleotides and that inhibition of either impairs leukemic cell growth. Because the expression of these genes is not known to be linked, we sought to determine the therapeutic value of silencing both genes simultaneously in K562 and primary patient (n = 9) chronic myelogenous leukemia cells. EXPERIMENTAL DESIGN K562 and primary chronic myelogenous leukemia cells were exposed to antisense oligodeoxynucleotides (alone or in combination) for 24 or 72 hours and then cloned in methylcellulose cultures. Effects on K562 cluster, and blast-forming unit-erythroid colonies and granulocyte-macrophage colony-forming units were determined and correlated with the ability to down-regulate the targeted mRNA. RESULTS After 24-hour exposure, K562 cell growth was inhibited in a sequence specific, dose-responsive manner with either c-myb or Vav antisense oligodeoxynucleotides. Exposure to both oligodeoxynucleotides simultaneously considerably enhanced growth inhibition and accelerated apoptosis. Primary cell results were more complex. After 24- and 72-hour exposures to either anti-vav or anti-myb antisense oligodeoxynucleotides, equivalent colony-forming unit inhibition was observed. Exposing cells to both antisense oligodeoxynucleotides simultaneously for 24 hours did not result in additional inhibition of colony formation. However, after 72-hour incubation with both oligodeoxynucleotides, colony formation was diminished significantly when compared with either oligodeoxynucleotides alone (from approximately 30% to approximately 78% for granulocyte-macrophage colony-forming unit; approximately 50% to approximately 80% for blast-forming unit-erythroid). CONCLUSIONS We hypothesize that exposing primary leukemic cells to antisense oligodeoxynucleotides targeted to two, or possibly more, genes might significantly augment the therapeutic utility of these molecules.
Collapse
MESH Headings
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Synergism
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/drug effects
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Proto-Oncogene Proteins c-myc/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Tumor Cells, Cultured
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Joanna B Opalinska
- Authors' Affiliations: Hematology and Pathology, Pommeranian Medical University, Szczecin, Poland
| | | | | | | | | |
Collapse
|
9
|
The cytoplasmic domain of Mpl receptor transduces exclusive signals in embryonic and fetal hematopoietic cells. Blood 2002. [DOI: 10.1182/blood.v100.6.2063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The Mpl receptor plays an important role at the level of adult hematopoietic stem cells, but little is known of its function in embryonic and fetal hematopoiesis. We investigated the signals sent by the MPL cytoplasmic domain in fetal liver hematopoietic progenitors and during embryonic stem (ES) cell hematopoietic commitment. Mpl was found to be expressed only from day 6 of ES cell differentiation into embryoid bodies. Therefore, we expressed Mpl in undifferentiated ES cells or in fetal progenitors and studied the effects on hematopoietic differentiation. To avoid the inadvertent effect of thrombopoietin, we used a chimeric receptor, PM-R, composed of the extracellular domain of the prolactin receptor (PRL-R) and the transmembrane and cytoplasmic domains of Mpl. This allowed activation of the receptor with a hormone that is not involved in hematopoietic differentiation and assessment of the specificity of responses to Mpl by comparing PM-R with another PRL-R chimeric receptor that includes the cytoplasmic domain of the erythropoietin receptor (EPO-R) ([PE-R]). We have shown that the cytoplasmic domain of the Mpl receptor transduces exclusive signals in fetal liver hematopoietic progenitors as compared with that of EPO-R and that it promotes hematopoietic commitment of ES cells. Our findings demonstrate for the first time the specific role of Mpl in early embryonic or fetal hematopoietic progenitors and stem cells.
Collapse
|
10
|
The cytoplasmic domain of Mpl receptor transduces exclusive signals in embryonic and fetal hematopoietic cells. Blood 2002. [DOI: 10.1182/blood.v100.6.2063.h81802002063_2063_2070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mpl receptor plays an important role at the level of adult hematopoietic stem cells, but little is known of its function in embryonic and fetal hematopoiesis. We investigated the signals sent by the MPL cytoplasmic domain in fetal liver hematopoietic progenitors and during embryonic stem (ES) cell hematopoietic commitment. Mpl was found to be expressed only from day 6 of ES cell differentiation into embryoid bodies. Therefore, we expressed Mpl in undifferentiated ES cells or in fetal progenitors and studied the effects on hematopoietic differentiation. To avoid the inadvertent effect of thrombopoietin, we used a chimeric receptor, PM-R, composed of the extracellular domain of the prolactin receptor (PRL-R) and the transmembrane and cytoplasmic domains of Mpl. This allowed activation of the receptor with a hormone that is not involved in hematopoietic differentiation and assessment of the specificity of responses to Mpl by comparing PM-R with another PRL-R chimeric receptor that includes the cytoplasmic domain of the erythropoietin receptor (EPO-R) ([PE-R]). We have shown that the cytoplasmic domain of the Mpl receptor transduces exclusive signals in fetal liver hematopoietic progenitors as compared with that of EPO-R and that it promotes hematopoietic commitment of ES cells. Our findings demonstrate for the first time the specific role of Mpl in early embryonic or fetal hematopoietic progenitors and stem cells.
Collapse
|
11
|
Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M, Welsh J, Wang LH. Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol 2000; 20:9212-24. [PMID: 11094073 PMCID: PMC102179 DOI: 10.1128/mcb.20.24.9212-9224.2000] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A recently reported new member of the Vav family proteins, Vav3 has been identified as a Ros receptor protein tyrosine kinase (RPTK) interacting protein by yeast two-hybrid screening. Northern analysis shows that Vav3 has a broad tissue expression profile that is distinct from those of Vav and Vav2. Two species of Vav3 transcripts, 3.4 and 5.4 kb, were detected with a differential expression pattern in various tissues. Transient expression of Vav in 293T and NIH 3T3 cells demonstrated that ligand stimulation of several RPTKs (epidermal growth factor receptor [EGFR], Ros, insulin receptor [IR], and insulin-like growth factor I receptor [IGFR]) led to tyrosine phosphorylation of Vav3 and its association with the receptors as well as their downstream signaling molecules, including Shc, Grb2, phospholipase C (PLC-gamma), and phosphatidylinositol 3 kinase. In vitro binding assays using glutathione S-transferase-fusion polypeptides containing the GTPase-binding domains of Rok-alpha, Pak, or Ack revealed that overexpression of Vav3 in NIH 3T3 cells resulted in the activation of Rac-1 and Cdc42 whereas a deletion mutant lacking the N-terminal calponin homology and acidic region domains activated RhoA and Rac-1 but lost the ability to activate Cdc42. Vav3 induced marked membrane ruffles and microspikes in NIH 3T3 cells, while the N-terminal truncation mutants of Vav3 significantly enhanced membrane ruffle formation but had a reduced ability to induce microspikes. Activation of IR further enhanced the ability of Vav3 to induce membrane ruffles, but IGFR activation specifically promoted Vav3-mediated microspike formation. N-terminal truncation of Vav3 activated its transforming potential, as measured by focus-formation assays. We conclude that Vav3 mediates RPTK signaling and regulates GTPase activity, its native and mutant forms are able to modulate cell morphology, and it has the potential to induce cell transformation.
Collapse
Affiliation(s)
- L Zeng
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- X R Bustelo
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| |
Collapse
|
13
|
Agarwal N, Gewirtz AM. Oligonucleotide therapeutics for hematologic disorders. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:85-96. [PMID: 10806999 DOI: 10.1016/s0167-4781(99)00142-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During the last decade, the catalogue of known genes responsible for cell growth, development, and neoplastic transformation has expanded dramatically. Attempts to translate this information into new therapeutic strategies for both hematologic and non-hematologic diseases have accelerated at a rapid pace as well. Inserting genes into cells which either replace, or counter the effects of disease causing genes has been one of the primary ways in which scientists have tried to exploit this new knowledge. Strategies to directly downregulate gene expression have developed in parallel with this approach. The latter include triple helix forming oligonucleotides (ODN) and 'antisense' ODN. The latter have already entered clinical trials for a variety of disorders. In this monograph, we review the use of these materials in the treatment of hematologic diseases, particularly myelogenous leukemias. Problems and possible solutions associated with the use of ODN will be discussed as well.
Collapse
MESH Headings
- Animals
- Blood Coagulation Disorders/drug therapy
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Hematologic Diseases/drug therapy
- Humans
- Leukemia, Experimental/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myeloid, Acute/drug therapy
- Lymphoma, Non-Hodgkin/drug therapy
- Mice
- Mice, SCID
- Oligonucleotides/therapeutic use
- Oligonucleotides, Antisense/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-myb/antagonists & inhibitors
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myc/antagonists & inhibitors
- Proto-Oncogene Proteins c-myc/genetics
- RNA, Messenger/antagonists & inhibitors
- Signal Transduction/drug effects
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- N Agarwal
- Department of Internal Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | |
Collapse
|
14
|
The 3rd Annual NIH Symposium on Therapeutic Oligonucleotides. Bethesda, Maryland, USA. December 4, 1998. Abstracts. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:359-431. [PMID: 10498436 DOI: 10.1089/oli.1.1999.9.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Stam JC, Collard JG. The DH protein family, exchange factors for Rho-like GTPases. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 22:51-83. [PMID: 10081065 DOI: 10.1007/978-3-642-58591-3_4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J C Stam
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
16
|
Abstract
It is becoming increasingly clear that the complex family of Rho-related GTPases and their associated regulators and targets are essential mediators of a variety of morphogenetic events required for normal development of multicellular organisms. It is worth noting that the results obtained thus far indicate that the Rho family proteins are largely associated with the regulation of morphogenesis, as opposed to other essential developmental processes such as cell proliferation and cell fate determination. Accumulating evidence also suggests that the role of these proteins and their associated signaling pathways in morphogenesis is in many, but not necessarily all, cases related to their ability to affect the organization of the actin cytoskeleton. Thus, these in vivo observations have served to corroborate similar findings in numerous cultured cell studies. As described, the power of genetics, particularly in Drosophila and C. elegans, has been critical to the recent identification and functional characterization of several Rho family signaling components. Moreover, evidence suggests that the highly evolutionarily conserved structures of many of these proteins translate into conservation of function as well. Thus, it will be possible, in many cases, to extrapolate the findings in the simple systems described herein to higher eukaryotes, including humans. Expanding use of these genetic model systems to dissect Rho-mediated signaling pathways in vivo will undoubtedly lead to a flood of new insights into the organization and function of these pathways in the coming years, especially in development. As the C. elegans genome sequencing effort nears completion and with the Drosophila genome project well underway, the identification of novel relevant genes will proceed with even greater speed. In addition, the rapidly expanding use of mouse knockout strategies, combined with recent developments in the associated knockout technology, will also contribute greatly to the investigation of mammalain Rho signaling pathways and their roles in development.
Collapse
Affiliation(s)
- J Settleman
- Massachusetts General Hospital Cancer Center, Charlestown, USA
| |
Collapse
|
17
|
Sokol DL, Gewirtz AM. Monitoring antisense oligodeoxynucleotide activity in hematopoietic cells. Methods 1999; 17:219-30. [PMID: 10080907 DOI: 10.1006/meth.1998.0732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traditionally, methods designed to impair translation through direct interactions with target messenger RNA (mRNA) have been designated as "antisense" strategies because of their reliance on the formation of reverse complementary (antisense) Watson-Crick base pairs between the targeting oligodeoxynucleotide (ODN) and the mRNA whose function is to be disrupted. Proof of putative "antisense effects," and other mechanistic studies, would be greatly facilitated by the ability to directly demonstrate hybridization between an antisense (AS) ODN and its mRNA target in vivo. In addition, evidence of AS activity by demonstrating reduced levels of RNA or protein or by showing cleaved target molecules would lend proof of the concept. In this article we discuss how AS ODN may be used to down-regulate target gene expression with an emphasis on those targets chosen for our investigations, and we summarize the methods employed for this type of study.
Collapse
Affiliation(s)
- D L Sokol
- Bristol-Myers Squibb (PRI), Pennington, New Jersey, USA
| | | |
Collapse
|
18
|
Melamed I, Patel H, Brodie C, Gelfand EW. Activation of Vav and Ras through the nerve growth factor and B cell receptors by different kinases. Cell Immunol 1999; 191:83-9. [PMID: 9973529 DOI: 10.1006/cimm.1998.1402] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Engagement of the B-cell antigen receptor (BCR) or the nerve growth factor receptor (NGFR/TrkA) induces activation of multiple tyrosine kinases, resulting in phosphorylation of numerous intracellular substrates. We show that addition of NGF or anti-IgM antibody leads to the early tyrosine phosphorylation of p95(vav), which is expressed exclusively in hematopoietic cells; NGF, similar to crosslinking the BCR, also results in the rapid activation of Ras. The phosphorylation of Vav and activation of Ras triggered by NGF is mediated through Trk tyrosine kinase, whereas signaling through the BCR uses a different tyrosine kinase. We also show that NGF induces tyrosine phosphorylation of Shc and its association with Grb2. Vav and Ras with the adaptor proteins Shc and Grb2 appear to serve as a link between different receptor-mediated signaling pathways and, in human B cells, may play an important regulatory role in neuroimmune interactions.
Collapse
Affiliation(s)
- I Melamed
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado, 80206, USA
| | | | | | | |
Collapse
|
19
|
|
20
|
|
21
|
Gewirtz AM. Oligonucleotide Therapeutics for Human Leukemia. Gene Ther 1998. [DOI: 10.1007/978-3-662-03577-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Mueller-Klieser W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1109-23. [PMID: 9357753 DOI: 10.1152/ajpcell.1997.273.4.c1109] [Citation(s) in RCA: 375] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This article reviews actual advances in the development and application of three-dimensional (3-D) cell culture systems. Recent therapeutically oriented studies include characterization of multicellular-mediated drug resistance, novel ways of quantifying hypoxia, and new approaches to more efficient immunotherapy. Recent progress toward understanding the development of necrosis in tumor spheroids has been made using novel spheroid models. 3-D cultures have been used for studies on molecular mechanisms involved in invasion and metastasis, with a major focus on the role of E-cadherin. Similarly, tumor angiogenesis and the significance of vascular endothelial growth factor have been investigated in a variety of 3-D culture systems. There are many ongoing developments in tissue modeling or remodeling that promise significant progress toward the development of bioartificial liver support and artificial blood. Perhaps one of the most interesting areas of basic research with 3-D cultures is the characterization of embryoid bodies obtained from stable embryonic stem cells. These models have greatly increased the understanding of embryonic development, in particular through the notable exceptional advances in cardiogenesis.
Collapse
Affiliation(s)
- W Mueller-Klieser
- Institute of Physiology and Pathophysiology, Johannes Gutenberg-University Mainz, Germany
| |
Collapse
|
23
|
Qu CK, Shi ZQ, Shen R, Tsai FY, Orkin SH, Feng GS. A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development. Mol Cell Biol 1997; 17:5499-507. [PMID: 9271425 PMCID: PMC232398 DOI: 10.1128/mcb.17.9.5499] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Shp-1 and Shp-2 are cytoplasmic protein tyrosine phosphatases that contain two Src homology 2 (SH2) domains. A negative regulatory role of Shp-1 in hematopoiesis has been strongly implicated by the phenotype of motheaten mice with a mutation in the Shp-1 locus, which is characterized by leukocyte hypersensitivity, deregulated mast cell function, and excessive erythropoiesis. A targeted deletion of 65 amino acids in the N-terminal SH2 (SH2-N) domain of Shp-2 leads to an embryonic lethality at midgestation in homozygous mutant mice. To further dissect the Shp-2 function in hematopoietic development, we have isolated homozygous Shp-2 mutant embryonic stem (ES) cells. Significantly reduced hematopoietic activity was observed when the mutant ES cells were allowed to differentiate into embryoid bodies (EBs), compared to the wild-type and heterozygous ES cells. Further analysis of ES cell differentiation in vitro showed that mutation in the Shp-2 locus severely suppressed the development of primitive and definitive erythroid progenitors and completely blocked the production of progenitor cells for granulocytes-macrophages and mast cells. Reverse transcriptase PCR analysis of the mutant EBs revealed reduced expression of several specific marker genes that are induced during blood cell differentiation. Stem cell factor induction of mitogen-activated protein kinase activity was also blocked in Shp-2 mutant cells. Taken together, these results indicate that Shp-2 is an essential component and primarily plays a positive role in signaling pathways that mediate hematopoiesis in mammals. Furthermore, stimulation of its catalytic activity is not sufficient, while interaction via the SH2 domains with the targets or regulators is necessary for its biological functions in cells. The in vitro ES cell differentiation assay can be used as a biological tool in dissecting cytoplasmic signaling pathways.
Collapse
Affiliation(s)
- C K Qu
- Department of Biochemistry and Molecular Biology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202-5121, USA
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Vittet D, Buchou T, Schweitzer A, Dejana E, Huber P. Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryoid bodies. Proc Natl Acad Sci U S A 1997; 94:6273-8. [PMID: 9177207 PMCID: PMC21039 DOI: 10.1073/pnas.94.12.6273] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vascular endothelial-cadherin (VE-cadherin) is exclusively expressed in endothelial cells and is strictly located at cell-to-cell junctions. As the other members of the cadherin family, VE-cadherin is able to mediate a homotypic type of cellular interaction in a Ca2+-dependent manner. In the mouse embryo, VE-cadherin transcripts are detected at the earliest stages of vascular development. To ascertain if VE-cadherin expression is required for the assembly of endothelial cells into vascular structures, we generated VE-cadherin-negative mouse embryonic stem cells (VE-cadherin-/- ES cells) by gene targeting and examined the consequences on vascular development of ES-derived embryoid bodies (EBs). In contrast to wild-type EBs, we observed that endothelial cells remained dispersed and failed to organize a vessel-like pattern in VE-cadherin-/- ES-derived EBs. However, dispersed VE-cadherin-/- ES-derived endothelial cells expressed a large range of other endothelial markers. Moreover, the targeted null-mutation in the VE-cadherin locus did not interfere with the hematopoietic differentiation potential of ES cells. These in vitro experiments are consistent with a pivotal role of VE-cadherin in vascular structure assembly.
Collapse
Affiliation(s)
- D Vittet
- Commissariat à l'Energie Atomique, Laboratoire d'Hématologie, Institut National de la Santé et de la Recherche Médicale U217, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
27
|
Abstract
The vav oncogene is expressed primarily in tissues of hematopoietic origin. While much effort has been focused on determining the role of vav in various signal transduction pathways, little is known about the mechanism by which vav is regulated in a tissue-selective manner. This issue was examined by developing somatic cell hybrids between human U937 cells, which express vav, and mouse Balb/c 3T3 cells, which do not. If vav is primarily regulated by the presence of positive acting transcription factors, then vav expression should be maintained in hybrid cells. In contrast, if the regulation of vav is primarily negative in nature, then vav expression should be extinguished in most of the somatic cell hybrids. Of the hybrid cells that were obtained, 64% were positive by reverse transcriptase-polymerase chain reaction for the expression of the vav oncogene. Differences in the pattern of restriction enzyme cleavage sites between the mouse and human PCR products were used to determine that 6 of 11 of the positive clones expressed the normally dormant mouse gene. The other positive clones were found to express the human vav gene. In all cases, the hybrid cells preferentially retained the chromosomes and the cellular morphological appearance of the mouse Balb/c 3T3 fusion partner, which does not express the vav oncogene. Since vav is able to be transiently expressed by hybrid cells with a predominately mouse phenotype, these results support the hypothesis that vav is regulated primarily by the presence of transactivating factors which stimulate transcription, rather than by a gene silencing mechanism.
Collapse
Affiliation(s)
- D J Denkinger
- Department of Pharmacology, University of Nebraska Medical Center, Omaha 68198-6260, USA
| | | |
Collapse
|
28
|
Abstract
AbstractThrombopoietin has an essential role in megakaryopoiesis and thrombopoiesis. To investigate the signaling processes induced by thrombopoietin, we have employed human platelets and recently demonstrated that thrombopoietin induces rapid tyrosine phosphorylation of Jak-2, Tyk2, Shc, Stat3, Stat5, p120c-cbl and other proteins in human platelets. Because the apparent molecular weight of a major tyrosine phosphorylated protein in platelets stimulated by thrombopoietin is approximately 85 to 95 kD, we examined the possibility that this could be Vav, a 95-kD proto-oncogene product. Specific antisera against Vav recognized the same 95 kD protein in lysates of Jurkat cells, which are known to express Vav, and platelets, indicating that platelets have Vav. Thrombopoietin induced rapid tyrosine phosphorylation of Vav in platelets without an elevation in cytosolic free calcium concentration or activation of protein kinase C. Vav was also tyrosine phosphorylated upon treatment of platelets with thrombin, collagen, or U46619, which activate phospholipase C, leading to an increased ionized calcium concentration and activation of protein kinase C. Ionomycin or phorbol 12-myristate 13-acetate (PMA) also induces tyrosine phosphorylation of Vav, suggesting that an increase in ionized calcium concentration or activation of protein kinase C may lead to phosphorylation of Vav. Thrombopoietin also induced tyrosine phosphorylation of Vav in FDCP-2 cells, genetically engineered to express human c-Mpl (FDCP-hMpl5). However, neither ionomycin nor PMA induced an increase in tyrosine phosphorylation of Vav in FDCP-hMpl5 cells, suggesting that the calcium and protein kinase C pathways of Vav phosphorylation may be unique to platelets. Further, Vav became incorporated into the Triton X-100 insoluble 10,000g sedimentable residue in an aggregation-dependent manner, suggesting that it may have a regulatory role in platelet cytoskeletal processes. Vav was constitutively associated with a 28-kD adapter protein, Grb2, which is also incorporated into the cytoskeleton in an aggregation-dependent fashion. Lastly, we found that Vav is cleaved when there is activation of calpain, a protease that may have a role in postaggregation signaling processes. Our data suggest that thrombopoietin and other agonists may induce tyrosine phosphorylation of Vav by different mechanisms and Vav may also be involved in signaling during platelet aggregation by its redistribution to the cytoskeleton.
Collapse
|
29
|
Whitehead IP, Campbell S, Rossman KL, Der CJ. Dbl family proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1332:F1-23. [PMID: 9061011 DOI: 10.1016/s0304-419x(96)00040-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- I P Whitehead
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA.
| | | | | | | |
Collapse
|
30
|
Bonnefoy-Bérard N, Munshi A, Yron I, Wu S, Collins TL, Deckert M, Shalom-Barak T, Giampa L, Herbert E, Hernandez J, Meller N, Couture C, Altman A. Vav: function and regulation in hematopoietic cell signaling. Stem Cells 1996; 14:250-68. [PMID: 8724692 DOI: 10.1002/stem.140250] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vav, a 95 kDa proto-oncogene product expressed specifically in hematopoietic cells, was originally isolated as a transforming human oncogene. Vav contains an array of functional domains that are involved in interactions with other proteins and, possibly, with lipids. These include, among others, a putative guanine nucleotide exchange domain, a cysteine-rich region similar to the phorbol ester/diacylglycerol-binding domain of protein kinase C, a pleckstrin-homology domain, and Src-homology 2 and 3 (SH2 and SH3, respectively) domains. The presence of these domains, the transforming activity of the vav oncogene, and the rapid increase in tyrosine phosphorylation of Vav induced by triggering of diverse receptors indicate that it plays an important role in hematopoietic cell signaling pathways. Such a role is supported by recent studies using "knockout" mice and transiently transfected T cells, in which Vav deletion or overexpression, respectively, had marked effects on lymphocyte development or activation. The presence of a putative guanine nucleotide exchange domain, the prototype of which is found in the dbl oncogene product, implies that Vav functions as a guanine nucleotide exchange factor (GEF) for one (or more) members of the Ras-like family of small GTP-binding proteins. In support of such a role, Vav preparations were found in some (but not other) studies to mediate in vitro-specific GEF activity for Ras. Additional studies are required to identify the physiological regulators and targets of Vav, and its exact role in hematopoietic cell development and signaling.
Collapse
|
31
|
Abstract
Under appropriate conditions in culture, embryonic stem cells will differentiate and form embryoid bodies that have been shown to contain cells of the hematopoietic, endothelial, muscle and neuronal lineages. Many aspects of the lineage-specific differentiation programs observed within the embryoid bodies reflect those found in the embryo, indicating that this model system provides access to early cell populations that develop in a normal fashion. Recent studies involving the differentiation of genetically altered embryonic stem cells highlight the potential of this in vitro differentiation system for defining the function of genes in early development.
Collapse
Affiliation(s)
- G M Keller
- National Jewish Center for Immunology and Respiratory Medicine, Denver, USA
| |
Collapse
|
32
|
Abstract
Gene disruption technology in mammals, by homologous recombination in embryonic stem cells, is a powerful method to manipulate the mouse germ line. In the past decade it has produced a wealth of knowledge concerning neuronal development, neurodegenerative disorders and the roles of oncogenes, Hox genes and growth factors during development. A surprising variety of genes, however, have given unexpected and disappointing results. A gene/function redundancy theory proposed by many investigators to explain the unexpected results has been supported in certain cases by the generation of double knockout mice. Modification of the basic technology now allows the investigators to carry out a variety of manipulations including conditional or tissue-specific knockouts. This may provide a better opportunity in the future for the gene therapy approach to correct the genetic disorder.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, Michigan 48309-4401, USA
| |
Collapse
|
33
|
Abstract
We have used homologous recombination to disrupt the nuclear gene NIT8 in Chlamydomonas reinhardtii. This is the first report of targeted gene disruption of an endogenous locus in C. reinhardtii and only the second for a photosynthetic eukaryote. NIT8 encodes a protein necessary for nitrate and nitrite assimilation by C. reinhardtii. A disruption vector was constructed by placing the CRY1-1 selectable marker gene, which confers emetine resistance, within the NIT8 coding region. nit8 mutants are unable to grow on nitrate as their sole nitrogen source (Nit-) and are resistant to killing by chlorate. One of 2,000 transformants obtained after selection on emetine-chlorate medium contained a homologous insertion of five copies of the disruption plasmid into the NIT8 gene, producing an emetine-resistant, chlorate-resistant Nit- phenotype. The mutant phenotype was rescued by the wild-type NIT8 gene upon transformation. Seven other mutations at the nit8 locus, presumably resulting from homologous recombination with the disruption plasmid, were identified but were shown to be accompanied by deletions of the surrounding genomic region.
Collapse
Affiliation(s)
- J A Nelson
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
34
|
Clevenger CV, Ngo W, Sokol DL, Luger SM, Gewirtz AM. Vav is necessary for prolactin-stimulated proliferation and is translocated into the nucleus of a T-cell line. J Biol Chem 1995; 270:13246-53. [PMID: 7768923 DOI: 10.1074/jbc.270.22.13246] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stimulation of the prolactin receptor (PRLr) with ligand activates multiple kinase cascades. The proximal mediators involved in the activation of the PRL-activated Raf-1 cascade in T-cells, however, remain poorly characterized. The role of one proximal signaling protein, namely p95vav, during PRLr signal transduction was examined in the Nb2 T-cell line. The novel results obtained here indicate that Vav is transiently associated with the PRLr and is necessary for PRL-stimulated proliferation. During PRL stimulation, a rapid and dramatic increase in guanine nucleotide exchange factor (GEF) activity was found to be associated with Vav immunoprecipitates. Concomitantly, an increase in Vav phosphorylation on serine-threonine residues was observed. The Vav-associated GEF activation could be inhibited by staurosporine and calphostin, but not herbimycin, suggesting a modulatory role for phosphorylation at serine-threonine residues. Treatment of Nb2 cells with antisense Vav oligonucleotide ablated Vav expression and blocked PRL-driven proliferation, but failed to inhibit PRL-induced GEF activation within Nb2 lysates. These data indicate that GEF activity may not be intrinsic to Vav as has been previously suggested, but either resides in or is complemented by an associated GEF. Subsequent to the transient activation of associated GEF activity, Vav was found to translocate into the Nb2 cell nucleus. Thus, Vav may utilize two independent mechanisms in T-cells, namely the activation of an associated GEF and direct nuclear internalization, to mediate PRLr signaling.
Collapse
Affiliation(s)
- C V Clevenger
- Department of Pathology, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
35
|
Zhang R, Alt FW, Davidson L, Orkin SH, Swat W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 1995; 374:470-3. [PMID: 7700359 DOI: 10.1038/374470a0] [Citation(s) in RCA: 330] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The product of the vav proto-oncogene, p95vav or Vav, is tyrosine phosphorylated upon stimulation of T and B cells by antigen and other receptors, and contains motifs associated with signal transduction. To determine its role in vivo, we used vav-gene-targeted embryonic stem cells and RAG-2-/- blastocyst complementation. The vav(-/-)-RAG-2-/- chimaeras displayed thymic atrophy with reduced numbers of peripheral T cells. Whereas the total number of B cells was normal, the subset of peritoneal B-1 (CD5+) cells was missing. The vav-/- T and B cells were hyporeactive when stimulated through antigen receptors, but vav-/- T cells proliferated on exposure to phorbol ester and calcium ionophore, whereas B cells responded normally to bacterial mitogen, lipopolysaccharide or the CD40 ligand. Thus, we have established here a functional role for vav in the control of T- and B-cell development and activation.
Collapse
Affiliation(s)
- R Zhang
- Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|