1
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
2
|
Kovalchuk AL, Sakai T, Qi CF, Du Bois W, Dunnick WA, Cogné M, Morse HC. 3' Igh enhancers hs3b/hs4 are dispensable for Myc deregulation in mouse plasmacytomas with T(12;15) translocations. Oncotarget 2018; 9:34528-34542. [PMID: 30349647 PMCID: PMC6195379 DOI: 10.18632/oncotarget.26160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/18/2023] Open
Abstract
Myc-deregulating T(12;15) chromosomal translocations are the hallmark cytogenetic abnormalities of murine plasmacytomas (PCTs). In most PCTs, the immunoglobulin heavy chain (Igh) locus is broken between the Eμ enhancer and the 3’ regulatory region (3’RR), making the latter the major candidate for orchestrating Myc deregulation. To elucidate the role of the Igh3’RR in tumorigenesis, we induced PCTs in Bcl-xL-transgenic mice deficient for the major Igh3’RR enhancer elements, hs3b and hs4 (hs3b-4-/-). Contrary to previous observations using a mouse lymphoma model, which showed no tumors with peripheral B-cell phenotype in hs3b-4-/- mice, these animals developed T(12;15)-positive PCTs, although with a lower incidence than hs3b-4+/+ (wild-type, WT) controls. In heterozygous hs3b-4+/- mice there was no allelic bias in targeting Igh for T(12;15). Molecular analyses of Igh/Myc junctions revealed dominance of Sμ region breakpoints versus the prevalence of Sγ or Sα in WT controls. Myc expression and Ig secretion in hs3b-4-/- PCTs did not differ from WT controls. We also evaluated the effect of a complete Igh3’RR deletion on Myc expression in the context of an established Igh/Myc translocation in ARS/Igh11-transgenic PCT cell lines. Cre-mediated deletion of the Igh3’RR resulted in gradual reduction of Myc expression, loss of proliferative activity and increased cell death, confirming the necessity of the Igh3’RR for Myc deregulation by T(12;15).
Collapse
Affiliation(s)
- Alexander L Kovalchuk
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tomomi Sakai
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Chen-Feng Qi
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Wendy Du Bois
- Animal Model and Genotyping Core Facility, Laboratory of Cancer Biology and Genetics, NCI, National Institute of Health, Bethesda, MD, USA
| | - Wesley A Dunnick
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Michel Cogné
- Laboratory of Immunology, CNRS UMR 7276, Université de Limoges, Limoges, France
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
3
|
Ghamlouch H, Ouled-Haddou H, Guyart A, Regnier A, Trudel S, Claisse JF, Fuentes V, Royer B, Marolleau JP, Gubler B. TLR9 Ligand (CpG Oligodeoxynucleotide) Induces CLL B-Cells to Differentiate into CD20(+) Antibody-Secreting Cells. Front Immunol 2014; 5:292. [PMID: 24982661 PMCID: PMC4058906 DOI: 10.3389/fimmu.2014.00292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/03/2014] [Indexed: 12/22/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) is the most frequent adult leukemia in the Western world. It is a heterogeneous disease characterized by clonal proliferation and the accumulation of CD5+ mature B lymphocytes. However, the normal counterpart from which the latter cells arise has not yet been identified. CD27 expression and gene expression profiling data suggest that CLL cells are related to memory B-cells. In vitro, memory B-cells differentiate into plasma cells when stimulated with CpG oligodeoxynucleotide (CpG). The objective of the present study was therefore to investigate the ability of CpG, in the context of CD40 ligation, to induce the differentiation of CLL B-cells into antibody-secreting cells (ASCs). CD20+CD38− CLL B-cells were stimulated with a combination of CpG, CD40 ligand and cytokines (CpG/CD40L/c) in a two-step, 7-day culture system. We found that the CpG/CD40L/c culture system prompted CLL B-cells to differentiate into CD19+CD20+CD27+CD38−ASCs. These cells secreted large amounts of IgM and had the same shape as plasma cells. However, only IgMs secreted by ASCs that had differentiated from unmutated CLL B-cells were poly/autoreactive. Class-switch recombination (CSR) to IgG and IgA was detected in cells expressing the activation-induced cytidine deaminase gene (AICDA). Although these ASCs expressed high levels of the transcription factors PRDM1 (BLIMP1), IRF4, and XBP1s, they did not downregulate expression of PAX5. Our results suggest that CLL B-cells can differentiate into ASCs, undergo CSR and produce poly/autoreactive antibodies. Furthermore, our findings may be relevant for (i) identifying the normal counterpart of CLL B-cells and (ii) developing novel treatment strategies in CLL.
Collapse
Affiliation(s)
- Hussein Ghamlouch
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France
| | - Hakim Ouled-Haddou
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France
| | - Aude Guyart
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France
| | - Aline Regnier
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France ; Service d'Hématologie Clinique et Thérapie Cellulaire, Department of Hematology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| | - Stéphanie Trudel
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France ; Laboratoire d'Oncobiologie Moléculaire, Department of Molecular Oncobiology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| | - Jean-François Claisse
- Service d'Hématologie Clinique et Thérapie Cellulaire, Department of Hematology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| | - Vincent Fuentes
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France
| | - Bruno Royer
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France ; Service d'Hématologie Clinique et Thérapie Cellulaire, Department of Hematology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| | - Jean-Pierre Marolleau
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France ; Service d'Hématologie Clinique et Thérapie Cellulaire, Department of Hematology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| | - Brigitte Gubler
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France ; Laboratoire d'Oncobiologie Moléculaire, Department of Molecular Oncobiology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| |
Collapse
|
4
|
Zhang D, Wang G, Wang Y. Transcriptional regulation prediction of antiestrogen resistance in breast cancer based on RNA polymerase II binding data. BMC Bioinformatics 2014; 15 Suppl 2:S10. [PMID: 24564526 PMCID: PMC4015922 DOI: 10.1186/1471-2105-15-s2-s10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Although endocrine therapy impedes estrogen-ER signaling pathway and thus reduces breast cancer mortality, patients remain at continued risk of relapse after tamoxifen or other endocrine therapies. Understanding the mechanisms of endocrine resistance, particularly the role of transcriptional regulation is very important and necessary. Methods We propose a two-step workflow based on linear model to investigate the significant differences between MCF7 and OHT cells stimulated by 17β-estradiol (E2) respect to regulatory transcription factors (TFs) and their interactions. We additionally compared predicted regulatory TFs based on RNA polymerase II (PolII) binding quantity data and gene expression data, which were taken from MCF7/MCF7+E2 and OHT/OHT+E2 cell lines following the same analysis workflow. Enrichment analysis concerning diseases and cell functions and regulatory pattern analysis of different motifs of the same TF also were performed. Results The results showed PolII data could provide more information and predict more recognizably important regulatory TFs. Large differences in TF regulatory mode were found between two cell lines. Through verified through GO annotation, enrichment analysis and related literature regarding these TFs, we found some regulatory TFs such as AP-1, C/EBP, FoxA1, GATA1, Oct-1 and NF-κB, maintained OHT cells through molecular interactions or signaling pathways that were different from the surviving MCF7 cells. From TF regulatory interaction network, we identified E2F, E2F-1 and AP-2 as hub-TFs in MCF7 cells; whereas, in addition to E2F and E2F-1, we identified C/EBP and Oct-1 as hub-TFs in OHT cells. Notably, we found the regulatory patterns of different motifs of the same TF were very different from one another sometimes. Conclusions We inferred some regulatory TFs, such as AP-1 and NF-κB, cooperated with ER through both genomic action and non-genomic action. The TFs that were involved in both protein-protein interactions and signaling pathways could be one of the key resistant mechanisms of endocrine therapy and thus also could be new treatment targets for endocrine resistance. Our flexible workflow could be integrated into an existing analytical framework and guide biologists to further determine underlying mechanisms in human diseases.
Collapse
|
5
|
Fernando TM, Ochs SD, Liu J, Chambers-Turner RC, Sulentic CEW. 2,3,7,8-tetrachlorodibenzo-p-dioxin induces transcriptional activity of the human polymorphic hs1,2 enhancer of the 3'Igh regulatory region. THE JOURNAL OF IMMUNOLOGY 2012; 188:3294-306. [PMID: 22357631 DOI: 10.4049/jimmunol.1101111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxicant known to inhibit Ab secretion and Ig expression. Inhibition of Ig expression may be partially mediated through repression of the 3'Igh regulatory region (3'IghRR). TCDD inhibits mouse 3'IghRR activation and induces aryl hydrocarbon receptor binding to dioxin response elements within the 3'IghRR enhancers hs1,2 and hs4. The human hs1,2 enhancer (hu-hs1,2) is polymorphic as the result of the presence of one to four invariant sequences (ISs), which have been correlated with several autoimmune diseases. The IS also contains a dioxin response element core motif. Therefore, the objective was to determine whether hu-hs1,2 activity is sensitive to TCDD. Using a mouse B cell line (CH12.LX), we compared the effects of TCDD on mouse hs1,2 versus hu-hs1,2 activity. TCDD inhibited mouse hs1,2 similarly to the mouse 3'IghRR. In contrast, hu-hs1,2 was activated by TCDD, and antagonist studies supported an aryl hydrocarbon receptor-dependent activation, which was replicated in a human B cell line (IM-9). Absence of Pax5 binding sites is a major difference between the human and mouse hs1,2 sequence. Insertion of the high-affinity Pax5 site in hu-hs1,2 markedly blunted reporter activity but did not alter TCDD's effect (i.e., no shift from activation to inhibition). Additionally, deletional analysis demonstrated a significant IS contribution to hu-hs1,2 basal activity, but TCDD-induced activity was not strictly IS number dependent. Taken together, our results suggest that hu-hs1,2 is a significant target of TCDD and support species differences in hs1,2 regulation. Therefore, sensitivity of hu-hs1,2 to chemical-induced modulation may influence the occurrence and/or severity of human diseases associated with hu-hs1,2.
Collapse
Affiliation(s)
- Tharu M Fernando
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
6
|
Pinaud E, Marquet M, Fiancette R, Péron S, Vincent-Fabert C, Denizot Y, Cogné M. The IgH locus 3' regulatory region: pulling the strings from behind. Adv Immunol 2011; 110:27-70. [PMID: 21762815 DOI: 10.1016/b978-0-12-387663-8.00002-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antigen receptor gene loci are among the most complex in mammals. The IgH locus, encoding the immunoglobulin heavy chain (IgH) in B-lineage cells, undergoes major transcription-dependent DNA remodeling events, namely V(D)J recombination, Ig class-switch recombination (CSR), and somatic hypermutation (SHM). Various cis-regulatory elements (encompassing promoters, enhancers, and chromatin insulators) recruit multiple nuclear factors in order to ensure IgH locus regulation by tightly orchestrated physical and/or functional interactions. Among major IgH cis-acting regions, the large 3' regulatory region (3'RR) located at the 3' boundary of the locus includes several enhancers and harbors an intriguing quasi-palindromic structure. In this review, we report progress insights made over the past decade in order to describe in more details the structure and functions of IgH 3'RRs in mouse and human. Generation of multiple cellular, transgenic and knock-out models helped out to decipher the function of the IgH 3' regulatory elements in the context of normal and pathologic B cells. Beside its interest in physiology, the challenge of elucidating the locus-wide cross talk between distant cis-regulatory elements might provide useful insights into the mechanisms that mediate oncogene deregulation after chromosomal translocations onto the IgH locus.
Collapse
Affiliation(s)
- Eric Pinaud
- UMR CNRS 6101, Centre National de la Recherche Scientifique, Université de Limoges, Limoges, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Sulentic CEW, Kaminski NE. The long winding road toward understanding the molecular mechanisms for B-cell suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2010; 120 Suppl 1:S171-91. [PMID: 20952503 DOI: 10.1093/toxsci/kfq324] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was first reported in the mid-1970s. Since this initial observation, much effort has been devoted by many laboratories toward elucidation of the cellular and molecular mechanisms responsible for the profound impairment of humoral immune responses by TCDD, which is characterized by decreased B cell to plasma cell differentiation and suppression of immunoglobulin production. These efforts have led to a significant body of research demonstrating a direct effect of TCDD on B-cell maturation and function as well as a requisite but as yet undefined role of the aryl hydrocarbon receptor (AhR) in these effects. Likewise, a number of molecular targets putatively involved in mediating B-cell dysfunction by TCDD, and other AhR ligands, have been identified. However, our current understanding has primarily relied on findings from mouse models, and the translation of this knowledge to effects on human B cells and humoral immunity in humans is less clear. Therefore, a current challenge is to determine how TCDD and the AhR affect human B cells. Efforts have been made in this direction but continued progress in developing adequate human models is needed. An in-depth discussion of these advances and limitations in elucidating the cellular and molecular mechanisms putatively involved in the suppression of B-cell function by TCDD as well as the implications on human diseases associated in epidemiological studies with exposure to TCDD and dioxin-like compounds is the primary focus of this review.
Collapse
Affiliation(s)
- Courtney E W Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
8
|
Hewett PW, Daft EL, Laughton CA, Ahmad S, Ahmed A, Murray JC. Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to Ets binding sites. Mol Med 2006; 12:8-16. [PMID: 16838069 PMCID: PMC1514554 DOI: 10.2119/2005-00046.hewett] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/13/2006] [Indexed: 11/06/2022] Open
Abstract
The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction.
Collapse
Affiliation(s)
- Peter W Hewett
- Department of Vascular and Reproductive Biology, Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK. p.w.hewett.@bham.ac.uk
| | | | | | | | | | | |
Collapse
|
9
|
Chen Q, Ross AC. Vitamin A and immune function: retinoic acid modulates population dynamics in antigen receptor and CD38-stimulated splenic B cells. Proc Natl Acad Sci U S A 2005; 102:14142-9. [PMID: 16093312 PMCID: PMC1242304 DOI: 10.1073/pnas.0505018102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vitamin A and its active metabolite, all-trans retinoic acid (RA), regulate the antibody response in vivo, although the underlying mechanisms are not well understood. We have investigated the regulation by RA of B cell population dynamics and Ig gene expression in purified splenic mouse B cells stimulated through the B cell antigen receptor (BCR) and/or CD38, a BCR coreceptor. After ligation of the BCR and/or CD38, B cells became more heterogeneous in size. RA substantially restrained this change, concomitant with inhibition of cell proliferation. To examine B cell heterogeneity more closely, we categorized stimulated B cells by size (forward angle light scatter) and determined cell division dynamics, germ-line Ig heavy chain gene transcription and surface IgG1 (sIgG1) expression. Flow cytometric analysis of carboxyfluorescein diacetate succinimidyl ester-labeled B cells costained for sIgG1 showed that the more proliferative groups of B cells were smaller, whereas cells expressing more sIgG1 were larger. RA enriched the latter population, whereas cell division frequency in general and the number of smaller B cells that had undergone division cycles were reduced. Although RA significantly inhibited Ig germ-line transcript levels in the total B cell population, CD19(-)IgG1(+) B cells, which represent a more differentiated phenotype, were enriched. Furthermore, pax-5 mRNA was decreased and activation-induced cytidine deaminase mRNA was increased in RA-treated stimulated B cells. Thus, RA regulated factors known to be required for Ig class switch recombination and modulated the population dynamics of ligation-stimulated B cells, while promoting the progression of a fraction of B cells into differentiated sIgG-expressing cells.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Nutritional Sciences and Huck Institute for Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
10
|
Abstract
The developmental program that commits a hematopoietic stem cell to the B lymphocyte lineage employs transcriptional regulators to enable the assembly of an antigen receptor complex with a useful specificity and with signalling competence. Once a naive IgM+ B cell is generated, it must correctly integrate signals from the antigen receptor with those from cytokine receptors and co-receptors delivering T cell help. The B cell responds through the regulated expression of genes that implement specific cell expansion and differentiation, secretion of high levels of high-affinity antibody, and generation of long-term memory. The transcriptional regulators highlighted in this chapter are those for which genetic evidence of function in IgM+ B cells in vivo has been provided, often in the form of mutant mice generated by conventional or conditional gene targeting. A critical developmental step is the maturation of bone marrow emigrant "transitional" B cells into the mature, long-lived cells of the periphery, and a number of the transcription factors discussed here impact on this process, yielding B cells with poor mitogenic responses in vitro. For mature B cells, it is clear that not only the nature, but the duration and amplitude of an activating signal are major determinants of the transcription factor activities enlisted, and so the ultimate outcome. The current challenge is the identification of the target genes that are activated to implement the correct response, so that we may more precisely and safely manipulate B cell behavior to predictably and positively influence humoral immune responses.
Collapse
Affiliation(s)
- L M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
11
|
Nagatsugi F, Sasaki S. Chemical tools for targeted mutagenesis of DNA based on triple helix formation. Biol Pharm Bull 2004; 27:463-7. [PMID: 15056848 DOI: 10.1248/bpb.27.463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of methods for targeted mutagenesis shows promise as an alternative form of gene therapy. Triple helix-forming oligonucleotides (TFOs) provide an attractive strategy for inducing mutations. Especially, alkylation of nucleobases with functionalized TFOs would have potential for site-directed mutation. Several studies have demonstrated that treatment of mammalian cells with TFOs can be exploited to introduce desired sequence changes and point mutations. This review summarizes targeted mutagenesis using reactive TFOs, including studies with photo reactive psolaren derivatives as well as a new reactive derivative recently developed by our group.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
12
|
Abstract
Psoralen-conjugated triplex-forming oligonucleotides (pso-TFOs) can target photochemical adducts to specific DNA sequences. Here, we have used pso-TFOs to activate gene expression on a plasmid. We designed a pso-TFO adapter, consisting of a single-stranded TFO for targeting DNA, linked to a double-stranded hairpin segment that contains a hybrid ecdysone response element (E/GRE) enhancer for binding activated ecdysone receptors. When targeted to the 5' flanking region of a minimal promoter, this pso-TFO adapter increased the expression of a downstream reporter gene three- to four-fold. Gene activation, however, was independent of both the E/GRE hairpin of the adapter and ecdysone receptors, suggesting it was due to an intrinsic effect of triplex. Gene activation was dependent on psoralen photo-crosslinking. Gene activation by pso-TFOs in which the psoralen was linked to the TFO via a disulfide bond was similar before and after detachment of the TFO and its release from the triplex. These results indicate that psoralen photo-crosslinks play a prominent role in activation. Gene activation was undiminished in XPA, XPD and XPG human cell lines, indicating that activation was not dependent on the complete nucleotide excision repair (NER) pathway. Collectively, these results demonstrate that TFOs can be used to direct psoralen crosslinks adjacent to a gene as a way of activating gene expression.
Collapse
Affiliation(s)
- Jie Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
13
|
Linderson Y, Eberhard D, Malin S, Johansson A, Busslinger M, Pettersson S. Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5-mediated repression of B-cell-specific genes. EMBO Rep 2004; 5:291-6. [PMID: 14993928 PMCID: PMC1299001 DOI: 10.1038/sj.embor.7400089] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 11/20/2003] [Accepted: 12/11/2003] [Indexed: 12/31/2022] Open
Abstract
PU.1 and Pax5 are important regulators of immunoglobulin heavy-chain (IgH) gene expression in B lineage cells. We have previously shown that PU.1 can potentiate the transcription of an IgH HS1,2 enhancer-linked reporter gene, and that Pax5 represses the same enhancer in transient transfection assays. Here we report that PU.1, like Pax5, can recruit and physically interact with a member of the Groucho family of co-repressors, Grg4. As a consequence, PU.1 in conjunction with Pax5 represses enhancer function in a position-dependent manner when Grg4 is recruited. Interestingly, Grg4 levels decrease following B-cell activation, suggesting temporal regulation of Grg4. Moreover, the joining-chain promoter, with an activity pattern and architecture resembling HS1,2 can also be repressed by the combinatorial action of Pax5/PU.1/Grg4. These data indicate that Pax5 depends on PU.1, acting in cis, for stable recruitment of Grg co-repressors to B-cell-specific genes.
Collapse
Affiliation(s)
- Ylva Linderson
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dirk Eberhard
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
- Present address: Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Stephen Malin
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Annica Johansson
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Sven Pettersson
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
- Tel: +46 8 524 866 86; Fax: +46 8 33 15 47; E-mail:
| |
Collapse
|
14
|
Uil TG, Haisma HJ, Rots MG. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 2003; 31:6064-78. [PMID: 14576293 PMCID: PMC275457 DOI: 10.1093/nar/gkg815] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger proteins. These different types of designer molecules with their different principles of engineered sequence specificity are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription.
Collapse
Affiliation(s)
- Taco G Uil
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
15
|
Abstract
Waldenstrom's macroglobulinemia (WM) is a clonal B-cell disorder characterized by the production of a monoclonal paraprotein and lymphoplasmacytic clonal expansion. The genetic basis of this disorder is poorly understood. We have recently found that the genetic makeup of WM cells is different from that commonly reported for multiple myeloma (MM), follicular lymphoma, and B-cell chronic lymphocytic leukemia. Translocations involving the immunoglobulin heavy chain locus (IgH) translocations could not be detected in any case, and a molecular analysis showed that the IgH locus switch mu retained its germline configuration. Aneuploidy was not detected using chromosome enumeration probes. The only recurrent chromosome abnormality found was deletion of 6q21. The lack of legitimate of illegitimate rearrangements at the IgH locus suggests that other mechanisms are involved in the pathogenesis of the disorder. Given the clear evidence of a familial form of WM and the currently presumed genomic stability of the clonal cells, it is likely that a single gene defect may be responsible for disease pathogenesis. Having found deletions of the long arm of chromosome 6 as the only recurrent aberration, we speculate that a gene involved in B-cell maturation or survival at this locus may be inactivated as a cause of WM.
Collapse
MESH Headings
- Chromosome Deletion
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 9/genetics
- Gene Rearrangement, B-Lymphocyte
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Switch Region
- In Situ Hybridization, Fluorescence
- Interphase
- Karyotyping
- Mutation
- Translocation, Genetic
- Waldenstrom Macroglobulinemia/genetics
- Waldenstrom Macroglobulinemia/pathology
Collapse
Affiliation(s)
- Roelandt F J Schop
- Mayo Clinic, Department of Hematology and Internal Medicine, Rochester, MN, USA
| | | |
Collapse
|
16
|
Zhang K. Accessibility control and machinery of immunoglobulin class switch recombination. J Leukoc Biol 2003; 73:323-32. [PMID: 12629145 DOI: 10.1189/jlb.0702339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Immunoglobulin (Ig) class switching is a process by which B lymphocytes shift from production of IgM to other Ig classes and subclasses via Ig class switch recombination (CSR). Multiple cellular and molecular processes are involved in CSR. Induction of a given IgH germline transcription initiates CSR processes. Ig germline transcription is selectively activated and induced by specific cytokine(s) via cytokine-specific signal pathways, synergized by CD40 signaling, and optimized by the 3' Ig alpha enhancers through locus control region function. Following Ig germline transcription, the switch-region DNA undergoes conformational changes so that it can serve as an appropriate substrate for nicking and cleavage by switch recombination machinery. Finally, the double-strand breaks in donor and acceptor switch DNAs are processed, repaired, and ligated through a general nonhomologous end join pathway. CSR generates a new transcriptional unit for production of a class-switched Ig isotype.
Collapse
Affiliation(s)
- Ke Zhang
- The Hart and Louse Lyon Laboratory, Division of Clinical Immunology/Allergy, Department of Medicine, University of California Los Angeles, School of Medicine, 90095-1680, USA.
| |
Collapse
|
17
|
Schop RFJ, Kuehl WM, Van Wier SA, Ahmann GJ, Price-Troska T, Bailey RJ, Jalal SM, Qi Y, Kyle RA, Greipp PR, Fonseca R. Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood 2002; 100:2996-3001. [PMID: 12351413 DOI: 10.1182/blood.v100.8.2996] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is characterized by t(9;14)(p13;q32) in 50% of patients who lack paraproteinemia. Waldenström macroglobulinemia (WM), which has an immunoglobulin M (IgM) paraproteinemia, is classified as an LPL. Rare reports have suggested that WM sometimes is associated with 14q23 translocations, deletions of 6q, and t(11;18)(q21;q21). We tested for these abnormalities in the clonal cells of WM patients. We selected patients with clinicopathologic diagnosis of WM (all had IgM levels greater than 1.5 g/dL). Southern blot assay was used to detect legitimate and illegitimate IgH switch rearrangements. In addition to conventional cytogenetic (CC) and multicolor metaphase fluorescence in situ hybridization (M-FISH) analyses, we used interphase FISH to screen for t(9;14)(p13;q32) and other IgH translocations, t(11;18)(q21;q21), and 6q21 deletions. Genomic stability was also assessed using chromosome enumeration probes for chromosomes 7, 9, 11, 12, 15, and 17 in 15 patients. There was no evidence of either legitimate or illegitimate IgH rearrangements by Southern blot assay (n = 12). CC (n = 37), M-FISH (n = 5), and interphase FISH (n = 42) failed to identify IgH or t(11;18) translocations. Although tumor cells from most patients were diploid for the chromosomes studied, deletions of 6q21 were observed in 42% of patients. In contrast to LPL tumors that are not associated with paraproteinemia and that have frequent t(9;14)(p13;q32) translocations, IgH translocations are not found in WM, a form of LPL tumor distinguished by IgM paraproteinemia. However, WM tumor cells, which appear to be diploid or near diploid, often have deletions of 6q21.
Collapse
MESH Headings
- Blotting, Southern
- Bone Marrow/pathology
- Chromosome Mapping
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 6
- Chromosomes, Human, Pair 8
- Humans
- Immunoglobulin Heavy Chains/genetics
- In Situ Hybridization, Fluorescence
- Interphase
- Karyotyping
- Leukemia/genetics
- Microscopy, Fluorescence/methods
- Sequence Deletion
- Translocation, Genetic
- Waldenstrom Macroglobulinemia/genetics
- Waldenstrom Macroglobulinemia/pathology
Collapse
Affiliation(s)
- Roelandt F J Schop
- Department of Hematology and Internal Medicine and the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Diviacco S, Rapozzi V, Xodo L, Helene C, Quadrifoglio F, Giovannangeli C. Site-directed inhibition of DNA replication by triple helix formation. FASEB J 2001; 15:2660-8. [PMID: 11726542 DOI: 10.1096/fj.01-0440com] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sequence-specific DNA recognition can be achieved by the use of triplex-forming molecules, namely, oligonucleotides (TFO) and peptide nucleic acids (PNAs). They have been used to regulate transcription or induce genomic DNA modifications at a selected site in cells and, recently, in vivo. We have determined the conditions under which a triplex structure can inhibit DNA replication in cells. An oligopyrimidine.oligopurine sequence suitable for triplex formation was inserted in a plasmid on both sides of the SV40 origin of replication. This insert-containing plasmid was replicated in COS-1 cells together with the parent plasmid, and the ratio between the corresponding replicated DNAs was quantitated. Selective inhibition of replication of the insert-containing plasmid can be ascribed to ligand binding to the oligopyrimidine.oligopurine sequence. Inhibition of DNA replication was observed using triplex-forming molecules that induce either covalent binding at the double-stranded target sequence (with TFO-psoralen conjugate and irradiation) or noncovalent triplex formation after strand displacement (with bis-PNA). In contrast, in the absence of covalent cross-linking, TFOs (which have been shown to arrest transcription elongation) did not act on replication. These results open new perspectives for future design and use of specific inhibitors of intracellular DNA information processing.
Collapse
Affiliation(s)
- S Diviacco
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Udine, 33100 Udine. Italy
| | | | | | | | | | | |
Collapse
|
19
|
Schlaak JF, Barreiros AP, Pettersson S, Schirmacher P, Meyer Zum Büschenfelde KH, Neurath MF. Antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappaB abrogate fulminant septic shock induced by S. typhimurium in mice. Scand J Immunol 2001; 54:396-403. [PMID: 11555406 DOI: 10.1046/j.1365-3083.2001.00986.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to characterize the functional relevance of the transcription factor NF-kappaB in the pathogenesis of septic shock. BALB/c mice were infected with two wild-type (WT 1, WT 2) strains of S. typhimurium that induce NF-kappaB or an escape variant that lacks this ability (P21) at a dose of 1 x 109/animal, respectively. Furthermore, wild-type infected mice were treated with antisense oligonucleotides directed against NF-kappaB 24 h before and 3 or 6 h after infection, while mismatched oligonucleotides were used as controls. Subsequently, the clinical course, histological and immunological alterations were monitored. Infection with WT 1 and WT 2 strains led to lethal septic shock within 24-36 h. In contrast, infection with the P21 variant was not followed by fulminant septic shock. Treatment with specific antisense oligonucleotides against the p65 subunit of NF-kappaB 24 h before infection prevented the development of fulminant, lethal septic shock and was associated with a significant increase of survival. After 20 h, markedly depressed serum levels of interferon (IFN)-gamma and interleukin (IL)-6 but not IL-10 and tumour necrosis factor (TNF)-alpha were observed in p65 antisense-treated compared to mismatched-treated animals. These data show that the ability of S. typhimurium to induce lethal septic shock is critically dependent on their capacity to induce NF-kappaB.
Collapse
Affiliation(s)
- J F Schlaak
- Department of Medicine A, Imperial College, School of Medicine, St. Mary's Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Barreda DR, Belosevic M. Transcriptional regulation of hemopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:763-789. [PMID: 11602195 DOI: 10.1016/s0145-305x(01)00035-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of blood cell formation, or hemopoiesis, is central to the replenishment of mature effector cells of innate and acquired immune responses. These cells fulfil specific roles in the host defense against invading pathogens, and in the maintenance of homeostasis. The development of hemopoietic cells is under stringent control from extracellular and intracellular stimuli that result in the activation of specific downstream signaling cascades. Ultimately, all signal transduction pathways converge at the level of gene expression where positive and negative modulators of transcription interact to delineate the pattern of gene expression and the overall cellular hemopoietic response. Transcription factors, therefore, represent a nodal point of hemopoietic control through the integration of the various signaling pathways and subsequent modulation of the transcriptional machinery. Transcription factors can act both positively and negatively to regulate the expression of a wide range of hemopoiesis-relevant genes including growth factors and their receptors, other transcription factors, as well as various molecules important for the function of developing cells. The expression of these genes is dependent on the complex interactions between transcription factors, co-regulatory molecules, and specific binding sequences on the DNA. Recent advances in various vertebrate and invertebrate systems emphasize the importance of transcription factors for hemopoiesis control and the evolutionary conservation of several of such mechanisms. In this review we outline some of the key issues frequently identified in studies of the transcriptional regulation of hemopoietic gene expression. In teleosts, we expect that the characterization of several of these transcription factors and their regulatory mechanisms will complement recent advances in a number of fish systems where identification of cytokine and other hemopoiesis-relevant factors are currently under investigation.
Collapse
Affiliation(s)
- D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
21
|
Laurencikiene J, Deveikaite V, Severinson E. HS1,2 enhancer regulation of germline epsilon and gamma2b promoters in murine B lymphocytes: evidence for specific promoter-enhancer interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3257-65. [PMID: 11544313 DOI: 10.4049/jimmunol.167.6.3257] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During an immune response, activated B cells develop into high rate Ig-secreting plasma cells. They also switch from production of IgM to IgG, IgA, or IgE. This process requires a DNA recombination event, which is regulated at the transcriptional level by the production of isotype-specific, sterile germline (GL) transcripts. Induction of these transcripts is controlled by GL promoters and, possibly, by IgH 3' enhancers. We investigated the interaction of the GL epsilon and gamma2b promoters with the HS1,2 enhancer using transiently transfected mouse primary B cells and cell lines. The constructs used for the transfections contained a GL promoter upstream and HS1,2 downstream of a luciferase reporter gene. Both GL epsilon and gamma2b promoters synergized strongly with the HS1,2 enhancer in activated primary B cells, a mature B cell line, and a plasma cell line. We show that the major activity of HS1,2 in activated primary B cells occurs within a 310-bp fragment that includes NF-kappaB, OCT, and NF of activated B cells (Ets/AP-1) sites. By mutating the consensus sequences for various transcription factors, we have determined which sites in HS1,2 are important for synergy with the GL epsilon and gamma2b promoters. Our findings indicate that different sites in HS1,2 might selectively interact with the GL epsilon and gamma2b promoters. We also provide evidence that B cell-specific activator protein is not an absolute suppressor of HS1,2 activity.
Collapse
Affiliation(s)
- J Laurencikiene
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
22
|
Sato H, Wang D, Kudo A. Dissociation of Pax-5 from KI and KII sites during kappa-chain gene rearrangement correlates with its association with the underphosphorylated form of retinoblastoma. THE JOURNAL OF IMMUNOLOGY 2001; 166:6704-10. [PMID: 11359826 DOI: 10.4049/jimmunol.166.11.6704] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The KI and KII sites play a crucial role in kappa-chain gene rearrangement, which was investigated in mice deficient for these sites. Previously, we found that Pax-5 can bind to the KI and KII sites; however, the function of Pax-5 in kappa-chain gene rearrangement has not been investigated. Here, we have used an in vitro culture system in which differentiation from pre-B cells to immature B cells is induced by removing IL-7. We showed that, after the induction of differentiation, Pax-5 dissociated from the KI and KII revealed by EMSA analyses, and this dissociation occurred specifically at the KI and KII sites, but not at the Pax-5 binding site, in the CD19 promoter because of a lower binding affinity of Pax-5 for the KI and KII sites. During differentiation induced by removing IL-7, the underphosphorylated form of retinoblastoma preferentially associated with Pax-5, which caused dissociation of Pax-5 from KI and KII sites. These results suggest that the dissociation of Pax-5 from the KI and KII sites is important in the induction of kappa-chain gene rearrangement.
Collapse
Affiliation(s)
- H Sato
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501 Japan
| | | | | |
Collapse
|
23
|
Abstract
The ability to specifically manipulate gene expression has wide-ranging applications in experimental biology and in gene-based therapeutics. The design of molecules that recognise specific sequences on the DNA double helix provides us with interesting tools to interfere with DNA information processing at an early stage of gene expression. Triplex-forming molecules specifically recognise oligopyrimidine-oligopurine sequences by hydrogen bonding interactions. Applications of such triplex-forming molecules (TFMs) are the subject of the present review. In cell cultures, TFMs have been successfully used to down- or up-regulate transcription in a gene-specific manner and to induce genomic DNA modifications at a selected site. The first evidence of a triplex-based activity in animals has been provided recently. In addition, TFMs are also powerful tools for gene-specific chemistry, in particular for gene transfer applications.
Collapse
Affiliation(s)
- M Faria
- Department of Microbiologia, Immunologia e Parasitologia, UNIFESP, Sao Paulo, SP, Brazil
| | | |
Collapse
|
24
|
Monticelli S, Vercelli D. Molecular regulation of class switch recombination to IgE through epsilon germline transcription. Allergy 2001; 56:270-8. [PMID: 11284792 DOI: 10.1034/j.1398-9995.2001.00129.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- S Monticelli
- Respiratory Sciences Center, College of Medicine, University of Arizona, Tucson 85724, USA
| | | |
Collapse
|
25
|
Linderson Y, French NS, Neurath MF, Pettersson S. Context-dependent Pax-5 repression of a PU.1/NF-kappaB regulated reporter gene in B lineage cells. Gene 2001; 262:107-14. [PMID: 11179673 DOI: 10.1016/s0378-1119(00)00546-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Enhancers located in the 3' end of the locus in part regulate immunoglobulin heavy chain (IgH) gene expression. One of these enhancers, HS 1,2, is developmentally regulated by DNA binding proteins like NF-kappaB, Pax-5 and the protein complex NF-alphaP in B lineage cells. Here we report that NF-alphaP is the ets protein PU.1. A glutathione-S-transferase (GST)-pulldown assay demonstrated that PU.1 can physically interact with NF-kappaB in solution. Experiments in COS cells showed that PU.1 and NF-kappaB (p50/c-Rel) can activate transcription of an enhancer linked reporter gene. The paired domain protein Pax-5 has previously been shown to repress enhancer-dependent transcription. Additional co-transfection experiments revealed that PU.1/NF-kappaB dependent transcription could be repressed in a context dependent manner by Pax-5, but not by the paired domain of Pax-5. When the PU.1 binding site was substituted with a binding site for the ets-protein Elf-1, Pax-5 could no longer repress reporter gene activity. Our data indicate a model where Pax-5 mediated repression of the HS 1,2 enhancer requires the recruitment of a co-factor which is dependent on Pax-5/PU.1 but which cannot be recruited by Pax-5/Elf-1.
Collapse
Affiliation(s)
- Y Linderson
- Center for Genomics Research, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | | | | |
Collapse
|
26
|
Volgina VV, Kingzette M, Zhai SK, Knight KL. A single 3' alpha hs1,2 enhancer in the rabbit IgH locus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6400-5. [PMID: 11086078 DOI: 10.4049/jimmunol.165.11.6400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multiple cis-acting elements including the intronic enhancer and the 3'alpha enhancer (3'alphaE) regulate expression of the Ig heavy chain genes during B cell development. A 3'alphaE is composed of DNase I-hypersensitive sites, hs1,2, hs3a,b, and hs4, found 3' of the murine Calpha gene as well as 3' of both human Calpha genes, Calpha1 and Calpha2. Rabbits have 13 Calpha genes, and we tested whether a 3'alphaE is associated with each of these genes. To identify 3'alphaE regions we developed a rabbit hs1,2 probe and used this to search for enhancer homologues of human hs1,2 in a genomic fosmid library. We identified a single hs1,2 fragment 8-kb downstream of Calpha13, the presumed 3'-most Calpha gene. We also identified and partially sequenced a new Calpha gene, Calpha14, located 6 kb upstream of Calpha13. Genomic Southern blot analysis confirmed that the rabbit genome contains only one hs1,2 enhancer region. We tested the enhancer activity of the hs1,2 with the SV40, V(H), and Ialpha promoters using the luciferase reporter gene in transient transfection assays and found that it significantly enhanced the activity of SV40 and V(H) promoters and slightly enhanced an Ialpha promoter. We conclude that the rabbit has a single hs1,2 enhancer that resides at the 3' end of the IgH gene cluster and may constitute one of the cis-elements regulating the expression of IgH genes.
Collapse
Affiliation(s)
- V V Volgina
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
27
|
Andersson T, Samuelsson A, Matthias P, Pettersson S. The lymphoid-specific cofactor OBF-1 is essential for the expression of a V(H) promoter/HS1,2 enhancer-linked transgene in late B cell development. Mol Immunol 2000; 37:889-99. [PMID: 11282393 DOI: 10.1016/s0161-5890(01)00005-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mice deficient for the lymphoid-specific cofactor OBF-1 display reduced levels of IgG, IgA and IgE. To examine whether the lowered immunoglobulin expression is linked to reduced activity of IgH cis-regulatory elements, OBF-1(-/-) mice were crossed with mice expressing transgenes driven by a V(H) or beta-globin promoter linked to the HS1,2 enhancer. Here we show that OBF-1 is essential for the induced expression of a V(H) promoter-linked transgene, in contrast to a beta-globin promoter-dependent transgene, in LPS/IL-4 or CD40-stimulated splenic B cells. Furthermore, impaired transgene expression is observed in OBF-1(-/-) peritoneal B cells. This deficiency may be linked to OBF-1, as peritoneal cells from normal mice express OBF-1 protein constitutively. Our data link OBF-1 to IgH gene expression in late B lymphoid development.
Collapse
Affiliation(s)
- T Andersson
- Center for Genomics Research, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | | | | | |
Collapse
|
28
|
Maitra S, Atchison M. BSAP can repress enhancer activity by targeting PU.1 function. Mol Cell Biol 2000; 20:1911-22. [PMID: 10688639 PMCID: PMC110809 DOI: 10.1128/mcb.20.6.1911-1922.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/1999] [Accepted: 12/08/1999] [Indexed: 11/20/2022] Open
Abstract
PU.1 and BSAP are transcription factors crucial for proper B-cell development. Absence of PU.1 results in loss of B, T, and myeloid cells, while absence of BSAP results in an early block in B-cell differentiation. Both of these proteins bind to the immunoglobulin kappa chain 3' enhancer, which is developmentally regulated during B-cell differentiation. We find here that BSAP can repress 3' enhancer activity. This repression can occur in plasmacytoma lines or in a non-B-cell line in which the enhancer is activated by addition of the appropriate enhancer binding transcription factors. We show that the transcription factor PU.1 is a target of the BSAP-mediated repression. Although PU.1 and BSAP can physically interact through their respective DNA binding domains, this interaction does not affect DNA binding. When PU.1 function is assayed in isolation on a multimerized PU.1 binding site, BSAP targets a portion of the PU.1 transactivation domain (residues 7 to 30) for repression. The BSAP inhibitory domain (residues 358 to 385) is needed for this repression. Interestingly, the coactivator protein p300 can eliminate this BSAP-mediated repression. We also show that PU.1 can inhibit BSAP transactivation and that this repression requires PU.1 amino acids 7 to 30. Transfection of p300 resulted in only a partial reversal of PU.1-mediated repression of BSAP. When PU.1 function is assayed in the context of the immunoglobulin kappa chain 3' enhancer and associated binding proteins, BSAP represses PU.1 function by a distinct mechanism. This repression does not require the PU.1 transactivation or PEST domains and cannot be reversed by p300 expression. The possible roles of BSAP and PU.1 antagonistic activities in hematopoietic development are discussed.
Collapse
Affiliation(s)
- S Maitra
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
29
|
Praseuth D, Guieysse AL, Hélène C. Triple helix formation and the antigene strategy for sequence-specific control of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:181-206. [PMID: 10807007 DOI: 10.1016/s0167-4781(99)00149-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Specific gene expression involves the binding of natural ligands to the DNA base pairs. Among the compounds rationally designed for artificial regulation of gene expression, oligonucleotides can bind with a high specificity of recognition to the major groove of double helical DNA by forming Hoogsteen type bonds with purine bases of the Watson-Crick base pairs, resulting in triple helix formation. Although the potential target sequences were originally restricted to polypurine-polypyrimidine sequences, considerable efforts were devoted to the extension of the repertoire by rational conception of appropriate derivatives. Efficient tools based on triple helices were developed for various biochemical applications such as the development of highly specific artificial nucleases. The antigene strategy remains one of the most fascinating fields of triplex application to selectively control gene expression. Targeting of genomic sequences is now proved to be a valuable concept on a still limited number of studies; local mutagenesis is in this respect an interesting application of triplex-forming oligonucleotides on cell cultures. Oligonucleotide penetration and compartmentalization in cells, stability to intracellular nucleases, accessibility of the target sequences in the chromatin context, the residence time on the specific target are all limiting steps that require further optimization. The existence and the role of three-stranded DNA in vivo, its interaction with intracellular proteins is worth investigating, especially relative to the regulation of gene transcription, recombination and repair processes.
Collapse
Affiliation(s)
- D Praseuth
- Laboratoire de Biophysique, INSERM U201, CNRS UMR 8646, Muséum National d'Histoire Naturelle, Paris, France
| | | | | |
Collapse
|
30
|
BSAP/Pax5A Expression Blocks Survival and Expansion of Early Myeloid Cells Implicating Its Involvement in Maintaining Commitment to the B-Lymphocyte Lineage. Blood 1999. [DOI: 10.1182/blood.v94.11.3621.423k38_3621_3632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early B lymphopoiesis is marked by plasticity between the myeloid and B lineages. An attractive model for B-lineage development is that commitment to this lineage is partly determined by the ordered expression of genes that prohibit switching to the myeloid lineage. In this regard, whereas the role of the B-cell–specific transcription factor BSAP/Pax5A in regulating B-lymphoid–restricted gene expression has been well-established, its role in maintaining B-lineage commitment is unclear. Thus, BSAP/Pax5A was constitutively expressed in the multipotent EML cell line, which can be directed toward the myeloid lineage by culture with interleukin-3 (IL-3) and retinoic acid. EML cells expressing BSAP/Pax5A successfully acquired the myeloid lineage markers CD11b and F4/80 in response to IL-3 and retinoic acid, indicating differentiation to the myeloid lineage. However, these early myeloid cells failed to expand in culture with granulocyte-macrophage colony-stimulating factor and were directed instead toward an apoptotic pathway. In parallel, primary bone marrow stem cells transduced with retrovirus constitutively expressing BSAP/Pax5A began myeloid cell differentiation, but like the transformed EML model failed to expand in response to myeloid growth factors. These studies identify a role for BSAP/Pax5A in suppressing the response to myeloid growth factors, which may be a component of the regulatory processes that limit plasticity of early B-lymphoid progenitors.
Collapse
|
31
|
BSAP/Pax5A Expression Blocks Survival and Expansion of Early Myeloid Cells Implicating Its Involvement in Maintaining Commitment to the B-Lymphocyte Lineage. Blood 1999. [DOI: 10.1182/blood.v94.11.3621] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEarly B lymphopoiesis is marked by plasticity between the myeloid and B lineages. An attractive model for B-lineage development is that commitment to this lineage is partly determined by the ordered expression of genes that prohibit switching to the myeloid lineage. In this regard, whereas the role of the B-cell–specific transcription factor BSAP/Pax5A in regulating B-lymphoid–restricted gene expression has been well-established, its role in maintaining B-lineage commitment is unclear. Thus, BSAP/Pax5A was constitutively expressed in the multipotent EML cell line, which can be directed toward the myeloid lineage by culture with interleukin-3 (IL-3) and retinoic acid. EML cells expressing BSAP/Pax5A successfully acquired the myeloid lineage markers CD11b and F4/80 in response to IL-3 and retinoic acid, indicating differentiation to the myeloid lineage. However, these early myeloid cells failed to expand in culture with granulocyte-macrophage colony-stimulating factor and were directed instead toward an apoptotic pathway. In parallel, primary bone marrow stem cells transduced with retrovirus constitutively expressing BSAP/Pax5A began myeloid cell differentiation, but like the transformed EML model failed to expand in response to myeloid growth factors. These studies identify a role for BSAP/Pax5A in suppressing the response to myeloid growth factors, which may be a component of the regulatory processes that limit plasticity of early B-lymphoid progenitors.
Collapse
|
32
|
Affiliation(s)
- J Stavnezer
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655-0122, USA
| |
Collapse
|
33
|
Hagman J, Wheat W, Fitzsimmons D, Hodsdon W, Negri J, Dizon F. Pax-5/BSAP: regulator of specific gene expression and differentiation in B lymphocytes. Curr Top Microbiol Immunol 1999; 245:169-94. [PMID: 10533313 DOI: 10.1007/978-3-642-57066-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J Hagman
- Division of Basic Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Iida S, Rao PH, Ueda R, Chaganti RS, Dalla-Favera R. Chromosomal rearrangement of the PAX-5 locus in lymphoplasmacytic lymphoma with t(9;14)(p13;q32). Leuk Lymphoma 1999; 34:25-33. [PMID: 10350329 DOI: 10.3109/10428199909083377] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell non-Hodgkin's lymphoma (NHL) consists of heterogeneous subtypes based on histologic, immunophenotypic, and clinical findings. Recent advances in molecular biology have provided us new insights into the pathogenesis of this neoplasm at the genetic level, such as the deregulation of the protooncogenes adjoining the immunoglobulin gene (Ig) loci, which is a specific event in mature B-cell tumors. Moreover, involvement of certain protooncogenes corresponds to certain subtypes of NHL. Recently, we found that t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytic lymphoma (LPL) juxtaposes PAX-5 gene encoding for an essential transcription factor (BSAP: B-cell specific activator protein) for B-cell proliferation and differentiation to the Ig heavy chain gene (IgH) locus. This results in deregulated expression of the PAX-5 mRNA. We also developed a diagnostic FISH (fluorescence in situ hybridization) procedure which is able to detect 80% of the widely scattering 9p13 breakpoints involved in this translocation. Thus, an understanding of the PAX-5 gene's physiological role in B-cell development and the pathological role in tumorigenesis may lead to the optimal clinical treatment strategy for LPL and LPL-derived diffuse large cell lymphoma (DLCL).
Collapse
Affiliation(s)
- S Iida
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | | | | | | | | |
Collapse
|
35
|
Wallin JJ, Rinkenberger JL, Rao S, Gackstetter ER, Koshland ME, Zwollo P. B cell-specific activator protein prevents two activator factors from binding to the immunoglobulin J chain promoter until the antigen-driven stages of B cell development. J Biol Chem 1999; 274:15959-65. [PMID: 10336503 DOI: 10.1074/jbc.274.22.15959] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immunoglobulin J chain gene is inducibly transcribed in mature B cells upon antigen recognition and a signal from interleukin-2 (IL-2). B cell-specific activator protein (BSAP), a transcription factor that silences J chain transcription, has been identified as a nuclear target of the IL-2 signal. The levels of BSAP progressively decrease in response to IL-2 and this change correlates with the differentiation of B cells into antibody secreting plasma cells. Here we report the binding of the upstream stimulatory factor (USF) to an E-box motif immediately upstream from the BSAP site on the J chain promoter. Mutations in the USF binding motif significantly decrease J chain promoter activity in J chain expressing B cell lines. We also show that a functional relationship exists between USF and a second J chain positive-regulating factor, B-MEF2, using co-immunoprecipitation assays and transfections. Finally, we provide evidence that the binding of BSAP prevents USF and B-MEF2 from interacting with the J chain promoter during the antigen-independent stages of B cell development. It is not until the levels of BSAP decrease during the antigen-driven stages of B cell development that both USF and B-MEF2 are able to bind to their respective promoter elements and activate J chain transcription.
Collapse
Affiliation(s)
- J J Wallin
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lauring J, Schlissel MS. Distinct factors regulate the murine RAG-2 promoter in B- and T-cell lines. Mol Cell Biol 1999; 19:2601-12. [PMID: 10082526 PMCID: PMC84053 DOI: 10.1128/mcb.19.4.2601] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recombination activating genes RAG-1 and RAG-2 are expressed in a lymphoid-cell-specific and developmentally regulated fashion. To understand the transcriptional basis for this regulation, we have cloned and characterized the murine RAG-2 promoter. The promoter was lymphoid cell specific, showing activity in various B- and T-cell lines but little activity in nonlymphoid cells. To our surprise, however, the promoter was regulated differently in B and T cells. Using nuclear extracts from B-cell lines, we found that the B-cell-specific transcription factor BSAP (Pax-5) could bind to a conserved sequence critical for promoter activity. BSAP activated the promoter in transfected cells, and the BSAP site was occupied in a tissue-specific manner in vivo. An overlapping DNA sequence binding to a distinct factor was necessary for promoter activity in T cells. Full promoter activity in T cells was also dependent on a more distal DNA sequence whose disruption had no effect on B-cell activity. The unexpected finding that a B-cell-specific factor regulates the RAG-2 promoter may explain some of the recently observed differences in the regulation of RAG transcription between B and T cells.
Collapse
Affiliation(s)
- J Lauring
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
37
|
Opferman JT, Ober BT, Ashton-Rickardt PG. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 1999; 283:1745-8. [PMID: 10073942 DOI: 10.1126/science.283.5408.1745] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A central question in immunology is the origin of long-lived T cell memory that confers protection against recurrent infection. The differentiation of naïve T cell receptor transgenic CD8+ cells into effector cytotoxic T lymphocytes (CTLs) and memory CD8+ cells was studied. Memory CD8+ cells that were generated after strong antigenic stimulation were the progeny of cytotoxic effectors and retained antigen-specific cytolytic activity 10 weeks after adoptive transfer to antigen-free recipient mice. Thus, potential vaccines based on CTL memory will require the differentiation of naïve cells into post-effector memory T cells.
Collapse
Affiliation(s)
- J T Opferman
- Committee on Immunology, Department of Pathology, Committee on Developmental Biology, The University of Chicago, Gwen Knapp Center for Lupus and Immunology Research, Chicago, IL 60637, USA
| | | | | |
Collapse
|
38
|
Neurath MF, Fuss I, Schürmann G, Pettersson S, Arnold K, Müller-Lobeck H, Strober W, Herfarth C, Büschenfelde KH. Cytokine gene transcription by NF-kappa B family members in patients with inflammatory bowel disease. Ann N Y Acad Sci 1998; 859:149-59. [PMID: 9928378 DOI: 10.1111/j.1749-6632.1998.tb11119.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We examined the expression of the transcription factor NF-kappa B, a nuclear trans-acting factor known to play a key role in cytokine gene regulation, in patients with inflammatory bowel disease (IBD). It was found that LP macrophages in Crohn's disease (CD) and ulcerative colitis (UC) display high levels of NF-kappa B DNA-binding activity accompanied by an increased production of interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF) alpha. Western blot studies showed an increased expression of the p50 and c-rel subunits of NF-kappa B; however, the most striking finding was an increased expression level of NF-kappa B p65 in patients with CD and UC. Selective downregulation of p65 in IBD macrophages by a specific antisense phosphorothioate oligonucleotide was sufficient to considerably reduce production of proinflammatory cytokines. These results demonstrate a characteristic increase of NF-kappa B binding levels in patients with IBD. The data suggest that antisense DNA targeting NF-kappa B p65 can be used as a novel molecular approach for the treatment of patients with IBD.
Collapse
Affiliation(s)
- M F Neurath
- Laboratory of Immunology, University of Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ying H, Healy JI, Goodnow CC, Parnes JR. Regulation of Mouse CD72 Gene Expression During B Lymphocyte Development. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.4760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
CD72 is a 45-kDa transmembrane glycoprotein that is predominantly expressed on cells of the B lineage except plasma cells. Previously, we identified the 255-bp minimal mouse CD72 promoter capable of tissue-specific and developmental stage-specific expression. DNase I footprinting analysis of the 255-bp CD72 promoter revealed three protected elements, footprint (FP) I, FP II, and FP III. FP II, which extends from nucleotide −189 to −169 of the mouse CD72 promoter, exhibited both tissue-specific and developmental stage-specific activity that was reflective of the activity of the CD72 gene in vivo. In this report, we show that FP II is specifically recognized by the transcription factor B cell-specific activator protein (BSAP). Mutations eliminating the binding of BSAP in reporter constructs also eliminated the increase of reporter activity in B cells. In addition, cotransfections with reporter constructs plus different amounts of expression plasmids for BSAP showed that CD72 promoter activity was up-regulated by BSAP in plasmacytoma cells and T cells in a dose-dependent manner. Moreover, the expression level of CD72 decreased 10-fold on normal plasma cells. Compared with the presence of BSAP binding in mature B cells, the binding of BSAP was undetectable in those plasma cells. This study strongly suggests that BSAP-FP II interaction plays a critical role in determining the cell-type specificity of the CD72 promoter. The absence of positive factors such as BSAP accounts for at least part of the loss of mouse CD72 expression in plasma cells and thus might be common for the down-regulation of many molecules at the plasma cell stage.
Collapse
Affiliation(s)
- Han Ying
- *Division of Immunology and Rheumatology, Department of Medicine, and
| | - James I. Healy
- †Howard Hughes Medical Institute, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Christopher C. Goodnow
- †Howard Hughes Medical Institute, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jane R. Parnes
- *Division of Immunology and Rheumatology, Department of Medicine, and
| |
Collapse
|
40
|
Manis JP, van der Stoep N, Tian M, Ferrini R, Davidson L, Bottaro A, Alt FW. Class switching in B cells lacking 3' immunoglobulin heavy chain enhancers. J Exp Med 1998; 188:1421-31. [PMID: 9782119 PMCID: PMC2213411 DOI: 10.1084/jem.188.8.1421] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1998] [Revised: 07/28/1998] [Indexed: 12/30/2022] Open
Abstract
The 40-kb region downstream of the most 3' immunoglobulin (Ig) heavy chain constant region gene (Calpha) contains a series of transcriptional enhancers speculated to play a role in Ig heavy chain class switch recombination (CSR). To elucidate the function of this putative CSR regulatory region, we generated mice with germline mutations in which one or the other of the two most 5' enhancers in this cluster (respectively referred to as HS3a and HS1,2) were replaced either with a pgk-neor cassette (referred to as HS3aN and HS1,2N mutations) or with a loxP sequence (referred to as HS3aDelta and HS1,2Delta, respectively). B cells homozygous for the HS3aN or HS1,2N mutations had severe defects in CSR to several isotypes. The phenotypic similarity of the two insertion mutations, both of which were cis-acting, suggested that inhibition might result from pgk-neor cassette gene insertion rather than enhancer deletion. Accordingly, CSR returned to normal in B cells homozygous for the HS3aDelta or HS1,2Delta mutations. In addition, induced expression of the specifically targeted pgk-neor genes was regulated similarly to that of germline CH genes. Our findings implicate a 3' CSR regulatory locus that appears remarkably similar in organization and function to the beta-globin gene 5' LCR and which we propose may regulate differential CSR via a promoter competition mechanism.
Collapse
Affiliation(s)
- J P Manis
- The Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Chauveau C, Pinaud E, Cogne M. Synergies between regulatory elements of the immunoglobulin heavy chain locus and its palindromic 3' locus control region. Eur J Immunol 1998; 28:3048-56. [PMID: 9808173 DOI: 10.1002/(sici)1521-4141(199810)28:10<3048::aid-immu3048>3.0.co;2-v] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcriptional enhancers of the IgH locus include E mu and four 3' elements (C alpha3', hs1-2, hs3 and hs4), some of which are by themselves weak. We show that these weak elements behave as strong "co-enhancers" when combined, and display a stage-dependent activity which differs from that obtained when they are alone. Combinations mimicking the palindromic structure of the 3' IgH region are particularly efficient. Noticeably in pre-B cells, hs4 is boosted by the addition of elements previously considered inactive at this stage, hs1-2 and hs3. Combinations of 3' elements also strongly boost E mu at all maturation stages, but inhibitory interactions occasionally occur between E mu and incomplete 3' combinations, indicating that full transcriptional activity is mainly achieved when all 5' and 3' partners play their respective roles.
Collapse
Affiliation(s)
- C Chauveau
- Laboratoire d'Immunologie, CNRS EP118, Faculté de Médecine, Limoges, France
| | | | | |
Collapse
|
42
|
Qiu G, Stavnezer J. Overexpression of BSAP/Pax-5 Inhibits Switching to IgA and Enhances Switching to IgE in the I.29μ B Cell Line. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
B cell-specific activator protein (BSAP)/Pax-5 is a paired domain DNA-binding protein expressed in the developing nervous system, testis, and in all B lineage cells, except terminally differentiated plasma cells. BSAP regulates transcription of several genes expressed in B cells and also the activity of the 3′ IgH enhancer. As it has binding sites within or 5′ to the switch regions of nearly all Ig heavy chain C region genes and also is known to increase transcription of the germline ε RNA, BSAP has been hypothesized to be involved in regulation of Ab class switch recombination. To directly examine the effects of BSAP on isotype switching, we use a tetracycline-regulated expression system to overexpress BSAP in the surface IgM+ I.29μ B cell line, a mouse cell line that can be induced to undergo class switch recombination. We find that overexpression of BSAP inhibits switching to IgA in I.29μ cells stimulated with LPS + TGF-β1 + nicotinamide, but enhances switching to IgE in cells stimulated with LPS + IL-4 + nicotinamide. Parallel to its effects on switching, overexpression of BSAP inhibits germline α RNA expression and the transcriptional activity of the germline α promoter, while enhancing activity of the germline ε promoter. Proliferation of I.29μ cells is not affected in this system. The possible mechanisms and significance of the effect of BSAP on isotype switching are discussed.
Collapse
Affiliation(s)
- Gang Qiu
- Department of Molecular Genetics and Microbiology, Graduate Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Graduate Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
43
|
Transcription Factor B-Cell–Specific Activator Protein (BSAP) Is Differentially Expressed in B Cells and in Subsets of B-Cell Lymphomas. Blood 1998. [DOI: 10.1182/blood.v92.4.1308] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The paired box containing gene PAX-5 encodes the transcription factor BSAP (B-cell–specific activator protein), which plays a key role in B-lymphocyte development. Despite its known involvement in a rare subtype of non-Hodgkin’s lymphoma (NHL), a detailed examination of BSAP expression in NHL has not been previously reported. In this study, we analyzed normal and malignant lymphoid tissues and cell lines, including 102 cases of B-cell NHL, 23 cases of T- and null-cell NHL, and 18 cases of Hodgkin’s disease. Normal lymphoid tissues showed strong nuclear BSAP expression in mantle zone B cells, less intense reactivity in follicular center B cells, and no expression in cells of the T-cell–rich zones. Monocytoid B cells showed weak expression, whereas plasma cells and extrafollicular large transformed B cells were negative. Of the 102 B-cell NHLs, 83 (81%) demonstrated BSAP expression. All of the 13 (100%) B-cell chronic lymphocytic leukemias (B-CLLs), 21 of (100%) mantle cells (MCLs), and 20 of 21 (95%) follicular lymphomas (FLs) were positive. Moderate staining intensities were found in most B-CLL and FL cases, whereas most MCLs showed strong reactions, paralleling the strong reactivity of nonmalignant mantle cells. Eight of 12 (67%) marginal zone lymphoma cases showed negative or low BSAP levels, and 17 of 24 (71%) large B-cell lymphomas displayed moderate to strong expression. None of the 23 T- and null-cell lymphomas reacted with the BSAP antisera, whereas in Hodgkin’s disease, 2 of 4 (50%) nodular lymphocytic predominance and 5 of 14 (36%) classical cases showed weak nuclear or nucleolar BSAP reactions in a fraction of the tumor cells. Western blot analysis showed a 52-kD BSAP band in B-cell lines, but not in non–B-cell or plasma cell lines. We conclude that BSAP expression is largely restricted to lymphomas of B-cell lineage and that BSAP expression varies in B-cell subsets and subtypes of B-cell NHL. The high levels of BSAP, especially those found in large-cell lymphomas and in some follicular lymphomas, may be a consequence of deregulated gene expression and suggest a possible involvement of PAX-5 in certain B-cell malignancies.
This is a US government work. There are no restrictions on its use.
Collapse
|
44
|
Transcription Factor B-Cell–Specific Activator Protein (BSAP) Is Differentially Expressed in B Cells and in Subsets of B-Cell Lymphomas. Blood 1998. [DOI: 10.1182/blood.v92.4.1308.416k32_1308_1316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The paired box containing gene PAX-5 encodes the transcription factor BSAP (B-cell–specific activator protein), which plays a key role in B-lymphocyte development. Despite its known involvement in a rare subtype of non-Hodgkin’s lymphoma (NHL), a detailed examination of BSAP expression in NHL has not been previously reported. In this study, we analyzed normal and malignant lymphoid tissues and cell lines, including 102 cases of B-cell NHL, 23 cases of T- and null-cell NHL, and 18 cases of Hodgkin’s disease. Normal lymphoid tissues showed strong nuclear BSAP expression in mantle zone B cells, less intense reactivity in follicular center B cells, and no expression in cells of the T-cell–rich zones. Monocytoid B cells showed weak expression, whereas plasma cells and extrafollicular large transformed B cells were negative. Of the 102 B-cell NHLs, 83 (81%) demonstrated BSAP expression. All of the 13 (100%) B-cell chronic lymphocytic leukemias (B-CLLs), 21 of (100%) mantle cells (MCLs), and 20 of 21 (95%) follicular lymphomas (FLs) were positive. Moderate staining intensities were found in most B-CLL and FL cases, whereas most MCLs showed strong reactions, paralleling the strong reactivity of nonmalignant mantle cells. Eight of 12 (67%) marginal zone lymphoma cases showed negative or low BSAP levels, and 17 of 24 (71%) large B-cell lymphomas displayed moderate to strong expression. None of the 23 T- and null-cell lymphomas reacted with the BSAP antisera, whereas in Hodgkin’s disease, 2 of 4 (50%) nodular lymphocytic predominance and 5 of 14 (36%) classical cases showed weak nuclear or nucleolar BSAP reactions in a fraction of the tumor cells. Western blot analysis showed a 52-kD BSAP band in B-cell lines, but not in non–B-cell or plasma cell lines. We conclude that BSAP expression is largely restricted to lymphomas of B-cell lineage and that BSAP expression varies in B-cell subsets and subtypes of B-cell NHL. The high levels of BSAP, especially those found in large-cell lymphomas and in some follicular lymphomas, may be a consequence of deregulated gene expression and suggest a possible involvement of PAX-5 in certain B-cell malignancies.
This is a US government work. There are no restrictions on its use.
Collapse
|
45
|
Zwollo P, Rao S, Wallin JJ, Gackstetter ER, Koshland ME. The transcription factor NF-kappaB/p50 interacts with the blk gene during B cell activation. J Biol Chem 1998; 273:18647-55. [PMID: 9660839 DOI: 10.1074/jbc.273.29.18647] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The B cell-specific transcription factor Pax-5 has been shown previously to interact with the promoter of the blk gene in vitro. blk encodes a tyrosine kinase associated with the B cell receptor, which is expressed during the early but not the final stages of B cell development. To investigate whether Pax-5 regulates expression of the blk gene in vivo during B cell development and/or activation, Pax-5a was overexpressed in B cell lines. Increases in blk promoter activity using a chloramphenicol acetyltransferase reporter gene system suggested a role for Pax-5a as a transcriptional activator. Subsequent site-specific mutagenesis studies showed that mutations of the Pax-5 binding site on blk significantly alter promoter activity, although results suggested that other factors could bind to this region as well. Using mobility shift assays, we detected an inducible transcription factor that interacts strongly with a sequence overlapping the Pax-5 site on the blk promoter and identified this as a homodimer of NF-kappaB/p50, a member of the NF-kappaB/Rel family of transcription factors. This factor was present at high levels in lipopolysaccharide-activated normal B cells and in plasma cell lines but either at low levels or undetectable levels in resting normal B cells or pre-B or mature B cell lines. In contrast, lipopolysaccharide induction of a pre-B cell line (703/Z) induced a complex that contained both NF-kappaB/p50 and p65. These studies suggest that different NF-kappaB complexes are able to interact with a sequence overlapping the Pax-5 site on the blk promoter and that the relative levels of "bound" factor influence levels of blk expression. Since p50 homodimers and p50/p65 heterodimers of the NF-kappaB complex should have opposing effects on blk transcription, this could provide a mechanism to differentially regulate blk expression during B cell development and activation.
Collapse
Affiliation(s)
- P Zwollo
- Department of Biology, The College of William and Mary, Williamsburg, Virginia 23187, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Information is increasingly available concerning the molecular events that occur during primary and antigen-dependent stages of B cell development. In this review the roles of transcription factors and coactivators are discussed with respect to changes in expression patterns of various genes during B cell development. Transcriptional regulation is also discussed in the context of developmentally regulated immunoglobulin gene V(D)J recombination, somatic hypermutation, and isotype switch recombination.
Collapse
Affiliation(s)
- A Henderson
- Department of Veterinary Science, Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
47
|
Barbulescu K, Becker C, Schlaak JF, Schmitt E, Meyer zum Büschenfelde KH, Neurath MF. Cutting Edge: IL-12 and IL-18 Differentially Regulate the Transcriptional Activity of the Human IFN-γ Promoter in Primary CD4+ T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.8.3642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We analyzed the molecular mechanisms by which IL-12 and IL-18 induce transcriptional activity of the IFN-γ promoter in primary human CD4+ T cells. In transfection experiments, we found that IL-18 directly induces IFN-γ promoter activity, whereas significant activation with IL-12 required costimulation with αCD3/CD28. Furthermore, IL-12 caused in vivo protection of a STAT4 (−236) binding site, whereas stimulation with IL-18 or IL-12 plus αCD3/CD28 induced occupancy of a downstream AP-1 site. Mutation of this AP-1 site abrogated both IL-12- and IL-18-mediated promoter activation, whereas mutation of the STAT site inhibited IL-12-dependent activation. These data suggest that both AP-1 and STAT4 are required for IL-12-dependent IFN-γ promoter activity, whereas IL-18 causes direct activation via AP-1. This differential activation of the IFN-γ promoter gives further insights into molecular pathways governing Th1 T cell development and differentiation.
Collapse
Affiliation(s)
| | | | | | - Edgar Schmitt
- †Institute of Immunology, University of Mainz, Mainz, Germany
| | | | | |
Collapse
|
48
|
Kang CJ, Sheridan C, Koshland ME. A stage-specific enhancer of immunoglobulin J chain gene is induced by interleukin-2 in a presecretor B cell stage. Immunity 1998; 8:285-95. [PMID: 9529146 DOI: 10.1016/s1074-7613(00)80534-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin-2 (IL-2)-induced transcription of the J chain gene was used as a model for analyzing cytokine regulation during B cell development. To determine whether IL-2 signals are targeted to a J chain gene enhancer as well as to its promoter, the sequences flanking the J chain gene were first examined for DNase I hypersensitivity. Of six sites identified, two strong ones, 7.5 kb upstream of the J chain gene, were found to be associated with an enhancer that is active only during the antigen-driven stages of B cell development. Further analyses of the enhancer in the IL-2-responsive presecretor BCL1 cells showed that the enhancer is activated at this stage by an IL-2 signal that functions by opening the enhancer chromatin and stimulating STAT5 to bind to a STAT5 element critical for the enhancer induction. Moreover, after this early induction stage, the enhancer was shown to be constitutively open and active in terminally differentiated plasma cells.
Collapse
Affiliation(s)
- C J Kang
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA.
| | | | | |
Collapse
|
49
|
Pinaud E, Aupetit C, Chauveau C, Cogné M. Identification of a homolog of the C alpha 3'/hs3 enhancer and of an allelic variant of the 3'IgH/hs1,2 enhancer downstream of the human immunoglobulin alpha 1 gene. Eur J Immunol 1997; 27:2981-5. [PMID: 9394827 DOI: 10.1002/eji.1830271134] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although four regulatory elements are known downstream of the mouse IgH alpha gene, a single enhancer homologous to hs1,2 has been thus far described downstream of each human alpha gene (Chen, C. and Birshtein, B. K., J. Immunol. 1997. 159: 1310). We characterized a 10-kb region downstream of the human alpha 1 gene. Two B cell-specific regulatory elements homologous to the murine C alpha 3'/hs3 and hs1,2,3' enhancers were found, which are duplicated downstream of alpha 2. The hs1,2 element is in inverted orientation by comparison with a recently reported alpha 1 hs1,2 element: it appears as a common allelic variant carrying an internal tandem repeat insertion and its prevalence in the human population is 60%. As in the mouse, the human hs1,2 enhancer is flanked with long inverted repeats which may have promoted inversion events through homologous recombination. Although the palindromic organization of the region is maintained in human, sequence identity with rodents focuses on core enhancer elements rather than on flanking repeats. Concerted divergence of both sides of the dyad symmetry suggests that inverted repeats are not just evolutionary remnants but rather play an architectural role in the LCR function.
Collapse
Affiliation(s)
- E Pinaud
- Laboratoire d'Immunologie, CNRS EP118, Limoges, France
| | | | | | | |
Collapse
|
50
|
Mills FC, Harindranath N, Mitchell M, Max EE. Enhancer complexes located downstream of both human immunoglobulin Calpha genes. J Exp Med 1997; 186:845-58. [PMID: 9294139 PMCID: PMC2199054 DOI: 10.1084/jem.186.6.845] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate regulation of human immunoglobulin heavy chain expression, we have cloned DNA downstream from the two human Calpha genes, corresponding to the position in the mouse IgH cluster of a locus control region (LCR) that includes an enhancer which regulates isotype switching. Within 25 kb downstream of both the human immunoglobulin Calpha1 and Calpha2 genes we identified several segments of DNA which display B lymphoid-specific DNase I hypersensitivity as well as enhancer activity in transient transfections. The corresponding sequences downstream from each of the two human Calpha genes are nearly identical to each other. These enhancers are also homologous to three regions which lie in similar positions downstream from the murine Calpha gene and form the murine LCR. The strongest enhancers in both mouse and human have been designated HS12. Within a 135-bp core homology region, the human HS12 enhancers are approximately 90% identical to the murine homolog and include several motifs previously demonstrated to be important for function of the murine enhancer; additional segments of high sequence conservation suggest the possibility of previously unrecognized functional motifs. On the other hand, certain functional elements in the murine enhancer, including a B cell-specific activator protein site, do not appear to be conserved in human HS12. The human homologs of the murine enhancers designated HS3 and HS4 show lower overall sequence conservation, but for at least two of the functional motifs in the murine HS4 (a kappaB site and an octamer motif ) the human HS4 homologs are exactly conserved. An additional hypersensitivity site between human HS3 and HS12 in each human locus displays no enhancer activity on its own, but includes a region of high sequence conservation with mouse, suggesting the possibility of another novel functional element.
Collapse
Affiliation(s)
- F C Mills
- Laboratory of Cell and Viral Regulation, Division of Hematologic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|