1
|
Biffi R, Benoit SW, Sariyer IK, Safak M. JC virus small tumor antigen promotes S phase entry and cell cycle progression. Tumour Virus Res 2024; 18:200298. [PMID: 39586476 DOI: 10.1016/j.tvr.2024.200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The early coding region of JC virus (JCV) encodes several regulatory proteins including large T antigen (LT-Ag), small t antigen (Sm t-Ag) and T' proteins because of the alternative splicing of the pre-mRNA. LT-Ag plays a critical role in cell transformation by targeting the key cell cycle regulatory proteins including p53 and pRb, however, the role of Sm t-Ag in this process remains elusive. Here, we investigated the effect of Sm t-Ag on the cell cycle progression and demonstrated that it facilitates S phase entry and exit when cells are released from G0/G1 growth arrest. Examination of the cell cycle stage specific expression profiles of the selected cyclins and cyclin-dependent kinases, including those active at the G1/S and G2/M transition state, demonstrated a higher level of early expression of these regulators such as cyclin B, cycling E, and Cdk2. In addition, analysis of the effect of Sm t-Ag on the growth promoting pathways including those active in the PI3K/Akt/mTOR axis showed substantially higher levels of the phosphorylated-Akt, -Gsk3-β and -S6K1 in Sm t-Ag-positive cells. Collectively, our results demonstrate that Sm t-Ag promotes cell cycle progression by activating the growth promoting pathways through which it may contribute to LT-Ag-mediated cell transformation.
Collapse
Affiliation(s)
- Renato Biffi
- Eurofins Biolabs S.R.L, Via Brubno Buozzi 2, Vimodrone, MI, 20055, Italy
| | - Stefanie W Benoit
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Burnet Campus, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Ilker K Sariyer
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Darwish MK, Allayeh AK, Ahmed AE, Abdelmaksoud MDE, Alkhalil SS, Ageeli Hakami M, Hassan A, Mohamed Mahmoud Farrag H, Saif Eldin M. Mohamed S, Gouda W. Case-control study: Unveiling human polyomaviruses and papillomavirus in Egyptian colorectal cancer patients. PLoS One 2024; 19:e0304147. [PMID: 38861564 PMCID: PMC11166297 DOI: 10.1371/journal.pone.0304147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a cancer type that is thought to be influenced by human papillomaviruses (HPVs) and human polyomaviruses (HPyVs). In Egypt, CRC ranks as the 7th most common cancer, accounting for 3.47% of male cancers and 3% of female cancers. However, there is currently a lack of information regarding the presence of PyVs and HPVs co-infection specifically in CRC cases in Egypt. Therefore, the aim of this study was to investigate the occurrence of HPVs and HPyVs (JCPyV, BKPyV, and SV40) infections, as well as co-infections, among CRC patients in Egypt. Additionally, the study aimed to assess any potential association between these viral infections and tumor stages. METHODS In the present study, we analyzed a total of 51 tissue samples obtained from Egyptian CRC patients, along with 19 polyps' samples. Our investigation focused on the detection and genotyping of HPyVs using Real-Time PCR. Additionally, we employed real-time PCR for the detection of HPVs, and for their genotyping, we utilized a combination of PCR amplification followed by sequencing. RESULTS In our study, we found evidence of HPyVs infection in the CRC patients, specifically SV40 (25.5%) and BKPyV (19.6%). However, JCPyV was not detected in the samples that were examined. Additionally, we discovered that HPV was present in 43.1% of the CRC patients. When considering viral co-infections, 19.6% of the CRC samples showed coexistence of multiple viruses, while no co-infections were found in the polyps samples. Importantly, we observed a significant correlation between the presence of HPVs and advanced colorectal tumor grades B2 and D. CONCLUSION Our findings provide valuable data for the detection of oncogenic viruses in colorectal cancer (CRC) and underscore the association of viral co-infections with advanced tumor stages. However, further research with larger cohorts is necessary to validate these findings and strengthen their significance in the field of CRC.
Collapse
Affiliation(s)
- Marwa K. Darwish
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
- Chemistry Department (Biochemistry Branch), Faculty of Science, Suez University, Suez, Egypt
| | - Abdou K. Allayeh
- Virology Lab, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Giza, Egypt
| | - Amr E. Ahmed
- Department of Biotechnology and Life Science, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni‑Suef, Egypt
| | | | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Ahmed Hassan
- Oncology Department, Faculty of Medicine, Beni-Suef University, Beni‑Suef, Egypt
| | - Haiam Mohamed Mahmoud Farrag
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Samah Saif Eldin M. Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Weaam Gouda
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Mormando R, Wolfe AJ, Putonti C. Discriminating between JCPyV and BKPyV in Urinary Virome Data Sets. Viruses 2021; 13:v13061041. [PMID: 34072839 PMCID: PMC8230216 DOI: 10.3390/v13061041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Polyomaviruses are abundant in the human body. The polyomaviruses JC virus (JCPyV) and BK virus (BKPyV) are common viruses in the human urinary tract. Prior studies have estimated that JCPyV infects between 20 and 80% of adults and that BKPyV infects between 65 and 90% of individuals by age 10. However, these two viruses encode for the same six genes and share 75% nucleotide sequence identity across their genomes. While prior urinary virome studies have repeatedly reported the presence of JCPyV, we were interested in seeing how JCPyV prevalence compares to BKPyV. We retrieved all publicly available shotgun metagenomic sequencing reads from urinary microbiome and virome studies (n = 165). While one third of the data sets produced hits to JCPyV, upon further investigation were we able to determine that the majority of these were in fact BKPyV. This distinction was made by specifically mining for JCPyV and BKPyV and considering uniform coverage across the genome. This approach provides confidence in taxon calls, even between closely related viruses with significant sequence similarity.
Collapse
Affiliation(s)
- Rita Mormando
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stitch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA;
- Department of Microbiology and Immunology, Stitch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
- Correspondence:
| |
Collapse
|
4
|
A Comprehensive Proteomics Analysis of the JC Virus (JCV) Large and Small Tumor Antigen Interacting Proteins: Large T Primarily Targets the Host Protein Complexes with V-ATPase and Ubiquitin Ligase Activities While Small t Mostly Associates with Those Having Phosphatase and Chromatin-Remodeling Functions. Viruses 2020; 12:v12101192. [PMID: 33092197 PMCID: PMC7594058 DOI: 10.3390/v12101192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The oncogenic potential of both the polyomavirus large (LT-Ag) and small (Sm t-Ag) tumor antigens has been previously demonstrated in both tissue culture and animal models. Even the contribution of the MCPyV tumor antigens to the development of an aggressive human skin cancer, Merkel cell carcinoma, has been recently established. To date, the known primary targets of these tumor antigens include several tumor suppressors such as pRb, p53, and PP2A. However, a comprehensive list of the host proteins targeted by these proteins remains largely unknown. Here, we report the first interactome of JCV LT-Ag and Sm t-Ag by employing two independent “affinity purification/mass spectroscopy” (AP/MS) assays. The proteomics data identified novel targets for both tumor antigens while confirming some of the previously reported interactions. LT-Ag was found to primarily target the protein complexes with ATPase (v-ATPase and Smc5/6 complex), phosphatase (PP4 and PP1), and ligase (E3-ubiquitin) activities. In contrast, the major targets of Sm t-Ag were identified as Smarca1/6, AIFM1, SdhA/B, PP2A, and p53. The interactions between “LT-Ag and SdhB”, “Sm t-Ag and Smarca5”, and “Sm t-Ag and SDH” were further validated by biochemical assays. Interestingly, perturbations in some of the LT-Ag and Sm t-Ag targets identified in this study were previously shown to be associated with oncogenesis, suggesting new roles for both tumor antigens in novel oncogenic pathways. This comprehensive data establishes new foundations to further unravel the new roles for JCV tumor antigens in oncogenesis and the viral life cycle.
Collapse
|
5
|
Ahye N, Bellizzi A, May D, Wollebo HS. The Role of the JC Virus in Central Nervous System Tumorigenesis. Int J Mol Sci 2020; 21:ijms21176236. [PMID: 32872288 PMCID: PMC7503523 DOI: 10.3390/ijms21176236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. The study of DNA tumor-inducing viruses and their oncoproteins as a causative agent in cancer initiation and tumor progression has greatly enhanced our understanding of cancer cell biology. The initiation of oncogenesis is a complex process. Specific gene mutations cause functional changes in the cell that ultimately result in the inability to regulate cell differentiation and proliferation effectively. The human neurotropic Polyomavirus JC (JCV) belongs to the family Polyomaviridae and it is the causative agent of progressive multifocal leukoencephalopathy (PML), which is a fatal neurodegenerative disease in an immunosuppressed state. Sero-epidemiological studies have indicated JCV infection is prevalent in the population (85%) and that initial infection usually occurs during childhood. The JC virus has small circular, double-stranded DNA that includes coding sequences for viral early and late proteins. Persistence of the virus in the brain and other tissues, as well as its potential to transform cells, has made it a subject of study for its role in brain tumor development. Earlier observation of malignant astrocytes and oligodendrocytes in PML, as well as glioblastoma formation in non-human primates inoculated with JCV, led to the hypothesis that JCV plays a role in central nervous system (CNS) tumorigenesis. Some studies have reported the presence of both JC viral DNA and its proteins in several primary brain tumor specimens. The discovery of new Polyomaviruses such as the Merkel cell Polyomavirus, which is associated with Merkel cell carcinomas in humans, ignited our interest in the role of the JC virus in CNS tumors. The current evidence known about JCV and its effects, which are sufficient to produce tumors in animal models, suggest it can be a causative factor in central nervous system tumorigenesis. However, there is no clear association between JCV presence in CNS and its ability to initiate CNS cancer and tumor formation in humans. In this review, we will discuss the correlation between JCV and tumorigenesis of CNS in animal models, and we will give an overview of the current evidence for the JC virus’s role in brain tumor formation.
Collapse
|
6
|
Liao Y, Wang Y, Cheng M, Huang C, Fan X. Weighted Gene Coexpression Network Analysis of Features That Control Cancer Stem Cells Reveals Prognostic Biomarkers in Lung Adenocarcinoma. Front Genet 2020; 11:311. [PMID: 32391047 PMCID: PMC7192063 DOI: 10.3389/fgene.2020.00311] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/16/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose We aimed to identify new prognostic biomarkers of lung adenocarcinoma (LUAD) based on cancer stem cell theory. Materials and Methods: RNA-seq and microarray data were obtained with clinical information downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Weighted gene coexpression network analysis (WGCNA) was applied to identify significant module and hub genes. The hub genes were validated via microarray data from GEO, and a prognostic signature with prognostic hub genes was constructed. Results LUAD patients enrolled from TCGA had a higher mRNA expression-based stemness index (mRNAsi) in tumor tissue than in adjacent normal tissue. Some clinical features and prognoses were found to be highly correlated with mRNAsi. WGCNA found that the green module and blue module were the most significant modules related to mRNAsi; 50 key genes were identified in the green module and were enriched mostly in the cell cycle, chromosome segregation, chromosomal region and microtubule binding. Six hub genes were revealed through the protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) plugin of Cytoscape software. Based on external verification with the GEO database, these six genes are not only expressed at different levels in LUAD and normal tissues but also associated with different clinical features. In addition, the construction of a prognostic signature with three hub genes showed high predictive value. Conclusion mRNAsi-related biomarkers may suggest a new potential treatment strategy for LUAD.
Collapse
Affiliation(s)
- Yi Liao
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulei Wang
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mengqing Cheng
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chengliang Huang
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Sinclair G, Al-Saffar Y, Johnstone P, Hatiboglu MA, Shamikh A. A challenging case of concurrent multiple sclerosis and anaplastic astrocytoma. Surg Neurol Int 2019; 10:166. [PMID: 31583163 PMCID: PMC6763678 DOI: 10.25259/sni_176_2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/08/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Cases of gliomas coexisting with multiple sclerosis (MS) have been described over the past few decades. However, due to the complex clinical and radiological traits inherent to both entities, this concurrent phenomenon remains difficult to diagnose. Much has been debated about whether this coexistence is incidental or mirrors a poorly understood neoplastic phenomenon engaging glial cells in the regions of demyelination. Case Description: We present the case of a 41-year-old patient diagnosed with a left-sided frontal contrast enhancing lesion initially assessed as a tumefactive MS. Despite systemic treatment, the patient gradually developed signs of mass effect, which led to decompressive surgery. The initial microscopic evaluation demonstrated the presence of MS and oligodendroglioma; the postoperative evolution proved complex due to a series of MS-relapses and tumor recurrence. An ulterior revaluation of the samples for the purpose of this report showed an MS-concurrent anaplastic astrocytoma. We describe all relevant clinical aspects of this case and review the medical literature for possible causal mechanisms. Conclusion: Although cases of concurrent glioma and MS remain rare, we present a case illustrating this phenomenon and explore a number of theories behind a potential causal relationship.
Collapse
Affiliation(s)
- Georges Sinclair
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Neurosurgery, Bezmialem Vakif University Medical School, İstanbul, Turkey.,Department of Oncology, Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - Yahya Al-Saffar
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Philippa Johnstone
- Department of Oncology, Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | | | - Alia Shamikh
- Department of Neuropathology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Yan X, Liu XP, Guo ZX, Liu TZ, Li S. Identification of Hub Genes Associated With Progression and Prognosis in Patients With Bladder Cancer. Front Genet 2019; 10:408. [PMID: 31134129 PMCID: PMC6513982 DOI: 10.3389/fgene.2019.00408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/15/2019] [Indexed: 01/28/2023] Open
Abstract
Given that most bladder cancers (BCs) are diagnosed in advanced stages with poor prognosis, this study aims to find novel biomarkers associated with the progression and prognosis in patients with BC. 1,779 differentially expressed genes (DEGs) between BC samples and normal bladder tissues were identified in total. Then, 24 DEGs were regarded as candidate hub genes by constructing a protein–protein interaction (PPI) network and a random forest model. Among them, six genes (BUB1B, CCNB1, CDK1, ISG15, KIF15, and RAD54L) were eventually identified by using five analysis methods (one-way Analysis of Variance analysis, spearman correlation analysis, distance correlation analysis, receiver operating characteristic curve, and expression values comparison), which were correlated with the progression and prognosis of BC. Moreover, the validation of hub genes was conducted based on GSE13507, Oncomine, and CBioPortal. Results of univariate Cox regression analysis showed that the expression levels of all the hub genes were influence features of overall survival (OS) and cancer specific survival (CSS) based on GSE13507, and we further established a six-gene signature based on the expression levels of the six genes and their Cox regression coefficients. This signature showed good potential for clinical application suggested by survival analysis (OS: Hazard Ratio = 0.484, 95%CI: 0.298–0.786; P = 0.0034; CSS: Hazard Ratio = 0.244, 95%CI: 0.121–0.493, P < 0.0001) and decision curve analysis. In conclusion, our study indicates that six hub genes have great predictive value for the prognosis and progression of BC and may contribute to the exploration of further basic and clinical research of BC.
Collapse
Affiliation(s)
- Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zi-Xin Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tong-Zu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| |
Collapse
|
9
|
Donadoni M, Sariyer R, Wollebo H, Bellizzi A, Sariyer IK. Viral tumor antigen expression is no longer required in radiation-resistant subpopulation of JCV induced mouse medulloblastoma cells. Genes Cancer 2018; 9:130-141. [PMID: 30108683 PMCID: PMC6086003 DOI: 10.18632/genesandcancer.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human neurotropic polyomavirus JC, JC virus (JCV), infects the majority of human population during early childhood and establishes a latent/persistent infection for the rest of the life. JCV is the etiologic agent of the fatal demyelinating disease of the central nervous system, progressive multifocal leukoencephalopathy (PML) that is seen primarily in immunocompromised individuals. In addition to the PML, JCV has also been shown to transform cells in culture systems and cause a variety of tumors in experimental animals. Moreover, JCV genomic DNA and tumor antigen expression have been shown in a variety of human tumors with CNS origin. Similar to all polyomaviruses, JCV encodes for several tumor antigens from a single transcript of early coding region via alternative splicing. There is little known regarding the characteristics of JCV induced tumors and impact of DNA damage induced by radiation on viral tumor antigen expression and growth of these cells. Here we analyzed the possible impact of ionizing radiation on transformed phenotype and tumor antigen expression by utilizing a mouse medulloblastoma cell line (BSB8) obtained from a mouse transgenic for JCV tumor antigens. Our results suggest that a small subset of BSB8 cells survives and shows radiation resistance. Further analysis of the transformed phenotype of radiation resistant BSB8 cells (BSB8-RR) have revealed that they are capable of forming significantly higher numbers and sizes of colonies under anchorage dependent and independent conditions with reduced viral tumor antigen expression. Moreover, BSB8-RR cells show an increased rate of double-strand DNA break repair by homologous recombination (HR). More interestingly, knockout studies of JCV tumor antigens by utilizing CRISPR/Cas9 gene editing reveal that unlike parental BSB8 cells, BSB8-RR cells are no longer required the expression of viral tumor antigens in order to maintain transformed phenotype.
Collapse
Affiliation(s)
- Martina Donadoni
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Rahsan Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Hassen Wollebo
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Anna Bellizzi
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ilker Kudret Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
10
|
Delbue S, Comar M, Ferrante P. Review on the role of the human Polyomavirus JC in the development of tumors. Infect Agent Cancer 2017; 12:10. [PMID: 28174598 PMCID: PMC5292005 DOI: 10.1186/s13027-017-0122-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
Almost one fifth of human cancers worldwide are associated with infectious agents, either bacteria or viruses, and this makes the possible association between infections and tumors a relevant research issue. We focused our attention on the human Polyomavirus JC (JCPyV), that is a small, naked DNA virus, belonging to the Polyomaviridae family. It is the recognized etiological agent of the Progressive Multifocal Leukoencephalopathy (PML), a fatal demyelinating disease, occurring in immunosuppressed individuals. JCPyV is able to induce cell transformation in vitro when infecting non-permissive cells, that do not support viral replication and JCPyV inoculation into small animal models and non human primates drives to tumor formation. The molecular mechanisms involved in JCPyV oncogenesis have been extensively studied: the main oncogenic viral protein is the large tumor antigen (T-Ag), that is able to bind, among other cellular factors, both Retinoblastoma protein (pRb) and p53 and to dysregulate the cell cycle, but also the early proteins small tumor antigen (t-Ag) and Agnoprotein appear to cooperate in the process of cell transformation. Consequently, it is not surprising that JCPyV genomic sequences and protein expression have been detected in Central Nervous System (CNS) tumors and colon cancer and an association between this virus and several brain and non CNS-tumors has been proposed. However, the significances of these findings are under debate because there is still insufficient evidence of a casual association between JCPyV and solid cancer development. In this paper we summarized and critically analyzed the published literature, in order to describe the current knowledge on the possible role of JCPyV in the development of human tumors.
Collapse
Affiliation(s)
- Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36-20133 Milan, Italy
| | - Manola Comar
- Department of Medical Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36-20133 Milan, Italy.,Istituto Clinico Città Studi, Milan, Italy
| |
Collapse
|
11
|
Mouh FZ, Mzibri ME, Slaoui M, Amrani M. Recent Progress in Triple Negative Breast Cancer Research. Asian Pac J Cancer Prev 2017; 17:1595-608. [PMID: 27221827 DOI: 10.7314/apjcp.2016.17.4.1595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is defined as a type of breast carcinoma that is negative for expression of oestrogene and progesterone hormone receptors (ER, PR) and HER2. This form of breast cancer is marked by its aggressiveness, low survival rate and lack of specific therapies. Recently, important molecular characteristics of TNBC have been highlighted and led to the identification of some biomarkers that could be used in diagnosis, as therapeutic targets or to assess the prognosis. In this review, we summarize recent progress in TNBC research focusing on the genetic and epigenetic alterations of TNBC and the potential use of these biomarkers in the targeted therapy for better management of TNBC.
Collapse
Affiliation(s)
- Fatima Zahra Mouh
- Equipe deRecherche ONCOGYMA, University of Mohamed V, Faculty of Medicine and Pharmacy of Rabat Morocco E-mail :
| | | | | | | |
Collapse
|
12
|
Eftimov T, Enchev Y, Tsekov I, Simeonov P, Kalvatchev Z, Encheva E. JC polyomavirus in the aetiology and pathophysiology of glial tumours. Neurosurg Rev 2015; 39:47-53. [PMID: 26560882 DOI: 10.1007/s10143-015-0676-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/27/2015] [Accepted: 03/14/2015] [Indexed: 11/25/2022]
Abstract
Glial brain tumours with their poor prognosis, limited treatment modalities and unclear detailed pathophysiology represent a significant health concern. The purpose of the current study was to investigate and describe the possible role of the human polyomavirus JC as an underlying cancerogenic or co-cancerogenic factor in the complex processes of glial tumour induction and development. Samples from 101 patients with glial tumours were obtained during neurosurgical tumour resection. Small tissue pieces were taken from several areas of the histologically verified solid tumour core. Biopsies were used for DNA extraction and subsequent amplification reactions of sequences from the JC viral genome. Real-time polymerase chain reaction was used for detection and quantification of its non-coding control region (NCCR) and gene encoding the regulatory protein Large T antigen (LT). An average of 37.6% of all patients was found to be LT positive, whereas only 6.9% tested positive for NCCR. The analysis of the results demonstrated significant variance between the determined LT prevalence and the rate for NCCR, with a low starting copy number in all positive samples and threshold cycles in the range of 36 to 42 representing viral load in the range from 10 to 1000 copies/μl. The results most probably indicate incomplete JC viral replication. Under such conditions, mutations in the host cell genome may be accumulated due to interference of the virus with the host cell machinery, and eventually malignant transformation may occur.
Collapse
Affiliation(s)
- Tihomir Eftimov
- Clinic of Neurosurgery, Military Medical Academy, Sofia, Bulgaria
| | - Yavor Enchev
- Department of Neurosurgery, University Hospital "St. Marina", Medical University of Varna, 1 "Hristo Smirnenski" Boulevard, 9010, Varna, Bulgaria.
| | - Iliya Tsekov
- Center for Diagnosis and Analysis of Viruses and Viral Diseases, Military Medical Academy, Sofia, Bulgaria
| | - Plamen Simeonov
- Clinic of Neurosurgery, Military Medical Academy, Sofia, Bulgaria
| | - Zlatko Kalvatchev
- Center for Diagnosis and Analysis of Viruses and Viral Diseases, Military Medical Academy, Sofia, Bulgaria
| | - Elitsa Encheva
- Department of Imaging Diagnostics and Radiotherapy, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
13
|
Bhimrao SK, Maguire J, Garnis C, Tang P, Lea J, Akagami R, Westerberg BD. Lack of Association between Human Herpesvirus and Vestibular Schwannoma. Otolaryngol Head Neck Surg 2015; 152:513-7. [DOI: 10.1177/0194599814563517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective To assess for the presence of human herpesvirus (HHV) using immunohistochemical and polymerase chain reaction (PCR) assay in surgically excised vestibular schwannoma (VS) samples. Study Design Cross-sectional study. Setting A retrospective laboratory-based study of tumors from patients with vestibular schwannoma. Subjects and Methods Tissue microarrays (TMAs) representing sporadic and NF2-associated VS from 121 patients, as well as appropriate positive and negative controls, were studied. TMA sections were immunostained using antibodies directed against HHV-1, HHV-2, HHV-3, HHV-4, HHV-5, and HHV-8. PCR was used for the detection of all 8 known human herpesviruses. Results There was no detectable HHV (HHV-1, HHV-2, HHV-3, HHV-4, HHV-5, HHV-8) by immunohistochemistry in any of the 121 cases of sporadic and NF2 cases analyzed. These data were further validated by DNA sequence analyses using PCR in a subset of the VS samples, all of which were found to be negative for all HHV. Conclusions The data offer no support for an association between HHV and the development of sporadic or NF2-associated VS in humans.
Collapse
Affiliation(s)
- Sanjiv K. Bhimrao
- Division of Otolaryngology–Head and Neck Surgery, University of British Columbia, Vancouver, Canada
| | - John Maguire
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of British Columbia, Vancouver, Canada
| | - Cathie Garnis
- Division of Otolaryngology–Head and Neck Surgery, University of British Columbia, Vancouver, Canada
| | - Patrick Tang
- Department of Pathology and Laboratory Medicine, British Columbia Centre for Disease Control, University of British Columbia, Vancouver, Canada
| | - Jane Lea
- Division of Otolaryngology–Head and Neck Surgery, University of British Columbia, Vancouver, Canada
| | - Ryojo Akagami
- Division of Neurosurgery, University of British Columbia, Vancouver, Canada
| | - Brian D. Westerberg
- Division of Otolaryngology–Head and Neck Surgery, University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Giannitti F, Higgins RJ, Pesavento PA, Cruz FD, Clifford DL, Piazza M, Struckhoff AP, Valle LD, Bollen AW, Puschner B, Kerr E, Gelberg H, Mete A, McGraw S, Woods LW. Temporal and Geographic Clustering of Polyomavirus-Associated Olfactory Tumors in 10 Free-Ranging Raccoons (Procyon lotor). Vet Pathol 2013; 51:832-45. [DOI: 10.1177/0300985813502817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reports of primary nervous system tumors in wild raccoons are extremely rare. Olfactory tumors were diagnosed postmortem in 9 free-ranging raccoons from 4 contiguous counties in California and 1 raccoon from Oregon within a 26-month period between 2010 and 2012. We describe the geographic and temporal features of these 10 cases, including the laboratory diagnostic investigations and the neuropathologic, immunohistochemical, and ultrastructural characteristics of these tumors in the affected animals. All 9 raccoons from California were found within a localized geographic region of the San Francisco Bay Area (within a 44.13-km radius). The tight temporal and geographic clustering and consistent anatomic location in the olfactory system of tumor types not previously described in raccoons (malignant peripheral nerve sheath tumors and undifferentiated sarcomas) strongly suggest either a common cause or a precipitating factor leading to induction or potentiation of neuro-oncogenesis and so prompted an extensive diagnostic investigation to explore possible oncogenic infectious and/or toxic causes. By a consensus polymerase chain reaction strategy, a novel, recently reported polyomavirus called raccoon polyomavirus was identified in all 10 tumors but not in the normal brain tissue from the affected animals, suggesting that the virus might play a role in neuro-oncogenesis. In addition, expression of the viral protein T antigen was detected in all tumors containing the viral sequences. We discuss the potential role of raccoon polyomavirus as an oncogenic virus.
Collapse
Affiliation(s)
- F. Giannitti
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - R. J. Higgins
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - P. A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - F. Dela Cruz
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - D. L. Clifford
- Wildlife Investigations Laboratory, California Department of Fish and Wildlife, Rancho Cordova, CA, USA
| | | | - A. Parker Struckhoff
- Departments of Medicine and Pathology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University, New Orleans, LA, USA
| | - L. Del Valle
- Departments of Medicine and Pathology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University, New Orleans, LA, USA
| | - A. W. Bollen
- School of Medicine, University of California, San Francisco, CA, USA
| | - B. Puschner
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - E. Kerr
- Natural Resources DNA Profiling and Forensic Centre, DNA Building, Trent University, Peterborough, Ontario, Canada
| | - H. Gelberg
- Department of Biomedical Sciences and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - A. Mete
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - S. McGraw
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - L. W. Woods
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
15
|
Hirsch HH, Kardas P, Kranz D, Leboeuf C. The human JC polyomavirus (JCPyV): virological background and clinical implications. APMIS 2013; 121:685-727. [PMID: 23781977 DOI: 10.1111/apm.12128] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 02/06/2023]
Abstract
JC polyomavirus (JCPyV) was the first of now 12 PyVs detected in humans, when in 1964, PyV particles were revealed by electron microscopy in progressive multifocal leukoencephalopathy (PML) tissues. JCPyV infection is common in 35-70% of the general population, and the virus thereafter persists in the renourinary tract. One third of healthy adults asymptomatically shed JCPyV at approximately 50,000 copies/mL urine. PML is rare having an incidence of <0.3 per 100,000 person years in the general population. This increased to 2.4 per 1000 person years in HIV-AIDS patients without combination antiretroviral therapy (cART). Recently, PML emerged in multiple sclerosis patients treated with natalizumab to 2.13 cases per 1000 patients. Natalizumab blocks α4-integrin-dependent lymphocyte homing to the brain suggesting that not the overall cellular immunodeficiency but local failure of brain immune surveillance is a pivotal factor for PML. Recovering JCPyV-specific immune control, e.g., by starting cART or discontinuing natalizumab, significantly improves PML survival, but is challenged by the immune reconstitution inflammatory syndrome. Important steps of PML pathogenesis are undefined, and antiviral therapies are lacking. New clues might come from molecular and functional profiling of JCPyV and PML pathology and comparison with other replicative pathologies such as granule cell neuronopathy and (meningo-)encephalitis, and non-replicative JCPyV pathology possibly contributing to some malignancies. Given the increasing number of immunologically vulnerable patients, a critical reappraisal of JCPyV infection, replication and disease seems warranted.
Collapse
Affiliation(s)
- Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Basel, Switzerland.
| | | | | | | |
Collapse
|
16
|
Hachana M, Amara K, Ziadi S, Gacem RB, Korbi S, Trimeche M. Investigation of human JC and BK polyomaviruses in breast carcinomas. Breast Cancer Res Treat 2012; 133:969-77. [PMID: 22108781 DOI: 10.1007/s10549-011-1876-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
We have previously showed the presence of the simian virus 40 (SV40) and the mouse mammary tumor virus (MMTV)-like in a significant proportions of Tunisian breast carcinomas. However, to date there are no published studies concerning evaluation of the possible implication of the human polyomaviruses JC (JCV) and BK (BKV) in breast carcinomas. The presence of JCV and BKV DNA was investigated by PCR in a 123 primary breast carcinomas and matched adjacent non-tumor breast tissues. The results were correlated to clinicopathological and virological parameters. JCV T-antigen DNA was detected in 23% of breast carcinoma cases; however, all cases were negative for BKV. JCV T antigen PCR products were further confirmed as authentic JCV genome by direct sequencing. JCV was found in invasive ductal carcinomas (28/112 cases) but not in invasive lobular carcinomas (0/5) or medullary carcinomas (0/6). JCV DNA presence correlates inversely with the expression of estrogen (P = 0.022) and progesterone (P = 0.008) receptors. JCV DNA presence correlates also with "triple negative" phenotype (P = 0.021). With regard to virological data, a trend toward an inverse correlation was noted between the presence of JCV and SV40 (P = 0.06). Moreover, significant correlation was found between multiple viral infection (JCV, and/or SV40, and/or MMTV-like in the same tumor) and "triple negative" phenotype (P = 0.001) and also with p53 accumulation (P = 0.028). To the best of our knowledge, this is the first study demonstrating the presence of JCV in a subset of breast carcinomas. Also our results suggest that "triple negative" breast carcinomas are viral-related tumors.
Collapse
Affiliation(s)
- Mohamed Hachana
- Department of Pathology, Farhat Hached Hospital, 4000 Sousse, Tunisia
| | | | | | | | | | | |
Collapse
|
17
|
Shishido-Hara Y. Progressive multifocal leukoencephalopathy and promyelocytic leukemia nuclear bodies: a review of clinical, neuropathological, and virological aspects of JC virus-induced demyelinating disease. Acta Neuropathol 2010; 120:403-17. [PMID: 20464404 PMCID: PMC2910879 DOI: 10.1007/s00401-010-0694-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/11/2010] [Accepted: 05/02/2010] [Indexed: 12/01/2022]
Abstract
Progressive multifocal leukoencephalopathy is a fatal viral-induced demyelinating disease that was once rare but has become more prevalent today. Over the past decades, much has been learned about the disease from molecular study of the etiological agent of the disease, JC virus. Recently, promyelocytic leukemia nuclear bodies (PML-NBs), punctuate structures for important nuclear functions in eukaryotic cells, were identified as an intranuclear target of JC virus infection. Neuropathologically, JC virus-infected glial cells display diffuse amphophilic viral inclusions by hematoxylin–eosin staining (full inclusions), a diagnostic hallmark of this disease. Recent results using immunohistochemistry, however, revealed the presence of punctate viral inclusions preferentially located along the inner nuclear periphery (dot-shaped inclusions). Dot-shaped inclusions reflect the accumulation of viral progeny at PML-NBs, which may be disrupted after viral replication. Structural changes to PML-NBs have been reported for a variety of human diseases, including cancers and neurodegenerative disorders. Thus, PML-NBs may provide clues to the further pathogenesis of JC virus-induced demyelinating disease. Here, we review what we have learned since the disease entity establishment, including a look at recent progress in understanding the relationship between JC virus, etiology and PML-NBs.
Collapse
Affiliation(s)
- Yukiko Shishido-Hara
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan.
| |
Collapse
|
18
|
Patients with sporadic colorectal cancer or advanced adenomatous polyp have elevated anti-JC virus antibody titer in comparison with healthy controls: a cross-sectional study. J Clin Gastroenterol 2010; 44:489-94. [PMID: 20421810 DOI: 10.1097/mcg.0b013e3181d7a347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE JC virus (JCV) is thought to infect approximately 80% of the human population. Antibodies against JCV can be found in the sera of many people with and without colorectal carcinoma (CRC). We hypothesized that JCV antibody titer will be higher in CRC patients than in healthy controls. AIM To evaluate this hypothesis in a cohort of patients undergoing colonoscopy. We compared JCV antibody titers in patients with simple adenoma, advanced adenomatous polyp (AAP), CRC, and healthy controls, and evaluated JCV DNA in the tissue. METHODS Ninety-seven patients undergoing colonoscopy offered to participate in the study. Normal colonoscopy, simple adenoma, AAP, and CRC were found in 41, 19, 12, and 25 cases, respectively. A blood sample was taken for JCV DNA isolation and serology. In 18 patients with CRC or AAP tissue samples were taken for JCV DNA isolation and T-antigen (T-Ag) detection. RESULTS A positive correlation was found between a JCV antibody titer and advanced colonic pathology. The average titer for normal controls, simple polyp, AAP, and CRC was 2.61+/-0.72, 2.95+/-0.77, 3.33+/-0.76, and 3.30+/-0.50 log, respectively (P<0.001). Viral DNA could not be shown in the serum. The presence of neoplastic tissue T-Ag (in 33.3% of the patients) was not associated with a difference in the log titer of serum antibody. CONCLUSIONS In this study we showed that patients with advanced neoplasia, compared with patients with normal colonoscopy, harbor a higher JCV antibody titer in the serum. If confirmed, our finding may serve as a marker for CRC or for an earlier stage of AAP.
Collapse
|
19
|
Abstract
Progressive multifocal encephalopathy (PML) is a fatal demyelinating disease of the central nervous system (CNS), caused by the lytic infection of oligodendrocytes by a human polyomavirus, JC virus (JCV). PML is rare disease but mostly develops in patients with underlying immunosuppressive conditions, including Hodgkin's lymphoma, lymphoproliferative diseases, in those undergoing antineoplastic therapy and AIDS. However, consistent with the occurrence of PML under immunocompromised conditions, this disease seems to be also steadily increasing among autoimmune disease patients (multiple sclerosis and Crohn's disease), who are treated with antibody-based regimens (natalizumab, efalizumab and rituximab). This unexpected occurrence of the disease among such a patient population reconfirms the existence of a strong link between the underlying immunosuppressive conditions and development of PML. These recent observations have generated a new interest among investigators to further examine the unique biology of JCV.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Education & Research Building (MERB-757), 3500 North Broad Street-7th floor, Philadelphia, PA 19140-5104
| | - Ahmet Ozdemir
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Education & Research Building (MERB-757), 3500 North Broad Street-7th floor, Philadelphia, PA 19140-5104
| | - Cathy Lam
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Education & Research Building (MERB-757), 3500 North Broad Street-7th floor, Philadelphia, PA 19140-5104
| | - Mahmut Safak
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Education & Research Building (MERB-757), 3500 North Broad Street-7th floor, Philadelphia, PA 19140-5104
| |
Collapse
|
20
|
Chronic viral infection and primary central nervous system malignancy. J Neuroimmune Pharmacol 2010; 5:387-403. [PMID: 20387126 PMCID: PMC2914282 DOI: 10.1007/s11481-010-9204-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/05/2010] [Indexed: 01/08/2023]
Abstract
Primary central nervous system (CNS) tumors cause significant morbidity and mortality in both adults and children. While some of the genetic and molecular mechanisms of neuro-oncogenesis are known, much less is known about possible epigenetic contributions to disease pathophysiology. Over the last several decades, chronic viral infections have been associated with a number of human malignancies. In primary CNS malignancies, two families of viruses, namely polyomavirus and herpesvirus, have been detected with varied frequencies in a number of pediatric and adult histological tumor subtypes. However, establishing a link between chronic viral infection and primary CNS malignancy has been an area of considerable controversy, due in part to variations in detection frequencies and methodologies used among researchers. Since a latent viral neurotropism can be seen with a variety of viruses and a widespread seropositivity exists among the population, it has been difficult to establish an association between viral infection and CNS malignancy based on epidemiology alone. While direct evidence of a role of viruses in neuro-oncogenesis in humans is lacking, a more plausible hypothesis of neuro-oncomodulation has been proposed. The overall goals of this review are to summarize the many human investigations that have studied viral infection in primary CNS tumors, discuss potential neuro-oncomodulatory mechanisms of viral-associated CNS disease and propose future research directions to establish a more firm association between chronic viral infections and primary CNS malignancies.
Collapse
|
21
|
De Giorgio R, Ricciardiello L, Naponelli V, Selgrad M, Piazzi G, Felicani C, Serra M, Fronzoni L, Antonucci A, Cogliandro R, Barbara G, Corinaldesi R, Tonini M, Knowles C, Stanghellini V. Chronic Intestinal Pseudo-Obstruction Related to Viral Infections. Transplant Proc 2010; 42:9-14. [DOI: 10.1016/j.transproceed.2009.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Giraud G, Ramqvist T, Pastrana DV, Pavot V, Lindau C, Kogner P, Orrego A, Buck CB, Allander T, Holm S, Gustavsson B, Dalianis T. DNA from KI, WU and Merkel cell polyomaviruses is not detected in childhood central nervous system tumours or neuroblastomas. PLoS One 2009; 4:e8239. [PMID: 20011509 PMCID: PMC2785879 DOI: 10.1371/journal.pone.0008239] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/16/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND BK and JC polyomaviruses (BKV and JCV) are potentially oncogenic and have in the past inconclusively been associated with tumours of the central nervous system (CNS), while BKV has been hinted, but not confirmed to be associated with neuroblastomas. Recently three new polyomaviruses (KIPyV, WUPyV and MCPyV) were identified in humans. So far KIPyV and WUPyV have not been associated to human diseases, while MCPyV was discovered in Merkel Cell carcinomas and may have neuroepithelial cell tropism. However, all three viruses can be potentially oncogenic and this compelled us to investigate for their presence in childhood CNS and neuroblastomas. METHODOLOGY The presence of KI, WU and MCPyV DNA was analysed, by a joint WU and KI specific PCR (covering part of VP1) and by a MCPyV specific regular and real time quantitative PCR (covering part of Large T) in 25 CNS tumour biopsies and 31 neuroblastoma biopsies from the Karolinska University Hospital, Sweden. None of the three new human polyomaviruses were found to be associated with any of the tumours, despite the presence of PCR amplifiable DNA assayed by a S14 housekeeping gene PCR. CONCLUSION In this pilot study, the presence of MCPyV, KI and WU was not observed in childhood CNS tumours and neuroblastomas. Nonetheless, we suggest that additional data are warranted in tumours of the central and peripheral nervous systems and we do not exclude that other still not yet detected polyomaviruses could be present in these tumours.
Collapse
Affiliation(s)
- Géraldine Giraud
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maginnis MS, Atwood WJ. JC virus: an oncogenic virus in animals and humans? Semin Cancer Biol 2009; 19:261-9. [PMID: 19505654 PMCID: PMC2694964 DOI: 10.1016/j.semcancer.2009.02.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 12/12/2022]
Abstract
JC virus (JCV) is a human polyomavirus of the Polyomaviridae family, which also includes BK virus and simian vacuolating virus 40 (SV40). JC virus was first isolated in 1971 from the brain of a patient with Progressive Multifocal Leukoencephalopathy (PML). Like other polyomaviruses, JCV has a restricted host range. The virus infects the majority of the human population with seroconversion occurring during adolescence. JCV has a limited and specific tissue tropism infecting the kidney and oligodendrocytes and astrocytes in the central nervous system (CNS). Initial JCV infection is generally asymptomatic in immunocompetent hosts, and it establishes a persistent infection in the kidney and possibly bone marrow. In immunocompromised individuals JCV can cause a lytic infection in the CNS and lead to development of the fatal, demyelinating disease PML. The name polyoma is derived from the Greek terms: poly, meaning many, and oma, meaning tumors, owing to the capacity of this group of viruses to cause tumors. JCV inoculation of small animal models and non-human primates, which are not permissive to a productive JCV infection, leads to tumor formation. Given the ubiquitous nature of the virus and its strong association with cancer in animal models, it is hypothesized that JCV plays a role in human cancers. However, the role for JCV in human cancers and tumor formation is not clear. Some researchers have reported an association of JCV with human cancers including brain tumors, colorectal cancers, and cancers of the gastrointestinal tract, while other groups report no correlation. Here, we review the role of JCV in cancers in animal models and present the findings on JCV in human cancers.
Collapse
Affiliation(s)
- Melissa S. Maginnis
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street Box G-E4 Providence, RI 02903
| | - Walter J. Atwood
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street Box G-E4 Providence, RI 02903
| |
Collapse
|
24
|
Selgrad M, Malfertheiner P, Fini L, Goel A, Boland CR, Ricciardiello L. The role of viral and bacterial pathogens in gastrointestinal cancer. J Cell Physiol 2008; 216:378-88. [PMID: 18338378 PMCID: PMC2855192 DOI: 10.1002/jcp.21427] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The association of Helicobacter pylori (H. pylori) with gastric cancer is thus far the best understood model to comprehend the causal relationship between a microbial pathogen and cancer in the human gastrointestinal tract. Besides H. pylori, a variety of other pathogens are now being recognized as potential carcinogens in different settings of human cancer. In this context, viral causes of human cancers are central to the issue since these account for 10-20% of cancers worldwide. In the case of H. pylori and gastric cancer, as well as the human papillomavirus and anal cancer, the causal relationship between the infectious agent and the related cancer in the gastrointestinal tract has been clearly confirmed by epidemiological and experimental studies. Similarly, Epstein-Barr virus and the oncogenic JC virus are being suggested as possible causative agents for cancers in the upper and lower gastrointestinal tract. This review discusses various viral and microbial pathogens and their oncogenic properties in the evolution of gastrointestinal carcinogenesis and summarizes the available experimental data make a convincing agreement favoring the associations between infectious agents and specific human cancers.
Collapse
Affiliation(s)
- Michael Selgrad
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lucia Fini
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Ajay Goel
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - C. Richard Boland
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Luigi Ricciardiello
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
25
|
Del Valle L, White MK, Khalili K. Potential mechanisms of the human polyomavirus JC in neural oncogenesis. J Neuropathol Exp Neurol 2008; 67:729-40. [PMID: 18648329 PMCID: PMC2771681 DOI: 10.1097/nen.0b013e318180e631] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human polyomavirus JC (JCV) is a small DNA tumor virus and the etiologic agent of the progressive multifocal leukoencephalopathy. In progressive multifocal leukoencephalopathy, active JCV replication causes the lytic destruction of oligodendrocytes. The normal immune system prevents JCV replication and suppresses the virus into a state of latency so that expression of viral proteins cannot be detected. In a cellular context that is nonpermissive for viral replication, JCV can affect oncogenic transformation. For example, JCV is highly tumorigenic when inoculated into experimental animals, including rodents and monkeys. In these animal tumors, there is expression of early T-antigen but not of late capsid proteins, nor is there viral replication. Moreover, mice transgenic for JCV T-antigen alone develop tumors of neural tube origin. Detection of JCV genomic sequences and expression of viral T-antigen and agnoprotein suggest a possible association of this virus with a variety of human brain and non-CNS tumors. Here, we discuss the mechanisms involved in JCV oncogenesis, briefly review studies that do and do not support a causative role for this virus in human CNS tumors, and identify key issues for future research.
Collapse
Affiliation(s)
- Luis Del Valle
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | |
Collapse
|
26
|
Scheurer ME, Bondy ML, Aldape KD, Albrecht T, El-Zein R. Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 2008; 116:79-86. [PMID: 18351367 PMCID: PMC3001277 DOI: 10.1007/s00401-008-0359-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 02/26/2008] [Accepted: 02/28/2008] [Indexed: 12/12/2022]
Abstract
The association between human cytomegalovirus (HCMV) infection and glioblastoma has been a source of debate in recent years because of conflicting laboratory reports concerning the presence of the virus in glioma tissue. HCMV is a ubiquitous herpesvirus that exhibits tropism for glial cells and has been shown to transform cells in vitro. Using sensitive immunohistochemical and in situ hybridization methods in 50 glioma samples, we detected HCMV antigen and DNA in 21/21 cases of glioblastoma, 9/12 cases of anaplastic gliomas and 14/17 cases of low-grade gliomas. Reactivity against the HCMV IE1 antigen (72 kDa) exhibited histology-specific patterns with more nuclear staining for anaplastic and low-grade gliomas, while GBMs showed nuclear and cytoplasmic staining that likely occurs with latent infection. Using IHC, the number of HCMV-positive cells in GBMs was 79% compared to 48% in lower grade tumors. Non-tumor areas of the tissue contained only four and 1% of HCMV-positive cells for GBMs and lower grade tumors, respectively. Hybridization to HCMV DNA in infected cells corresponded to patterns of immunoreactivity. Our findings support previous reports of the presence of HCMV infection in glioma tissues and advocate optimization of laboratory methods for the detection of active HCMV infections. This will allow for detection of low-level latent infections that may play an important role in the initiation and/or promotion of malignant gliomas.
Collapse
Affiliation(s)
- Michael E Scheurer
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, 1155 Pressler St, Unit 1340, P.O. Box 301439, Houston, TX, 77030-1439, USA
| | | | | | | | | |
Collapse
|
27
|
Promyelocytic Leukemia Nuclear Bodies Provide a Scaffold for Human Polyomavirus JC Replication and Are Disrupted After Development of Viral Inclusions in Progressive Multifocal Leukoencephalopathy. J Neuropathol Exp Neurol 2008; 67:299-308. [DOI: 10.1097/nen.0b013e31816a1dd3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Martin-Villalba A, Okuducu AF, von Deimling A. The evolution of our understanding on glioma. Brain Pathol 2008; 18:455-63. [PMID: 18371180 DOI: 10.1111/j.1750-3639.2008.00136.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The description of neuroglia by Virchow in 1848 may be considered the starting point of our understanding of primary brain tumors. At the beginning of the 20th century, surgical removal of primary brain tumors became possible, and therefore, tissue for microscopic analysis and clinical data on survival became available. During this time, research on gliomas beyond improving surgical procedures focused on their classification. The classification schemes developed emphasized parameters for sorting tumors with regard to (i) cytological aspects; (ii) presumed tumor cell origin; (iii) histological appearance of the tissue; or (iv) clinical outcome. Over the years, experimental studies have greatly improved our knowledge on gliomas. Gliomas induced by viruses, chemicals, radiation, transgenes and knock-out technology contributed to the understanding of their pathogenesis and still serve as preclinical models for the testing of novel therapies. Recent advances in developmental neurobiology and the identification of stem cells provided new insights into the origin of brain tumors and the molecular mechanisms of tumor formation. This review briefly compiles the evolution of our concepts on gliomas, focusing on the latest developments.
Collapse
|
29
|
|
30
|
Lundstig A, Stattin P, Persson K, Sasnauskas K, Viscidi RP, Gislefoss RE, Dillner J. No excess risk for colorectal cancer among subjects seropositive for the JC polyomavirus. Int J Cancer 2007; 121:1098-102. [PMID: 17471560 DOI: 10.1002/ijc.22770] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human polyomaviruses JC virus (JCV) and BK virus (BKV) are oncogenic in experimental systems and commonly infect humans. JCV DNA has been reported to be present in human colon mucosa and in colorectal cancers. To investigate whether the risk for colorectal cancer is associated with JCV or BKV infection, we performed a case-control study nested in the Janus biobank, a cohort of 330,000 healthy Norwegian subjects. A 30-year prospective follow-up using registry linkages identified 386 men with colorectal cancer who had baseline serum samples taken >3 months before diagnosis. Control subjects were matched for sex, age and date of blood sampling and county of residence. Seropositivity for JCV or BKV had high (97-100%) sensitivity for detection of viral DNA-positive subjects and discriminated the different polyomaviruses. Seropositivity was mostly stable over time in serial samples. The relative risk for colorectal cancer among JCV seropositive subjects was 0.9 (95% CI: 0.7-1.3) and the BKV-associated relative risk was 1.1 (95% CI: 0.8-1.5). Determining seropositivity using alternative cutoffs also found no evidence of excess risk. In summary, this prospective study found no association between JCV or BKV infections and excess risk for colorectal cancer.
Collapse
Affiliation(s)
- Annika Lundstig
- Department of Medical Microbiology, Lund University, University Hospital, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Alvarez-Lafuente R, García-Montojo M, De Las Heras V, Bartolomé M, Arroyo R. JC virus in cerebrospinal fluid samples of multiple sclerosis patients at the first demyelinating event. Mult Scler 2007; 13:590-5. [PMID: 17548437 DOI: 10.1177/1352458506073116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective To evaluate the possible involvement of JC virus (JCV) in the aetiology of multiple sclerosis (MS), through the comparison of DNA prevalences and viral loads of JCV in cerebrospinal fluid (CSF) of MS patients at the first demyelinating event and subjects suffering from other neurological diseases (OND). Methods Seventy-three CSF samples (43 from MS patients at the first demyelinating event, and 30 from patients with OND) were collected; all MS cases were followed up from 1 to 6.7 years after they were diagnosed with clinically definite MS. DNA was extracted and analysed by real-time PCR for the detection of JCV genomes. Results We found JCV DNA in the CSF of two MS patients (4.7%) with a mean viral load of 2.1 and 6.7 copies/mL of CSF. Among the patients of the OND group we did not find any positive sample. We did not find any difference in the course of the disease between MS patients with and without JCV genomes in their CSF along the follow up. Conclusion JCV seems to be only a bystander in the pathology of MS, and the presence of cell-free viral particles could be related to the immunological activation of the disease, mainly during relapses. Multiple Sclerosis 2007; 13: 590-595. http://msj.sagepub.com
Collapse
|
33
|
Abstract
Gliomas are a family of primary central nervous system tumors of variable malignancy that are derived from supporting glia (astrocytes, oligodendrocytes, ependymal cells) or their progenitors/stem cells. There are two potential strategies to prevention: preventing gliomas from forming and preventing lower-grade gliomas from developing into higher-grade gliomas. Each would lower time-dependent mortality. Each also depends on an understanding of what causes gliomas so that these factors can be modulated. In this presentation, I will discuss primary prevention, chemoprevention, and screening. I will first focus on the known chromosomal, genetic, and protein changes associated with the different histologic varieties of glioma and the environmental, hereditary, and infectious/viral factors that may promote glioma development and malignant progression. I will discuss a number of clinical scenarios that eventuate from the known genetic patterns of these tumors and the changes in genetic patterns that reflect malignant progression. The basic thinking is that if one could prevent specific gene mutations and/or deletions or gains of specific chromosomes that lead to the development of low-grade (WHO 2) gliomas, then theoretically this would reduce the occurrence of high-grade (WHO 3 and 4) gliomas and hence the almost certain death that now is the fate of most patients with these tumors. In the case of de novo WHO 3 and 4 tumors, being able to prevent or counter specific gene mutations and/or the deletion of specific chromosomes would in itself reduce the occurrence of these gliomas and increase survival. Alternatively, a curative treatment for low-grade glioma that prevents these chromosomal/gene changes would prevent some glioblastomas (WHO 4) from forming and would have the same desired effect on survival. Obviously, for the latter to be achieved, we must also be able to diagnose and treat low-grade gliomas earlier.
Collapse
Affiliation(s)
- Victor A Levin
- Neuro-Oncology Unit 431, University of Texas, M.D. Anderson Cancer Center, Houston 77230-1402, USA
| |
Collapse
|
34
|
Shin SK, Li MS, Fuerst F, Hotchkiss E, Meyer R, Kim IT, Goel A, Boland CR. Oncogenic T-antigen of JC virus is present frequently in human gastric cancers. Cancer 2006; 107:481-8. [PMID: 16795066 DOI: 10.1002/cncr.22028] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND JC virus (JCV) is a polyomavirus that commonly infects humans and is the causative agent of progressive multifocal leukoencephalopathy in immune-compromised patients. An association between JCV and human cancers long has been suspected, because this virus induces brain tumors in several animal models. The oncogenic potential of JCV is mediated by a transforming protein, the T-antigen (T-Ag), which is a multifunctional protein that transforms cells through interactions with various growth-regulatory genes, including p53 and pRb, and by stabilizing beta-catenin. Previously, the laboratory at the authors' institution demonstrated that JCV is present frequently in the human gastrointestinal tract and may play a role in colorectal carcinogenesis. However, to date, no studies have determined whether JCV sequences are present specifically in gastric cancers. The current study was designed to investigate whether JCV sequences and expression are found in human gastric cancers. METHODS DNA was extracted from 23 paraffin embedded and 14 frozen gastric cancer specimens. For the detection of JCV gene sequences, polymerase chain reaction amplifications were performed using gene-specific primers for T-Ag, VP-1 (a JCV capsid gene), and the viral regulatory region (or transcriptional control region). Immunohistochemical staining was performed with an anti-T-Ag monoclonal antibody to detect protein expression. RESULTS Twenty-one of 37 gastric cancers (57%) harbored JCV T-Ag sequences, and 13 of 37 gastric cancers (30%) contained VP-1 sequences. T-Ag sequences also were found in adjacent nonneoplastic mucosa. In addition, JCV regulatory region sequences were present frequently in gastric cancers and adjacent nonneoplastic mucosa. T-Ag protein expression was found in 9 of 23 gastric cancers (39%), whereas no expression was observed in any of the nonneoplastic tissues. CONCLUSIONS To the authors' knowledge, this is the first demonstration of the presence of JCV T-Ag expression in human gastric cancers. These findings suggest a possible role for this polyomavirus in gastric carcinogenesis.
Collapse
Affiliation(s)
- Sung Kwan Shin
- Division of Gastroenterology, Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas 75206, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Caracciolo V, Reiss K, Khalili K, De Falco G, Giordano A. Role of the interaction between large T antigen and Rb family members in the oncogenicity of JC virus. Oncogene 2006; 25:5294-301. [PMID: 16936750 DOI: 10.1038/sj.onc.1209681] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human polyomaviruses (JC virus, BK virus and simian virus 40) are causative agents of some human diseases and, interestingly, are involved in processes of cell transformation and oncogenesis. These viruses need the cell cycle machinery of the host cell to complete their replication; so they evolved mechanisms that can interfere with the growth control of infected cells and force them into DNA replication. The retinoblastoma family of proteins (pRb), which includes pRb/p105, p107 and pRb2/p130, acts as one of the most important regulators of the G1/S transition of the cell cycle. Rb proteins represent an important target for viral oncoproteins. Early viral T antigens can bind all members of the pRb family, promoting the activation of the E2F family of transcription factors, thus inducing the expression of genes required for the entry to the S phase. The interaction between early viral antigens and cell cycle regulators represents an important mechanism through which viruses deregulate cell cycle and lead to cell transformation. In this review, we will discuss the effects of the interaction between large T antigen and Rb proteins in JC virus-mediated oncogenesis.
Collapse
Affiliation(s)
- V Caracciolo
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Many human neurological diseases involve demyelination of the central and/or peripheral nervous systems. These include the hereditary leukodystrophies--which have a genetic basis; multiple sclerosis (MS)--where the underlying cause of demyelination remains unknown; and progressive multifocal leukoencephalopathy (PML)--where the etiology is well-established as being viral. The human neurotropic polyomavirus--JC virus (JCV)--is the etiologic agent of PML, a fatal demyelinating disease of the central nervous system that occurs mainly in immunosuppressed patients, especially those with HIV/AIDS. JCV belongs to the polyomavirus family of tumor viruses that are characterized by non-enveloped icosahedral capsids containing small, circular, double-stranded DNA genomes. Serological studies have shown that JCV is widespread throughout the human population, but infections are usually restricted by the immune system, particularly cell-mediated immunity, causing the virus to enter a latent phase. An important corollary of this is that situations of severe immunosuppression may permit JCV to replicate and are thus a risk factor for PML.
Collapse
Affiliation(s)
- K Khalili
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | | |
Collapse
|
37
|
Khalili K, Gordon J, White MK. The polyomavirus, JCV and its involvement in human disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 577:274-87. [PMID: 16626043 DOI: 10.1007/0-387-32957-9_20] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The human neurotropic polyomavirus, JC virus (JCV), is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system that occurs mainly in immunosuppressed patients. JCV has also been found to be associated with human tumors of the brain and other organs. In this chapter, we describe JC virus and its role in human diseases.
Collapse
Affiliation(s)
- Kamel Khalili
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
38
|
Lee W, Langhoff E. Polyomavirus in human cancer development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 577:310-8. [PMID: 16626045 DOI: 10.1007/0-387-32957-9_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In animal studies, polyoma viruses have been found to be viral agents for oncogenesis and to produce a wide range of pathological lesions in experimental animals, including a variety of neoplastic tumors. The human polyoma viruses (JCV and BKV), along with their simian cousin (SV40), are ubiquitous viruses that are primarily associated with progressive multifocal leukoencephalolopathy (PML) and hemorrhagic cystitis, respectively, under specific conditions in immunocompromized individuals. Currently, polyoma viruses are now undergoing increasing scrutiny as possible causes for several human cancers. Evidence has been mounting recently that JCV, BKV as well as SV40 are potential oncogenic viruses in humans as well.
Collapse
Affiliation(s)
- Winston Lee
- Mount Sinai Medical School, New York, New York, USA
| | | |
Collapse
|
39
|
Barbanti-Brodano G, Sabbioni S, Martini F, Negrini M, Corallini A, Tognon M. BK virus, JC virus and Simian Virus 40 infection in humans, and association with human tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 577:319-41. [PMID: 16626046 DOI: 10.1007/0-387-32957-9_23] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Piña-Oviedo S, De León-Bojorge B, Cuesta-Mejías T, White MK, Ortiz-Hidalgo C, Khalili K, Del Valle L. Glioblastoma multiforme with small cell neuronal-like component: association with human neurotropic JC virus. Acta Neuropathol 2006; 111:388-96. [PMID: 16557392 DOI: 10.1007/s00401-006-0050-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/22/2006] [Accepted: 01/26/2006] [Indexed: 11/26/2022]
Abstract
The human polyomavirus JCV, the etiological agent of progressive multifocal leukoencephalopathy, has been associated with primitive neuroectodermal tumors and various glial-derived tumors, including glioblastoma multiforme (GBM). Here we describe the unique clinical case of a 54-year-old man who presented with headaches, hemiparesis and drowsiness. T1 and T2 magnetic resonance images revealed a large solid tumor with a cystic component located in the right temporal lobe, with extension into the parietal lobe. Histologically, the tumor was composed of two areas, a main area of large neoplastic cells with pleomorphic atypical nuclei and abundant cytoplasm, which by immunohistochemistry was reactive for glial fibrillary acidic protein, mixed with several foci of poorly differentiated tumoral cells with elongated nuclei and scant cytoplasm, negative for GFAP, but robustly immunoreactive for synaptophysin and phosphoneurofilaments. Results from PCR in laser capture microdissected cells from both areas of the tumor revealed the presence of DNA sequences corresponding to the early, late and control regions (CR) of the JCV genome and expression of JCV proteins T-antigen and Agnoprotein in both phenotypes. No evidence for capsid protein was observed, excluding productive viral infection. Sequencing demonstrated the presence of the JCV Mad-1 strain with distinct point mutations in the CR of isolates from both, GBM and small cell architectural areas. The presence of JCV DNA sequences and expression of viral proteins further reinforces the role of the widely spread human neurotropic virus in early transformation and in the development of brain tumors.
Collapse
Affiliation(s)
- Sergio Piña-Oviedo
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 North 12th Street, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
White MK, Khalili K. Expression of JC virus regulatory proteins in human cancer: potential mechanisms for tumourigenesis. Eur J Cancer 2005; 41:2537-48. [PMID: 16219459 DOI: 10.1016/j.ejca.2005.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
JC virus (JCV) is a human polyomavirus that is the etiologic agent of the fatal demyelinating disease of the central nervous system known as progressive multifocal leukoencephalopathy (PML). JCV is also linked to some tumours of the brain and other organs as evidenced by the presence of JCV DNA sequences and the expression of viral proteins in clinical samples. Since JCV is highly oncogenic in experimental animals and transforms cells in culture, it is possible that JCV contributes to the malignant phenotype of human tumours with which it is associated. JCV encodes three non-capsid regulatory proteins: large T-antigen, small t-antigen and agnoprotein that interact with a number of cellular target proteins and interfere with certain normal cellular functions. In this review, we discuss how JCV proteins deregulate signalling pathways especially ones pertaining to transcriptional regulation and cell cycle control. These effects may be involved in the progression of JCV-associated tumours and may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, 1900 North 12th Street, MS 015-96, Room 203, Philadelphia, PA 19122, USA
| | | |
Collapse
|
42
|
Hori R, Murai Y, Tsuneyama K, Abdel-Aziz HO, Nomoto K, Takahashi H, Cheng CM, Kuchina T, Harman BV, Takano Y. Detection of JC virus DNA sequences in colorectal cancers in Japan. Virchows Arch 2005; 447:723-30. [PMID: 16021515 DOI: 10.1007/s00428-005-0014-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Accepted: 04/21/2005] [Indexed: 11/30/2022]
Abstract
JC virus (JCV), a ubiquitous polyoma virus that commonly infects humans, was first identified as the etiologic agent for the fetal demyelinating disease, progressive multifocal leukoencephalopathy. Recently, a number of reports have documented detection of JCV in samples derived from several types of neural as well as non-neural human tumors. It has been suggested that oncogenicity of JCV depends on a T antigen having a strict structural homology to the T antigen of simian virus 40. To clarify whether JCV might have a potential role with regard to colorectal cancers, we investigated the presence of its genome in a series of cases along with colorectal adenomas and normal colonic mucosa, targeting T antigen, VP and agnoprotein by nested polymerase chain reaction and Southern blotting and T antigen by immunohistochemistry. While VP and agnoprotein were not found in any of the samples examined, T antigen was detected in 6 of 23 colorectal cancers (26.1%) and 1 of 21 adenomas (4.8%), but none of 20 samples of normal colonic mucosa. No clear and diffuse staining with anti-T-antigen antibodies (1:100) could be detected, and there was no correlation with CD20-positive cells, which might have indicated JCV latent infection of B lymphocytes. Presence of T antigen did not influence clinicopathological variables, including survival. In one colonic cancer case positive for T antigen together with lymph node metastasis, DNA extracted from cancer cells in the lymph node revealed no detection of T antigen. Our results are in the intermediate position between the high T antigen rate (81%) in one report and the lack of it (0%) in another focused on colon cancers. It was concluded that T antigen might be integrated in cancer cells in approximately one fourth of Japanese colon cancer cases without clear and diffuse expression of the protein, suggesting a possible role in oncogenesis which might involve a hit-and-run mechanism.
Collapse
Affiliation(s)
- Ryouta Hori
- First Department of Pathology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama, 930-0152, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
White MK, Gordon J, Reiss K, Del Valle L, Croul S, Giordano A, Darbinyan A, Khalili K. Human polyomaviruses and brain tumors. ACTA ACUST UNITED AC 2005; 50:69-85. [PMID: 15982744 DOI: 10.1016/j.brainresrev.2005.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/12/2005] [Accepted: 04/21/2005] [Indexed: 12/25/2022]
Abstract
Polyomaviruses are DNA tumor viruses with small circular genomes. Three polyomaviruses have captured attention with regard to their potential role in the development of human brain tumors: JC virus (JCV), BK virus (BKV), and simian vacuolating virus 40 (SV40). JCV is a neurotropic polyomavirus that is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system occurring mainly in AIDS patients. BKV is the causative agent of polyomavirus-associated nephropathy (PVN) which occurs after renal transplantation when BKV reactivates from a latent state during immunosuppressive therapy to cause allograft failure. SV40, originating in rhesus monkeys, gained notoriety when it entered the human population via contaminated polio vaccines. All three viruses are highly oncogenic when injected into the brain of experimental animals. Reports indicate that these viruses, especially JCV, are associated with brain tumors and other cancers in humans as evidenced from the analysis of clinical samples for the presence of viral DNA sequences and expression of viral proteins. Human polyomaviruses encode three non-capsid regulatory proteins: large T-antigen, small t-antigen, and agnoprotein. These proteins interact with a number of cellular target proteins to exert effects that dysregulate pathways involved in the control of various host cell functions including the cell cycle, DNA repair, and others. In this review, we describe the three polyomaviruses, their abilities to cause brain and other tumors in experimental animals, the evidence for an association with human brain tumors, and the latest findings on the molecular mechanisms of their actions.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rollison DEM, Utaipat U, Ryschkewitsch C, Hou J, Goldthwaite P, Daniel R, Helzlsouer KJ, Burger PC, Shah KV, Major EO. Investigation of human brain tumors for the presence of polyomavirus genome sequences by two independent laboratories. Int J Cancer 2005; 113:769-74. [PMID: 15499616 DOI: 10.1002/ijc.20641] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
JC virus (JCV), BK virus (BKV) and simian virus 40 (SV40) may be associated with human brain tumors. These polyomaviruses have been shown to induce brain tumors in experimentally infected animals. Several studies have found polyomavirus genomic sequences in human brain tumor tissues by using polymerase chain reaction (PCR), while others have not. Inconsistencies in previous findings may be due in part to small sample sizes and differences in underlying patient populations, laboratory techniques and quality control measures. To assess the role of polyomaviruses in human brain tumors and address inconsistencies of previous reports, we investigated the prevalence of viral sequences in a series of 225 brain tumor tissue specimens in 2 independent laboratories. PCR followed by Southern hybridization was performed at the National Institute of Neurological Disorders and Stroke (NINDS). Real-time quantitative PCR was performed on the same tissues at Johns Hopkins University (JHU). Only those tumors with amplifiable DNA were tested further for polyomavirus sequences. Positive and negative control tissues were included, and all specimens were masked. Amplifiable DNA was detected in 225/225 (100%) tumors at NINDS, 9 (4%) of which contained polyomavirus sequences (3 JCV-positive, 3 BKV-positive and 3 SV40-positive). The JHU laboratory amplified DNA from 165/225 (73%) tumors, of which 1 tumor tested positive (for SV40). No tumors tested positive in both laboratories. Results for masked quality control tissues were concordant between laboratories. Nucleotide sequences for JCV, BKV and SV40 are rarely present in a large series of adult and pediatric brain tumors.
Collapse
Affiliation(s)
- Dana E M Rollison
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol 2005; 109:93-108. [PMID: 15685439 DOI: 10.1007/s00401-005-0991-y] [Citation(s) in RCA: 879] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 11/01/2004] [Indexed: 02/01/2023]
Abstract
Gliomas of astrocytic, oligodendroglial and ependymal origin account for more than 70% of all brain tumors. The most frequent (65%) and most malignant histological type is the glioblastoma. Since the introduction of computerized tomography and magnetic resonance imaging, the incidence rates of brain tumors have been rather stable, with a tendency of higher rates in highly developed, industrialized countries. Some reports indicate that Caucasians have higher incidence than black or Asian populations, but to some extent, this may reflect socio-economic differences and under-ascertainment in some regions, rather than a significant difference in genetic susceptibility. With the exception of pilocytic astrocytomas, the prognosis of glioma patients is still poor. Less than 3% of glioblastoma patients are still alive at 5 years after diagnosis, higher age being the most significant predictor of poor outcome. Brain tumors are a component of several inherited tumor syndromes, but the prevalence of these syndromes is very low. Several occupations, environmental carcinogens, and diet (N-nitroso compounds) have been reported to be associated with an elevated glioma risk, but the only environmental factor unequivocally associated with an increased risk of brain tumors, including gliomas, is therapeutic X-irradiation. In particular, children treated with X-irradiation for acute lymphoblastic leukemia show a significantly elevated risk of developing gliomas and primitive neuroectodermal tumor (PNET), often within 10 years after therapy. TP53 mutations are frequent in low-grade gliomas and secondary glioblastomas derived therefrom. Approximately 60% of mutations are located in the hot spot codons 248 and 273, and the majority of these are G:C-->A:T transitions at CpG sites. TP53 mutations are significantly more frequent in low-grade astrocytomas with promoter methylation of the O(6)-methylguanine-DNA methyltransferase repair gene, suggesting that, in addition to deamination of 5-methylcytosine, exogenous or endogenous alkylation in the O(6) position of guanine may contribute to the formation of these mutations.
Collapse
Affiliation(s)
- Hiroko Ohgaki
- International Agency for Research on Cancer, Lyon, France.
| | | |
Collapse
|
46
|
White MK, Khalili K. Polyomaviruses and human cancer: molecular mechanisms underlying patterns of tumorigenesis. Virology 2004; 324:1-16. [PMID: 15183048 DOI: 10.1016/j.virol.2004.03.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 03/31/2004] [Indexed: 12/18/2022]
Abstract
Polyomaviruses are DNA tumor viruses with small circular genomes encoding only six proteins including three structural capsid proteins. Despite this simplicity, our understanding of the mechanisms of polyomavirus-mediated tumorigenesis is far from complete. The archetypal primate polyomavirus, SV40, was isolated more than 40 years ago and has been used extensively as a model system for the study of basic eukaryotic cellular processes such as DNA replication and transcription. Two human polyomaviruses have been isolated from clinical samples: JC virus (JCV) and BK virus (BKV). In this review, SV40, JCV, and BKV will be compared based on what is known about their molecular biology from experiments performed in vitro, in cell culture and in laboratory animals. The association of these viruses with clinical tumors is discussed along with the possible roles of these polyomaviruses in the etiology of human malignant disease.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | | |
Collapse
|
47
|
Buhl R, Hugo HH, Stark AM, Mihajlovic Z, Gottwald B, Mehdorn HM. Clinical experiences with oligoastrocytomas WHO grade II and III. Neurosurg Rev 2004; 27:218-23. [PMID: 15045605 DOI: 10.1007/s10143-004-0325-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 02/23/2004] [Accepted: 02/26/2004] [Indexed: 11/29/2022]
Abstract
Between April 1991 and June 2002, 39 patients with an histologically proven oligoastrocytoma WHO grade II and III were operated on in our department. Twenty-two patients were male and 17 female. Mean age was 42 years (20-67 years). The tumor was localized in the frontal lobe in 22 patients, in the temporal lobe in seven patients, in the parietal lobe in nine patients and in the occipital lobe in one patient. The leading clinical symptoms were seizures in 33 patients. Seventeen patients were operated on under local anesthesia. One operation was performed in 22 patients, two operations in eight, three operations in five, four operations in three and six operations in one patient. Histological examination showed oligoastrocytoma WHO grade II in 12 patients and WHO grade III in 27 patients. Postoperative radiotherapy was performed in 33 patients and chemotherapy in six patients. One female patient developed spinal drop metastases 10 months after the operation. One patient with a primary oligoastrocytoma grade II and five patients with a primary oligoastrocytoma grade III died during follow-up. The follow-up period was between 6 months and 25 years (mean 7 years 6 months).
Collapse
Affiliation(s)
- Ralf Buhl
- Department of Neurosurgery, University of Kiel, 24106, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Boldorini R, Pagani E, Car PG, Omodeo-Zorini E, Borghi E, Tarantini L, Bellotti C, Ferrante P, Monga G. Molecular characterisation of JC virus strains detected in human brain tumours. Pathology 2004; 35:248-53. [PMID: 14506971 DOI: 10.1080/0031302031000123245] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIMS The aim of this study was to evaluate the presence and significance of JC virus (JCV) in human brain tumours. METHODS Histology, immunohistochemistry (IHC) and molecular biology techniques were employed to examine specimens of tumour tissue, peripheral blood and cerebrospinal fluid taken from 22 patients with primary neuro-epithelial tumours. Furthermore, the coding viral protein (VP1) region and non-coding transcription control region (TCR) of JCV genome isolated from the tumours were submitted to sequence analysis in order to detect viral rearrangements or mutations. RESULTS JCV genome was found in nine of the 22 tumour specimens (40.9%), including eight astrocyte-derived tumours (seven glioblastomas and one astrocytoma) and one oligodendroglioma, and in two of the 15 cerebrospinal fluid specimens (13.3%) with positive tumour tissue (one glioblastoma and one astrocytoma). Sequence analysis of JCV VP1, which was amplified in seven tissue samples and the two cerebrospinal fluid samples, revealed only genotype 1 (four 1a and three 1b), whereas TCR was amplified in six tissue samples and only one cerebrospinal fluid sample. TCR sequence analysis was possible in four cases and identified three Mad-4 and one type II sequences; the TCR genomic structures of JCV isolated from cerebrospinal fluid were the same as those sequenced from corresponding tumour tissue, thus indicating a possible cerebrospinal fluid dissemination of neoplastic cells carrying viral DNA. CONCLUSIONS Our results suggest a possible role of JCV in the induction of brain tumours, especially in those originating from brain cells normally targeted by JCV infection.
Collapse
Affiliation(s)
- Renzo Boldorini
- Dipartimento di Scienze Mediche Facoltà di Medicina e Chirurgia Università del Piemonte Orientale Amedeo Avogadro, Novara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stolt A, Kjellin M, Sasnauskas K, Luostarinen T, Koskela P, Lehtinen M, Dillner J. Maternal human polyomavirus infection and risk of neuroblastoma in the child. Int J Cancer 2004; 113:393-6. [PMID: 15455352 DOI: 10.1002/ijc.20573] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To investigate if polyomavirus infection during pregnancy is linked to development of neuroblastoma in the child, serum samples of 115 index mothers from the pregnancy where the child eventually developed neuroblastoma were identified and matched with serum samples from 8 control mothers per index mother. The samples were tested for specific IgG and IgM antibodies to BK and JC virus using enzyme immunoassays based on purified yeast-expressed virus-like particles (VLPs). The serum samples as well as 10 neuroblastoma cell lines were also analyzed using Real Time (TaqMan) PCR for detection and quantification of BK virus DNA. The BK virus IgG seroprevalence was similar among index mothers (80%) and control mothers (83%) [OR 0.8; 95% confidence interval (95% CI): 0.5-1.3]. BK virus IgM was also not associated with neuroblastoma risk (OR was OR = 0.6; 95% with CI, 0.2-1.9). Also JC virus had no association, neither for IgG (OR = 0.9; 95% CI, 0.6-1.4) nor for IgM (OR = 0.9; 95% CI, 0.4-1.9). All serum samples and all neuroblastoma cell lines were negative for BKV DNA. In summary, a comprehensive cohort using both serology and polyomavirus DNA detection found no evidence for association between BKV or JCV polyomaviruses and neuroblastoma.
Collapse
Affiliation(s)
- Annika Stolt
- Department of Medical Microbiology, Malmö University Hospital, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Khalili K, Del Valle L, Otte J, Weaver M, Gordon J. Human neurotropic polyomavirus, JCV, and its role in carcinogenesis. Oncogene 2003; 22:5181-91. [PMID: 12910255 DOI: 10.1038/sj.onc.1206559] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A number of recent studies have reported the detection of the ubiquitous human polyomavirus, JC virus (JCV), in samples derived from several types of neural as well as non-neural human tumors. The human neurotropic JCV was first identified as the etiologic agent of the fatal demyelinating disease, progressive multifocal leukoencephalopathy, which usually occurs in individuals with defects in cell-mediated immunity, including AIDS. However, upon mounting evidence of the oncogenic potential of the viral regulatory protein, T-antigen, and JCV's oncogenecity in a broad range of animal models, studies were initiated to determine its potential involvement in human carcinogenesis. Initially, the most frequently observed tumors in rodent models, including medulloblastoma, astrocytoma, glioblastoma, and other neural-origin tumors were analysed. These studies were followed by analysis of non-neural tumors such as colorectal carcinomas. In a subset of each tumor type examined, JC viral genomic DNA sequences could be detected by PCR and confirmed by Southern blot hybridization or direct sequencing. In a smaller subset of the tumors, the expression of T-antigen was observed by immunohistochemical analysis. Owing to the established functions of T-antigen including its ability to interact with tumor suppressor proteins such as Rb and p53, and its ability to influence chromosomal stability, potential mechanisms of JCV T-antigen-mediated cellular dysregulation are discussed. Further, as increasing evidence suggests that T-antigen is not required for maintenance of a transformed phenotype, a hit-and-run model for T-antigen-induced transformation is proposed.
Collapse
Affiliation(s)
- Kamel Khalili
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, 1900 North 12th Street, Philadelphia, PA 19122, USA.
| | | | | | | | | |
Collapse
|