1
|
Sharma P, Kim CY, Keys HR, Imada S, Joseph AB, Ferro L, Kunchok T, Anderson R, Sun Y, Yilmaz ÖH, Weng JK, Jain A. Genetically encoded fluorescent reporter for polyamines. Nat Commun 2025; 16:4921. [PMID: 40425580 PMCID: PMC12117157 DOI: 10.1038/s41467-025-60147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Polyamines are abundant and evolutionarily conserved metabolites that are essential for life. Dietary polyamine supplementation extends life-span and health-span. Dysregulation of polyamine homeostasis is linked to Parkinson's disease and cancer, driving interest in therapeutically targeting this pathway. However, measuring cellular polyamine levels, which vary across cell types and states, remains challenging. We introduce a genetically encoded polyamine reporter for real-time measurement of polyamine concentrations in single living cells. This reporter utilizes the polyamine-responsive ribosomal frameshift motif from the OAZ1 gene. We demonstrate broad applicability of this approach and reveal dynamic changes in polyamine levels in response to genetic and pharmacological perturbations. Using this reporter, we conduct a genome-wide CRISPR screen and uncover an unexpected link between mitochondrial respiration and polyamine import, which are both risk factors for Parkinson's disease. By offering a lens to examine polyamine biology, this reporter may advance our understanding of these ubiquitous metabolites and accelerate therapy development.
Collapse
Affiliation(s)
- Pushkal Sharma
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colin Y Kim
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Shinya Imada
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Alex B Joseph
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Luke Ferro
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rachel Anderson
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yulin Sun
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ankur Jain
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Sharma P, Kim CY, Keys HR, Imada S, Joseph AB, Ferro L, Kunchok T, Anderson R, Yilmaz O, Weng JK, Jain A. Genetically encoded fluorescent reporter for polyamines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609500. [PMID: 39253442 PMCID: PMC11383275 DOI: 10.1101/2024.08.24.609500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Polyamines are abundant and evolutionarily conserved metabolites that are essential for life. Dietary polyamine supplementation extends life-span and health-span. Dysregulation of polyamine homeostasis is linked to Parkinson's disease and cancer, driving interest in therapeutically targeting this pathway. However, measuring cellular polyamine levels, which vary across cell types and states, remains challenging. We introduce a first-in-class genetically encoded polyamine reporter for real-time measurement of polyamine concentrations in single living cells. This reporter utilizes the polyamine-responsive ribosomal frameshift motif from the OAZ1 gene. We demonstrate broad applicability of this approach and reveal dynamic changes in polyamine levels in response to genetic and pharmacological perturbations. Using this reporter, we conducted a genome-wide CRISPR screen and uncovered an unexpected link between mitochondrial respiration and polyamine import, which are both risk factors for Parkinson's disease. By offering a new lens to examine polyamine biology, this reporter may advance our understanding of these ubiquitous metabolites and accelerate therapy development.
Collapse
Affiliation(s)
- Pushkal Sharma
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colin Y Kim
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Heather R Keys
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Shinya Imada
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Alex B Joseph
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Luke Ferro
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Tenzin Kunchok
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Rachel Anderson
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omer Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jing-Ke Weng
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Department of Bioengineering and Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ankur Jain
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
4
|
Senevirathna K, Mahakapuge TAN, Jayawardana NU, Rajapakse J, Gamage CU, Seneviratne B, Perera U, Kanmodi KK, Jayasinghe RD. Diagnostic potential of salivary IL-1β, IL-8, SAT, S100P, and OAZ1 in oral squamous cell carcinoma, oral submucous fibrosis, and oral lichen planus based on findings from a Sri Lankan cohort. Sci Rep 2024; 14:27226. [PMID: 39516476 PMCID: PMC11549458 DOI: 10.1038/s41598-024-75735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The research examined the salivary concentrations of various biomarkers, such as OAZ1, SAT, S100P, IL-1β, and IL-8 aiming to detect early-stage oral squamous cell carcinoma (OSCC). These biomarkers show potential as indicators for detecting both pre-cancerous and cancerous states within the oral cavity. Analyzing these specific molecules in saliva could help clinicians enhance diagnostic accuracy and refine early detection methods for OSCC. The research encompassed a cohort of nine OSCC patients, ten with oral submucous fibrosis (OSF), eleven individuals with oral lichen planus (OLP), and ten healthy controls. The study focused on assessing the expression levels of key biomarkers-IL-1β, IL-8, SAT, S100P, and OAZ1 mRNA-in extracellular RNA extracted from saliva samples. This evaluation was conducted using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) with sequence-specific primers. Additionally, receiver operating characteristic curve (ROC) curve analysis was employed to gauge the efficacy of these biomarkers in detecting OSCC. Based on the results we observe, when these five biomarkers are used together, they give a 90% predictive probability for patients with OLP, an 80% predictive probability for OSF, and an impressive 100% predictive probability for patients with OSCC (AUC = 1.000, p = 0.000). This study demonstrates the efficacy of salivary transcriptome diagnostics in detecting OSCC. This novel clinical technique has the potential to be a powerful, efficient, and reliable tool for early detection of cancer. Salivary transcriptomes can be further analyzed to evaluate their effectiveness in other important illness contexts and for regular health monitoring.
Collapse
Affiliation(s)
- Kalpani Senevirathna
- Department of Biochemistry, Faculty of Medicine, Uva Wellassa University, Badulla, Sri Lanka.
- Centre for Research in Oral Cancer, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka.
| | | | - Nadeeka U Jayawardana
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Applied BioSciences, Macquarie University, Sydney, Australia
| | - Jayanthe Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Chandrika Udumalagala Gamage
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Bimalka Seneviratne
- Department of Pathology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Unil Perera
- Department of Physics and Astronomy, Georgia State University, Atlanta, USA
| | - Kehinde Kazeem Kanmodi
- Faculty of Dentistry, University of Puthisastra, Phnom Penh, Cambodia.
- School of Dentistry, University of Rwanda, Kigali, Rwanda.
| | - Ruwan Duminda Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka.
- Faculty of Dentistry, University of Puthisastra, Phnom Penh, Cambodia.
| |
Collapse
|
5
|
Hsieh J, Leong P, Yang Y, Liu Y, Liu G, Hung H. Protein degradation of antizyme depends on the N-terminal degrons. Protein Sci 2024; 33:e5199. [PMID: 39473024 PMCID: PMC11521938 DOI: 10.1002/pro.5199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024]
Abstract
Antizyme (AZ) is a regulatory protein that plays a crucial role in modulating the activity of ornithine decarboxylase (ODC), which is the initial and rate-limiting enzyme in the complex pathway of polyamine biosynthesis. AZ facilitates the swift degradation of ODC, thereby modulating the levels of cellular polyamines. This study unveils a new ubiquitin-independent mechanism for AZ degradation, emphasizing the essential role of N-terminal degrons. Contrary to traditional ubiquitin-dependent degradation, our findings reveal that AZ degradation is significantly influenced by its N-terminal region. By conducting a series of experiments, including in vitro degradation assays, cycloheximide chase experiments, differential scanning calorimetry, and measurement of cellular concentrations of polyamines, we demonstrate that N-terminal truncation significantly enhances AZ's stability and facilitates the reduction of polyamine levels by accelerating ODC degradation. The removal of the N-terminal portion of AZ results in a reduced degradation rate and enhanced thermal stability of the protein, leading to a more efficient inhibition of polyamine synthesis. These findings are corroborated by the analysis of AZ isoforms, AZ1, AZ2, and AZ3, which display differential degradation patterns based on the specific N-terminal segments. This substantiates a degradation mechanism driven by an intrinsically disordered N-terminal region acting as a degron, independent of lysine ubiquitination. These results underscore the significant regulatory function of the N-terminal domain in the activity of AZ and the maintenance of polyamine homeostasis.
Collapse
Affiliation(s)
- Ju‐Yi Hsieh
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
- Institute of Medicine, School of MedicineChung Shan Medical UniversityTaichungTaiwan, ROC
| | - Pui‐Ying Leong
- Institute of Medicine, School of MedicineChung Shan Medical UniversityTaichungTaiwan, ROC
- Division of Allergy, Immunology and Rheumatology, Department of MedicineChung Shan Medical University HospitalTaichungTaiwan, ROC
| | - Yi‐Fang Yang
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
- Doctoral Program in Tissue Engineering and Regenerative MedicineNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Yi‐Liang Liu
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Guang‐Yaw Liu
- Institute of Medicine, School of MedicineChung Shan Medical UniversityTaichungTaiwan, ROC
- Division of Allergy, Immunology and Rheumatology, Department of MedicineChung Shan Medical University HospitalTaichungTaiwan, ROC
| | - Hui‐Chih Hung
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
- iEGG and Animal Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Advanced Plant and Food Crop Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| |
Collapse
|
6
|
Schibalski RS, Shulha AS, Tsao BP, Palygin O, Ilatovskaya DV. The role of polyamine metabolism in cellular function and physiology. Am J Physiol Cell Physiol 2024; 327:C341-C356. [PMID: 38881422 PMCID: PMC11427016 DOI: 10.1152/ajpcell.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Polyamines are molecules with multiple amino groups that are essential for cellular function. The major polyamines are putrescine, spermidine, spermine, and cadaverine. Polyamines are important for posttranscriptional regulation, autophagy, programmed cell death, proliferation, redox homeostasis, and ion channel function. Their levels are tightly controlled. High levels of polyamines are associated with proliferative pathologies such as cancer, whereas low polyamine levels are observed in aging, and elevated polyamine turnover enhances oxidative stress. Polyamine metabolism is implicated in several pathophysiological processes in the nervous, immune, and cardiovascular systems. Currently, manipulating polyamine levels is under investigation as a potential preventive treatment for several pathologies, including aging, ischemia/reperfusion injury, pulmonary hypertension, and cancer. Although polyamines have been implicated in many intracellular mechanisms, our understanding of these processes remains incomplete and is a topic of ongoing investigation. Here, we discuss the regulation and cellular functions of polyamines, their role in physiology and pathology, and emphasize the current gaps in knowledge and potential future research directions.
Collapse
Affiliation(s)
- Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Betty P Tsao
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
7
|
Ren G, Gu X, Zhang L, Gong S, Song S, Chen S, Chen Z, Wang X, Li Z, Zhou Y, Li L, Yang J, Lai F, Dang Y. Ribosomal frameshifting at normal codon repeats recodes functional chimeric proteins in human. Nucleic Acids Res 2024; 52:2463-2479. [PMID: 38281188 PMCID: PMC10954444 DOI: 10.1093/nar/gkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Ribosomal frameshifting refers to the process that ribosomes slip into +1 or -1 reading frame, thus produce chimeric trans-frame proteins. In viruses and bacteria, programmed ribosomal frameshifting can produce essential trans-frame proteins for viral replication or regulation of other biological processes. In humans, however, functional trans-frame protein derived from ribosomal frameshifting is scarcely documented. Combining multiple assays, we show that short codon repeats could act as cis-acting elements that stimulate ribosomal frameshifting in humans, abbreviated as CRFS hereafter. Using proteomic analyses, we identified many putative CRFS events from 32 normal human tissues supported by trans-frame peptides positioned at codon repeats. Finally, we show a CRFS-derived trans-frame protein (HDAC1-FS) functions by antagonizing the activities of HDAC1, thus affecting cell migration and apoptosis. These data suggest a novel type of translational recoding associated with codon repeats, which may expand the coding capacity of mRNA and diversify the regulation in human.
Collapse
Affiliation(s)
- Guiping Ren
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Xiaoqian Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Lu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shimin Gong
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shuang Song
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shunkai Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Zhenjing Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Xiaoyan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Zhanbiao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Yingshui Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Longxi Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Jiao Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| |
Collapse
|
8
|
Cruz-Pulido YE, Mounce BC. Good cop, bad cop: Polyamines play both sides in host immunity and viral replication. Semin Cell Dev Biol 2023; 146:70-79. [PMID: 36604249 PMCID: PMC10101871 DOI: 10.1016/j.semcdb.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
Viruses rely on host cells for energy and synthesis machinery required for genome replication and particle assembly. Due to the dependence of viruses on host cells, viruses have evolved multiple mechanisms by which they can induce metabolic changes in the host cell to suit their specific requirements. The host immune response also involves metabolic changes to be able to react to viral insult. Polyamines are small ubiquitously expressed polycations, and their metabolism is critical for viral replication and an adequate host immune response. This is due to the variety of functions that polyamines have, ranging from condensing DNA to enhancing the translation of polyproline-containing proteins through the hypusination of eIF5A. Here, we review the diverse mechanisms by which viruses exploit polyamines, as well as the mechanisms by which immune cells utilize polyamines for their functions. Furthermore, we highlight potential avenues for further study of the host-virus interface.
Collapse
Affiliation(s)
- Yazmin E Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Infectious Disease and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
9
|
Li D, Neo SP, Gunaratne J, Sabapathy K. EPLIN-β is a novel substrate of ornithine decarboxylase antizyme 1 and mediates cellular migration. J Cell Sci 2023; 136:jcs260427. [PMID: 37325974 PMCID: PMC10281260 DOI: 10.1242/jcs.260427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
Polyamines promote cellular proliferation. Their levels are controlled by ornithine decarboxylase antizyme 1 (Az1, encoded by OAZ1), through the proteasome-mediated, ubiquitin-independent degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis. Az1-mediated degradation of other substrates such as cyclin D1 (CCND1), DNp73 (TP73) or Mps1 regulates cell growth and centrosome amplification, and the currently known six Az1 substrates are all linked with tumorigenesis. To understand whether Az1-mediated protein degradation might play a role in regulating other cellular processes associated with tumorigenesis, we employed quantitative proteomics to identify novel Az1 substrates. Here, we describe the identification of LIM domain and actin-binding protein 1 (LIMA1), also known as epithelial protein lost in neoplasm (EPLIN), as a new Az1 target. Interestingly, between the two EPLIN isoforms (α and β), only EPLIN-β is a substrate of Az1. The interaction between EPLIN-β and Az1 appears to be indirect, and EPLIN-β is degraded by Az1 in a ubiquitination-independent manner. Az1 absence leads to elevated EPLIN-β levels, causing enhanced cellular migration. Consistently, higher LIMA1 levels correlate with poorer overall survival of colorectal cancer patients. Overall, this study identifies EPLIN-β as a novel Az1 substrate regulating cellular migration.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Suat Peng Neo
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
10
|
Khomutov MA, Salikhov AI, Mitkevich VA, Tunitskaya VL, Smirnova OA, Korolev SP, Chizhov AO, Gottikh MB, Kochetkov SN, Khomutov AR. C-Methylated Spermidine Derivatives: Convenient Syntheses and Antizyme-Related Effects. Biomolecules 2023; 13:916. [PMID: 37371496 DOI: 10.3390/biom13060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The biogenic polyamines, spermidine (Spd) and spermine (Spm), are present at millimolar concentrations in all eukaryotic cells, where they participate in the regulation of vitally important cellular functions. Polyamine analogs and derivatives are a traditional and important instrument for the investigation of the cellular functions of polyamines, enzymes of their metabolism, and the regulation of the biosynthesis of antizyme-a key downregulator of polyamine homeostasis. Here, we describe convenient gram-scale syntheses of a set of C-methylated analogs of Spd. The biochemical properties of these compounds and the possibility for the regulation of their activity by moving a methyl group along the polyamine backbone and by changing the stereochemistry of the chiral center(s) are discussed.
Collapse
Affiliation(s)
- Maxim A Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Arthur I Salikhov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Vera L Tunitskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Sergey P Korolev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Alexander O Chizhov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskii Prosp. 47, Moscow 119991, Russia
| | - Marina B Gottikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Alex R Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| |
Collapse
|
11
|
Choi UY, Lee JJ, Park A, Jung KL, Lee SA, Choi YJ, Lee HR, Lai CJ, Eoh H, Jung JU. Herpesvirus-induced spermidine synthesis and eIF5A hypusination for viral episomal maintenance. Cell Rep 2022; 40:111234. [PMID: 35977517 DOI: 10.1016/j.celrep.2022.111234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/16/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022] Open
Abstract
Spermidine is essential for cellular growth and acts as a prerequisite of hypusination, a post-translational modification of eukaryotic initiation factor 5A (eIF5A), allowing the translation of polyproline-containing proteins. Here, we show that oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) increases spermidine synthesis and eIF5A hypusination to enhance expression of polyproline-containing latency-associated nuclear antigen (LANA) for viral episomal maintenance. KSHV upregulates intracellular spermidine levels by dysregulating polyamine metabolic pathways in three-dimensional (3D) culture and 2D de novo infection conditions. Increased intracellular spermidine leads to increased eIF5A hypusination, ultimately enhancing LANA expression. In contrast, inhibition of spermidine synthesis or eIF5A hypusination alleviates LANA expression, decreasing viral episomal maintenance and KSHV-infected cell proliferation in vitro and in vivo, which is reversed by spermidine supplement. This demonstrates that KSHV hijacks spermidine synthesis and eIF5A hypusination pathways to enhance LANA expression for viral episomal maintenance, suggesting polyamine metabolism and eIF5A hypusination as therapeutic targets for KSHV-induced tumorigenesis.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kyle L Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shin-Ae Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youn Jung Choi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Chih-Jen Lai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jae U Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
12
|
Role of Polyamine-Induced Dimerization of Antizyme in Its Cellular Functions. Int J Mol Sci 2022; 23:ijms23094614. [PMID: 35563006 PMCID: PMC9104013 DOI: 10.3390/ijms23094614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
The polyamines, spermine (Spm) and spermidine (Spd), are important for cell growth and function. Their homeostasis is strictly controlled, and a key downregulator of the polyamine pool is the polyamine-inducible protein, antizyme 1 (OAZ1). OAZ1 inhibits polyamine uptake and targets ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, for proteasomal degradation. Here we report, for the first time, that polyamines induce dimerization of mouse recombinant full-length OAZ1, forming an (OAZ1)2-Polyamine complex. Dimerization could be modulated by functionally active C-methylated spermidine mimetics (MeSpds) by changing the position of the methyl group along the Spd backbone—2-MeSpd was a poor inducer as opposed to 1-MeSpd, 3-MeSpd, and Spd, which were good inducers. Importantly, the ability of compounds to inhibit polyamine uptake correlated with the efficiency of the (OAZ1)2-Polyamine complex formation. Thus, the (OAZ1)2-Polyamine complex may be needed to inhibit polyamine uptake. The efficiency of polyamine-induced ribosomal +1 frameshifting of OAZ1 mRNA could also be differentially modulated by MeSpds—2-MeSpd was a poor inducer of OAZ1 biosynthesis and hence a poor downregulator of ODC activity unlike the other MeSpds. These findings offer new insight into the OAZ1-mediated regulation of polyamine homeostasis and provide the chemical tools to study it.
Collapse
|
13
|
Jia D, Liu H, Zhang J, Wan W, Wang Z, Zhang X, Chen Q, Wei T. Polyamine-metabolizing enzymes are activated to promote the proper assembly of rice stripe mosaic virus in insect vectors. STRESS BIOLOGY 2022; 2:10. [PMID: 37676339 PMCID: PMC10441986 DOI: 10.1007/s44154-021-00032-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/30/2021] [Indexed: 09/08/2023]
Abstract
Both viruses and host cells compete for intracellular polyamines for efficient propagation. Currently, how the key polyamine-metabolizing enzymes, including ornithine decarboxylase 1 (ODC1) and its antizyme 1 (OAZ1), are activated to co-ordinate viral propagation and polyamine biosynthesis remains unknown. Here, we report that the matrix protein of rice stripe mosaic virus (RSMV), a cytorhabdovirus, directly hijacks OAZ1 to ensure the proper assembly of rigid bacilliform non-enveloped virions in leafhopper vector. Viral matrix protein effectively competes with ODC1 to bind to OAZ1, and thus, the ability of OAZ1 to target and mediate the degradation of ODC1 is significantly inhibited during viral propagation, which finally promotes polyamines production. Thus, OAZ1 and ODC1 are activated to synergistically promote viral persistent propagation and polyamine biosynthesis in viruliferous vectors. Our data suggest that it is a novel mechanism for rhabdovirus to exploit OAZ1 for facilitating viral assembly.
Collapse
Affiliation(s)
- Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Huan Liu
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Jian Zhang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Wenqiang Wan
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Zongwen Wang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Xiaofeng Zhang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
14
|
Riegger RJ, Caliskan N. Thinking Outside the Frame: Impacting Genomes Capacity by Programmed Ribosomal Frameshifting. Front Mol Biosci 2022; 9:842261. [PMID: 35281266 PMCID: PMC8915115 DOI: 10.3389/fmolb.2022.842261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Translation facilitates the transfer of the genetic information stored in the genome via messenger RNAs to a functional protein and is therefore one of the most fundamental cellular processes. Programmed ribosomal frameshifting is a ubiquitous alternative translation event that is extensively used by viruses to regulate gene expression from overlapping open reading frames in a controlled manner. Recent technical advances in the translation field enabled the identification of precise mechanisms as to how and when ribosomes change the reading frame on mRNAs containing cis-acting signals. Several studies began also to illustrate that trans-acting RNA modulators can adjust the timing and efficiency of frameshifting illuminating that frameshifting can be a dynamically regulated process in cells. Here, we intend to summarize these new findings and emphasize how it fits in our current understanding of PRF mechanisms as previously described.
Collapse
Affiliation(s)
- Ricarda J. Riegger
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany
- Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Neva Caliskan
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
- *Correspondence: Neva Caliskan,
| |
Collapse
|
15
|
Demo G, Gamper HB, Loveland AB, Masuda I, Carbone CE, Svidritskiy E, Hou YM, Korostelev AA. Structural basis for +1 ribosomal frameshifting during EF-G-catalyzed translocation. Nat Commun 2021; 12:4644. [PMID: 34330903 PMCID: PMC8324841 DOI: 10.1038/s41467-021-24911-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near the P site, rendering the freed mRNA base to bulge between the P and E sites and to stack on the 16S rRNA nucleotide G926. The ribosome remains frameshifted in the nearly post-translocation state. Our findings demonstrate that the ribosome and EF-G cooperate to induce +1 frameshifting during tRNA-mRNA translocation.
Collapse
MESH Headings
- Biocatalysis
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Frameshifting, Ribosomal/genetics
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational/genetics
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Conformation
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Howard B Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christine E Carbone
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
16
|
Current Insights into Oral Cancer Diagnostics. Diagnostics (Basel) 2021; 11:diagnostics11071287. [PMID: 34359370 PMCID: PMC8303371 DOI: 10.3390/diagnostics11071287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
Oral cancer is one of the most common head and neck malignancies and has an overall 5-year survival rate that remains below 50%. Oral cancer is generally preceded by oral potentially malignant disorders (OPMDs) but determining the risk of OPMD progressing to cancer remains a difficult task. Several diagnostic technologies have been developed to facilitate the detection of OPMD and oral cancer, and some of these have been translated into regulatory-approved in vitro diagnostic systems or medical devices. Furthermore, the rapid development of novel biomarkers, electronic systems, and artificial intelligence may help to develop a new era where OPMD and oral cancer are detected at an early stage. To date, a visual oral examination remains the routine first-line method of identifying oral lesions; however, this method has certain limitations and as a result, patients are either diagnosed when their cancer reaches a severe stage or a high-risk patient with OPMD is misdiagnosed and left untreated. The purpose of this article is to review the currently available diagnostic methods for oral cancer as well as possible future applications of novel promising technologies to oral cancer diagnosis. This will potentially increase diagnostic options and improve our ability to effectively diagnose and treat oral cancerous-related lesions.
Collapse
|
17
|
Pradhan AK, Kandasamy G, Chatterjee U, Bharadwaj A, Mathew SJ, Dohmen RJ, Palanimurugan R. Ribosome-associated quality control mediates degradation of the premature translation termination product Orf1p of ODC antizyme mRNA. FEBS Lett 2021; 595:2015-2033. [PMID: 34109626 DOI: 10.1002/1873-3468.14147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/08/2022]
Abstract
Decoding of OAZ1 (Ornithine decarboxylase AntiZyme 1) mRNA, which harbours two open reading frames (ORF1 and ORF2) interrupted by a naturally occurring Premature Termination Codon (PTC), produces an 8 kDa truncated polypeptide termed Orf1p, unless the PTC is bypassed by +1 ribosomal frameshifting. In this study, we identified Orf1p as an endogenous ubiquitin-dependent substrate of the 26S proteasome both in yeast and mammalian cells. Surprisingly, we found that the ribosome-associated quality control factor Rqc1 and the ubiquitin ligase Ltn1 are critical for Orf1p degradation. In addition, the cytosolic protein quality control chaperone system Hsp70/Hsp90 and their corresponding co-chaperones Sse1, Fes1, Sti1 and Cpr7 are also required for Orf1p proteolysis. Our study finds that Orf1p, which is naturally synthesized as a result of a premature translation termination event, requires the coordinated role of both ribosome-associated and cytosolic protein quality control factors for its degradation.
Collapse
Affiliation(s)
| | | | | | - Anushree Bharadwaj
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sam J Mathew
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - R Jürgen Dohmen
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, Center of Molecular Biosciences, University of Cologne, Germany
| | - R Palanimurugan
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, India
| |
Collapse
|
18
|
Prokop JW, Bupp CP, Frisch A, Bilinovich SM, Campbell DB, Vogt D, Schultz CR, Uhl KL, VanSickle E, Rajasekaran S, Bachmann AS. Emerging Role of ODC1 in Neurodevelopmental Disorders and Brain Development. Genes (Basel) 2021; 12:genes12040470. [PMID: 33806076 PMCID: PMC8064465 DOI: 10.3390/genes12040470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.
Collapse
Affiliation(s)
- Jeremy W. Prokop
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (J.W.P.); (A.S.B.)
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Spectrum Health Medical Genetics, Grand Rapids, MI 49503, USA;
| | - Austin Frisch
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Stephanie M. Bilinovich
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Daniel B. Campbell
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Chad R. Schultz
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | | | - Surender Rajasekaran
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
| | - André S. Bachmann
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Correspondence: (J.W.P.); (A.S.B.)
| |
Collapse
|
19
|
Tulluri V, Nemmara VV. Role of Antizyme Inhibitor Proteins in Cancers and Beyond. Onco Targets Ther 2021; 14:667-682. [PMID: 33531815 PMCID: PMC7846877 DOI: 10.2147/ott.s281157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
Polyamines are multivalent organic cations essential for many cellular functions, including cell growth, differentiation, and proliferation. However, elevated polyamine levels are associated with a slew of pathological conditions, including multiple cancers. Intracellular polyamine levels are primarily controlled by the autoregulatory circuit comprising two different protein types, Antizymes (OAZ) and Antizyme Inhibitors (AZIN), which regulate the activity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC). While OAZ functions to decrease the intracellular polyamine levels by inhibiting ODC activity and exerting a negative control of polyamine uptake, AZIN operates to increase intracellular polyamine levels by binding and sequestering OAZ to relieve ODC inhibition and to increase polyamine uptake. Interestingly, OAZ and AZIN exhibit autoregulatory functions on polyamine independent pathways as well. A growing body of evidence demonstrates the dysregulation of AZIN expression in multiple cancers. Additionally, RNA editing of the Azin1 transcript results in a "gain-of-function" phenotype, which is shown to drive aggressive tumor types. This review will discuss the recent advances in AZIN's role in cancers via aberrant polyamine upregulation and its polyamine-independent protein regulation. This report will also highlight AZIN interaction with proteins outside the polyamine biosynthetic pathway and its potential implication to cancer pathogenesis. Finally, this review will reveal the protein interaction network of AZIN isoforms by analyzing three different interactome databases.
Collapse
Affiliation(s)
- Vennela Tulluri
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ08028, USA
| | - Venkatesh V Nemmara
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ08028, USA
| |
Collapse
|
20
|
Yang YF, Lee CY, Hsieh JY, Liu YL, Lin CL, Liu GY, Hung HC. Regulation of polyamine homeostasis through an antizyme citrullination pathway. J Cell Physiol 2021; 236:5646-5663. [PMID: 33432662 DOI: 10.1002/jcp.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 11/12/2022]
Abstract
This study reveals an uncovered mechanism for the regulation of polyamine homeostasis through protein arginyl citrullination of antizyme (AZ), a natural inhibitor of ornithine decarboxylase (ODC). ODC is critical for the cellular production of polyamines. AZ binds to ODC dimers and promotes the degradation of ODC via the 26S proteasome. This study demonstrates the protein citrullination of AZ catalyzed by peptidylarginine deiminase type 4 (PAD4) both in vitro and in cells. Upon PAD4 activation, the AZ protein was citrullinated and accumulated, leading to higher levels of ODC proteins in the cell. In the PAD4-overexpressing and activating cells, the levels of ODC enzyme activity and the product putrescine increased with the level of citrullinated AZ proteins and PAD4 activity. Suppressing cellular PAD4 activity reduces the cellular levels of ODC and downregulates cellular polyamines. Furthermore, citrullination of AZ in the C-terminus attenuates AZ function in the inhibition, binding, and degradation of ODC. This paper provides evidence to illustrate that PAD4-mediated AZ citrullination upregulates cellular ODC and polyamines by retarding ODC degradation, thus interfering with the homeostasis of cellular polyamines, which may be an important pathway regulating AZ functions that is relevant to cancer biology.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Yun Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Allergy Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Genomics & Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
21
|
Baicalein, 7,8-Dihydroxyflavone and Myricetin as Potent Inhibitors of Human Ornithine Decarboxylase. Nutrients 2020; 12:nu12123867. [PMID: 33348871 PMCID: PMC7765794 DOI: 10.3390/nu12123867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Human ornithine decarboxylase (ODC) is a well-known oncogene, and the discovery of ODC enzyme inhibitors is a beneficial strategy for cancer therapy and prevention. Methods: We examined the inhibitory effects of a variety of flavone and flavonol derivatives on ODC enzymatic activity, and performed in silico molecular docking of baicalein, 7,8-dihydroxyflavone and myricetin to the whole dimer of human ODC to investigate the possible binding site of these compounds on ODC. We also examined the cytotoxic effects of these compounds with cell-based studies. Results: Baicalein, 7,8-dihydroxyflavone and myricetin exhibited significant ODC suppression activity with IC50 values of 0.88 µM, 2.54 µM, and 7.3 µM, respectively, which were much lower than that of the active-site irreversible inhibitor α-DL-difluoromethylornithine (IC50, the half maximal inhibitory concentration, of approximately 100 µM). Kinetic studies and molecular docking simulations suggested that baicalein, and 7,8-dihydroxyflavone act as noncompetitive inhibitors that are hydrogen-bonded to the region near the active site pocket in the dimer interface of the enzyme. Baicalein and myricetin suppress cell growth and induce cellular apoptosis, and both of these compounds suppress the ODC-evoked anti-apoptosis of cells. Conclusions: Therefore, we suggest that the flavone or flavonol derivatives baicalein, 7,8-dihydroxyflavone, and myricetin are potent chemopreventive and chemotherapeutic agents that target ODC.
Collapse
|
22
|
Penn WD, Harrington HR, Schlebach JP, Mukhopadhyay S. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Annu Rev Virol 2020; 7:219-238. [PMID: 32600156 DOI: 10.1146/annurev-virology-012120-101548] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Programmed ribosomal frameshifting (PRF) is a conserved translational recoding mechanism found in all branches of life and viruses. In bacteria, archaea, and eukaryotes PRF is used to downregulate protein production by inducing a premature termination of translation, which triggers messenger RNA (mRNA) decay. In viruses, PRF is used to drive the production of a new protein while downregulating the production of another protein, thus maintaining a stoichiometry optimal for productive infection. Traditionally, PRF motifs have been defined by the characteristics of two cis elements: a slippery heptanucleotide sequence followed by an RNA pseudoknot or stem-loop within the mRNA. Recently, additional cis and new trans elements have been identified that regulate PRF in both host and viral translation. These additional factors suggest PRF is an evolutionarily conserved process whose function and regulation we are just beginning to understand.
Collapse
Affiliation(s)
- Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Haley R Harrington
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
23
|
Mikl M, Pilpel Y, Segal E. High-throughput interrogation of programmed ribosomal frameshifting in human cells. Nat Commun 2020; 11:3061. [PMID: 32546731 PMCID: PMC7297798 DOI: 10.1038/s41467-020-16961-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed ribosomal frameshifting (PRF) is the controlled slippage of the translating ribosome to an alternative frame. This process is widely employed by human viruses such as HIV and SARS coronavirus and is critical for their replication. Here, we developed a high-throughput approach to assess the frameshifting potential of a sequence. We designed and tested >12,000 sequences based on 15 viral and human PRF events, allowing us to systematically dissect the rules governing ribosomal frameshifting and discover novel regulatory inputs based on amino acid properties and tRNA availability. We assessed the natural variation in HIV gag-pol frameshifting rates by testing >500 clinical isolates and identified subtype-specific differences and associations between viral load in patients and the optimality of PRF rates. We devised computational models that accurately predict frameshifting potential and frameshifting rates, including subtle differences between HIV isolates. This approach can contribute to the development of antiviral agents targeting PRF.
Collapse
Affiliation(s)
- Martin Mikl
- Department of Computer Science and Applied Mathematics, Rehovot, 7610001, Israel.
- Department of Molecular Cell Biology and Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel.
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Rehovot, 7610001, Israel.
- Department of Molecular Cell Biology and Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
24
|
Critical Factors in Human Antizymes that Determine the Differential Binding, Inhibition, and Degradation of Human Ornithine Decarboxylase. Biomolecules 2019; 9:biom9120864. [PMID: 31842334 PMCID: PMC6995573 DOI: 10.3390/biom9120864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 02/04/2023] Open
Abstract
Antizyme (AZ) is a protein that negatively regulates ornithine decarboxylase (ODC). AZ achieves this inhibition by binding to ODC to produce AZ-ODC heterodimers, abolishing enzyme activity and targeting ODC for degradation by the 26S proteasome. In this study, we focused on the biomolecular interactions between the C-terminal domain of AZ (AZ95–228) and ODC to identify the functional elements of AZ that are essential for binding, inhibiting and degrading ODC, and we also identified the crucial factors governing the differential binding and inhibition ability of AZ isoforms toward ODC. Based on the ODC inhibition and AZ-ODC binding studies, we demonstrated that amino acid residues reside within the α1 helix, β5 and β6 strands, and connecting loop between β6 and α2 (residues 142–178), which is the posterior part of AZ95–228, play crucial roles in ODC binding and inhibition. We also identified the essential elements determining the ODC-degradative activity of AZ; amino acid residues within the anterior part of AZ95–228 (residues 120–145) play crucial roles in AZ-mediated ODC degradation. Finally, we identified the crucial factors that govern the differential binding and inhibition of AZ isoforms toward ODC. Mutagenesis studies of AZ1 and AZ3 and their binding and inhibition revealed that the divergence of amino acid residues 124, 150, 166, 171, and 179 results in the differential abilities of AZ1 and AZ3 in the binding and inhibition of ODC.
Collapse
|
25
|
Chen CH, Wang YH, Tsai SF, Yu TM, Chen SY, Tsai FJ. Antizyme inhibitor 1 genetic polymorphisms associated with diabetic patients validated in the livers of diabetic mice. Exp Ther Med 2019; 18:3139-3146. [PMID: 31572554 DOI: 10.3892/etm.2019.7919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/06/2019] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM) is a complex disease caused by absolute or relative insulin deficiency. The C57BLKsJ-db/db mouse model is a useful animal model for studying type 2 DM (T2DM). The present study investigated the association between an antizyme inhibitor 1 (AZIN1) gene polymorphism (rs1062048) and T2DM susceptibility in 2,270 Taiwanese individuals (570 patients with T2DM and 1,700 controls). Additionally, the present study investigated AZIN1 gene and protein expression in the liver tissues of mice in three age groups (4, 16 and 32 weeks) through reverse transcription-quantitative PCR, western blotting and immunohistochemistry. The data indicated that the genotype frequency distribution of the rs1062048 single-nucleotide polymorphism differed significantly between the patients with T2DM and controls (P<0.05). Furthermore, gene and protein expression levels of AZIN1 were significantly lower in early stage and late stage T2DM mouse liver samples than in control samples. Overall, the data suggested that AZIN1 expression is involved in T2DM development.
Collapse
Affiliation(s)
- Cheng-Hsu Chen
- Department of Medical Research, Division of Basic Medical Sciences, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C.,Department of Internal Medicine, Division of Nephrology, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C.,Department of Life Science, Tunghai University, Taichung 40705, Taiwan, R.O.C.,School of Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yeh-Han Wang
- Department of Anatomical Pathology, Taipei Institute of Pathology, School of Medicine, National Yang-Ming University, 11221 Taipei, Taiwan, R.O.C
| | - Shang-Feng Tsai
- Department of Internal Medicine, Division of Nephrology, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C.,Department of Life Science, Tunghai University, Taichung 40705, Taiwan, R.O.C.,Department of Internal Medicine, School of Medicine, National Yang-Ming University, 11221 Taipei, Taiwan, R.O.C
| | - Tung-Min Yu
- Department of Internal Medicine, Division of Nephrology, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C.,School of Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C.,Genetics Center, Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C.,Genetics Center, Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C.,Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| |
Collapse
|
26
|
Lambertos A, Peñafiel R. Polyamine biosynthesis in Xenopus laevis: the xlAZIN2/xlODC2 gene encodes a lysine/ornithine decarboxylase. PLoS One 2019; 14:e0218500. [PMID: 31509528 PMCID: PMC6738921 DOI: 10.1371/journal.pone.0218500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/26/2019] [Indexed: 11/29/2022] Open
Abstract
Ornithine decarboxylase (ODC) is a key enzyme in the biosynthesis of polyamines, organic cations that are implicated in many cellular processes. The enzyme is regulated at the post-translational level by an unusual system that includes antizymes (AZs) and antizyme inhibitors (AZINs). Most studies on this complex regulatory mechanism have been focused on human and rodent cells, showing that AZINs (AZIN1 and AZIN2) are homologues of ODC but devoid of enzymatic activity. Little is known about Xenopus ODC and its paralogues, in spite of the relevance of Xenopus as a model organism for biomedical research. We have used the information existing in different genomic databases to compare the functional properties of the amphibian ODC1, AZIN1 and AZIN2/ODC2, by means of transient transfection experiments of HEK293T cells. Whereas the properties of xlODC1 and xlAZIN1 were similar to those reported for their mammalian orthologues, the former catalyzing the decarboxylation of L-ornithine preferentially to that of L-lysine, xlAZIN2/xlODC2 showed important differences with respect to human and mouse AZIN2. xlAZIN2 did not behave as an antizyme inhibitor, but it rather acts as an authentic decarboxylase forming cadaverine, due to its higher affinity to L-lysine than to L-ornithine as substrate; so, in accordance with this, it should be named as lysine decarboxylase (LDC) or lysine/ornithine decarboxylase (LODC). In addition, AZ1 stimulated the degradation of xlAZIN2 by the proteasome, but the removal of the 21 amino acid C-terminal tail, with a sequence quite different to that of mouse or human ODC, made the protein resistant to degradation. Collectively, our results indicate that in Xenopus there is only one antizyme inhibitor (xlAZIN1) and two decarboxylases, xlODC1 and xlLDC, with clear preferences for L-ornithine and L-lysine, respectively.
Collapse
Affiliation(s)
- Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- * E-mail:
| |
Collapse
|
27
|
New insights of polyamine metabolism in testicular physiology: A role of ornithine decarboxylase antizyme inhibitor 2 (AZIN2) in the modulation of testosterone levels and sperm motility. PLoS One 2018; 13:e0209202. [PMID: 30566531 PMCID: PMC6300296 DOI: 10.1371/journal.pone.0209202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/01/2018] [Indexed: 12/19/2022] Open
Abstract
The specific role of polyamines in the testis physiology is not fully understood. Antizymes (OAZs) and antizyme inhibitors (AZINs) are modulators of ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis and polyamine uptake. Although the three known OAZs are expressed in the testis, only OAZ3 is testis specific and has been proven to have an essential role in male fertility. Regarding the two existing AZINs, AZIN2 is the most abundantly expressed member in this gonad. Whereas previous studies suggested that AZIN2 might participate in mouse spermatogenesis, immunohistological analysis of human testicular sections revealed that AZIN2 is also detected in the steroidogenic Leydig cells but not in the germinal epithelium. In the present study, we found a close ontogenic similarity in the mRNA levels of OAZs and AZINs between mice and rats, but an opposite expression pattern of ODC activity. Further analysis of AZIN2 and OAZ3 in the testis of mice with different alterations in spermatogenesis and fertility, induced either genetically or pharmacologically, corroborated that both AZIN2 and OAZ3 are mainly expressed in the haploid germinal cells. Finally, by using transgenic mice with a truncated Azin2 gene fused to the bacterial lacZ gene, we studied the expression of Azin2 in testes, epididymides and spermatozoa. AZIN2 was detected in spermatids and spermatozoa, as well as in Leydig cells, and in epithelial epidydimal cells. Azin2 knock-out male mice were fertile; however, they showed marked decreases in testicular putrescine and plasma and testicular testosterone levels, and a dramatic reduction in the sperm motility. These results suggest an important role for AZIN2 in testicular cells by modulating polyamine concentrations, testosterone synthesis and sperm function. Overall, our data corroborate the relevance of polyamine regulation in testis functions, where both AZIN2 and OAZ3 play fundamental roles.
Collapse
|
28
|
Abstract
The polyamines spermidine, spermine, and their precursor putrescine are organic polycations involved in various cellular processes and are absolutely essential for cellular proliferation. Because of their crucial function in the cell, their intracellular concentration must be maintained at optimal levels. To a large extent, this regulation is achieved through the activity of an autoregulatory loop that involves two proteins, antizyme (Az) and antizyme inhibitor (AzI), that regulate the first enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC), and polyamine uptake activity in response to intracellular polyamine levels. In this Minireview, I will discuss what has been learned about the mechanism of Az expression and its physical interaction with both ODC and AzI in the regulation of polyamines.
Collapse
Affiliation(s)
- Chaim Kahana
- From the Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
29
|
Ramos-Molina B, Lambertos A, Peñafiel R. Antizyme Inhibitors in Polyamine Metabolism and Beyond: Physiopathological Implications. ACTA ACUST UNITED AC 2018; 6:medsci6040089. [PMID: 30304856 PMCID: PMC6313458 DOI: 10.3390/medsci6040089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022]
Abstract
The intracellular levels of polyamines, cationic molecules involved in a myriad of cellular functions ranging from cellular growth, differentiation and apoptosis, is precisely regulated by antizymes and antizyme inhibitors via the modulation of the polyamine biosynthetic and transport systems. Antizymes, which are mainly activated upon high polyamine levels, inhibit ornithine decarboxylase (ODC), the key enzyme of the polyamine biosynthetic route, and exert a negative control of polyamine intake. Antizyme inhibitors (AZINs), which are proteins highly homologous to ODC, selectively interact with antizymes, preventing their action on ODC and the polyamine transport system. In this review, we will update the recent advances on the structural, cellular and physiological functions of AZINs, with particular emphasis on the action of these proteins in the regulation of polyamine metabolism. In addition, we will describe emerging evidence that suggests that AZINs may also have polyamine-independent effects on cells. Finally, we will discuss how the dysregulation of AZIN activity has been implicated in certain human pathologies such as cancer, fibrosis or neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain.
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain.
| |
Collapse
|
30
|
Uncovering Natural Longevity Alleles from Intercrossed Pools of Aging Fission Yeast Cells. Genetics 2018; 210:733-744. [PMID: 30072377 PMCID: PMC6216586 DOI: 10.1534/genetics.118.301262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 01/24/2023] Open
Abstract
Chronological lifespan of non-dividing yeast cells is a quantitative trait that reflects cellular aging. By monitoring allele frequencies in aging segregant pools, Ellis et al. uncover regulatory variants in the 5'-untranslated regions of two genes... Quantitative traits often show large variation caused by multiple genetic factors . One such trait is the chronological lifespan of non-dividing yeast cells, serving as a model for cellular aging. Screens for genetic factors involved in aging typically assay mutants of protein-coding genes. To identify natural genetic variants contributing to cellular aging, we exploited two strains of the fission yeast, Schizosaccharomyces pombe, that differ in chronological lifespan. We generated segregant pools from these strains and subjected them to advanced intercrossing over multiple generations to break up linkage groups. We chronologically aged the intercrossed segregant pool, followed by genome sequencing at different times to detect genetic variants that became reproducibly enriched as a function of age. A region on Chromosome II showed strong positive selection during aging. Based on expected functions, two candidate variants from this region in the long-lived strain were most promising to be causal: small insertions and deletions in the 5′-untranslated regions of ppk31 and SPBC409.08. Ppk31 is an ortholog of Rim15, a conserved kinase controlling cell proliferation in response to nutrients, while SPBC409.08 is a predicted spermine transmembrane transporter. Both Rim15 and the spermine-precursor, spermidine, are implicated in aging as they are involved in autophagy-dependent lifespan extension. Single and double allele replacement suggests that both variants, alone or combined, have subtle effects on cellular longevity. Furthermore, deletion mutants of both ppk31 and SPBC409.08 rescued growth defects caused by spermidine. We propose that Ppk31 and SPBC409.08 may function together to modulate lifespan, thus linking Rim15/Ppk31 with spermidine metabolism.
Collapse
|
31
|
Lambertos A, Ramos-Molina B, Cerezo D, López-Contreras AJ, Peñafiel R. The mouse Gm853 gene encodes a novel enzyme: Leucine decarboxylase. Biochim Biophys Acta Gen Subj 2017; 1862:365-376. [PMID: 29108956 DOI: 10.1016/j.bbagen.2017.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022]
Abstract
Ornithine decarboxylase (ODC) is a key enzyme in the biosynthesis of polyamines. ODC-antizyme inhibitors (AZINs) are homologous proteins of ODC, devoid of enzymatic activity but acting as regulators of polyamine levels. The last paralogue gene recently incorporated into the ODC/AZINs family is the murine Gm853, which is located in the same chromosome as AZIN2, and whose biochemical function is still unknown. By means of transfection assays of HEK293T cells with a plasmid containing the coding region of Gm853, we show here that unlike ODC, GM853 was a stable protein that was not able to decarboxylate l-ornithine or l-lysine and that did not act as an antizyme inhibitor. However, GM853 showed leucine decarboxylase activity, an enzymatic activity never described in animal cells, and by acting on l-leucine (Km=7.03×10-3M) it produced isopentylamine, an aliphatic monoamine with unknown function. The other physiological branched-chain amino acids, l-valine and l-isoleucine were poor substrates of the enzyme. Gm853 expression was mainly detected in the kidney, and as Odc, it was stimulated by testosterone. The conservation of Gm853 orthologues in different mammalian species, including primates, underlines the possible biological significance of this new enzyme. In this study, we describe for the first time a mammalian enzyme with leucine decarboxylase activity, therefore proposing that the gene Gm853 and its protein product should be named as leucine decarboxylase (Ldc, LDC).
Collapse
Affiliation(s)
- Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Bruno Ramos-Molina
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Spain
| | - David Cerezo
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Spain
| | - Andrés J López-Contreras
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain.
| |
Collapse
|
32
|
Chikungunya Virus Overcomes Polyamine Depletion by Mutation of nsP1 and the Opal Stop Codon To Confer Enhanced Replication and Fitness. J Virol 2017; 91:JVI.00344-17. [PMID: 28539441 PMCID: PMC5512238 DOI: 10.1128/jvi.00344-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/10/2017] [Indexed: 11/23/2022] Open
Abstract
Polyamines, which are small positively charge molecules present in all cells, play important roles in the replication of DNA and RNA viruses. Chikungunya virus (CHIKV) relies on polyamines for translation of the viral genome upon viral entry, and pharmacological depletion of polyamines limits viral replication. However, the potential development of antiviral resistance necessitates a better understanding of how polyamines function and can be targeted via compounds that alter polyamine levels. We have isolated CHIKV that is resistant to polyamine depletion and contains two mutations in the nonstructural protein 1 (nsP1)-coding region in combination with a mutation to the opal stop codon preceding nsP4. These mutations, in addition to promoting viral replication in polyamine-depleted cells, confer enhanced viral replication in vitro and in vivo. The nsP1 mutations enhance membrane binding and methyltransferase activities, while the stop codon mutation allows increased downstream translation. These mutations, when combined, enhance viral fitness, but individual mutants are attenuated in mosquitoes. Together, our results suggest that CHIKV can evolve resistance to polyamine depletion and that pharmaceuticals targeting the polyamine biosynthetic pathway may be best used in combination with other established antivirals to mitigate the development of resistance. IMPORTANCE Chikungunya virus is a mosquito-borne virus that has infected millions worldwide. Its expansion into the Americas and rapid adaptation to new mosquito hosts present a serious threat to human health, which we can combat with the development of antiviral therapies as well as understanding how these viruses will mutate when exposed to antiviral therapies. Targeting polyamines, small positively charged molecules in the cell, may be a potential strategy against RNA viruses, including chikungunya virus. Here, we have described a virus that is resistant to polyamine depletion and has increased fitness in cells and in full organisms. Mutations in viral genome capping machinery, membrane binding activity, and a stop codon arise, and their altered activities enhance replication in the absence of polyamines. These results highlight strategies by which chikungunya virus can overcome polyamine depletion and emphasize continued research on developing improved antiviral therapies.
Collapse
|
33
|
Protein degradation, the main hub in the regulation of cellular polyamines. Biochem J 2017; 473:4551-4558. [PMID: 27941031 DOI: 10.1042/bcj20160519c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and rate-limiting enzyme in the biosynthesis of polyamines, low-molecular-mass aliphatic polycations that are ubiquitously present in all living cells and are essential for fundamental cellular processes. Most cellular polyamines are bound, whereas the free pools, which regulate cellular functions, are subjected to tight regulation. The regulation of the free polyamine pools is manifested by modulation of their synthesis, catabolism, uptake and excretion. A central element that enables this regulation is the rapid degradation of key enzymes and regulators of these processes, particularly that of ODC. ODC degradation is part of an autoregulatory circuit that responds to the intracellular level of the free polyamines. The driving force of this regulatory circuit is a protein termed antizyme (Az). Az stimulates the degradation of ODC and inhibits polyamine uptake. Az acts as a sensor of the free intracellular polyamine pools as it is expressed via a polyamine-stimulated ribosomal frameshifting. Az binds to monomeric ODC subunits to prevent their reassociation into active homodimers and facilitates their ubiquitin-independent degradation by the 26S proteasome. In addition, through a yet unidentified mechanism, Az inhibits polyamine uptake. Interestingly, a protein, termed antizyme inhibitor (AzI) that is highly homologous with ODC, but retains no ornithine decarboxylating activity, seems to regulate cellular polyamines through its ability to negate Az. Overall, the degradation of ODC is a net result of interactions with regulatory proteins and possession of signals that mediate its ubiquitin-independent recognition by the proteasome.
Collapse
|
34
|
Liu YC, Lee CY, Lin CL, Chen HY, Liu GY, Hung HC. Multifaceted interactions and regulation between antizyme and its interacting proteins cyclin D1, ornithine decarboxylase and antizyme inhibitor. Oncotarget 2016; 6:23917-29. [PMID: 26172301 PMCID: PMC4695161 DOI: 10.18632/oncotarget.4469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022] Open
Abstract
Ornithine decarboxylase (ODC), cyclin D1 (CCND1) and antizyme inhibitor (AZI) promote cell growth. ODC and CCND1 can be degraded through antizyme (AZ)-mediated 26S proteasomal degradation. This paper describes a mechanistic study of the molecular interactions between AZ and its interacting proteins. The dissociation constant (Kd) of the binary AZ-CCND1 complex and the respective binding sites of AZ and CCND1 were determined. Our data indicate that CCND1 has a 4-fold lower binding affinity for AZ than does ODC and an approximately 40-fold lower binding affinity for AZ than does AZI. The Kd values of AZ-CCND1, AZ-ODC and AZ-AZI were 0.81, 0.21 and 0.02 μM, respectively. Furthermore, the Kd values for CCND1 binding to the AZ N-terminal peptide (AZ34–124) and AZ C-terminal peptide (AZ100–228) were 0.92 and 8.97 μM, respectively, indicating that the binding site of CCND1 may reside at the N-terminus of AZ, rather than the C-terminus. Our data also show that the ODC-AZ-CCND1 ternary complex may exist in equilibrium. The Kd values of the [AZ-CCND1]-ODC and [AZ-ODC]-CCND1 complexes were 1.26 and 4.93 μM, respectively. This is the first paper to report the reciprocal regulation of CCND1 and ODC through AZ-dependent 26S proteasomal degradation.
Collapse
Affiliation(s)
- Yen-Chin Liu
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, Taiwan
| | - Chien-Yun Lee
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University (NCHU), Taichung, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Chi-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Yi Chen
- Biotechnology Center, National Chung-Hsing University (NCHU), Taichung, Taiwan.,Agricultural Biotechnology Center (ABC), National Chung-Hsing University (NCHU), Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology & Immunology, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, Taiwan.,Agricultural Biotechnology Center (ABC), National Chung-Hsing University (NCHU), Taichung, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University (NCHU), Taichung, Taiwan
| |
Collapse
|
35
|
Wang R, Xiong J, Wang W, Miao W, Liang A. High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus. Sci Rep 2016; 6:21139. [PMID: 26891713 PMCID: PMC4759687 DOI: 10.1038/srep21139] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/18/2016] [Indexed: 01/25/2023] Open
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) has been identified as a mechanism to regulate the expression of many viral genes and some cellular genes. The slippery site of -1 PRF has been well characterized, whereas the +1 PRF signal and the mechanism involved in +1 PRF remain poorly understood. Previous study confirmed that +1 PRF is required for the synthesis of protein products in several genes of ciliates from the genus Euplotes. To accurately assess the frequency of genes requiring frameshift in Euplotes, the macronuclear genome and transcriptome of Euplotes octocarinatus were analyzed in this study. A total of 3,700 +1 PRF candidate genes were identified from 32,353 transcripts, and the gene products of these putative +1 PRFs were mainly identified as protein kinases. Furthermore, we reported a putative suppressor tRNA of UAA which may provide new insights into the mechanism of +1 PRF in euplotids. For the first time, our transcriptome-wide survey of +1 PRF in E. octocarinatus provided a dataset which serves as a valuable resource for the future understanding of the mechanism underlying +1 PRF.
Collapse
Affiliation(s)
- Ruanlin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
36
|
Li WD, Huang M, Lü WG, Chen X, Shen MH, Li XM, Wang RX, Ke CH. Involvement of Antizyme Characterized from the Small Abalone Haliotis diversicolor in Gonadal Development. PLoS One 2015; 10:e0135251. [PMID: 26313647 PMCID: PMC4551804 DOI: 10.1371/journal.pone.0135251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/19/2022] Open
Abstract
The small abalone Haliotis diversicolor is an economically important mollusk that is widely cultivated in Southern China. Gonad precocity may affect the aquaculture of small abalone. Polyamines, which are small cationic molecules essential for cellular proliferation, may affect gonadal development. Ornithine decarboxylase (ODC) and antizyme (AZ) are essential elements of a feedback circuit that regulates cellular polyamines. This paper presents the molecular cloning and characterization of AZ from small abalone. Sequence analysis showed that the cDNA sequence of H. diversicolor AZ (HdiODCAZ) consisted of two overlapping open reading frames (ORFs) and conformed to the +1 frameshift property of the frame. Thin Layer chromatography (TLC) analysis suggested that the expressed protein encoded by +1 ORF2 was the functional AZ that targets ODC to 26S proteasome degradation. The result demonstrated that the expression level of AZ was higher than that of ODC in the ovary of small abalone. In addition, the expression profiles of ODC and AZ at the different development stages of the ovary indicated that these two genes might be involved in the gonadal development of small abalone.
Collapse
Affiliation(s)
- Wei-Dong Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, China
| | - Min Huang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, China
| | - Wen-Gang Lü
- College of Oceanography and Environmental Science, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao Chen
- Guangxi Key Lab for Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai, Guangxi Province, China
| | - Ming-Hui Shen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, China
| | - Xiang-Min Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, China
| | - Rong-Xia Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, China
| | - Cai-Huan Ke
- College of Oceanography and Environmental Science, Xiamen University, Xiamen, Fujian Province, China
- * E-mail:
| |
Collapse
|
37
|
Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proc Natl Acad Sci U S A 2015; 112:11229-34. [PMID: 26305948 DOI: 10.1073/pnas.1508187112] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polyamines are organic polycations essential for cell growth and differentiation; their aberrant accumulation is often associated with diseases, including many types of cancer. To maintain polyamine homeostasis, the catalytic activity and protein abundance of ornithine decarboxylase (ODC), the committed enzyme for polyamine biosynthesis, are reciprocally controlled by the regulatory proteins antizyme isoform 1 (Az1) and antizyme inhibitor (AzIN). Az1 suppresses polyamine production by inhibiting the assembly of the functional ODC homodimer and, most uniquely, by targeting ODC for ubiquitin-independent proteolytic destruction by the 26S proteasome. In contrast, AzIN positively regulates polyamine levels by competing with ODC for Az1 binding. The structural basis of the Az1-mediated regulation of polyamine homeostasis has remained elusive. Here we report crystal structures of human Az1 complexed with either ODC or AzIN. Structural analysis revealed that Az1 sterically blocks ODC homodimerization. Moreover, Az1 binding triggers ODC degradation by inducing the exposure of a cryptic proteasome-interacting surface of ODC, which illustrates how a substrate protein may be primed upon association with Az1 for ubiquitin-independent proteasome recognition. Dynamic and functional analyses further indicated that the Az1-induced binding and degradation of ODC by proteasome can be decoupled, with the intrinsically disordered C-terminal tail fragment of ODC being required only for degradation but not binding. Finally, the AzIN-Az1 structure suggests how AzIN may effectively compete with ODC for Az1 to restore polyamine production. Taken together, our findings offer structural insights into the Az-mediated regulation of polyamine homeostasis and proteasomal degradation.
Collapse
|
38
|
Dube DK, McLean MD, Dube S, Poiesz BJ. Translational control of tropomyosin expression in vertebrate hearts. Anat Rec (Hoboken) 2015; 297:1585-95. [PMID: 25125172 DOI: 10.1002/ar.22978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 01/23/2023]
Abstract
The tropomyosin (TM) gene family produces a set of related TM proteins with important functions in striated and smooth muscle, and nonmuscle cells. In vertebrate striated muscle, the thin filament consists largely of actin, TM, the troponin (Tn) complex (Tn-I, Tn-C and Tn-T), and tropomodulin (Tmod) and is responsible for mediating Ca(2+) control of muscle contraction and relaxation. There are four known genes (designated as TPM1, TPM2, TPM3, and TPM4) for TM in vertebrates. The four TM genes generate a multitude of tissue- and developmental-specific isoforms through the use of different promoters, alternative mRNA splicing, different 3'-end mRNA processing and tissue-specific translational control. In this review, we have focused mainly on the regulation of TM expression in striated muscles, primarily in vertebrate hearts with special emphasis on translational control using mouse and Mexican axolotl animal models.
Collapse
Affiliation(s)
- Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | | | | | | |
Collapse
|
39
|
Silva TM, Cirenajwis H, Wallace HM, Oredsson S, Persson L. A role for antizyme inhibitor in cell proliferation. Amino Acids 2015; 47:1341-52. [PMID: 25813938 PMCID: PMC4458265 DOI: 10.1007/s00726-015-1957-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/06/2015] [Indexed: 12/20/2022]
Abstract
The polyamines are important for a variety of cellular functions, including cell growth. Their intracellular concentrations are controlled by a complex network of regulatory mechanisms, in which antizyme (Az) has a key role. Az reduces the cellular polyamine content by down-regulating both the enzyme catalysing polyamine biosynthesis, ornithine decarboxylase (ODC), and the uptake of polyamines. The activity of Az is repressed by the binding of a protein, named Az inhibitor (AzI), which is an enzymatically inactive homologue of ODC. Two forms of AzI have been described: AzI1, which is ubiquitous, and AzI2 which is expressed in brain and testis. In the present study, we have investigated the role of AzI1 in polyamine homeostasis and cell proliferation in breast cancer cells. The results obtained showed that the cellular content of AzI increased transiently after induction of cell proliferation by diluting cells in fresh medium. Inhibition of polyamine biosynthesis induced an even larger increase in the cellular AzI content, which remained significantly elevated during the 7-day experimental period. However, this increase was not a consequence of changes in cell cycle progression, as demonstrated by flow cytometry. Instead, the increase appeared to correlate with the cellular depletion of polyamines. Moreover, induced overexpression of AzI resulted in an increased cell proliferation with a concomitant increase in ODC activity and putrescine content. During mitosis, AzI1 was localised in a pattern that resembled that of the two centrosomes, confirming earlier observations. Taken together, the results indicate that AzI fulfils an essential regulatory function in polyamine homeostasis and cell proliferation.
Collapse
Affiliation(s)
- Tania M. Silva
- Department of Biology, Lund University, Lund, Sweden
- Present Address: Laboratory of Microbiology and Immunology of Infection, Institute for Molecular and Cell Biology, Porto University, Porto, Portugal
| | - Helena Cirenajwis
- Department of Biology, Lund University, Lund, Sweden
- Present Address: Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Heather M. Wallace
- Department of Biology, Lund University, Lund, Sweden
- Division of Applied Medicine, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, UK
| | | | - Lo Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Ray RM, Bhattacharya S, Bavaria MN, Viar MJ, Johnson LR. Spermidine, a sensor for antizyme 1 expression regulates intracellular polyamine homeostasis. Amino Acids 2014; 46:2005-13. [PMID: 24824458 DOI: 10.1007/s00726-014-1757-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
Although intracellular polyamine levels are highly regulated, it is unclear whether intracellular putrescine (PUT), spermidine (SPD), or spermine (SPM) levels act as a sensor to regulate their synthesis or uptake. Polyamines have been shown to induce AZ1 expression through a unique +1 frameshifting mechanism. However, under physiological conditions which particular polyamine induces AZ1, and thereby ODC activity, is unknown due to their inter-conversion. In this study we demonstrate that SPD regulates AZ1 expression under physiological conditions in IEC-6 cells. PUT and SPD showed potent induction of AZ1 within 4 h in serum-starved confluent cells grown in DMEM (control) medium. Unlike control cells, PUT failed to induce AZ1 in cells grown in DFMO containing medium; however, SPD caused a robust AZ1 induction in these cells. SPM showed very little effect on AZ1 expression in both the control and polyamine-depleted cells. Only SPD induced AZ1 when S-adenosylmethionine decarboxylase (SAMDC) and/or ODC were inhibited. Surprisingly, addition of DENSpm along with DFMO restored AZ1 induction by putrescine in polyamine-depleted cells suggesting that the increased SSAT activity in response to DENSpm converted SPM to SPD, leading to the expression of AZ1. This study shows that intracellular SPD levels controls AZ1 synthesis.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN, 38163, USA,
| | | | | | | | | |
Collapse
|
41
|
Cheng YSL, Jordan L, Rees T, Chen HS, Oxford L, Brinkmann O, Wong D. Levels of potential oral cancer salivary mRNA biomarkers in oral cancer patients in remission and oral lichen planus patients. Clin Oral Investig 2013; 18:985-93. [PMID: 23892499 DOI: 10.1007/s00784-013-1041-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To gather preliminary data concerning the feasibility of using seven salivary mRNAs-IL-8; IL-1β; dual specificity phosphatase 1 (DUSP1); H3 histone family 3A (H3F3A); ornithin decarboxylase antizyme 1 (OAZ1); S100 calcium-binding protein P (S100P); and spermidine/spermine N1-acetyltransferase 1 (SAT1)-for detecting development of oral squamous cell carcinoma (OSCC) in oral lichen planus (OLP) patients and OSCC patients whose disease was in remission. MATERIALS AND METHODS Saliva samples were collected from five study groups (25 subjects/group): newly diagnosed OSCC, OSCC-in-remission, disease-active OLP, disease-inactive OLP, and normal controls. The salivary mRNA levels were determined by a pre-amplification RT-qPCR approach with nested gene-specific primers. Mean fold changes between each pair of study groups were analyzed by the Mann-Whitney U test. RESULTS Salivary levels of OAZ1, S100P, and DUSP1 mRNAs were significantly higher in newly diagnosed OSCC patients, compared to: (1) normal controls (p = 0.003; p = 0.003; and p < 0.001, respectively); (2) OSCC-in-remission (p < 0.001; p = 0.001; and p < 0.001, respectively); (3) disease-active OLP (p < 0.001; p = 0.016; and p < 0.001, respectively); and (4) disease-inactive OLP (p = 0.043; p < 0.001; and p < 0.001, respectively). No significant differences were found in the levels of salivary IL-8, IL-1β, H3F3A, and SAT1 mRNAs between newly diagnosed OSCC patients and the normal controls (p = 0.093, 0.327, 0.764, and 0.560, respectively). CONCLUSION Salivary OAZ1, S100P, and DUSP1 mRNAs are candidate biomarkers for detecting OSCC development in OSCC patients in remission and in OLP patients. CLINICAL RELEVANCE The results of this study serve as the basis for a further large-scale study which may lead to a non-invasive screening method for early detection of OSCC.
Collapse
Affiliation(s)
- Yi-Shing Lisa Cheng
- Department of Diagnostic Sciences, Texas A&M University-Baylor College of Dentistry, 3302 Gaston Ave, Dallas, TX, USA,
| | | | | | | | | | | | | |
Collapse
|
42
|
López-Garcia C, Ramos-Molina B, Lambertos A, López-Contreras AJ, Cremades A, Peñafiel R. Antizyme inhibitor 2 hypomorphic mice. New patterns of expression in pancreas and adrenal glands suggest a role in secretory processes. PLoS One 2013; 8:e69188. [PMID: 23874910 PMCID: PMC3709932 DOI: 10.1371/journal.pone.0069188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 06/07/2013] [Indexed: 01/21/2023] Open
Abstract
The intracellular levels of polyamines, polycations implicated in proliferation, differentiation and cell survival, are regulated by controlling their biosynthesis, catabolism and transport. Antizymes and antizyme inhibitors are key regulatory proteins of polyamine levels by affecting ornithine decarboxylase, the rate-limiting biosynthetic enzyme, and polyamine uptake. We recently described the molecular function of a novel antizyme inhibitor (AZIN2). However, the physiological function of AZIN2 in mammals is mostly unknown. To gain insight on the tissue expression profile of AZIN2 and to find its possible physiological role, we have generated, transgenic mice with severe Azin2 hypomorphism. This mouse model expresses transgenic bacterial β-D-galactosidase as a reporter gene, under the control of the Azin2 endogenous promoter, what allows a very sensitive and specific detection of the expression of the gene in the different tissues of transgenic mice. The biochemical and histochemical analyses of β-D-galactosidase together with the quantification of Azin2 mRNA levels, corroborated that AZIN2 is mainly expressed in testis and brain, and showed for the first time that AZIN2 is also expressed in the adrenal glands and pancreas. In these tissues, AZIN2 was not expressed in all type of cells, but rather in specific type of cells. Thus, AZIN2 was mainly found in the haploid germinal cells of the testis and in different brain regions such as hippocampus and cerebellum, particularly in specific type of neurons. In the adrenal glands and pancreas, the expression was restricted to the adrenal medulla and to the Langerhans islets, respectively. Interestingly, plasma insulin levels were significantly reduced in the transgenic mice. These results support the idea that AZIN2 may have a role in the modulation of reproductory and secretory functions and that this mouse model might be an interesting tool for the progress of our understanding on the role of AZIN2 and polyamines in specific mammalian cells.
Collapse
Affiliation(s)
- Carlos López-Garcia
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Bruno Ramos-Molina
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | | | - Asunción Cremades
- Department of Pharmacology, School of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- * E-mail:
| |
Collapse
|
43
|
Kurosinski MA, Lüersen K, Ndjonka D, Younis AE, Brattig NW, Liebau E. Filarial parasites possess an antizyme but lack a functional ornithine decarboxylase. Acta Trop 2013; 126:167-76. [PMID: 23474393 DOI: 10.1016/j.actatropica.2013.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
In eukaryotes, the key player in polyamine metabolism is the ornithine decarboxylase (ODC) that catalyses the first and rate limiting step in cellular polyamine synthesis. The half life of ODC is strictly regulated by the antizyme (AZ), which promotes its degradation. Older reports on the polyamine situation in filarial parasites indicate a lack of ornithine decarboxylation activity and an increased uptake of polyamines. Our in silico analysis of the Brugia malayi genome revealed only an ODC-like protein that lacks essential residues. Consequently, the recombinant protein had no enzymatic ODC activity. Furthermore, only ODC-like genes were found in the available draft genomes of other filarial parasites. In this ODC-free scenario, we set out to investigate the AZ of O. volvulus (OvAZ). The expression of the recombinant protein allowed us to analyse the localization of OvAZ in different O. volvulus stages as well as to identify it as target for the human humoral immune response. Strong immunostaining was observed in the outer zone of the uterine epithelium as well as in the uterus lumen around the periphery of the developing parasite, indicating a potential role of the OvAZ in the control of polyamine levels during embryonic development. By employing a novel in vivo method using Caenorhabditis elegans, we postulate that the OvAZ enters the secretory pathway. Even though the ODCs are absent in filarial parasites, OvAZ has the ability to bind to various ODCs, thereby demonstrating the functionality of the conserved AZ-binding domains. Finally, pull-down assays show an interaction between B. malayi AZ and the B. malayi ODC-like protein, indicating that the B. malayi ODC-like protein might function as an AZI. Taken together, our results suggest that filarial species do not possess the ODC while retaining the ODC-regulatory proteins AZ and AZI. It is tempting to speculate that both proteins are retained for the regulation of polyamine transport systems.
Collapse
|
44
|
Lien YC, Ou TY, Lin YT, Kuo PC, Lin HJ. Duplication and diversification of the spermidine/spermine N1-acetyltransferase 1 genes in zebrafish. PLoS One 2013; 8:e54017. [PMID: 23326562 PMCID: PMC3543422 DOI: 10.1371/journal.pone.0054017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022] Open
Abstract
Spermidine/spermine N(1)-acetyltransferase 1 (Ssat1) is a key enzyme in the polyamine interconversion pathway, which maintains polyamine homeostasis. In addition, mammalian Ssat1 is also involved in many physiological and pathological events such as hypoxia, cell migration, and carcinogenesis. Using cross-genomic bioinformatic analysis in 10 deuterostomes, we found that ssat1 only exists in vertebrates. Comparing with mammalian, zebrafish, an evolutionarily distant vertebrate, contains 3 homologous ssat1 genes, named ssat1a, ssat1b, and ssat1c. All zebrafish homologues could be transcribed and produce active enzymes. Despite the long history since their evolutionary diversification, some features of human SSAT1 are conserved and subfunctionalized in the zebrafish family of Ssat1 proteins. The polyamine-dependent protein synthesis was only found in Ssat1b and Ssat1c, not in Ssat1a. Further study indicated that both 5' and 3' sequences of ssat1b mediate such kind of translational regulation inside the open reading frame (ORF). The polyamine-dependent protein stabilization was only observed in Ssat1b. The last 70 residues of Ssat1b were crucial for its rapid degradation and polyamine-induced stabilization. It is worth noting that only Ssat1b and Ssat1c, but not the polyamine-insensitive Ssat1a, were able to interact with integrin α9 and Hif-1α. Thus, Ssat1b and Ssat1c might not only be a polyamine metabolic enzyme but also simultaneously respond to polyamine levels and engage in cross-talk with other signaling pathways. Our data revealed some correlations between the sequences and functions of the zebrafish family of Ssat1 proteins, which may provide valuable information for studies of their translational regulatory mechanism, protein stability, and physiological functions.
Collapse
Affiliation(s)
- Yi-Chin Lien
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ting-Yu Ou
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Tzu Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Po-Chih Kuo
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Han-Jia Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
45
|
Chen L, Li Y, Lin CH, Chan THM, Chow RKK, Song Y, Liu M, Yuan YF, Fu L, Kong KL, Qi L, Li Y, Zhang N, Tong AHY, Kwong DLW, Man K, Lo CM, Lok S, Tenen DG, Guan XY. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med 2013; 19:209-16. [PMID: 23291631 DOI: 10.1038/nm.3043] [Citation(s) in RCA: 409] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 11/21/2012] [Indexed: 01/14/2023]
Abstract
A better understanding of human hepatocellular carcinoma (HCC) pathogenesis at the molecular level will facilitate the discovery of tumor-initiating events. Transcriptome sequencing revealed that adenosine-to-inosine (A→I) RNA editing of AZIN1 (encoding antizyme inhibitor 1) is increased in HCC specimens. A→I editing of AZIN1 transcripts, specifically regulated by ADAR1 (encoding adenosine deaminase acting on RNA-1), results in a serine-to-glycine substitution at residue 367 of AZIN1, located in β-strand 15 (β15) and predicted to cause a conformational change, induced a cytoplasmic-to-nuclear translocation and conferred gain-of-function phenotypes that were manifested by augmented tumor-initiating potential and more aggressive behavior. Compared with wild-type AZIN1 protein, the edited form has a stronger affinity to antizyme, and the resultant higher AZIN1 protein stability promotes cell proliferation through the neutralization of antizyme-mediated degradation of ornithine decarboxylase (ODC) and cyclin D1 (CCND1). Collectively, A→I RNA editing of AZIN1 may be a potential driver in the pathogenesis of human cancers, particularly HCC.
Collapse
Affiliation(s)
- Leilei Chen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dinman JD. Control of gene expression by translational recoding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:129-49. [PMID: 22243583 PMCID: PMC7149833 DOI: 10.1016/b978-0-12-386497-0.00004-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Like all rules, even the genetic code has exceptions: these are generically classified as “translational recoding.” Almost every conceivable mode of recoding has been documented, including signals that redefine translational reading frame and codon assignation. While first described in viruses, it is becoming clear that sequences that program elongating ribosomes to shift translational reading frame are widely used by organisms in all domains of life, thus expanding both the coding capacity of genomes and the modes through which gene expression can be regulated at the posttranscriptional level. Instances of programmed ribosomal frameshifting and stop codon reassignment are opening up new avenues for treatment of numerous inborn errors of metabolism. The implications of these findings on human health are only beginning to emerge.
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
47
|
Dinman JD. Mechanisms and implications of programmed translational frameshifting. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:661-73. [PMID: 22715123 PMCID: PMC3419312 DOI: 10.1002/wrna.1126] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While ribosomes must maintain translational reading frame in order to translate primary genetic information into polypeptides, cis‐acting signals located in mRNAs represent higher order information content that can be used to fine‐tune gene expression. Classes of signals have been identified that direct a fraction of elongating ribosomes to shift reading frame by one base in the 5′ (−1) or 3′ (+1) direction. This is called programmed ribosomal frameshifting (PRF). Although mechanisms of PRF differ, a common feature is induction of ribosome pausing, which alters kinetic partitioning rates between in‐frame and out‐of‐frame codons at specific ‘slippery’ sequences. Many viruses use PRF to ensure synthesis of the correct ratios of virus‐encoded proteins required for proper viral particle assembly and maturation, thus identifying PRF as an attractive target for antiviral therapeutics. In contrast, recent studies indicate that PRF signals may primarily function as mRNA destabilizing elements in cellular mRNAs. These studies suggest that PRF may be used to fine‐tune gene expression through mRNA decay pathways. The possible regulation of PRF by noncoding RNAs is also discussed. WIREs RNA 2012 doi: 10.1002/wrna.1126 This article is categorized under:
RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > Computational Analyses of RNA Translation > Translation Regulation
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
48
|
Liu YC, Hsu DH, Huang CL, Liu YL, Liu GY, Hung HC. Determinants of the differential antizyme-binding affinity of ornithine decarboxylase. PLoS One 2011; 6:e26835. [PMID: 22073206 PMCID: PMC3207831 DOI: 10.1371/journal.pone.0026835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 10/05/2011] [Indexed: 01/26/2023] Open
Abstract
Ornithine decarboxylase (ODC) is a ubiquitous enzyme that is conserved in all species from bacteria to humans. Mammalian ODC is degraded by the proteasome in a ubiquitin-independent manner by direct binding to the antizyme (AZ). In contrast, Trypanosoma brucei ODC has a low binding affinity toward AZ. In this study, we identified key amino acid residues that govern the differential AZ binding affinity of human and Trypanosoma brucei ODC. Multiple sequence alignments of the ODC putative AZ-binding site highlights several key amino acid residues that are different between the human and Trypanosoma brucei ODC protein sequences, including residue 119, 124,125, 129, 136, 137 and 140 (the numbers is for human ODC). We generated a septuple human ODC mutant protein where these seven bases were mutated to match the Trypanosoma brucei ODC protein sequence. The septuple mutant protein was much less sensitive to AZ inhibition compared to the WT protein, suggesting that these amino acid residues play a role in human ODC-AZ binding. Additional experiments with sextuple mutants suggest that residue 137 plays a direct role in AZ binding, and residues 119 and 140 play secondary roles in AZ binding. The dissociation constants were also calculated to quantify the affinity of the ODC-AZ binding interaction. The Kd value for the wild type ODC protein-AZ heterodimer ([ODC_WT]-AZ) is approximately 0.22 μM, while the Kd value for the septuple mutant-AZ heterodimer ([ODC_7M]-AZ) is approximately 12.4 μM. The greater than 50-fold increase in [ODC_7M]-AZ binding affinity shows that the ODC-7M enzyme has a much lower binding affinity toward AZ. For the mutant proteins ODC_7M(-Q119H) and ODC_7M(-V137D), the Kd was 1.4 and 1.2 μM, respectively. These affinities are 6-fold higher than the WT_ODC Kd, which suggests that residues 119 and 137 play a role in AZ binding.
Collapse
Affiliation(s)
- Yen-Chin Liu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Den-Hua Hsu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Chi-Liang Huang
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Yi-Liang Liu
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| |
Collapse
|
49
|
Hsieh JY, Yang JY, Lin CL, Liu GY, Hung HC. Minimal antizyme peptide fully functioning in the binding and inhibition of ornithine decarboxylase and antizyme inhibitor. PLoS One 2011; 6:e24366. [PMID: 21931692 PMCID: PMC3170320 DOI: 10.1371/journal.pone.0024366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/08/2011] [Indexed: 01/10/2023] Open
Abstract
Antizyme (AZ) is a protein with 228 amino acid residues that regulates ornithine decarboxylase (ODC) by binding to ODC and dissociating its homodimer, thus inhibiting its enzyme activity. Antizyme inhibitor (AZI) is homologous to ODC, but has a higher affinity than ODC for AZ. In this study, we quantified the biomolecular interactions between AZ and ODC as well as AZ and AZI to identify functional AZ peptides that could bind to ODC and AZI and inhibit their function as efficiently as the full-length AZ protein. For these AZ peptides, the inhibitory ability of AZ_95-228 was similar to that of AZ_WT. Furthermore, AZ_95-176 displayed an inhibition (IC50: 0.20 µM) similar to that of AZ-95-228 (IC50: 0.16 µM), even though a large segment spanning residues 177–228 was deleted. However, further deletion of AZ_95-176 from either the N-terminus or the C-terminus decreased its ability to inhibit ODC. The AZ_100-176 and AZ_95-169 peptides displayed a noteworthy decrease in ability to inhibit ODC, with IC50 values of 0.43 and 0.37 µM, respectively. The AZ_95-228, AZ_100-228 and AZ_95-176 peptides had IC50 values comparable to that of AZ_WT and formed AZ-ODC complexes with Kd,AZ-ODC values of 1.5, 5.3 and 5.6 µM, respectively. Importantly, our data also indicate that AZI can rescue AZ peptide-inhibited ODC enzyme activity and that it can bind to AZ peptides with a higher affinity than ODC. Together, these data suggest that these truncated AZ proteins retain their AZI-binding ability. Thus, we suggest that AZ_95-176 is the minimal AZ peptide that is fully functioning in the binding of ODC and AZI and inhibition of their function.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences and Institute of Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Jung-Yen Yang
- National Nano Device Laboratories and Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology & Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (H-CH); (G-YL)
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (H-CH); (G-YL)
| |
Collapse
|
50
|
Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature 2011; 477:490-4. [PMID: 21900894 DOI: 10.1038/nature10393] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 07/27/2011] [Indexed: 11/08/2022]
Abstract
Polyamines are essential organic polycations with multiple cellular functions relevant for cell division, cancer and ageing. Regulation of polyamine synthesis is mainly achieved by controlling the activity of ornithine decarboxylase (ODC) through an unusual mechanism involving ODC antizyme, the binding of which disrupts homodimeric ODC and targets it for ubiquitin-independent degradation by the 26S proteasome. Whereas mammals express several antizyme genes, we have identified a single orthologue, termed OAZ1, in Saccharomyces cerevisiae. Similar to its mammalian counterparts, OAZ1 synthesis is induced with rising intracellular polyamine concentrations, which also inhibit ubiquitin-dependent degradation of the OAZ1 protein. Together, these mechanisms contribute to a homeostatic feedback regulation of polyamines. Antizyme synthesis involves a conserved +1 ribosomal frameshifting (RFS) event at an internal STOP codon during decoding of its messenger RNA. Here we used S. cerevisiae OAZ1 to dissect the enigmatic mechanism underlying polyamine regulation of RFS. In contrast with previous assumptions, we report here that the nascent antizyme polypeptide is the relevant polyamine sensor that operates in cis to negatively regulate upstream RFS on the polysomes, where its own mRNA is being translated. At low polyamine levels, the emerging antizyme polypeptide inhibits completion of its synthesis causing a ribosome pile-up on antizyme mRNA, whereas polyamine binding to nascent antizyme promotes completion of its synthesis. Thus, our study reveals a novel autoregulatory mechanism, in which binding of a small metabolite to a nascent sensor protein stimulates the latter's synthesis co-translationally.
Collapse
|