1
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (Inheritance?) That Matters. Biomolecules 2023; 13:994. [PMID: 37371574 DOI: 10.3390/biom13060994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of the plasma membrane (PM) bilayer by covalent linkage to a typical glycolipid and expressed in all eukaryotic organisms so far studied. Lipolytic release from PMs into extracellular compartments and intercellular transfer are regarded as the main (patho)physiological roles exerted by GPI-APs. The intercellular transfer of GPI-APs relies on the complete GPI anchor and is mediated by extracellular vesicles such as microvesicles and exosomes and lipid-free homo- or heteromeric aggregates, and lipoprotein-like particles such as prostasomes and surfactant-like particles, or lipid-containing micelle-like complexes. In mammalian organisms, non-vesicular transfer is controlled by the distance between donor and acceptor cells/tissues; intrinsic conditions such as age, metabolic state, and stress; extrinsic factors such as GPI-binding proteins; hormones such as insulin; and drugs such as anti-diabetic sulfonylureas. It proceeds either "directly" upon close neighborhood or contact of donor and acceptor cells or "indirectly" as a consequence of the induced lipolytic release of GPI-APs from PMs. Those displace from the serum GPI-binding proteins GPI-APs, which have retained the complete anchor, and become assembled in aggregates or micelle-like complexes. Importantly, intercellular transfer of GPI-APs has been shown to induce specific phenotypes such as stimulation of lipid and glycogen synthesis, in cultured human adipocytes, blood cells, and induced pluripotent stem cells. As a consequence, intercellular transfer of GPI-APs should be regarded as non-genetic inheritance of (acquired) features between somatic cells which is based on the biogenesis and transmission of matter such as GPI-APs and "membrane landscapes", rather than the replication and transmission of information such as DNA. Its operation in mammalian organisms remains to be clarified.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
2
|
Transfer of Proteins from Cultured Human Adipose to Blood Cells and Induction of Anabolic Phenotype Are Controlled by Serum, Insulin and Sulfonylurea Drugs. Int J Mol Sci 2023; 24:ijms24054825. [PMID: 36902257 PMCID: PMC10003403 DOI: 10.3390/ijms24054825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer leaflet of eukaryotic plasma membranes (PMs) only by carboxy-terminal covalently coupled GPI. GPI-APs are known to be released from the surface of donor cells in response to insulin and antidiabetic sulfonylureas (SUs) by lipolytic cleavage of the GPI or upon metabolic derangement as full-length GPI-APs with the complete GPI attached. Full-length GPI-APs become removed from extracellular compartments by binding to serum proteins, such as GPI-specific phospholipase D (GPLD1), or insertion into the PMs of acceptor cells. Here, the interplay between the lipolytic release and intercellular transfer of GPI-APs and its potential functional impact was studied using transwell co-culture with human adipocytes as insulin-/SU-responsive donor cells and GPI-deficient erythroleukemia as acceptor cells (ELCs). Measurement of the transfer as the expression of full-length GPI-APs at the ELC PMs by their microfluidic chip-based sensing with GPI-binding α-toxin and GPI-APs antibodies and of the ELC anabolic state as glycogen synthesis upon incubation with insulin, SUs and serum yielded the following results: (i) Loss of GPI-APs from the PM upon termination of their transfer and decline of glycogen synthesis in ELCs, as well as prolongation of the PM expression of transferred GPI-APs upon inhibition of their endocytosis and upregulated glycogen synthesis follow similar time courses. (ii) Insulin and SUs inhibit both GPI-AP transfer and glycogen synthesis upregulation in a concentration-dependent fashion, with the efficacies of the SUs increasing with their blood glucose-lowering activity. (iii) Serum from rats eliminates insulin- and SU-inhibition of both GPI-APs' transfer and glycogen synthesis in a volume-dependent fashion, with the potency increasing with their metabolic derangement. (iv) In rat serum, full-length GPI-APs bind to proteins, among them (inhibited) GPLD1, with the efficacy increasing with the metabolic derangement. (v) GPI-APs are displaced from serum proteins by synthetic phosphoinositolglycans and then transferred to ELCs with accompanying stimulation of glycogen synthesis, each with efficacies increasing with their structural similarity to the GPI glycan core. Thus, both insulin and SUs either block or foster transfer when serum proteins are depleted of or loaded with full-length GPI-APs, respectively, i.e., in the normal or metabolically deranged state. The transfer of the anabolic state from somatic to blood cells over long distance and its "indirect" complex control by insulin, SUs and serum proteins support the (patho)physiological relevance of the intercellular transfer of GPI-APs.
Collapse
|
3
|
Modulation of peritumoral fibroblasts with a membrane-tethered tissue inhibitor of metalloproteinase (TIMP) for the elimination of cancer cells. Invest New Drugs 2021; 40:198-208. [PMID: 34519970 DOI: 10.1007/s10637-021-01177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Peritumoral fibroblasts are key components of the tumor microenvironment. Through remodeling of the extracellular matrix (ECM) and secretion of pro-tumorigenic cytokines, peritumoral fibroblasts foster an immunosuppressive milieu conducive to tumor cell proliferation. In this study, we investigated if peritumoral fibroblasts could be therapeutically engineered to elicit an anti-cancer response by abolishing the proteolytic activities of membrane-bound metalloproteinases involved in ECM modulation. METHODS A high affinity, glycosylphosphatidylinositol (GPI)-anchored Tissue Inhibitor of Metalloproteinase (TIMP) named "T1PrαTACE" was created for dual inhibition of MT1-MMP and TACE. T1PrαTACE was expressed in fibroblasts and its effects on cancer cell proliferation investigated in 3D co-culture models. RESULTS T1PrαTACE abrogated the activities of MT1-MMP and TACE in host fibroblasts. As a GPI protein, T1PrαTACE could spontaneously detach from the plasma membrane of the fibroblast to co-localize with MT1-MMP and TACE on neighboring cancer cells. In a 3D co-culture model, T1PrαTACE promoted adherence between the cancer cells and surrounding fibroblasts, which led to an attenuation in tumor development. CONCLUSION Peritumoral fibroblasts can be modulated with the TIMP for the elimination of cancer cells. As a novel anti-tumor strategy, our approach could potentially be used in combination with conventional chemo- and immunotherapies for a more effective cancer therapy.
Collapse
|
4
|
Müller GA. Membrane insertion and intercellular transfer of glycosylphosphatidylinositol-anchored proteins: potential therapeutic applications. Arch Physiol Biochem 2020; 126:139-156. [PMID: 30445857 DOI: 10.1080/13813455.2018.1498904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anchorage of a subset of cell surface proteins in eukaryotic cells is mediated by a glycosylphosphatidylinositol (GPI) moiety covalently attached to the carboxy-terminus of the protein moiety. Experimental evidence for the potential of GPI-anchored proteins (GPI-AP) of being released from cells into the extracellular environment has been accumulating, which involves either the loss or retention of the GPI anchor. Release of GPI-AP from donor cells may occur spontaneously or in response to endogenous or environmental signals. The experimental evidence for direct insertion of exogenous GPI-AP equipped with the complete anchor structure into the outer plasma membrane bilayer leaflets of acceptor cells is reviewed as well as the potential underlying molecular mechanisms. Furthermore, promiscuous transfer of certain GPI-AP between plasma membranes of different cells in vivo under certain (patho)physiological conditions has been reported. Engineering of target cell surfaces using chimeric GPI-AP with complete GPI anchor may be useful for therapeutic applications.
Collapse
Affiliation(s)
- Günter A Müller
- Helmholtz Diabetes Center (HDC) at the Helmholtz Center München, Institute for Diabetes and Obesity, Oberschleissheim, Germany
- Department Biology I, Genetics, Ludwig-Maximilians-University München, Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Müller GA, Herling AW, Stemmer K, Lechner A, Tschöp MH. Chip-based sensing for release of unprocessed cell surface proteins in vitro and in serum and its (patho)physiological relevance. Am J Physiol Endocrinol Metab 2019; 317:E212-E233. [PMID: 31039006 DOI: 10.1152/ajpendo.00079.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To study the possibility that certain components of eukaryotic plasma membranes are released under certain (patho)physiological conditions, a chip-based sensor was developed for the detection of cell surface proteins, which are anchored at the outer leaflet of eukaryotic plasma membranes by a covalently attached glycolipid, exclusively, and might be prone to spontaneous or regulated release on the basis of their amphiphilic character. For this, unprocessed, full-length glycosylphosphatidylinositol-anchored proteins (GPI-AP), together with associated phospholipids, were specifically captured and detected by a chip- and microfluidic channel-based sensor, leading to changes in phase and amplitude of surface acoustic waves (SAW) propagating over the chip surface. Unprocessed GPI-AP in complex with lipids were found to be released from rat adipocyte plasma membranes immobilized on the chip, which was dependent on the flow rate and composition of the buffer stream. The complexes were identified in the incubation medium of primary rat adipocytes, in correlation to the cell size, and in rat as well as human serum. With rats, the measured changes in SAW phase shift, reflecting specific mass/size or amount of the unprocessed GPI-AP in complex with lipids, and SAW amplitude, reflecting their viscoelasticity, enabled the differentiation between the lean and obese (high-fat diet) state, and the normal (Wistar) and hyperinsulinemic (Zucker fatty) as well as hyperinsulinemic hyperglycemic (Zucker diabetic fatty) state. Thus chip-based sensing for complexes of unprocessed GPI-AP and lipids reveals the inherently labile anchorage of GPI-AP at plasma membranes and their susceptibility for release in response to (intrinsic/extrinsic) cues of metabolic relevance and may, therefore, be useful for monitoring of (pre-)diabetic disease states.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
| | - Andreas W Herling
- Sanofi Deutschland GmbH, Diabetes Research Division , Frankfurt am Main , Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
| | - Andreas Lechner
- Diabetes Research Group, Medizinische Klinik IV, Medical Center, Ludwig-Maximilians-Universität München (Klinikum der Universität München) , München , Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Oberschleissheim/Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München , München , Germany
- German Center for Diabetes Research, Oberschleissheim/Neuherberg, Germany
| |
Collapse
|
6
|
Müller GA. The release of glycosylphosphatidylinositol-anchored proteins from the cell surface. Arch Biochem Biophys 2018; 656:1-18. [DOI: 10.1016/j.abb.2018.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
|
7
|
Wang Y, Revollo J, McKinzie P, Pearce MG, Dad A, Yucesoy B, Rosenfeldt H, Heflich RH, Dobrovolsky VN. Establishing a novel Pig-a gene mutation assay in L5178YTk +/- mouse lymphoma cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:4-17. [PMID: 29098723 DOI: 10.1002/em.22152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
The X-linked Pig-a gene encodes an enzyme required for the biosynthesis of glycosyl phosphatidylinositol (GPI) anchors. Pig-a mutant cells fail to synthesize GPI and to express GPI-anchored protein markers (e.g., CD90) on their surface. Marker deficiency serves as a phenotypic indicator of Pig-a mutation in various in vivo assays. Here, we describe an in vitro Pig-a mutation assay in L5178YTk+/- mouse lymphoma cells, in which mutant-phenotype cells are measured by flow cytometry using a fluorescent anti-CD90 antibody. Increased frequencies of CD90-deficient mutants were detected in cells treated with benzo[a]pyrene (B[a]P), N-ethyl-N-nitrosourea (ENU), ethyl methanesulphonate, and 7,12-dimethylbenz[a]anthracene, with near maximum mutant frequencies measured eight days after treatment. The CD90 deficiency in mutant cells quantified by flow cytometry was shown to be due to loss of GPI anchors in a limiting-dilution cloning assay using proaerolysin selection. Individual CD90-deficient cells from cultures treated with ENU, B[a]P, and vehicle were sorted and clonally expanded for molecular analysis of their Pig-a gene. Pig-a mutations with agent-specific signatures were found in nearly all clones that developed from sorted CD90-deficient cells. These results indicate that a Pig-a mutation assay can be successfully conducted in L5178YTk+/- cells. The assay may be useful for mutagenicity screening of environmental agents as well as for testing hypotheses in vitro before committing to in vivo Pig-a assays. Environ. Mol. Mutagen. 59:4-17, 2018. Published 2017. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Page McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Azra Dad
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Berran Yucesoy
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Hans Rosenfeldt
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
8
|
Ralston KS. Taking a bite: Amoebic trogocytosis in Entamoeba histolytica and beyond. Curr Opin Microbiol 2015; 28:26-35. [PMID: 26277085 DOI: 10.1016/j.mib.2015.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 12/28/2022]
Abstract
Entamoeba histolytica is a diarrheal pathogen with the ability to cause profound host tissue damage. This organism possesses contact-dependent cell killing activity, which is likely to be a major contributor to tissue damage. E. histolytica trophozoites were recently shown to ingest fragments of living human cells. It was demonstrated that this process, termed amoebic trogocytosis, contributes to cell killing. Recent advances in ex vivo and 3-D cell culture approaches have shed light on mechanisms for tissue destruction by E. histolytica, allowing amoebic trogocytosis to be placed in the context of additional host and pathogen mediators of tissue damage. In addition to its relevance to pathogenesis of amoebiasis, an appreciation is emerging that intercellular nibbling occurs in many organisms, from protozoa to mammals.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, USA.
| |
Collapse
|
9
|
Mukherjee S, Mukhopadhyay A, Andriani G, Machado FS, Ashton AW, Huang H, Weiss LM, Tanowitz HB. Trypanosoma cruzi invasion is associated with trogocytosis. Microbes Infect 2015; 17:62-70. [PMID: 25448052 PMCID: PMC4302017 DOI: 10.1016/j.micinf.2014.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 01/17/2023]
Abstract
Trogocytosis was originally thought to be restricted to the interaction of cells of the immune system with cancer cells. Such membrane exchanges are probably a general process in cell biology, and membrane exchange has been demonstrated to occur between non-immune cells within an organism. Herein, we report that membrane and protein exchange, consistent with trogocytosis, between Trypanosoma cruzi (both the Brazil and Tulahuen strains) and the mammalian cells it infects. Transfer of labeled membrane patches was monitored by labeling of either parasites or host cells, i.e. human foreskin fibroblasts and rat myoblasts. Trypomastigotes and amastigotes transferred specific surface glycoproteins to the host cells along with membranes. Exchange of membranes between the parasite and host cells occurred during successful invasion. Extracellular amastigotes did not transfer membrane patches and were did not transfer either membranes or proteins to the host cells. Membrane exchange was also found to occur between interacting epimastigotes in cell-free culture and may be important in parasite-parasite interactions as well. Further studies should provide new insights into pathogenesis and provide targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shankar Mukherjee
- Department of Pathology, Albert Einstein College of Medicine, NY, USA.
| | - Aparna Mukhopadhyay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, NY, USA; Department of Physiology, Presidency University, Kolkata, India
| | | | - Fabiana Simão Machado
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary, Laboratory of Medical Investigation, Faculty of Medicine, and the Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anthony W Ashton
- Division of Perinatal Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, N.S.W., Australia
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, NY, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, NY, USA; Department of Medicine, Albert Einstein College of Medicine, NY, USA
| | - Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, NY, USA; Department of Medicine, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
10
|
Chow T, Whiteley J, Li M, Rogers IM. The transfer of host MHC class I protein protects donor cells from NK cell and macrophage-mediated rejection during hematopoietic stem cell transplantation and engraftment in mice. Stem Cells 2014; 31:2242-52. [PMID: 23818226 DOI: 10.1002/stem.1458] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/07/2013] [Accepted: 05/21/2013] [Indexed: 01/17/2023]
Abstract
Human hematopoietic stem cell engraftment has been studied extensively using xenograft transplant models with immunocompromised mice. It is standard practice to incorporate mouse models, such as the limiting dilution assay, to accurately assess the number of repopulating stem cells in bone marrow or umbilical cord blood collections or to confirm the long-term repopulating ability of cultured hematopoietic stem cells. In a previous study using a standard NOD/SCID mouse model to assess human hematopoietic stem cell engraftment we observed that all human cells had mouse MHC class I protein on their surface, suggesting that this is a mechanism adopted by the cells to evade host immune surveillance. To determine whether this was a xenograft phenomenon we studied host MHC transfer in an intraspecies mouse model and observed similar results. The transfer of MHC class I proteins has implications for antigen presentation and immune modulation. In this report, we used a standard mouse model of bone marrow transplantation to demonstrate that surface protein transfer between cells plays an important role in protecting donor hematopoietic cells from NK cell and macrophage-mediated rejection. The transfer of intact MHC class I antigens from host cells to transplanted donor cells confers a self identity on these otherwise foreign cells. This gives them the ability to evade detection by the host NK cells and macrophages. Once full donor chimerism is established, transplanted cells no longer require host MHC class I protein transfer to survive.
Collapse
Affiliation(s)
- Theresa Chow
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Klöhn PC, Castro-Seoane R, Collinge J. Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J Infect 2013; 67:359-68. [PMID: 23911964 DOI: 10.1016/j.jinf.2013.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022]
Abstract
Prion diseases are incurable transmissible neurological disorders. In many natural and experimental prion diseases, infectious prions can be detected in the lymphoreticular system (LRS) long before they reach the brain where they cause a fatal rapidly progressive degeneration. Although major cell types that contribute to prion accumulation have been identified, the mode of prion dissemination in the LRS remains elusive. Recent evidence of a remarkably fast splenic prion accumulation after peripheral infection of mice, resulting in high prion titers in dendritic cells (DCs) and a release of prions from infected DCs via exosomes suggest that intercellular dissemination may contribute to rapid prion colonization in the LRS. A vast body of evidence from retroviral infections shows that DCs and other antigen-presenting cells (APCs) share viral antigens by intercellular transfer to warrant immunity against viruses if APCs remain uninfected. Evolved to adapt the immune response to evading pathogens, these pathways may constitute a portal for unimpeded prion dissemination owing to the tolerance of the immune system against host-encoded prion protein. In this review we summarize current paradigms for antigen-sharing pathways which may be relevant to better understand dissemination of rogue neurotoxic proteins.
Collapse
Affiliation(s)
- Peter-Christian Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
12
|
Abstract
Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters) is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects) within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy - hallmarks of personalized medicine - plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs) that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the complete individual pathogenetic pathways underlying metabolic diseases. A critical step in further validation of EMVs as biomarkers will rely on the identification of unequivocal correlations between critical disease states and specific EMV signatures, which in future may be determined in rapid and convenient fashion using nanoparticle-driven biosensors.
Collapse
Affiliation(s)
- Günter Müller
- Department of Biology I, Genetics, Ludwig-Maximilians University Munich, Biocenter, Munich, Germany
| |
Collapse
|
13
|
Du Y, Pattnaik AK, Song C, Yoo D, Li G. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts. Virology 2012; 424:18-32. [PMID: 22222209 PMCID: PMC7111931 DOI: 10.1016/j.virol.2011.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/22/2011] [Accepted: 12/11/2011] [Indexed: 11/25/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 (ω − 2, where ω is the GPI moiety at E160), P159 (ω − 1), and M162 (ω + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide–anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.
Collapse
Affiliation(s)
- Yijun Du
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | | | | | | |
Collapse
|
14
|
Müller G. Novel applications for glycosylphosphatidylinositol-anchored proteins in pharmaceutical and industrial biotechnology. Mol Membr Biol 2011; 28:187-205. [PMID: 21413835 DOI: 10.3109/09687688.2011.562557] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins have been regarded as typical cell surface proteins found in most eukaryotic cells from yeast to man. They are embedded in the outer plasma membrane leaflet via a carboxy-terminally linked complex glycolipid GPI structure. The amphiphilic nature of the GPI anchor, its compatibility with the function of the attached protein moiety and the capability of GPI-anchored proteins for spontaneous insertion into and transfer between artificial and cellular membranes initially suggested their potential for biotechnological applications. However, these expectations have been hardly fulfilled so far. Recent developments fuel novel hopes with regard to: (i) Automated online expression, extraction and purification of therapeutic proteins as GPI-anchored proteins based on their preferred accumulation in plasma membrane lipid rafts, (ii) multiplex custom-made protein chips based on GPI-anchored cell wall proteins in yeast, (iii) biomaterials and biosensors with films consisting of sets of distinct GPI-anchored binding-proteins or enzymes for sequential or combinatorial catalysis, and (iv) transport of therapeutic proteins across or into relevant tissue cells, e.g., enterocytes or adipocytes. Latter expectations are based on the demonstrated translocation of GPI-anchored proteins from plasma membrane lipid rafts to cytoplasmic lipid droplets and eventually further into microvesicles which upon release from donor cells transfer their GPI-anchored proteins to acceptor cells. The value of these technologies, which are all based on the interaction of GPI-anchored proteins with membranes and surfaces, for the engineering, production and targeted delivery of biomolecules for a huge variety of therapeutic and biotechnological purposes should become apparent in the near future.
Collapse
Affiliation(s)
- Günter Müller
- Department Biology I, Genetics, Biocenter, Ludwig-Maximilians-University Munich, 82152 Martinsried near Munich, Germany.
| |
Collapse
|
15
|
Watanabe K, Salomon DS. Intercellular transfer regulation of the paracrine activity of GPI-anchored Cripto-1 as a Nodal co-receptor. Biochem Biophys Res Commun 2010; 403:108-13. [PMID: 21055389 PMCID: PMC3385653 DOI: 10.1016/j.bbrc.2010.10.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 01/15/2023]
Abstract
Cripto-1 (CR-1) is a glycosylphosphatidylinositol-anchored glycoprotein which acts as an obligate co-receptor of a TGFβ family ligand, Nodal. Previous studies have demonstrated that CR-1 functions in a paracrine fashion by a cellular mechanism which has not been fully described. This paracrine activity was observed only when CR-1 was expressed as a membrane-bound form and was abolished when CR-1 was expressed in a soluble form. In the current study, we found that there were few biochemical differences in post-translational modifications between membrane-anchored and soluble forms of CR-1. Flow cytometric analysis revealed an intercellular transfer of the membrane-bound form of CR-1 between cells. CR-1-expressing cells formed unique membrane extensions, generated more membrane fragments than control cells, and exhibited enhanced cellular adhesion. Thus, expression of CR-1 may alter the physiochemical properties of the plasma membrane resulting in an enhancement of intercellular transfer of cellular signaling components which may account for the paracrine activity of CR-1.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Mammary Biology & Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - David S. Salomon
- Mammary Biology & Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
16
|
Wang J, Zhao F, Dou J, He XF, Chu L, Cao M, Liu C, Li Y, Gu N. Immunotherapy of melanoma by GPI-anchored IL-21 tumour vaccine involves down-regulating regulatory T cells in mouse model. Int J Immunogenet 2010; 38:21-9. [PMID: 20727044 DOI: 10.1111/j.1744-313x.2010.00962.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, we developed a tumour cell vaccine expressing a glycosylphosphatidylinositol (GPI)-anchored IL-21 to test the effect of immunotherapy of melanoma in mouse model. The results indicated that the tumour vaccine was functional, exhibiting delayed tumour growth and prolonging longevity of tumour bearing mice. The immunotherapeutic effect was associated with decreasing the numbers of CD4(+) CD25(+) Foxp3(+) Treg (Tregs) cells, increasing IFN-γ level and promoting lymphocyte-infiltration in tumour tissues. Overall, our data demonstrate that the GPI-anchored IL-21 tumour vaccine regulates immune responses at least in part by down-regulating Tregs and reveals enhanced efficacy of tumour vaccine therapy of melanoma.
Collapse
Affiliation(s)
- J Wang
- Department of Gynecology & Obstetrics, Zhongda Hospital, Southeast University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Brown K, Fidanboylu M, Wong W. Intercellular exchange of surface molecules and its physiological relevance. Arch Immunol Ther Exp (Warsz) 2010; 58:263-72. [PMID: 20508995 DOI: 10.1007/s00005-010-0085-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 02/11/2010] [Indexed: 12/31/2022]
Abstract
For many decades, cellular immunologists have relied on the expression of various cell surface molecules to divide cells into different types and subtypes to study their function. However, in recent years, a large and fast-expanding body of work has described the transfer of surface molecules, including MHC class I and II molecules, between cells, both in vitro and in vivo. The function of this process is still largely unknown, but it is likely to have a significant role in the control of the immune system. It is also likely that this process takes place in a regulated rather than stochastic manner, thus providing another way for the immune system to orchestrate its function. In this review we will summarize the key findings so far, examining the mechanisms of transfer, the consequences of this transfer as shown by in vitro experiments, and possible consequences for the wider immune response.
Collapse
Affiliation(s)
- Kathryn Brown
- MRC Centre for Transplantation, King's College London, School of Medicine at Guy's, King's and St. Thomas' Hospitals, London, UK
| | | | | |
Collapse
|
18
|
Müller G, Jung C, Wied S, Biemer-Daub G, Frick W. Transfer of the glycosylphosphatidylinositol-anchored 5'-nucleotidase CD73 from adiposomes into rat adipocytes stimulates lipid synthesis. Br J Pharmacol 2010; 160:878-91. [PMID: 20590586 PMCID: PMC2935995 DOI: 10.1111/j.1476-5381.2010.00724.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 11/13/2009] [Accepted: 12/13/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE In addition to predominant localization at detergent-insoluble, glycolipid-enriched plasma membrane microdomains (DIGs), glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-proteins) have been found associated with lipid droplets (LDs) and adiposomes. Adiposomes are vesicles that are released from adipocytes in response to anti-lipolytic and lipogenic signals, such as H(2)O(2), palmitate and the antidiabetic sulfonylurea drug, glimepiride, and harbour (c)AMP-degrading GPI-proteins, among them the 5-nucleotidase CD73. Here the role of adiposomes in GPI-protein-mediated information transfer was studied. EXPERIMENTAL APPROACH Adiposomes were incubated with isolated rat adipocytes under various conditions. Trafficking of CD73 and lipid synthesis were analysed. KEY RESULTS Upon blockade of GPI-protein trafficking, CD73 specifically associated with DIGs of small, and to a lower degree, large, adipocytes. On reversal of the blockade, CD73 appeared at cytosolic LD in time- adiposome concentration- and signal (H(2)O(2) > glimepiride > palmitate)-dependent fashion. The salt- and carbonate-resistant association of CD73 with structurally intact DIGs and LD was dependent on its intact GPI anchor. Upon incubation with small and to a lower degree, large adipocytes, adiposomes increased lipid synthesis in the absence or presence of H(2)O(2), glimepiride and palmitate and improved the sensitivity toward these signals. Upregulation of lipid synthesis by adiposomes was dependent on the translocation of CD73 with intact GPI anchors from DIGs to LD. CONCLUSIONS The signal-induced transfer of GPI-anchored CD73 from adiposomes via DIGs to LD of adipocytes mediates paracrine upregulation of lipid synthesis within the adipose tissue.
Collapse
Affiliation(s)
- G Müller
- Sanofi-Aventis Germany GmbH, Research & Development, Therapeutic Department Metabolism, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
19
|
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|
20
|
Müller G, Wied S, Jung C, Frick W, Biemer-Daub G. Inhibition of lipolysis by adiposomes containing glycosylphosphatidylinositol-anchored Gce1 protein in rat adipocytes. Arch Physiol Biochem 2010; 116:28-41. [PMID: 20053127 DOI: 10.3109/13813450903508812] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Small membrane vesicles released from large adipocytes and harbouring the glycosylphosphatidylinositol-anchored (GPI-) AMP-degrading protein CD73 have previously been demonstrated to stimulate the signal-induced esterification of free fatty acids into neutral lipids suggesting a role of these so-called adiposomes (ADIP) in the paracrine regulation of lipid metabolism in the adipose tissue. Here the involvement of another constituent GPI-protein of ADIP, the cAMP-degrading protein Gce1 in the signal-induced inhibition of lipolysis was investigated in primary rat adipocytes. Incubation of small, and to a lower degree, large adipocytes with ADIP inhibited lipolysis and increased its sensitivity toward inhibition by H(2)O(2), the anti-diabetic drug glimepiride and palmitate. This was accompanied by the transfer of Gce1 from the ADIP to detergent-insoluble glycolipid-enriched plasma membrane microdomains (DIGs) and its subsequent translocation to cytoplasmic lipid droplets (LD) of the acceptor adipocytes. The translocation from DIGs to LD rather than the transfer from ADIP to DIGs of Gce1 was stimulated by H(2)O(2) > glimepiride > palmitate. Both transfer and translocation led to salt- and carbonate-resistant association of Gce1 with DIGs and LD, respectively, and relied on the structural integrity of the DIGs and GPI anchor of Gce1. In conclusion, the trafficking of GPI-proteins from ADIP of donor adipocytes via DIGs to LD of acceptor adipocytes mediates paracrine regulation of lipolysis within adipose tissue.
Collapse
|
21
|
Abstract
In a multicellular system, cellular communication is a must for orchestration and coordination of cellular events. Advent of the latest analytical and imaging tools has allowed us to enhance our understanding of the intercellular communication. An intercellular exchange of proteins or intact membrane patches is a ubiquitous phenomenon, and has been the subject of renewed interest, particularly in the context of immune cells. Recent evidence implicates that intercellular protein transfers, including trogocytosis is an important mechanism of the immune system to modulate immune responses and transferred proteins can also contribute to pathology. It has been demonstrated that intercellular protein transfer can be through the internalization/pathway, dissociation-associated pathway, uptake of exosomes and membrane nanotube formations. Exchange of membrane molecules/antigens between immune cells has been observed for a long time, but the mechanisms and functional consequences of these transfers remain unclear. In this review, we will discuss the important findings concerning intercellular protein transfers, possible mechanisms and highlight their physiological relevance to the immune system, with special reference to T cells such as the stimulatory or suppressive immune responses derived from T cells with acquired dendritic cell membrane molecules.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- Research Unit, Saskatchewan Cancer Agency, Departments of Oncology, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
22
|
Watanabe K, Hamada S, Bianco C, Mancino M, Nagaoka T, Gonzales M, Bailly V, Strizzi L, Salomon DS. Requirement of glycosylphosphatidylinositol anchor of Cripto-1 for trans activity as a Nodal co-receptor. J Biol Chem 2007; 282:35772-86. [PMID: 17925387 DOI: 10.1074/jbc.m707351200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cripto-1 (CR-1) has an indispensable role as a Nodal co-receptor for patterning of body axis in embryonic development. CR-1 is reported to have a paracrine activity as a Nodal co-receptor, although CR-1 is primarily produced as a glycosylphosphatidylinositol (GPI)-anchored membrane protein. Regulation of cis and trans function of CR-1 should be important to establish the precise body patterning. However, the mechanism by which GPI-anchored CR-1 can act in trans is not well known. Here we confirmed the paracrine activity of CR-1 by fluorescent cell-labeling and immunofluorescent staining. We generated COOH-terminal-truncated soluble forms of CR-1 based on the attachment site for the GPI moiety (omega-site), which we identified in the present study. GPI-anchored CR-1 has a significantly higher activity than COOH-terminal-truncated soluble forms to induce Nodal signal in trans as well as in cis. Moreover, transmembrane forms of CR-1 partially retained their ability to induce Nodal signaling only when type I receptor Activin-like kinase 4 was overexpressed. NTERA2/D1 cells, which express endogenous CR-1, lost the cell-surface expression of CR-1 after phosphatidylinositol-phospholipase C treatment and became refractory to stimulation of Nodal. These observations suggest that GPI attachment of CR-1 is required for the paracrine activity as a Nodal co-receptor.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Tumor Growth Factor Section, Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Davis DM. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat Rev Immunol 2007; 7:238-43. [PMID: 17290299 DOI: 10.1038/nri2020] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells can extend the limits of their transcriptome by using proteins captured from other cells. Through an exchange of specific proteins, tools and information can be shared to establish integrated communities of cells that are better able to coordinate stages of an immune response. Transferred proteins can also contribute to pathology by allowing, for example, infection of cell types not otherwise infected. Here, I present the case for considering the intercellular transfer of cell-surface proteins between immune cells as commonplace and important.
Collapse
Affiliation(s)
- Daniel M Davis
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
24
|
Abstract
Cell surface proteins containing covalently linked lipids associate with specialized membrane domains. Morphogens like Hedgehog and Wnt use their lipid anchors to bind to lipoprotein particles and employ lipoproteins to travel through tissues. Removal of their lipid anchors or decreasing lipoprotein levels give rise to adverse Hedgehog and Wnt signaling. Some parasites can also transfer their glycosylphosphatidylinositol-anchored surface proteins to host lipoprotein particles. These antigen-loaded lipoproteins spread throughout the circulation, and probably hamper an adequate immune response by killing neutrophils. Together, these findings imply a widespread role for lipoproteins in intercellular transfer of lipid-anchored surface proteins, and may have various physiological consequences. Here, we discuss how lipid-modified proteins may be transferred to and from lipoproteins at the cellular level.
Collapse
Affiliation(s)
- Sylvia Neumann
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
25
|
Sprong H, Suchanek M, van Dijk SM, van Remoortere A, Klumperman J, Avram D, van der Linden J, Leusen JHW, van Hellemond JJ, Thiele C. Aberrant receptor-mediated endocytosis of Schistosoma mansoni glycoproteins on host lipoproteins. PLoS Med 2006; 3:e253. [PMID: 16942390 PMCID: PMC1502155 DOI: 10.1371/journal.pmed.0030253] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 04/04/2006] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Bilharzia is one of the major parasitic infections affecting the public health and socioeconomic circumstances in (sub) tropical areas. Its causative agents are schistosomes. Since these worms remain in their host for decades, they have developed mechanisms to evade or resist the immune system. Like several other parasites, their surface membranes are coated with a protective layer of glycoproteins that are anchored by a lipid modification. METHODS AND FINDINGS We studied the release of glycosyl-phosphatidylinositol (GPI)-anchored proteins of S. mansoni and found them in the circulation associated with host lipoprotein particles. Host cells endocytosed schistosomal GPI-anchored proteins via their lipoprotein receptor pathway, resulting in disturbed lysosome morphology. In patients suffering from chronic schistosomiasis, antibodies attacked the parasite GPI-anchored glycoproteins that were associated with the patients' own lipoprotein particles. These immunocomplexes were endocytosed by cells carrying an immunoglobulin-Fc receptor, leading to clearance of lipoproteins by the immune system. As a consequence, neutral lipids accumulated in neutrophils of infected hamsters and in human neutrophils incubated with patient serum, and this accumulation was associated with apoptosis and reduced neutrophil viability. Also, Trypanosoma brucei, the parasite that causes sleeping sickness, released its major GPI-anchored glycoprotein VSG221 on lipoprotein particles, demonstrating that this process is generalizable to other pathogens/parasites. CONCLUSIONS Transfer of parasite antigens to host cells via host lipoproteins disrupts lipid homeostasis in immune cells, promotes neutrophil apoptosis, may result in aberrant antigen presentation in host cells, and thus cause an inefficient immune response against the pathogen.
Collapse
Affiliation(s)
- Hein Sprong
- Department of Membrane Enzymology, Bijvoet Center, Utrecht University, Utrecht, Netherlands
- * To whom correspondence should be addressed. E-mail: (HS); (CT)
| | - Monika Suchanek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Suzanne M van Dijk
- Department of Membrane Enzymology, Bijvoet Center, Utrecht University, Utrecht, Netherlands
- Department of Cell Biology, Utrecht University, Utrecht, Netherlands
| | | | - Judith Klumperman
- Department of Cell Biology, Utrecht University, Utrecht, Netherlands
| | - Diana Avram
- Department of Biochemistry of Lipids, Utrecht University, Utrecht, Netherlands
| | - Joke van der Linden
- Immunotherapy Laboratory, Department of Immunology, University Medical Center Utrecht, Netherlands
| | - Jeanette H. W Leusen
- Immunotherapy Laboratory, Department of Immunology, University Medical Center Utrecht, Netherlands
| | - Jaap J van Hellemond
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht, Netherlands
| | - Christoph Thiele
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * To whom correspondence should be addressed. E-mail: (HS); (CT)
| |
Collapse
|
26
|
Radovanovic I, Braun N, Giger OT, Mertz K, Miele G, Prinz M, Navarro B, Aguzzi A. Truncated prion protein and Doppel are myelinotoxic in the absence of oligodendrocytic PrPC. J Neurosci 2006; 25:4879-88. [PMID: 15888663 PMCID: PMC6724775 DOI: 10.1523/jneurosci.0328-05.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular prion protein PrP(C) confers susceptibility to transmissible spongiform encephalopathies, yet its normal function is unknown. Although PrP(C)-deficient mice develop and live normally, expression of amino proximally truncated PrP(C) (DeltaPrP) or of its structural homolog Doppel (Dpl) causes cerebellar degeneration that is prevented by coexpression of full-length PrP(C). We now report that mice expressing DeltaPrP or Dpl suffer from widespread leukoencephalopathy. Oligodendrocyte-specific expression of full-length PrP(C) under control of the myelin basic protein (MBP) promoter repressed leukoencephalopathy and vastly extended survival but did not prevent cerebellar granule cell (CGC) degeneration. Conversely, neuron-specific PrP(C) expression under control of the neuron-specific enolase (NSE) promoter antagonized CGC degeneration but not leukoencephalopathy. PrP(C) was found in purified myelin and in cultured oligodendrocytes of both wild-type and MBP-PrP transgenic mice but not in NSE-PrP mice. These results identify white-matter damage as an extraneuronal PrP-associated pathology and suggest a previously unrecognized role of PrP(C) in myelin maintenance.
Collapse
Affiliation(s)
- Ivan Radovanovic
- Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lauc G, Heffer-Lauc M. Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins. Biochim Biophys Acta Gen Subj 2005; 1760:584-602. [PMID: 16388904 DOI: 10.1016/j.bbagen.2005.11.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins have very different biosynthetic origin, but they have one thing in common: they are both comprised of a relatively large hydrophilic moiety tethered to a membrane by a relatively small lipid tail. Both gangliosides and GPI-anchored proteins can be actively shed from the membrane of one cell and taken up by other cells by insertion of their lipid anchors into the cell membrane. The process of shedding and uptake of gangliosides and GPI-anchored proteins has been independently discovered in several disciplines during the last few decades, but these discoveries were largely ignored by people working in other areas of science. By bringing together results from these, sometimes very distant disciplines, in this review, we give an overview of current knowledge about shedding and uptake of gangliosides and GPI-anchored proteins. Tumor cells and some pathogens apparently misuse this process for their own advantage, but its real physiological functions remain to be discovered.
Collapse
Affiliation(s)
- Gordan Lauc
- Department of Chemistry and Biochemistry, University of Osijek School of Medicine, Croatia.
| | | |
Collapse
|
28
|
Panáková D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 2005; 435:58-65. [PMID: 15875013 DOI: 10.1038/nature03504] [Citation(s) in RCA: 519] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 02/28/2005] [Indexed: 11/09/2022]
Abstract
Wnt and Hedgehog family proteins are secreted signalling molecules (morphogens) that act at both long and short range to control growth and patterning during development. Both proteins are covalently modified by lipid, and the mechanism by which such hydrophobic molecules might spread over long distances is unknown. Here we show that Wingless, Hedgehog and glycophosphatidylinositol-linked proteins copurify with lipoprotein particles, and co-localize with them in the developing wing epithelium of Drosophila. In larvae with reduced lipoprotein levels, Hedgehog accumulates near its site of production, and fails to signal over its normal range. Similarly, the range of Wingless signalling is narrowed. We propose a novel function for lipoprotein particles, in which they act as vehicles for the movement of lipid-linked morphogens and glycophosphatidylinositol-linked proteins.
Collapse
Affiliation(s)
- Daniela Panáková
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse-108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
29
|
Burthem J, Roberts DJ. The pathophysiology of variant Creutzfeldt-Jacob disease: the hypotheses behind concerns for blood components and products. Br J Haematol 2003; 122:3-9. [PMID: 12823340 DOI: 10.1046/j.1365-2141.2003.04415.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- John Burthem
- Department of Biomedical Sciences, University of Manchester Institute of Science and Technology, Manchester, UK
| | | |
Collapse
|
30
|
Flechsig E, Hegyi I, Leimeroth R, Zuniga A, Rossi D, Cozzio A, Schwarz P, Rülicke T, Götz J, Aguzzi A, Weissmann C. Expression of truncated PrP targeted to Purkinje cells of PrP knockout mice causes Purkinje cell death and ataxia. EMBO J 2003; 22:3095-101. [PMID: 12805223 PMCID: PMC162137 DOI: 10.1093/emboj/cdg285] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PrP knockout mice with disruption of only the PrP-encoding region (Zürich I-type) remain healthy, whereas mice with deletions extending upstream of the PrP-encoding exon (Nagasaki-type) suffer Purkinje cell loss and ataxia, associated with ectopic expression of Doppel in brain, particularly in Purkinje cells. The phenotype is abrogated by co-expression of full-length PrP. Doppel is 25% similar to PrP, has the same globular fold, but lacks the flexible N-terminal tail. We now show that in Zürich I-type PrP-null mice, expression of N-terminally truncated PrP targeted to Purkinje cells also leads to Purkinje cell loss and ataxia, which are reversed by PrP. Doppel and truncated PrP probably cause Purkinje cell degeneration by the same mechanism.
Collapse
Affiliation(s)
- Eckhard Flechsig
- Institut für Molekularbiologie, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu T, Li R, Pan T, Liu D, Petersen RB, Wong BS, Gambetti P, Sy MS. Intercellular transfer of the cellular prion protein. J Biol Chem 2002; 277:47671-8. [PMID: 12359724 DOI: 10.1074/jbc.m207458200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein (PrP(C)) is a glycosylphosphatidylinositol (GPI)-anchored protein. We investigated whether PrP(C) can move from one cell to another cell in a cell model. Little PrP(C) transfer was detected when a PrP(C) expressing human neuroblastoma cell line was cultured with the human erythroleukemia cells IA lacking PrP(C). Efficient transfer of PrP(C) was detected with the presence of phorbol 12-myristate 13-acetate, an activator of protein kinase C. Maximum PrP(C) transfer was observed when both donor and recipient cells were activated. Furthermore, PrP(C) transfer required the GPI anchor and direct cell to cell contact. However, intercellular protein transfer is not limited to PrP(C), another GPI-anchored protein, CD90, also transfers from the donor cells to acceptor cells after cellular activation. Therefore, this transfer process is GPI-anchor and cellular activation dependent. These findings suggest that the intercellular transfer of GPI-anchored proteins is a regulated process, and may have implications for the pathogenesis of prion disease.
Collapse
Affiliation(s)
- Tong Liu
- Division of Neuropathology, Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kanu N, Imokawa Y, Drechsel DN, Williamson RA, Birkett CR, Bostock CJ, Brockes JP. Transfer of scrapie prion infectivity by cell contact in culture. Curr Biol 2002; 12:523-30. [PMID: 11937020 DOI: 10.1016/s0960-9822(02)00722-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND When a cell is infected with scrapie prions, newly synthesized molecules of the prion protein PrP(C) are expressed at the cell surface and may subsequently be converted to the abnormal form PrP(Sc). In an experimental scrapie infection of an animal, the initial innoculum of PrP(Sc) is cleared relatively rapidly, and the subsequent propagation of the infection depends on the ability of infected cells to convert uninfected target cells to stable production of PrP(Sc). The mechanism of such cell-based infection is not understood. RESULTS We have established a system in dissociated cell culture in which scrapie-infected mouse SMB cells are able to stably convert genetically marked target cells by coculture. After coculture and rigorous removal of SMB cells, the target cells express PrP(Sc) and also incorporate [35S]methionine into PrP(Sc). The extent of conversion was sensitive to the ratio of the two cell types, and conversion by live SMB required 2500-fold less PrP(Sc) than conversion by a cell-free prion preparation. The conversion activity of SMB cells is not detectable in conditioned medium and apparently depends on close proximity or contact, as evidenced by culturing the SMB and target cells on neighboring but separate surfaces. SMB cells were killed by fixation in aldehydes, followed by washing, and were found to retain significant activity at conversion of target cells. CONCLUSIONS Cell-mediated infection of target cells in this culture system is effective and requires significantly less PrP(Sc) than infection by a prion preparation. Several lines of evidence indicate that it depends on cell contact, in particular, the activity of aldehyde-fixed infected cells.
Collapse
Affiliation(s)
- Nnennaya Kanu
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Kaeser PS, Klein MA, Schwarz P, Aguzzi A. Efficient lymphoreticular prion propagation requires PrP(c) in stromal and hematopoietic cells. J Virol 2001; 75:7097-106. [PMID: 11435590 PMCID: PMC114438 DOI: 10.1128/jvi.75.15.7097-7106.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In most prion diseases, infectivity accumulates in lymphoreticular organs early after infection. Defects in hematopoietic compartments, such as impaired B-cell maturation, or in stromal compartments, such as abrogation of follicular dendritic cells, can delay or prevent lymphoreticular prion colonization. However, the nature of the compartment in which prion replication takes place is controversial, and it is unclear whether this compartment coincides with that expressing the normal prion protein (PrP(c)). Here we studied the distribution of infectivity in splenic fractions of wild-type and fetal liver chimeric mice carrying the gene that encodes PrP(c) (Prnp) solely on hematopoietic or on stromal cells. We fractionated spleens at various times after intraperitoneal challenge with prions and assayed infectivity by bioassay. Upon high-dose challenge, chimeras carrying PrP(c) on hematopoietic cells accumulated prions in stroma and in purified splenocytes. In contrast, after low-dose challenge ablation of Prnp in either compartment prevented splenic accumulation of infectivity, indicating that optimal prion replication requires PrP(c) expression by both stromal and hematopoietic compartments.
Collapse
Affiliation(s)
- P S Kaeser
- Institute of Neuropathology, University Hospital, 8091 Zurich, Switzerland
| | | | | | | |
Collapse
|
34
|
Liao KW, Chou WC, Lo YC, Roffler SR. Design of transgenes for efficient expression of active chimeric proteins on mammalian cells. Biotechnol Bioeng 2001; 73:313-23. [PMID: 11283914 DOI: 10.1002/bit.1064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterologous proteins expressed on the surface of cells may be useful for eliciting therapeutic responses and engineering new extracellular properties. We examined factors that control the membrane targeting of alpha-fetoprotein (AFP) and a single-chain antibody (scFv). Chimeric proteins were targeted to the plasma membrane by employing the transmembrane domain (TM) and cytosolic tail of murine CD8O (B7-1), the TM of the human platelet-derived growth factor receptor (PDGFR), the glycosylphosphatidylinositol anchor encoded by the C-terminal extension of decay-accelerating factor (DAF), and the TM of the H1 subunit of the human asialoglycoprotein receptor (ASGPR). AFP chimeric proteins containing the B7, DAF, ASGPR, or PDGFR targeting domains displayed half-lives of 12.2, 3.8, 2.4, and 1.6 h, respectively. The newly synthesized B7 chimera was rapidly transported and remained on the cell surface. Glycosylphosphatidylinositol-anchored chimeras reached the surface more slowly and significant amounts were released into the culture medium. PDGFR TM chimeras were rapidly degraded, whereas ASGPR chimeras were retained in the endoplasmic reticulum (ER). The surface expression of both AFP and scFv chimeric proteins followed the order (highest to lowest) of B7 > DAF >> PDGFR. Introduction of a dimerization domain (hinge-CH(2)-CH(3) region of human IgG1) between scFv and TM dramatically reduced cleavage of the chimeric protein, increased surface expression, and produced biologically active scFv. Our results indicate that transgenes designed for the expression of active scFv on cells should incorporate a TM that does not undergo endocytosis, include an intact cytoplasmic domain, and possess a spacer to reduce cleavage and retain biological activity.
Collapse
Affiliation(s)
- K W Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | | | |
Collapse
|
35
|
Rossi D, Cozzio A, Flechsig E, Klein MA, Rülicke T, Aguzzi A, Weissmann C. Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. EMBO J 2001; 20:694-702. [PMID: 11179214 PMCID: PMC145426 DOI: 10.1093/emboj/20.4.694] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PrP knockout mice in which only the open reading frame was disrupted ('Zürich I') remained healthy. However, more extensive deletions resulted in ataxia, Purkinje cell loss and ectopic expression in brain of Doppel (Dpl), encoded by the downstream gene, PRND: A new PrP knockout line, 'Zürich II', with a 2.9 kb PRNP: deletion, developed this phenotype at approximately 10 months (50% morbidity). A single PRNP: allele abolished the syndrome. Compound Zürich I/Zürich II heterozygotes had half the Dpl of Zürich II mice and developed symptoms 6 months later. Zürich II mice transgenic for a PRND:-containing cosmid expressed Dpl at twice the level and became ataxic approximately 5 months earlier. Thus, Dpl levels in brain and onset of the ataxic syndrome are inversely correlated.
Collapse
Affiliation(s)
| | - Antonio Cozzio
- MRC Prion Unit/Neurogenetics, Imperial College School of Medicine at St Mary’s, London W2 1PG, UK,
Institut für Neuropathologie and Biologisches Zentrallabor, Universitätsspital Zürich, 8091 Zürich, Switzerland Present address: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
D.Rossi and A.Cozzio contributed equally to this work
| | | | - Michael A. Klein
- MRC Prion Unit/Neurogenetics, Imperial College School of Medicine at St Mary’s, London W2 1PG, UK,
Institut für Neuropathologie and Biologisches Zentrallabor, Universitätsspital Zürich, 8091 Zürich, Switzerland Present address: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
D.Rossi and A.Cozzio contributed equally to this work
| | - Thomas Rülicke
- MRC Prion Unit/Neurogenetics, Imperial College School of Medicine at St Mary’s, London W2 1PG, UK,
Institut für Neuropathologie and Biologisches Zentrallabor, Universitätsspital Zürich, 8091 Zürich, Switzerland Present address: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
D.Rossi and A.Cozzio contributed equally to this work
| | - Adriano Aguzzi
- MRC Prion Unit/Neurogenetics, Imperial College School of Medicine at St Mary’s, London W2 1PG, UK,
Institut für Neuropathologie and Biologisches Zentrallabor, Universitätsspital Zürich, 8091 Zürich, Switzerland Present address: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
D.Rossi and A.Cozzio contributed equally to this work
| | - Charles Weissmann
- MRC Prion Unit/Neurogenetics, Imperial College School of Medicine at St Mary’s, London W2 1PG, UK,
Institut für Neuropathologie and Biologisches Zentrallabor, Universitätsspital Zürich, 8091 Zürich, Switzerland Present address: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
D.Rossi and A.Cozzio contributed equally to this work
| |
Collapse
|
36
|
Fridlender ZG, Rabinowitz R, Schlesinger M. Monocytes confer CD14 antigenicity on activated lymphocytes. Hum Immunol 1999; 60:1028-38. [PMID: 10599999 DOI: 10.1016/s0198-8859(99)00110-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study, exposure of human peripheral blood mononuclear cells (PBMC) to phorbol 12-myristate 13-acetate (PMA) was found to elicit the expression of CD14 on lymphocytes. Less than 3% of the lymphocytes present among freshly isolated PBMC were stained with 63D3 anti-CD14 monoclonal antibody (mAb). Within two days of exposure of PBMC to PMA, up to 30% of the lymphocytes reacted with the 63D3 anti-CD14 mAb, though not with the LeuM3 and My4 anti-CD14 mAbs. The appearance of CD14 on lymphocytes was also elicited by exposure of PBMC to phytohemagglutinin (PHA), concanavalin A (Con A), or agarose-bound phytohemagglutinin but not by exposure to lipopolysaccharide, interferon-alpha, or interleukin-2. Purified lymphocyte preparations did not acquire CD14 following stimulation with PMA. Monocytes lost their reactivity with CD14 mAbs (63D3, LeuM3, and My4) within a few hours after exposure to PMA. The level of soluble CD14 was higher in supernatant fluids of cultures of untreated PBMC than of PMA-stimulated PBMC. The addition of PMA to cultures of T cells and monocytes separated by Millipore filters lead to the expression of CD14 on the lymphocytes. The present study indicates that activation of lymphocytes in the presence of monocytes leads to the appearance of CD14 on lymphocytes, and raises the possibility that the expression of CD14 on lymphocytes may result from the transfer of CD14 molecules from monocytes to lymphocytes.
Collapse
Affiliation(s)
- Z G Fridlender
- Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, Hebrew University--Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
37
|
Rabinowitz R, Pokroy R, Yu Y, Schlesinger M. Activated human T-cells bestow T-cell antigens to non-T-cells by intercellular antigen transfer. Hum Immunol 1998; 59:331-42. [PMID: 9634195 DOI: 10.1016/s0198-8859(98)00029-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of the appearance of T-cell antigens on B-cells, following in vitro activation of peripheral blood lymphocytes, was analyzed using the following model: Purified T-cell suspensions were activated by exposure to phytohemagglutinin (PHA) for 3 days, and then incubated for one hour in the presence of cells of either Raji or K562 cells. The expression of T-cell antigens on the cell lines was determined using immunofluorescent F(ab)2 fragments of monoclonal antibodies (mAbs). Following exposure of the CD19+ Raji cells to activated T lymphocytes, 87.6% of the CD19+ cells coexpressed CD2. A large proportion of the CD19+ cells also expressed CD4, CD5, and CD8 antigens. Similar results were obtained with Raji cells that were prelabeled with calcein AM. In Raji cells, which were rendered CD5+ following incubation with activated T cells, only a negligible level of CD5 mRNA was detected with a sensitive RT-PCR technique, probably attributable to contamination with T cells. K562 cells incubated with activated T cells acquired CD2 but not the CD4 and CD8 antigens. Exposure of either Raji or K562 cells to mAb against CD58 inhibited the transfer of CD2. The present study indicates that following their activation, T-cells gain the capacity to transfer T-cell antigens to non-T cells and that CD2 and CD58 molecules are involved in this process.
Collapse
Affiliation(s)
- R Rabinowitz
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
38
|
Kooyman DL, Byrne GW, Logan JS. Glycosyl phosphatidylinositol anchor. EXPERIMENTAL NEPHROLOGY 1998; 6:148-51. [PMID: 9567221 DOI: 10.1159/000020516] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, we and others demonstrated the unique potential for glycosyl phosphatidylinositol (GPI) anchored proteins to transfer from one cell membrane to another in a process we termed 'painting'. The GPI-anchored proteins were shown to transfer intact and functional. The full significance of this phenomenon has yet to be fully realized, but implications exist in many areas including disease transmission (prions), cell protection (endothelial cells), and senescence (erythrocytes). It is of interest to note that cells exhibiting limited or no biosynthetic capacity (spermatozoa and erythrocytes) have been implicated thus far in cell-cell transfer of GPI-linked molecules. This observation demonstrates the potential for GPI-linked proteins to be 'painted' onto cells which otherwise may be incapable of expressing exogenous proteins. We show in this paper that GPI-linked CD59 and decay-accelerating factor will transfer intact from erythrocytes to endothelial cells in transgenic mice. We also demonstrate that the transfer process occurs under physiological conditions using several experimental models including organ and bone marrow transplantation. We detail the procedure to effect transfer of GPI-linked proteins from one cell type to another in either an in vivo or in vitro system.
Collapse
|
39
|
Nosjean O, Briolay A, Roux B. Mammalian GPI proteins: sorting, membrane residence and functions. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1331:153-86. [PMID: 9325440 DOI: 10.1016/s0304-4157(97)00005-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- O Nosjean
- Université Claude Bernard--Lyon 1, Laboratoire de Physico-chimie Biologique--UPRESA CNRS 5013, Villeurbanne, France.
| | | | | |
Collapse
|
40
|
Gubin AN, Reddy B, Njoroge JM, Miller JL. Long-term, stable expression of green fluorescent protein in mammalian cells. Biochem Biophys Res Commun 1997; 236:347-50. [PMID: 9240438 DOI: 10.1006/bbrc.1997.6963] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite the proven utility of green fluorescent protein (GFP) as a reporter molecule for transient gene expression, the adequacy of this marker for models requiring durable, high-level gene expression has not been fully tested. To address this issue, we performed the transfection of Chinese Hamster Ovary (CHO) cells with plasmid DNA encoding both GFP and neomycin phosphotransferase (neo) cassettes. The expression of GFP was measured after the cells were cultured in the presence or absence of G418-mediated selective pressure. After removal of G418 from the growth medium, the percentage of pooled G418 resistant transfectants which co-expressed the GFP transgene increased or remained unchanged. Flow cytometric and visual isolation of GFP-expressing cells was possible without continued selection in G418. One cloned cell line, C463, maintained high-level green fluorescence for 18 weeks in G418 and an additional 12 weeks in nonselective medium. Our data suggest expression of GFP does not confer a growth disadvantage in mammalian cells.
Collapse
Affiliation(s)
- A N Gubin
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|