1
|
Huang K, Zhang Q, Wan H, Ban X, Chen X, Wan X, Lu R, He Y, Xiong K. TAK1 at the crossroads of multiple regulated cell death pathways: from molecular mechanisms to human diseases. FEBS J 2025. [DOI: 10.1111/febs.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Regulated cell death (RCD), the form of cell death that can be genetically controlled by multiple signaling pathways, plays an important role in organogenesis, tissue remodeling, and maintenance of organism homeostasis and is closely associated with various human diseases. Transforming growth factor‐beta‐activated kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to different internal and external stimuli and participate in inflammatory and immune responses. Emerging evidence suggests that TAK1 is an important regulator at the crossroad of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis. The regulation of TAK1 affects disease progression through multiple signaling pathways, and therapeutic strategies targeting TAK1 have been proposed for inflammatory diseases, central nervous system diseases, and cancers. In this review, we provide an overview of the downstream signaling pathways regulated by TAK1 and its binding proteins. Their critical regulatory roles in different forms of cell death are also summarized. In addition, we discuss the potential of targeting TAK1 in the treatment of human diseases, with a specific focus on neurological disorders and cancer.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Xiangya School of Medicine Central South University Changsha China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Department of Ophthalmology Stanford University School of Medicine Palo Alto CA USA
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xiao‐Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Xing Wan
- Department of Endocrinology Third Xiangya Hospital, Central South University Changsha China
| | - Rui Lu
- Department of Molecular and Cellular Physiology Stanford University Stanford CA USA
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Changsha Aier Eye Hospital China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
- Hunan Key Laboratory of Ophthalmology Changsha China
| |
Collapse
|
2
|
Bammigatti A, Ghosh SK, Bandyopadhyay S, Saha B. Messages in CD40L are encrypted for residue-specific functions. Cytokine 2025; 185:156824. [PMID: 39615244 DOI: 10.1016/j.cyto.2024.156824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
CD40-CD40-ligand (CD40L) interaction plays crucial immunoregulatory roles, as CD40 signals through different signaling intermediates to convert the messages from CD40L to effector functions. Being a TNFα receptor family member, CD40 binds TNFα receptor-associated factors, assembles signalosome complexes and decrypts the messages from CD40L through different signaling modules to result in residue-specific effector functions. The evidence for such a residue-specific message encryption first came from the CD40L mutations resulting in X-linked hyper-IgM syndrome, as the extent of effects varied with the residue mutated. The structural studies on the CD40-CD40L interaction implied differential involvement of the interacting residues on CD40L in influencing the effector functions. Three lines of evidence indicate the previously implied residue-specific message encryption in CD40L: screening of a dodecameric peptide library for CD40 binders identified two peptides with different sequences resulting in counteractive effector functions in macrophages; a series of CD40L mutants identified that the mutations in these residues selectively affected CD40 signaling and macrophage effector functions; and, a panel of 40-mer peptides, representing the CD40-interacting domain of mouse CD40L, with single substitutions resulted in altered CD40 signaling through various signaling intermediates and effector functions in mouse macrophages. We therefore construct the first-ever message encryption-decryption in a biological receptor-ligand system wherein the CD40L residues that interact with CD40 residues have encrypted messages, which are decoded by CD40 signaling to result in residue-specific effector functions. This review presents a novel perspective of receptor-ligand interaction as a system of message transmission, message decoding by signaling, and its transcription to various read-outs. [250 words].
Collapse
Affiliation(s)
| | | | | | - Bhaskar Saha
- JSPS Government Homeopathic Medical College, Hyderabad 500013, India.
| |
Collapse
|
3
|
Hikosaka-Kuniishi M, Iwata C, Ozawa Y, Ogawara S, Wakaizumi T, Itaya R, Sunakawa R, Sato A, Nagai H, Morita M, So T. The Role of TNF Receptor-Associated Factor 5 in the Formation of Germinal Centers by B Cells During the Primary Phase of the Immune Response in Mice. Int J Mol Sci 2024; 25:12331. [PMID: 39596396 PMCID: PMC11595067 DOI: 10.3390/ijms252212331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
TNF receptor-associated factors (TRAFs) function as intracellular adaptor proteins utilized by members of the TNF receptor superfamily, such as CD40. Among the TRAF family proteins, TRAF5 has been identified as a potential regulator of CD40. However, it remains unclear whether TRAF5 regulates the generation of germinal center (GC) B cells and antigen-specific antibody production in the T-dependent (TD) immune response. TRAF5-deficient (Traf5-/-) and TRAF5-sufficient (Traf5+/+) mice were immunized in the footpad with 2,4,6-trinitrophenol-conjugated keyhole limpet hemocyanin (TNP-KLH) and complete Freund's adjuvant (CFA). We found that GC B cell generation and antigen-specific IgM and IgG1 production were significantly impaired in Traf5-/- mice compared to Traf5+/+ mice. The expression levels of CD40-target genes Fas and Lta, which are involved in GC formation, were significantly decreased in B220+ cells isolated from immunized Traf5-/- mice. Traf5-/- B cells showed decreased antibody production, proliferation, and induction of CD40-target genes Tnfaip3, Tnfsf4, and Cd80 in response to agonistic Fc-CD40L protein in vitro. Furthermore, administration of TNP-KLH and Fc-CD40L to Traf5-/- mice resulted in a severe loss of GC B cell development. These results highlight the crucial role of TRAF5 in driving CD40-mediated TD immune response in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
4
|
Minami S, Fujii Y, Yoshioka Y, Hatori A, Kaneko K, Ochiya T, Chikazu D. Extracellular vesicles from mouse bone marrow macrophages-derived osteoclasts treated with zoledronic acid contain miR-146a-5p and miR-322-3p, which inhibit osteoclast function. Bone 2024; 190:117323. [PMID: 39510435 DOI: 10.1016/j.bone.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is an intractable form of osteonecrosis of the jaw that rarely occurs in patients using bone resorption inhibitors such as bisphosphonates (BPs). Then, extracellular vesicles (EVs) carry various signaling molecules, such as mRNAs, microRNAs (miRNAs), and proteins, and have attracted attention as intercellular communication tools. Recently, the role of EVs in communication between osteoclasts and surrounding bone cells has been confirmed. This study aimed to elucidate the effects of EVs derived from osteoclasts treated with zoledronic acid (ZA), one of the BPs on osteoclast function. EVs were isolated by ultracentrifugation of the culture supernatant of osteoclasts treated with ZA, and miRNAs were extracted from these EVs. Tartrate-resistant acid phosphatase staining of the ZA treated osteoclasts showed reduced osteoclastogenesis. In addition, pit assay showed that ZA significantly decreased the bone resorption capacity of osteoclasts. miRNA-seq analysis identified 11 upregulated and 5 downregulated differentially expressed genes (DEGs) in the miRNA of EVs derived from ZA-treated osteoclasts compared to EVs derived from osteoclasts not treated with ZA. qRT-PCR analysis confirmed the amount of these specific miRNAs, with miR-146a-5p, and miR-322-3p being significantly upregulated by ZA. Overexpression of miR-146a-5p in osteoclasts inhibited osteoclastogenesis and decreased the mRNA expression of osteoclast markers. In addition, Traf6 was identified as a candidate target gene of miR-146a-5p in several miRNA databases. Indeed, the overexpression of miR-146a-5p decreased the expression level of Traf6 in osteoclasts. Additionally, overexpression of miR-322-3p in the pre-osteoblast, MC3T3-E1 cells, resulted in a significant increase in the mRNA expression levels of Sp7. Our data indicate that BPs attenuate osteoclastogenesis by simultaneously altering the characteristics of osteoclast-derived EVs. Overexpression of miR-146a-5p and miR-322-3p influences osteoclast differentiation, and Traf6 is a target gene of miR-146a-5p. On the other hand, Overexpression of miR-322-3p affects osteoblast differentiation. We suggest that ZA-treated osteoclast-derived EVs may play an important role in osteoclast function and bone resorption.
Collapse
Affiliation(s)
- Sakura Minami
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Yasuyuki Fujii
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Ayano Hatori
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Kotaro Kaneko
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
5
|
Rahman RS, Wesemann DR. Whence and wherefore IgE? Immunol Rev 2024; 326:48-65. [PMID: 39041740 PMCID: PMC11436312 DOI: 10.1111/imr.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.
Collapse
Affiliation(s)
- Rifat S. Rahman
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, NY
| | - Duane R. Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
6
|
So T. [Immune Regulation by TNF Receptor-associated Factor 5]. YAKUGAKU ZASSHI 2024; 144:489-496. [PMID: 38692922 DOI: 10.1248/yakushi.23-00154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular adaptors that regulate cellular signaling through members of the TNFR and Toll-like receptor superfamily. Mammals have seven TRAF molecules numbered sequentially from TRAF1 to TRAF7. Although TRAF5 was identified as a potential regulator of TNFR superfamily members, the in vivo function of TRAF5 has not yet been fully elucidated. We identified an unconventional role of TRAF5 in interleukin-6 (IL-6) receptor signaling involving CD4+ T cells. Moreover, TRAF5 binds to the signal-transducing glycoprotein 130 (gp130) receptor for IL-6 and inhibits the activity of the janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In addition, Traf5-deficient CD4+ T cells exhibit significantly enhanced IL-6-driven differentiation of T helper 17 (Th17) cells, which exacerbates neuroinflammation in experimental autoimmune encephalomyelitis. Furthermore, TRAF5 demonstrates a similar activity to gp130 for IL-27, another cytokine of the IL-6 family. Additionally, Traf5-deficient CD4+ T cells display significantly increased IL-27-mediated differentiation of Th1 cells, which increases footpad swelling in delayed-type hypersensitivity response. Thus, TRAF5 functions as a negative regulator of gp130 in CD4+ T cells. This review aimed to explain how TRAF5 controls the differentiation of CD4+ T cells and discuss how the expression of TRAF5 in T cells and other cell types can influence the development and progression of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
7
|
Peng Z, Wang K, Wang S, Wu R, Yao C. Identification of necroptosis-related gene TRAF5 as potential target of diagnosing atherosclerosis and assessing its stability. BMC Med Genomics 2023; 16:139. [PMID: 37330462 PMCID: PMC10276484 DOI: 10.1186/s12920-023-01573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a leading cause of morbidity and mortality in older patients and features progressive formation of plaques in vascular tissues. With the progression of atherosclerosis, plaque rupture may occur and cause stroke, myocardial infarction, etc. Different forms of cell death promote the formation of a necrotic core of the plaque, leading to rupture. Necroptosis is a type of programmed cell death that contributes to the development of cardiovascular disease. However, the role of necroptosis in AS has not yet been investigated. METHODS The Gene Expression Omnibus (GEO) database was used to obtain gene expression profiles. Differentially expressed genes (DEGs) and necroptosis gene sets were used to identify necroptosis-related differentially expressed genes (NRDEGs). The NRDEGs were used to construct a diagnostic model and were further screened using least absolute shrinkage selection operator (LASSO) regression and random forest (RF) analysis. The discriminatory capacity of the NRDEGs was evaluated using receiver operating characteristic (ROC) curves. Immune infiltration levels were estimated based on CIBERSORTx analysis. The GSE21545 dataset, containing survival information, was used to determine prognosis-associated genes. Univariate and multivariate Cox regression analyses combined with survival analysis determined gene prognostic values. RNA and protein levels were detected by RT-qPCR and western blotting in arteriosclerosis obliterans(ASO) and normal vascular tissues. Vascular smooth muscle cells (VSMCs) were treated with oxidized low-density lipoprotein (ox-LDL) to develop cell models of advanced AS. The effects of protein knockdown on necroptosis were assessed by western blotting and flow cytometry. EdU and Cell Counting Kit-8 assays were used to examine cell proliferation. RESULTS TNF Receptor Associated Factor 5 (TRAF5) was identified as a diagnostic marker for AS based on the AUC value in both the GSE20129 and GSE43292 datasets. According to differential expression analysis, LASSO regression analysis, RF analysis, univariate analysis, multivariate analysis, and gene-level survival analysis, TRAF5 was markedly associated with necroptosis in AS. Silencing TRAF5 promotes necroptosis and attenuates the proliferation of ox-LDL-induced cell models of advanced AS. CONCLUSIONS This study identified a diagnostic marker of necroptosis-related atherosclerosis, TRAF5, which can also be used to diagnose and assess atherosclerotic plaque stability. This novel finding has important implications in the diagnosis and assessment of plaque stability in atherosclerosis.
Collapse
Affiliation(s)
- Zhanli Peng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kangjie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ridong Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Tang JC, Li Y, Wang YL, Zhang ZP, Jiang YH, Feng JJ, Zou PF. TRAF5 splicing variants associate with TRAF3 and RIP1 in NF-κB and type I IFN signaling in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2022; 130:418-427. [PMID: 36152803 DOI: 10.1016/j.fsi.2022.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/28/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
As a member of the tumor necrosis factor receptor-associated factor (TRAF) family, TRAF5 acts as a crucial adaptor molecule and plays important roles in the host innate immune responses. In the present study, the typical form and a splicing variant of TRAF5, termed Lc-TRAF5_tv1 and Lc-TRAF5_tv2 were characterized in large yellow croaker (Larimichthys crocea). The putative Lc-TRAF5_tv1 protein is constituted of 577 aa, contains a RING finger domain, two zinc finger domains, a coiled-coil domain, and a MATH domain, whereas Lc-TRAF5_tv2 protein is constituted of 236 aa and only contains a RING finger domain due to a premature stop resulted from the intron retention. Subcellular localization analysis revealed that both of Lc-TRAF5_tv1 and Lc-TRAF5_tv2 were localized in the cytoplasm, with Lc-TRAF5_tv2 found to aggregate around the nucleus. It was revealed that Lc-TRAF5_tv1 mRNA was broadly expressed in examined organs/tissues and showed extremely higher level than that of Lc-TRAF5_tv2, and both of them could be up-regulated under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulations in vivo. Interestingly, overexpression of Lc-TRAF5_tv1 and Lc-TRAF5_tv2 could significantly induce NF-κB but not IFN1 activation, whereas co-expression of them remarkably induced IFN1 activation but impaired NF-κB activation. In addition, both Lc-TRAF5_tv1 and Lc-TRAF5_tv2 were associated with TRAF3 and RIP1 in IFN1 activation, whereas only Lc-TRAF5_tv1 cooperated with TRAF3 and RIP1 in NF-κB activation. These results collectively indicated that the splicing variant together with the typical form of TRAF5 function importantly in the regulation of host immune signaling in teleosts.
Collapse
Affiliation(s)
- Jun Chun Tang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Ying Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, Fujian Province, 363105, China.
| | - Yi Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China
| | - Zi Ping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China; College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Yong Hua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Jian Jun Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Peng Fei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China.
| |
Collapse
|
9
|
Lang I, Zaitseva O, Wajant H. FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies. Int J Mol Sci 2022; 23:12869. [PMID: 36361658 PMCID: PMC9655775 DOI: 10.3390/ijms232112869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2024] Open
Abstract
Inhibitory targeting of the CD40L-CD40 system is a promising therapeutic option in the field of organ transplantation and is also attractive in the treatment of autoimmune diseases. After early complex results with neutralizing CD40L antibodies, it turned out that lack of Fcγ receptor (FcγR)-binding is the crucial factor for the development of safe inhibitory antibodies targeting CD40L or CD40. Indeed, in recent years, blocking CD40 antibodies not interacting with FcγRs, has proven to be well tolerated in clinical studies and has shown initial clinical efficacy. Stimulation of CD40 is also of considerable therapeutic interest, especially in cancer immunotherapy. CD40 can be robustly activated by genetically engineered variants of soluble CD40L but also by anti-CD40 antibodies. However, the development of CD40L-based agonists is biotechnologically and pharmacokinetically challenging, and anti-CD40 antibodies typically display only strong agonism in complex with FcγRs or upon secondary crosslinking. The latter, however, typically results in poorly developable mixtures of molecule species of varying stoichiometry and FcγR-binding by anti-CD40 antibodies can elicit unwanted side effects such as antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) of CD40 expressing immune cells. Here, we summarize and compare strategies to overcome the unwanted target cell-destroying activity of anti-CD40-FcγR complexes, especially the use of FcγR type-specific mutants and the FcγR-independent cell surface anchoring of bispecific anti-CD40 fusion proteins. Especially, we discuss the therapeutic potential of these strategies in view of the emerging evidence for the dose-limiting activities of systemic CD40 engagement.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Department of Internal Medicine II, Division of Molecular Internal Medicine, University Hospital Würzburg, Auvera Haus, Grombühlstrasse 12, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Nishitsuji H, Iwahori S, Ohmori M, Shimotohno K, Murata T. Ubiquitination of SARS-CoV-2 NSP6 and ORF7a Facilitates NF-κB Activation. mBio 2022; 13:e0097122. [PMID: 35856559 PMCID: PMC9426613 DOI: 10.1128/mbio.00971-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor β-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.
Collapse
Affiliation(s)
- Hironori Nishitsuji
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Satoko Iwahori
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Mariko Ohmori
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Kunitada Shimotohno
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
11
|
Gissler MC, Stachon P, Wolf D, Marchini T. The Role of Tumor Necrosis Factor Associated Factors (TRAFs) in Vascular Inflammation and Atherosclerosis. Front Cardiovasc Med 2022; 9:826630. [PMID: 35252400 PMCID: PMC8891542 DOI: 10.3389/fcvm.2022.826630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
TNF receptor associated factors (TRAFs) represent a family of cytoplasmic signaling adaptor proteins that regulate, bundle, and transduce inflammatory signals downstream of TNF- (TNF-Rs), interleukin (IL)-1-, Toll-like- (TLRs), and IL-17 receptors. TRAFs play a pivotal role in regulating cell survival and immune cell function and are fundamental regulators of acute and chronic inflammation. Lately, the inhibition of inflammation by anti-cytokine therapy has emerged as novel treatment strategy in patients with atherosclerosis. Likewise, growing evidence from preclinical experiments proposes TRAFs as potent modulators of inflammation in atherosclerosis and vascular inflammation. Yet, TRAFs show a highly complex interplay between different TRAF-family members with partially opposing and overlapping functions that are determined by the level of cellular expression, concomitant signaling events, and the context of the disease. Therefore, inhibition of specific TRAFs may be beneficial in one condition and harmful in others. Here, we carefully discuss the cellular expression and signaling events of TRAFs and evaluate their role in vascular inflammation and atherosclerosis. We also highlight metabolic effects of TRAFs and discuss the development of TRAF-based therapeutics in the future.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- *Correspondence: Dennis Wolf
| | - Timoteo Marchini
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
12
|
Exploring New Functional Aspects of HTLV-1 RNA-Binding Protein Rex: How Does Rex Control Viral Replication? Viruses 2022; 14:v14020407. [PMID: 35216000 PMCID: PMC8877913 DOI: 10.3390/v14020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
After integration to the human genome as a provirus, human T-cell leukemia virus type 1 (HTLV-1) utilizes host T cell gene expression machinery for viral replication. The viral RNA-binding protein, Rex, is known to transport unspliced/incompletely spliced viral mRNAs encoding viral structural proteins out of the nucleus to enhance virus particle formation. However, the detailed mechanism of how Rex avoids extra splicing of unspliced/incompletely spliced viral mRNAs and stabilizes them for effective translation is still unclear. To elucidate the underlying molecular mechanism of Rex function, we comprehensively analyzed the changes in gene expression and splicing patterns in Rex-overexpressing T cells. In addition, we identified 81 human proteins interacting with Rex, involved in transcription, splicing, translation, and mRNA quality control. In particular, Rex interacts with NONO and SFPQ, which play important roles in the regulation of transcription and splicing. Accordingly, expression profiles and splicing patterns of a wide variety of genes are significantly changed in Rex-expressing T cells. Especially, the level of vPD-L1 mRNA that lacks the part of exon 4, thus encodes soluble PD-L1 was significantly increased in Rex-expressing cells. Overall, by integrated analysis of these three datasets, we showed for the first time that Rex intervenes the host gene expression machinery throughout the pathway, probably to escort viral unstable mRNAs from transcription (start) to translation (end). Upon exerting its function, Rex may alter the expression level and splicing patterns of various genes, thus influencing the phenotype of the host cell.
Collapse
|
13
|
Nakano K, Karasawa N, Hashizume M, Tanaka Y, Ohsugi T, Uchimaru K, Watanabe T. Elucidation of the Mechanism of Host NMD Suppression by HTLV-1 Rex: Dissection of Rex to Identify the NMD Inhibitory Domain. Viruses 2022; 14:344. [PMID: 35215946 PMCID: PMC8875924 DOI: 10.3390/v14020344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/24/2023] Open
Abstract
The human retrovirus human T-cell leukemia virus type I (HTLV-1) infects human T cells by vertical transmission from mother to child through breast milk or horizontal transmission through blood transfusion or sexual contact. Approximately 5% of infected individuals develop adult T-cell leukemia/lymphoma (ATL) with a poor prognosis, while 95% of infected individuals remain asymptomatic for the rest of their lives, during which time the infected cells maintain a stable immortalized latent state in the body. It is not known why such a long latent state is maintained. We hypothesize that the role of functional proteins of HTLV-1 during early infection influences the phenotype of infected cells in latency. In eukaryotic cells, a mRNA quality control mechanism called nonsense-mediated mRNA decay (NMD) functions not only to eliminate abnormal mRNAs with nonsense codons but also to target virus-derived RNAs. We have reported that HTLV-1 genomic RNA is a potential target of NMD, and that Rex suppresses NMD and stabilizes viral RNA against it. In this study, we aimed to elucidate the molecular mechanism of NMD suppression by Rex using various Rex mutant proteins. We found that region X (aa20-57) of Rex, the function of which has not been clarified, is required for NMD repression. We showed that Rex binds to Upf1, which is the host key regulator to detect abnormal mRNA and initiate NMD, through this region. Rex also interacts with SMG5 and SMG7, which play essential roles for the completion of the NMD pathway. Moreover, Rex selectively binds to Upf3B, which is involved in the normal NMD complex, and replaces it with a less active form, Upf3A, to reduce NMD activity. These results revealed that Rex invades the NMD cascade from its initiation to completion and suppresses host NMD activity to protect the viral genomic mRNA.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Nobuaki Karasawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masaaki Hashizume
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuetsu Tanaka
- Faculty of Medicine, University of the Ryukyus, Nishihara 903-0125, Japan
| | - Takeo Ohsugi
- Department of Laboratory Animal Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of Medicine, St. Marianna University, Kawasaki 216-8511, Japan
| |
Collapse
|
14
|
Kawahara E, Azuma M, Nagashima H, Omori K, Akiyama S, Fujimori Y, Oishi M, Shibui N, Kawaguchi K, Morita M, Okuyama Y, Ishii N, So T. TNF Receptor-Associated Factor 5 Limits IL-27 Receptor Signaling in CD4 + T Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:642-650. [PMID: 34996840 DOI: 10.4049/jimmunol.2001358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
TNF receptor-associated factor 5 (TRAF5) restrains early signaling activity of the IL-6 receptor in naive CD4+ T cells by interacting with the shared gp130 chain, although TRAF5 was initially discovered as a cytoplasmic adaptor protein to activate signaling mediated by TNF receptor family molecules. This leads to the question of whether TRAF5 limits signaling via the receptor for IL-27, which is composed of gp130 and WSX-1. The aim of this study is to clarify the role of TRAF5 in IL-27 receptor signaling and to understand the differential role of TRAF5 on cytokine receptor signaling. We found that Traf5 -/- CD4+ T cells displayed significantly higher levels of phosphorylated STAT1 and STAT-regulated genes Socs3 and Tbx21, as early as 1 h after IL-27 exposure when compared with Traf5 +/+ CD4+ T cells. Upon IL-27 and TCR signals, the Traf5 deficiency significantly increased the induction of IL-10 and promoted the proliferation of CD4+ T cells. Traf5 -/- mice injected with IL-27 displayed significantly enhanced delayed-type hypersensitivity responses, demonstrating that TRAF5 works as a negative regulator for IL-27 receptor signaling. In contrast, IL-2 and proliferation mediated by glucocorticoid-induced TNF receptor-related protein (GITR) and TCR signals were significantly decreased in Traf5 -/- CD4+ T cells, confirming that TRAF5 works as a positive regulator for cosignaling via GITR. Collectively, our results demonstrate that TRAF5 reciprocally controls signals mediated by the IL-27 receptor and GITR in CD4+ T cells and suggest that the regulatory activity of TRAF5 in gp130 is distinct from that in TNF receptor family molecules in a T cell.
Collapse
Affiliation(s)
- Eigo Kawahara
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Mitsuki Azuma
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Hiroyuki Nagashima
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Koki Omori
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Sho Akiyama
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Yuka Fujimori
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Mayu Oishi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Nagito Shibui
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Kosuke Kawaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Masashi Morita
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Yuko Okuyama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Gissler MC, Anto-Michel N, Pennig J, Scherrer P, Li X, Marchini T, Pfeiffer K, Härdtner C, Abogunloko T, Mwinyella T, Sol Mitre L, Spiga L, Koentges C, Smolka C, von Elverfeldt D, Hoppe N, Stachon P, Dufner B, Heidt T, Piepenburg S, Hilgendorf I, Bjune JI, Dankel SN, Mellgren G, Seifert G, Eisenhardt SU, Bugger H, von Zur Muhlen C, Bode C, Zirlik A, Wolf D, Willecke F. Genetic Deficiency of TRAF5 Promotes Adipose Tissue Inflammation and Aggravates Diet-Induced Obesity in Mice. Arterioscler Thromb Vasc Biol 2021; 41:2563-2574. [PMID: 34348490 DOI: 10.1161/atvbaha.121.316677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: The accumulation of inflammatory leukocytes is a prerequisite of adipose tissue inflammation during cardiometabolic disease. We previously reported that a genetic deficiency of the intracellular signaling adaptor TRAF5 (TNF [tumor necrosis factor] receptor-associated factor 5) accelerates atherosclerosis in mice by increasing inflammatory cell recruitment. Here, we tested the hypothesis that an impairment of TRAF5 signaling modulates adipose tissue inflammation and its metabolic complications in a model of diet-induced obesity in mice. Approach and Results: To induce diet-induced obesity and adipose tissue inflammation, wild-type or Traf5-/- mice consumed a high-fat diet for 18 weeks. Traf5-/- mice showed an increased weight gain, impaired insulin tolerance, and increased fasting blood glucose. Weight of livers and peripheral fat pads was increased in Traf5-/- mice, whereas lean tissue weight and growth were not affected. Flow cytometry of the stromal vascular fraction of visceral adipose tissue from Traf5-/- mice revealed an increase in cytotoxic T cells, CD11c+ macrophages, and increased gene expression of proinflammatory cytokines and chemokines. At the level of cell types, expression of TNF[alpha], MIP (macrophage inflammatory protein)-1[alpha], MCP (monocyte chemoattractant protein)-1, and RANTES (regulated on activation, normal T-cell expressed and secreted) was significantly upregulated in Traf5-deficient adipocytes but not in Traf5-deficient leukocytes from visceral adipose tissue. Finally, Traf5 expression was lower in adipocytes from obese patients and mice and recovered in adipose tissue of obese patients one year after bariatric surgery. Conclusions: We show that a genetic deficiency of TRAF5 in mice aggravates diet-induced obesity and its metabolic derangements by a proinflammatory response in adipocytes. Our data indicate that TRAF5 may promote anti-inflammatory and obesity-preventing signaling events in adipose tissue.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Nathaly Anto-Michel
- Department of Cardiology, Medical University of Graz, Austria (N.A.M., H.B., A.Z.)
| | - Jan Pennig
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Philipp Scherrer
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Xiaowei Li
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Timoteo Marchini
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Katharina Pfeiffer
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Carmen Härdtner
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Tijani Abogunloko
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Timothy Mwinyella
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Lucia Sol Mitre
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Lisa Spiga
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Christoph Koentges
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
- Institute of Neuropathology (C.K.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christian Smolka
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics (D.v.E.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Natalie Hoppe
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Peter Stachon
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Bianca Dufner
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Timo Heidt
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Sven Piepenburg
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Ingo Hilgendorf
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Jan-Inge Bjune
- Center for Diabetes Research (J.-I.B., S.N.D., G.M.), University of Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science (J.-I.B., S.N.D., G.M.), University of Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway (J.-I.B., S.N.D., G.M.)
| | - Simon N Dankel
- Center for Diabetes Research (J.-I.B., S.N.D., G.M.), University of Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science (J.-I.B., S.N.D., G.M.), University of Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway (J.-I.B., S.N.D., G.M.)
| | - Gunnar Mellgren
- Center for Diabetes Research (J.-I.B., S.N.D., G.M.), University of Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science (J.-I.B., S.N.D., G.M.), University of Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway (J.-I.B., S.N.D., G.M.)
| | - Gabriel Seifert
- Department of General and Visceral Surgery (G.S.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany (S.U.E.)
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Austria (N.A.M., H.B., A.Z.)
| | - Constantin von Zur Muhlen
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Christoph Bode
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Andreas Zirlik
- Department of Cardiology, Medical University of Graz, Austria (N.A.M., H.B., A.Z.)
| | - Dennis Wolf
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
| | - Florian Willecke
- Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Germany (M.C.G., J.P., P.S., X.L., T. Marchini, K.P., C.H., T.A., T. Mwinyella, L.S.M., L.S., C.K., C.S., N.H., P.S., B.D., T.H., S.P., I.H., C.v.z.M., C.B., D.W., F.W.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany (F.W.)
| |
Collapse
|
16
|
So T. The immunological significance of tumor necrosis factor receptor-associated factors (TRAFs). Int Immunol 2021; 34:7-20. [PMID: 34453532 DOI: 10.1093/intimm/dxab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023] Open
Abstract
The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular signaling adaptors and control diverse signaling pathways mediated not only by the TNFR superfamily and the Toll-like receptor/interleukin-1 receptor superfamily but also by unconventional cytokine receptors such as IL-6 and IL-17 receptors. There are seven family members, TRAF1 to TRAF7, in mammals. Exaggerated immune responses induced through TRAF signaling downstream of these receptors often lead to inflammatory and autoimmune diseases including rheumatoid arthritis, inflammatory bowel disease, psoriasis and autoinflammatory syndromes, and thus those signals are major targets for therapeutic intervention. For this reason, it has been very important to understand signaling mechanisms regulated by TRAFs that greatly impact on life/death decisions and the activation, differentiation and survival of cells of the innate and adaptive immune systems. Accumulating evidence suggests that dysregulated cellular expression and/or signaling of TRAFs causes overproduction of proinflammatory cytokines, which facilitates aberrant activation of immune cells. In this review, I will explain the structural and functional aspects that are responsible for the cellular activity and disease outcomes of TRAFs, and summarize the findings of recent studies on TRAFs in terms of how individual TRAF family molecules regulates biological and disease processes in the body in both positive and negative ways. This review also discusses how TRAF mutations contribute to human disease.
Collapse
Affiliation(s)
- Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
17
|
Sun M, Wu S, Zhang X, Zhang L, Kang S, Qin Q, Wei J. Grouper TRAF5 exerts negative regulation on antiviral immune response against iridovirus. FISH & SHELLFISH IMMUNOLOGY 2021; 115:7-13. [PMID: 34062236 DOI: 10.1016/j.fsi.2021.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Tumor necrosis factor receptor-associated factor 5 (TRAF5) is an intracellular protein that binds to the cytoplasmic portion of tumor necrosis factor receptors and mediates the activation of downstream nuclear factor-kappa B (NF-κB), interferon regulatory factor 3, and mitogen activated protein kinase signaling pathways. Compared with other TRAF proteins, TRAF5 is largely unknown in teleosts. In the present study, a TRAF5 homologue (HgTRAF5) from the hybrid grouper (Epinephelus fuscoguttatus♂ × Epinephelus lanceolatus♀) was cloned and characterized. The open reading frame of HgTRAF5 consists of 1743 nucleotides encoding a 581 amino acid protein with a predicted molecular mass of 64.90 kDa. Similar to its mammalian counterpart, HgTRAF5 contains an N-terminal RING finger domain, a zinc finger domain, and a C-terminal TRAF domain, including a coiled-coil domain and a MATH domain. HgTRAF5 shares 99.83% identity with giant grouper (Epinephelus lanceolatus) TRAF5. Quantitative real-time PCR analysis indicated that HgTRAF5 mRNA was broadly expressed in all examined tissues. The expression of HgTRAF5 increased after Singapore grouper iridovirus (SGIV) infection in grouper spleen (GS) cells. Intracellular localization analysis demonstrated that the full-length HgTRAF5 protein mainly distributed in the cytoplasm. HgTRAF5 overexpression also promoted SGIV replication during viral infection in vitro. HgTRAF5 significantly promoted the activities of interferon-β, interferon-sensitive response element, and NF-κB. Taken together, these results are important for a better understanding of the function of TRAF5 in fish and reveal its involvement in the host response to immune challenge by SGIV.
Collapse
Affiliation(s)
- Mengshi Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Siting Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Luhao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shaozhu Kang
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| | - Jingguang Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
18
|
Single nucleotide polymorphisms of TRAF2 and TRAF5 gene in ankylosing spondylitis: a case-control study. Clin Exp Med 2021; 21:645-653. [PMID: 33997937 DOI: 10.1007/s10238-021-00719-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Objective To investigate the role of eight locus polymorphisms of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF5 gene and their interaction in the susceptibility to ankylosing spondylitis (AS) in Chinese Han population. Methods Eight single nucleotide polymorphisms (SNPs) of TRAF2 (rs3750511, rs10781522, rs17250673, rs59471504) and TRAF5 (rs6540679, rs12569232, rs4951523, rs7514863) gene were genotyped in 673 AS patients and 687 controls. Results The SNPs of TRAF2 and TRAF5 do not indicate a correlation with the susceptibility of AS in Chinese Han population. Genotype frequencies of rs3750511 were statistically significant in females between patients and controls. The allele frequencies of rs10781522 and genotype frequencies of rs3750511 were statistically significant between groups of different diseases activity. One three-locus model, TRAF2 (rs10781522, rs17250673) and TRAF5 (rs12569232), had a maximum testing accuracy of 52.67% and a maximum cross-validation consistency (10/10) that was significant at the level of P = 0.0001, after determined empirically by permutation testing. As to environmental variables, only marginal association was found between sleep quality and AS susceptibility. Conclusion TRAF2 rs3750511 polymorphism may be associated with the susceptibility and severity of AS. Besides, the interaction of TRAF2 and TRAF5 genes may be associated with AS susceptibility, but many open questions remain.
Collapse
|
19
|
YAMAMOTO M, GOHDA J, AKIYAMA T, INOUE JI. TNF receptor-associated factor 6 (TRAF6) plays crucial roles in multiple biological systems through polyubiquitination-mediated NF-κB activation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:145-160. [PMID: 33840674 PMCID: PMC8062261 DOI: 10.2183/pjab.97.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
NF-κB was first identified in 1986 as a B cell-specific transcription factor inducing immunoglobulin κ light chain expression. Subsequent studies revealed that NF-κB plays important roles in development, organogenesis, immunity, inflammation, and neurological functions by spatiotemporally regulating cell proliferation, differentiation, and apoptosis in several cell types. Furthermore, studies on the signal pathways that activate NF-κB led to the discovery of TRAF family proteins with E3 ubiquitin ligase activity, which function downstream of the receptor. This discovery led to the proposal of an entirely new signaling mechanism concept, wherein K63-ubiquitin chains act as a scaffold for the signaling complex to activate downstream kinases. This concept has revolutionized ubiquitin studies by revealing the importance of the nonproteolytic functions of ubiquitin not only in NF-κB signaling but also in a variety of other biological systems. TRAF6 is the most diverged among the TRAF family proteins, and our studies uncovered its notable physiological and pathological functions.
Collapse
Affiliation(s)
- Mizuki YAMAMOTO
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jin GOHDA
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taishin AKIYAMA
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jun-ichiro INOUE
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Rastogi M, Singh SK. Japanese Encephalitis Virus exploits microRNA-155 to suppress the non-canonical NF-κB pathway in human microglial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194639. [PMID: 32987149 DOI: 10.1016/j.bbagrm.2020.194639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Japanese Encephalitis Virus (JEV) is a single positive strand RNA virus, belongs to the Flaviviridae family. JEV is neurotropic in nature which accounts for 30-50% neurological, psychiatric sequelae and movement disorder, with 20-30% case fatality rate among children or elder population. JEV causes neuronal loss and microglial activation which leads to neuroinflammation. The microRNAs are the molecular switches, which regulate the gene expression post-transcriptionally. The microRNA-155 has been reported to be associated with CNS-related pathologies like, experimental autoimmune encephalitis, multiple sclerosis and amyotrophic lateral sclerosis. In the present study, we infected microglial cells with JEV, which resulted in the up-regulation of microRNA-155; quantified by real-time polymerase chain reaction. The gene target prediction databases revealed pellino 1 as a putative gene target for microRNA-155. The over-expression based studies of microRNA-155 mimics, scrambles, inhibitors, and cy3 negative control demonstrated the role of PELI1 in the regulation of the non-canonical NF-κB pathway via TRAF3. The luciferase assay showed the regulation of NF-κB promoter via microRNA-155 in JEV infected microglial cells. The suppression of NF-κB in JEV infected microglial cells led to the reduced expression of IL-6 and TNF-α. JEV exploits cellular microRNA-155 to suppress the expression of PELI1 in human microglial cells as a part of their immune evasion strategy.
Collapse
Affiliation(s)
- Meghana Rastogi
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India.
| |
Collapse
|
21
|
Kim CM, Jang H, Ha HJ, Kim GE, Park HH. Structural and biochemical characterization of TRAF5 from Notothenia coriiceps and its implications in fish immune cell signaling. FISH & SHELLFISH IMMUNOLOGY 2020; 102:56-63. [PMID: 32283248 DOI: 10.1016/j.fsi.2020.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/08/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Conserved immune cell signaling in fish was recently highlighted by the identification of various immune cell signaling molecules. Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins are critical adaptor molecules in immune cell signaling and contain E3 ubiquitin ligase activity. Here, we report the first crystal structure of the TRAF5 TRAF domain from the black rockcod (Notothenia coriiceps; ncTRAF5). Our structure revealed both similarities and differences with mammalian TRAF5. Structural and biochemical analyses indicated that ncTRAF5 forms a functional trimer unit in solution, with a structural flexibility that might be critical for imparting resistance to cold temperature-induced stress. We also found conserved surface residues on ncTRAF5 that might be critical binding hot spots for interaction with various receptors.
Collapse
Affiliation(s)
- Chang Min Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyunseok Jang
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gi Eob Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
22
|
Xu W, Zhang L, Ma S, Zhang Y, Cai Z, Zhang K, Jin D. TRAF5 protects against myocardial ischemia reperfusion injury via AKT signaling. Eur J Pharmacol 2020; 878:173092. [PMID: 32234528 DOI: 10.1016/j.ejphar.2020.173092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
During the processes of myocardial ischemia reperfusion (I/R) injury, inflammation and apoptosis play an important role. I/R and its induced acute myocardial infarction (AMI) with high morbidity and mortality, and there is no effective treatment for it so far. TRAF5 has been shown to regulate inflammation and apoptosis in atherosclerosis, steatosis and melanoma cells, but its function in myocardial I/R injury is still unclear. This study demonstrates that the expression of TRAF5 is significant up-regulation in heart tissues of I/R injury mice and hypoxia/reoxygenation (H/R)-stimulated cardiomyocytes. TRAF5 knockout mice exhibites heavier heart damage, inflammatory response and cell death after myocardial I/R injury. Further, TRAF5 overexpression inhibites inflammation and apoptosis of H/R-stimulated cardiomyocytes. Mechanistically, we prove that TRAF5 promotes the activation of AKT. Overall, our study indicates that TRAF5 can regulate the processes of myocardial I/R injury. TRAF5 can be a new therapy target for myocardial I/R injury.
Collapse
Affiliation(s)
- Weipan Xu
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huang Shi, 435000, China
| | - Li Zhang
- Center for Animal Experiment, Wuhan University, Wuhan, 430000, China
| | - Shanxue Ma
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huang Shi, 435000, China
| | - Yi Zhang
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huang Shi, 435000, China
| | - Zhenxuan Cai
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huang Shi, 435000, China
| | - Kai Zhang
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huang Shi, 435000, China
| | - Daoqun Jin
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huang Shi, 435000, China.
| |
Collapse
|
23
|
Phung HT, Nagashima H, Kobayashi S, Asano N, Machiyama T, Sakurai T, Tayama S, Asao A, Imatani A, Kawabe T, Okuyama Y, Ishii N, So T. TRAF5 Deficiency Ameliorates the Severity of Dextran Sulfate Sodium Colitis by Decreasing TRAF2 Expression in Nonhematopoietic Cells. Immunohorizons 2020; 4:129-139. [PMID: 32156688 DOI: 10.4049/immunohorizons.2000007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 11/19/2022] Open
Abstract
TNFR-associated factor 5 (TRAF5) is a cytosolic adaptor protein and functions as an inflammatory regulator. However, the in vivo function of TRAF5 remains unclear, and how TRAF5 controls inflammatory responses in the intestine is not well understood. In this study, we found that intestinal epithelial cells from Traf5-/- mice expressed a significantly lower level of NF-κB-regulated proinflammatory genes, such as Tnf, Il6, and Cxcl1, as early as day 3 after dextran sulfate sodium (DSS) exposure when compared with wild-type mice. The intestinal barrier integrity of DSS-treated Traf5-/- mice remained intact at this early time point, and Traf5-/- mice showed decreased body weight loss and longer colon length at later time points. Surprisingly, the protein level of TRAF2, but not TRAF3, was reduced in colon tissues of Traf5-/- mice after DSS, indicating the requirement of TRAF5 for TRAF2 protein stability in the inflamed colon. Experiments with bone marrow chimeras confirmed that TRAF5 deficiency in nonhematopoietic cells caused the attenuated colitis. Our in vitro experiments demonstrated that proinflammatory cytokines significantly promoted the degradation of TRAF2 protein in Traf5-/- nonhematopoietic cells in a proteasome-dependent manner. Collectively, our data suggest a novel regulatory function of TRAF5 in supporting the proinflammatory function of TRAF2 in nonhematopoietic cells, which may be important for acute inflammatory responses in the intestine.
Collapse
Affiliation(s)
- Hai The Phung
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroyuki Nagashima
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Shuhei Kobayashi
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tomoaki Machiyama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; and
| | - Tsuyoshi Sakurai
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Shunichi Tayama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Atsuko Asao
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuko Okuyama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
24
|
Zhou Y, Zhou Y, Kang X, Meng C, Zhang R, Guo Y, Xiong D, Song L, Jiao X, Pan Z. Molecular cloning and functional characterisation of duck ( Anas platyrhynchos) tumour necrosis factor receptor-associated factor 3. Br Poult Sci 2019; 60:357-365. [PMID: 31046421 DOI: 10.1080/00071668.2019.1614528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Tumour necrosis factor receptor-associated factor 3 (TRAF3) is a key regulator of innate immunity and acquired immunity, and has a salient anti-viral role. 2. In this experiment, the duck TRAF3 (DuTRAF3) gene was cloned according to the Anas platyrhynchos TRAF3 sequence to explore its function. The TRAF3 open reading frame contains 1704 bp that encode a protein of 567 amino acids, which contain a RING finger domain, two zinc finger motifs, a coiled-coil region, and a MATH domain. 3. Reverse transcription-polymerase chain reaction showed that DuTRAF3 was expressed in all the examined tissues, with a comparatively higher expression in the spleen and brain tissues. 4. In HEK293T cells, DuTRAF3 overexpression resulted in a significantly increased NF-κB activity and interferon (IFN)-β promoter activation. 5. Following resiquimod (R848) and poly(I:C) stimulation of duck peripheral blood mononuclear cells (PBMCs), the expressions of TRAF3 and IFN-β were significantly upregulated; in addition, following R848 stimulation, the mRNA levels of IL-6, IL-8 and IL-10 were also significantly upregulated. After infection with the Newcastle Disease Virus LaSota vaccine strain, the mRNA levels of IL-6 and IL-10 were significantly upregulated, while that of TRAF3 was downregulated. 6. These results suggest that DuTRAF3 has an important role to play in innate antiviral immune responses.
Collapse
Affiliation(s)
- Y Zhou
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Y Zhou
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - X Kang
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - C Meng
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - R Zhang
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Y Guo
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - D Xiong
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - L Song
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - X Jiao
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Z Pan
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| |
Collapse
|
25
|
Recognition of TRAIP with TRAFs: Current understanding and associated diseases. Int J Biochem Cell Biol 2019; 115:105589. [DOI: 10.1016/j.biocel.2019.105589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
|
26
|
Xia H, Li Y, Wang Z, Chen W, Cheng J, Yu D, Lu Y. Expression and functional analysis of tumor necrosis factor receptor (TNFR)-associated factor 5 from Nile tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:781-788. [PMID: 31326588 DOI: 10.1016/j.fsi.2019.07.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is a pivotal economic fish that has been plagued by Streptococcus infections. Tumor necrosis factor receptor-associated factor 5 (TRAF5) is a crucial adaptor molecule, which can trigger downstream signaling cascades involved in immune pathway. In this study, Nile tilapia TRAF5 coding sequence (named OnTRAF5) was obtained, which contained typical functional domains, such as RING, zinc finger, coiled-coil and MATH domain. Different from other TRAF molecules, OnTRAF5 had shown relatively low identify with its homolog, and it was clustered into other teleost TRAF5 proteins. qRT-PCR was used to analysis the expression level of OnTRAF5 in gill, skin, muscle, head kidney, heart, intestine, thymus, liver, spleen and brain, In healthy Nile tilapia, the expression level of OnTRAF5 in intestine, gill and spleen were significantly higher than other tissues. While under Streptococcus agalactiae infection, the expression level of OnTRAF5 was improved significantly in all detected organs. Additionally, over-expression WT OnTRAF5 activated NF-κB, deletion of RING or zinc finger caused the activity impaired. In conclusion, OnTRAF5 participate in anti-bacteria immune response and is crucial for the signaling transduction.
Collapse
Affiliation(s)
- Hongli Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Yuan Li
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Zhiwen Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Wenjie Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430000, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Dapeng Yu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China.
| |
Collapse
|
27
|
Yang M, Han R, Ni LY, Luo XC, Li AX, Dan XM, Tsim KWK, Li YW. Molecular characteristics and function study of TNF receptor-associated factor 5 from grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2019; 87:730-736. [PMID: 30769079 DOI: 10.1016/j.fsi.2019.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Tumor necrosis factor receptor-associated factor 5 (TRAF5) is a key adapter molecule that participates in numerous signaling pathways. The function of TRAF5 in fish is largely unknown. In the present study, a TRAF5 cDNA sequence (EcTRAF5) was identified in grouper (Epinephelus coioides). Similar to its mammalian counterpart, EcTRAF5 contained an N-terminal RING finger domain, a zinc finger domain, a C-terminal TRAF domain, including a coiled-coil domain and a MATH domain. The EcTRAF5 protein shared relatively low sequence identity with that of other species, but clustered with TRAF5 sequences from other fish. Real-time PCR analysis revealed that EcTRAF5 mRNA was broadly expressed in numerous tissues, with relatively high expression in skin, hindgut, and head kidney. Additionally, the expression of EcTRAF5 was up-regulated in gills and head kidney after infection with Cryptocaryon irritans. Intracellular localization analysis demonstrated that the full-length EcTRAF5 protein was uniformly distributed in the cytoplasm; while a deletion mutant of the coiled-coil domain of EcTRAF5 was observed uniformly distributed in the cytoplasm and the nucleus. After exogenous expression in HEK293T cells, TRAF5 significantly activated NF-κB. The deletion of the EcTRAF5 RING domain or of the zinc finger domain dramatically impaired its ability to activate NF-κB, implying that the RING domain and the zinc finger domain are required for EcTRAF5 signaling.
Collapse
Affiliation(s)
- Man Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lu-Yun Ni
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Karl Wah-Keung Tsim
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Nagashima H, Ishii N, So T. Regulation of Interleukin-6 Receptor Signaling by TNF Receptor-Associated Factor 2 and 5 During Differentiation of Inflammatory CD4 + T Cells. Front Immunol 2018; 9:1986. [PMID: 30214449 PMCID: PMC6126464 DOI: 10.3389/fimmu.2018.01986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence that tumor necrosis factor (TNF) receptor-associated factors (TRAFs) bind to unconventional membrane-bound receptors in many cell types and control their key signaling activity, in both positive and negative ways. TRAFs function in a variety of biological processes in health and disease, and dysregulation of TRAF expression or activity often leads to a patho-physiological outcome. We have identified a novel attribute of TRAF2 and TRAF5 in interleukin-6 (IL-6) receptor signaling in CD4+ T cells. TRAF2 and TRAF5 are highly expressed by naïve CD4+ T cells and constitutively bind to the signal-transducing receptor common chain gp130 via the C-terminal TRAF domain. The binding between TRAF and gp130 limits the early signaling activity of the IL-6 receptor complex by preventing proximal interaction of Janus kinases (JAKs) associated with gp130. In this reason, TRAF2 and TRAF5 in naïve CD4+ T cells negatively regulate IL-6-mediated activation of signal transducer and activator of transcription 3 (STAT3) that is required for the development of IL-17-secreting CD4+ TH17 cells. Indeed, Traf2-knockdown in differentiating Traf5−/− CD4+ T cells strongly promotes TH17 development. Traf5−/− donor CD4+ T cells exacerbate the development of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in wild-type recipient mice. In this review, we summarize the current understanding of the role for TRAF2 and TRAF5 in the regulation of IL-6-driven differentiation of pro-inflammatory CD4+ T cells, especially focusing on the molecular mechanism by which TRAF2 and TRAF5 inhibit the JAK-STAT pathway that is initiated in the IL-6 receptor signaling complex.
Collapse
Affiliation(s)
- Hiroyuki Nagashima
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
29
|
Quantification and functional evaluation of CD40L production from the adenovirus vector ONCOS-401. Cancer Gene Ther 2018; 26:26-31. [PMID: 30057416 DOI: 10.1038/s41417-018-0038-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 11/08/2022]
Abstract
Adaptive immunity involves activation of T cells via antigen presentation by antigen presenting cells (APCs) along with the action of co-stimulatory molecules and pattern recognition receptors. Cluster of differentiation 40 (CD40) is one such costimulatory molecule that is expressed on APCs that binds to CD40 ligand (CD40L) on T helper cells and activates a signaling cascade, subsequently resulting in a wide range of immune and inflammatory responses. Considering its important role in regulation of immune response, CD40/40 L has been used for developing antitumor vaccines. In this study, we developed methods for evaluating and quantifying the activity of CD40L expressed from an adenovirus vector ONCOS-401. Our results show that the ONCOS-401 vector produces functional CD40L, which can bind and activate a NF-κB-dependent signaling cascade, leading to secreted embryonic alkaline phosphatase reporter production in HEK293-BLUE cells. In addition, quantification of CD40L production using enzyme-linked immunosorbent assay and HEK-293 BLUE reporter cells showed reproducibly higher recovery of CD40L from ONCOS-401 than from the negative control vector or uninfected cells with consistent inter and intra-assay precision. Thus, a rapid and easy method for quantifying and assessing CD40L production and activity from adenovirus vectors would support the assessment of efficacy of the vector for gene therapy - this was the objective of our study.
Collapse
|
30
|
Ottaiano A, Pisano C, De Chiara A, Ascierto PA, Botti G, Barletta E, Apice G, Gridelli C, Iaffaioli VR. Cd40 Activation as Potential Tool in Malignant Neoplasms. TUMORI JOURNAL 2018; 88:361-6. [PMID: 12487551 DOI: 10.1177/030089160208800502] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background CD40, a cell surface molecule, is expressed on B-cell malignancies and many different solid tumors. It is capable of mediating diverse biological phenomena such as the induction of apoptosis in tumors and stimulation of the immune response. It has thus been studied as a possible target for antitumor therapy. The general aim of this review is to focus the attention of clinical oncologists on the involvement of CD40 in tumors and the rationale of CD40-activation-based therapies in new, biologically oriented antitumor protocols. Methods A Medline review of published papers about the role of CD40 activation in cancer therapy. Results Many authors have shown that CD40 activation promotes apoptotic death of tumor cells and that the presence of the molecule on the surface of carcinoma lines is an important factor in the generation of tumor-specific T-cell responses that contribute to tumor cell elimination. The CD40 ligand (CD40L) is the natural ligand for CD40; it is expressed primarily on the surface of activated T lymphocytes. Preclinical studies suggest that CD40-CD40L interaction could be useful for cytotoxicity against CD40-expressing tumors and for immune stimulation. Tumor inhibition was observed when tumor cells were treated with agonistic anti-CD40 monoclonal antibodies or with the soluble form of CD40L. The results of the first phase I clinical trial to treat cancer patients with subcutaneous injection of recombinant human CD40L have been recently reported. Immunohistochemical studies have revealed that detection of CD40 in primary cutaneous malignant melanoma and lung cancer may have a negative prognostic value. Interestingly, up-regulation of CD40 was observed in the tumor vessels of renal carcinomas and Kaposi's sarcoma, suggesting possible involvement of CD40 in tumor angiogenesis. Recently, it has also been shown that CD40 engagement on endothelial cells induces in vitro tubule formation and expression of matrix metalloproteinases, two processes involved in the neovascularization and progression of tumors. Conclusions CD40 activation represents an exciting target for hematological malignancies and solid tumors expressing the molecule, but its functional role in cancer development still remains unclear and controversial.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Division of Medical Oncology B, National Cancer Institute G Pascale, Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
TRAF3 negatively regulates platelet activation and thrombosis. Sci Rep 2017; 7:17112. [PMID: 29215030 PMCID: PMC5719392 DOI: 10.1038/s41598-017-17189-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022] Open
Abstract
CD40 ligand (CD40L), a member of the tumor necrosis factor (TNF) superfamily, binds to CD40, leading to many effects depending on target cell type. Platelets express CD40L and are a major source of soluble CD40L. CD40L has been shown to potentiate platelet activation and thrombus formation, involving both CD40-dependent and -independent mechanisms. A family of proteins called TNF receptor associated factors (TRAFs) plays key roles in mediating CD40L-CD40 signaling. Platelets express several TRAFs. It has been shown that TRAF2 plays a role in CD40L-mediated platelet activation. Here we show that platelet also express TRAF3, which plays a negative role in regulating platelet activation. Thrombin- or collagen-induced platelet aggregation and secretion are increased in TRAF3 knockout mice. The expression levels of collagen receptor GPVI and integrin αIIbβ3 in platelets were not affected by deletion of TRAF3, suggesting that increased platelet activation in the TRAF3 knockout mice was not due to increased expression platelet receptors. Time to formation of thrombi in a FeCl3-induced thrombosis model was significantly shortened in the TRAF3 knockout mice. However, mouse tail-bleeding times were not affected by deletion of TRAF3. Thus, TRAF3 plays a negative role in platelet activation and in thrombus formation in vivo.
Collapse
|
32
|
Tepaamorndech S, Oort P, Kirschke CP, Cai Y, Huang L. ZNT7 binds to CD40 and influences CD154-triggered p38 MAPK activity in B lymphocytes-a possible regulatory mechanism for zinc in immune function. FEBS Open Bio 2017; 7:675-690. [PMID: 28469980 PMCID: PMC5407898 DOI: 10.1002/2211-5463.12211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/09/2017] [Accepted: 02/14/2017] [Indexed: 01/04/2023] Open
Abstract
Zinc deficiency impairs the immune system leading to frequent infections. Although zinc is known to play critical roles in maintaining healthy immune function, the underlying molecular targets are largely unknown. In this study, we demonstrate that zinc is important for the CD154–CD40‐mediated activation of downstream signaling pathways in human B lymphocytes. CD40 is a receptor localized on the cell surface of many immune cells, including B lymphocytes. It binds to CD154, a membrane protein expressed on antigen‐activated T helper (Th) lymphocytes. This CD154‐CD40 interaction leads to B‐cell activation. We showed that cellular zinc deficiency impaired the CD154‐CD40‐mediated p38 mitogen‐activated protein kinase (p38 MAPK) phosphorylation. We also showed that zinc supplemental treatment of B lymphocytes had limited effect on this CD40‐mediated p38 MAPK signaling. Most importantly, we demonstrated that the zinc transporter protein zinc transporter 7 (ZNT7) interacted with CD40 using immunoprecipitation analyses. ZNT7 knockdown in B lymphocytes had a negative effect on the cell surface expression of CD40. Consequently, the CD40‐mediated p38 MAPK signaling transduction was down‐regulated in ZNT7KD B lymphocytes. Conversely, this p38 MAPK signaling activity was up‐regulated by overexpression (OE) of ZNT7 in B lymphocytes. Moreover, we found that ZNT7 knockdown in B lymphocytes constitutively up‐ and down‐regulated the inhibitor of i kappa B kinase and AKT serine/threonine kinase phosphorylation, respectively, which implies the activation of survival signaling in ZNT7KD B cells. We conclude that CD40 is the target molecule for ZNT7 in regulation of immune function of B lymphocytes.
Collapse
Affiliation(s)
- Surapun Tepaamorndech
- Integrative Genetics and Genomics Graduate Group University of California Davis CA USA.,Food Biotechnology Research Unit National Center for Genetic Engineering and Biotechnology Pathum Thani Thailand
| | - Pieter Oort
- Obesity and Metabolism Research Unit USDA/ARS/Western Human Nutrition Research Center Davis CA USA.,Present address: Astrona Biotechnologies HM Clause Innovation Center 28605 County Road 104 Davis CA 95618 USA
| | - Catherine P Kirschke
- Obesity and Metabolism Research Unit USDA/ARS/Western Human Nutrition Research Center Davis CA USA
| | - Yimeng Cai
- Graduate Group of Nutritional Biology University of California Davis CA USA
| | - Liping Huang
- Integrative Genetics and Genomics Graduate Group University of California Davis CA USA.,Obesity and Metabolism Research Unit USDA/ARS/Western Human Nutrition Research Center Davis CA USA.,Graduate Group of Nutritional Biology University of California Davis CA USA
| |
Collapse
|
33
|
Bishop GA. TRAF3 as a powerful and multitalented regulator of lymphocyte functions. J Leukoc Biol 2016; 100:919-926. [PMID: 27154354 PMCID: PMC6608063 DOI: 10.1189/jlb.2mr0216-063r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/31/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current state of knowledge regarding the roles of the signaling adapter protein tumor necrosis factor receptor (TNFR)-associated factor 3 in regulating the functions of B and T lymphocytes. In B lymphocytes, TNFR-associated factor 3 inhibits signaling by TNFR superfamily receptors, Toll-like receptors, and interleukin-6R. In contrast, signaling to B cells by the virally encoded oncogenic protein latent membrane protein 1 is promoted by TNFR-associated factor 3. An important B cell-specific role for TNFR-associated factor 3 is the inhibition of homeostatic survival, directly relevant to the common occurrence of TNFR-associated factor 3 mutations in human B cell malignancies. TNFR-associated factor 3 was recently found to be a resident nuclear protein in B cells, where it interacts with and inhibits gene expression mediated by the cAMP response element-binding protein transcription complex, including expression of the prosurvival protein myeloid leukemia cell differentiation protein 1. In T lymphocytes, TNFR-associated factor 3 is required for normal signaling by the T cell antigen receptor, while inhibiting signaling by the interleukin-2 receptor. Cytoplasmic TNFR -associated factor 3 restrains nuclear factor-κB2 activation in both T and B cells. Clinical implications and future directions for the study of this context-dependent signaling regulator are discussed.
Collapse
Affiliation(s)
- Gail A Bishop
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, USA;
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA; and
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
34
|
Foight GW, Keating AE. Comparison of the peptide binding preferences of three closely related TRAF paralogs: TRAF2, TRAF3, and TRAF5. Protein Sci 2016; 25:1273-89. [PMID: 26779844 PMCID: PMC4918428 DOI: 10.1002/pro.2881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor receptor-associated factors (TRAFs) constitute a family of adapter proteins that act in numerous signaling pathways important in human biology and disease. The MATH domain of TRAF proteins binds peptides found in the cytoplasmic domains of signaling receptors, thereby connecting extracellular signals to downstream effectors. Beyond several very general motifs, the peptide binding preferences of TRAFs have not been extensively characterized, and differences between the binding preferences of TRAF paralogs are poorly understood. Here we report a screening system that we established to explore TRAF peptide-binding specificity using deep mutational scanning of TRAF-peptide ligands. We displayed single- and double-mutant peptide libraries based on the TRAF-binding sites of CD40 or TANK on the surface of Escherichia coli and screened them for binding to TRAF2, TRAF3, and TRAF5. Enrichment analysis of the library sequencing results showed differences in the permitted substitution patterns in the TANK versus CD40 backgrounds. The three TRAF proteins also demonstrated different preferences for binding to members of the CD40 library, and three peptides from that library that were analyzed individually showed striking differences in affinity for the three TRAFs. These results illustrate a previously unappreciated level of binding specificity between these close paralogs and demonstrate that established motifs are overly simplistic. The results from this work begin to outline differences between TRAF family members, and the experimental approach established herein will enable future efforts to investigate and redesign TRAF peptide-binding specificity.
Collapse
Affiliation(s)
- Glenna Wink Foight
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
35
|
Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, Lutgens E. CD40 in coronary artery disease: a matter of macrophages? Basic Res Cardiol 2016; 111:38. [PMID: 27146510 PMCID: PMC4856717 DOI: 10.1007/s00395-016-0554-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.
Collapse
Affiliation(s)
- Matthijs F Jansen
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Maurits R Hollander
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
36
|
Albarbar B, Dunnill C, Georgopoulos NT. Regulation of cell fate by lymphotoxin (LT) receptor signalling: Functional differences and similarities of the LT system to other TNF superfamily (TNFSF) members. Cytokine Growth Factor Rev 2015; 26:659-71. [DOI: 10.1016/j.cytogfr.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/10/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
|
37
|
Chiba Y, Matsumiya T, Satoh T, Hayakari R, Furudate K, Xing F, Yoshida H, Tanji K, Mizukami H, Imaizumi T, Ito E. Retinoic acid-inducible gene-I-like receptor (RLR)-mediated antiviral innate immune responses in the lower respiratory tract: Roles of TRAF3 and TRAF5. Biochem Biophys Res Commun 2015; 467:191-6. [PMID: 26454171 DOI: 10.1016/j.bbrc.2015.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 12/24/2022]
Abstract
Upon viral infection, the cytoplasmic viral sensor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA to activate antiviral signaling to induce type I interferon (IFN). RIG-I-like receptors (RLRs) activate antiviral signaling in a tissue-specific manner. The molecular mechanism underlying antiviral signaling in the respiratory system remains unclear. We studied antiviral signaling in the lower respiratory tract (LRT), which is the site of many harmful viral infections. Epithelial cells of the LRT can be roughly divided into two groups: bronchial epithelial cells (BECs) and pulmonary alveolar epithelial cells (AECs). These two cell types exhibit different phenotypes; therefore, we hypothesized that these cells may play different roles in antiviral innate immunity. We found that BECs exhibited higher antiviral activity than AECs. TNF receptor-associated factor 3 (TRAF3) has been shown to be a crucial molecule in RLR signaling. The expression levels of TRAF3 and TRAF5, which have conserved domains that are nearly identical, in the LRT were examined. We found that the bronchus exhibited the highest expression levels of TRAF3 and TRAF5 in the LRT. These findings suggest the importance of the bronchus in antiviral innate immunity in the LRT and indicate that TRAF3 and TRAF5 may contribute to RLR signaling.
Collapse
Affiliation(s)
- Yuki Chiba
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Tsugumi Satoh
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken Furudate
- Department of Dentistry and Oral Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fei Xing
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
38
|
Cai J, Xia H, Huang Y, Tang J, Jian J, Wu Z, Lu Y. Identification and characterization of tumor necrosis factor receptor (TNFR)-associated factor 3 from humphead snapper, Lutjanus sanguineus. FISH & SHELLFISH IMMUNOLOGY 2015; 46:243-251. [PMID: 26108034 DOI: 10.1016/j.fsi.2015.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 3(TRAF3) is a key regulator in TNFR and Toll-like receptor (TLRs)/RIG-I-like receptors (RLRs) signal pathway. Here, a TRAF3 gene (Ls-TRAF3, GenBank Accession No: KJ789921) is cloned from humphead snapper (Lutjanus sanguineus). The Ls-TRAF3 cDNA contains an open reading frame of 1788 bp, which encodes a polypeptide of 595 amino acids. The deduced amino acid of Ls-TRAF3 possesses a RING finger, two TRAF-type zinc fingers, a coiled-coil and a MATH domain. Ls-TRAF3 protein shares high identities with other known TRAF3 proteins. In healthy fish, Ls-TRAF3 transcripts were broadly expressed in all examined tissues with highest expression levels in spleen, liver and head kidney. Quantitative real-time PCR (qRT-PCR) analysis revealed that Ls-TRAF3 could be induced by bacteria or viral PAMP poly I:C stimulation in vivo. Here, we also showed Ls-TRAF3 that, positively regulated IRF3 and Mx upon poly I:C stimuli, whereas prevented production of proinflammatory cytokine IL-6 after LPS injection. Moreover, over-expression of wide type (WT) Ls-TRAF3 and truncated forms, including ΔZinc finger 1, ΔZinc finger 2 and Δcoiled-coil suppressed NF-κB activity significantly, whereas the inhibitory effect of NF-κB was partially impaired when the RING finger or MATH domain deletion, suggesting the latter was more important for downstream signal transduction. Taken together, these results implicated that Ls-TRAF3 might play regulatory roles in immune response to pathogen invasion.
Collapse
Affiliation(s)
- Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Hongli Xia
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yucong Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China.
| |
Collapse
|
39
|
Bian Z, Dai J, Hiroyasu N, Guan H, Yuan Y, Gan L, Zhou H, Zong J, Zhang Y, Li F, Yan L, Shen D, Li H, Tang Q. Disruption of tumor necrosis factor receptor associated factor 5 exacerbates pressure overload cardiac hypertrophy and fibrosis. J Cell Biochem 2014; 115:349-58. [PMID: 24038435 DOI: 10.1002/jcb.24669] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/06/2013] [Indexed: 11/09/2022]
Abstract
The cytoplasmic signaling protein tumor necrosis factor (TNF) receptor-associated factor 5 (TRAF5), which was identified as a signal transducer for members of the TNF receptor super-family, has been implicated in several biological functions in T/B lymphocytes and the innate immune response against viral infection. However, the role of TRAF5 in cardiac hypertrophy has not been reported. In the present study, we investigated the effect of TRAF5 on the development of pathological cardiac hypertrophy induced by transthoracic aorta constriction (TAC) and further explored the underlying molecular mechanisms. Cardiac hypertrophy and function were evaluated with echocardiography, hemodynamic measurements, pathological and molecular analyses. For the first time, we found that TRAF5 deficiency substantially aggravated cardiac hypertrophy, cardiac dysfunction and fibrosis in response to pressure overload after 4 weeks of TAC compared to wild-type (WT) mice. Moreover, the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinases 1/2 (ERK1/2) signaling pathway was more activated in TRAF5-deficient mice than WT mice. In conclusion, our results suggest that as an intrinsic cardioprotective factor, TRAF5 plays a crucial role in the development of cardiac hypertrophy through the negative regulation of the MEK-ERK1/2 pathway. J. Cell. Biochem. 115: 349-358, 2014. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhouyan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
41
|
Bishop GA. The many faces of TRAF molecules in immune regulation. THE JOURNAL OF IMMUNOLOGY 2013; 191:3483-5. [PMID: 24058190 DOI: 10.4049/jimmunol.1390048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gail A Bishop
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
42
|
Wortzman ME, Clouthier DL, McPherson AJ, Lin GHY, Watts TH. The contextual role of TNFR family members in CD8+T-cell control of viral infections. Immunol Rev 2013; 255:125-48. [DOI: 10.1111/imr.12086] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Derek L. Clouthier
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Ann J. McPherson
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Gloria H. Y. Lin
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Tania H. Watts
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
43
|
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, New Jersey 08854.
| |
Collapse
|
44
|
Transcriptional profiling of swine lung tissue after experimental infection with Actinobacillus pleuropneumoniae. Int J Mol Sci 2013; 14:10626-60. [PMID: 23698783 PMCID: PMC3676858 DOI: 10.3390/ijms140510626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 12/13/2022] Open
Abstract
Porcine pleuropneumonia is a highly contagious respiratory disease that causes great economic losses worldwide. In this study, we aimed to explore the underlying relationship between infection and injury by investigation of the whole porcine genome expression profiles of swine lung tissues post-inoculated with experimentally Actinobacillus pleuropneumoniae. Expression profiling experiments of the control group and the treatment group were conducted using a commercially available Agilent Porcine Genechip including 43,603 probe sets. Microarray analysis was conducted on profiles of lung from challenged versus non-challenged swine. We found 11,929 transcripts, identified as differentially expressed at the p ≤0.01 level. There were 1188 genes annotated as swine genes in the GenBank Data Base. GO term analysis identified a total of 89 biological process categories, 82 cellular components and 182 molecular functions that were significantly affected, and at least 27 biological process categories that were related to the host immune response. Gene set enrichment analysis identified 13 pathways that were significantly associated with host response. Many proinflammatory-inflammatory cytokines were activated and involved in the regulation of the host defense response at the site of inflammation; while the cytokines involved in regulation of the host immune response were suppressed. All changes of genes and pathways of induced or repressed expression not only led to a decrease in antigenic peptides presented to T lymphocytes by APCs via the MHC and alleviated immune response injury induced by infection, but also stimulated stem cells to produce granulocytes (neutrophils, eosinophils, and basophils) and monocyte, and promote neutrophils and macrophages to phagocytose bacterial and foreign antigen at the site of inflammation. The defense function of swine infection with Actinobacillus pleuropneumoniae was improved, while its immune function was decreased.
Collapse
|
45
|
Chen BB, Coon TA, Glasser JR, McVerry BJ, Zhao J, Zhao Y, Zou C, Ellis B, Sciurba FC, Zhang Y, Mallampalli RK. A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation. Nat Immunol 2013; 14:470-9. [PMID: 23542741 PMCID: PMC3631463 DOI: 10.1038/ni.2565] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023]
Abstract
Uncontrolled activation of tumor necrosis factor receptor-associated factor (TRAF) proteins may result in profound tissue injury by linking surface signals to cytokine release. Here we show that a ubiquitin E3 ligase component, Fbxo3, potently stimulates cytokine secretion from human inflammatory cells by destabilizing a sentinel TRAF inhibitor, Fbxl2. Fbxo3 and TRAF protein in circulation positively correlated with cytokine responses in septic subjects and we furthermore identified a hypofunctional Fbxo3 human polymorphism. A small molecule inhibitor targeting Fbxo3 was sufficient to lessen severity of cytokine-driven inflammation in several murine disease models. These studies identify a pathway of innate immunity that may characterize subjects with altered immune responses during critical illness or provide a basis for therapeutic intervention targeting TRAF protein abundance.
Collapse
Affiliation(s)
- Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang L, Lu Y, Guan H, Jiang D, Guan Y, Zhang X, Nakano H, Zhou Y, Zhang Y, Yang L, Li H. Tumor necrosis factor receptor-associated factor 5 is an essential mediator of ischemic brain infarction. J Neurochem 2013; 126:400-14. [PMID: 23413803 DOI: 10.1111/jnc.12207] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/20/2013] [Accepted: 02/14/2013] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor receptor-associated factor 5 (TRAF5) is an adaptor protein of the tumor necrosis factor (TNF) receptor superfamily and the interleukin-1 receptor/Toll-like receptor superfamily and plays important roles in regulating multiple signaling pathways. This study was conducted to investigate the role of TRAF5 in the context of brain ischemia/reperfusion (I/R) injury. Transient occlusion of the middle cerebral artery was performed on TRAF5 knockout mice (KO), neuron-specific TRAF5 transgene (TG), and the appropriate controls. Compared with the WT mice, the TRAF5 KO mice showed lower infarct volumes and better outcomes in the neurological tests. A low neuronal apoptosis level, an attenuated blood-brain barrier (BBB) disruption and an inhibited inflammatory response were exhibited in TRAF5 KO mice. TRAF5 TG mice exhibited an opposite phenotype. Moreover, the Akt/FoxO1 signaling pathway was enhanced in the ischemic brains of the TRAF5 KO mice. These results provide the first demonstration that TRAF5 is a critical mediator of I/R injury in an experimental stroke model. The Akt /FoxO1 signaling pathway probably plays an important role in the biological function of TRAF5 in this model.
Collapse
Affiliation(s)
- Lang Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lucas CR, Cordero-Nieves HM, Erbe RS, McAlees JW, Bhatia S, Hodes RJ, Campbell KS, Sanders VM. Prohibitins and the cytoplasmic domain of CD86 cooperate to mediate CD86 signaling in B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 190:723-36. [PMID: 23241883 DOI: 10.4049/jimmunol.1201646] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CD86 engagement on a CD40L/IL-4-primed murine B cell activates signaling intermediates that promote NF-κB activation to increase Oct-2 and mature IgG1 mRNA and protein expression, as well as the rate of IgG1 transcription, without affecting class switch recombination. One of the most proximal signaling intermediates identified is phospholipase Cγ2, a protein reported to bind tyrosine residues, which are absent in the cytoplasmic domain of CD86. Using a proteomics-based identification approach, we show that the tyrosine-containing transmembrane adaptor proteins prohibitin (Phb)1 and Phb2 bind to CD86. The basal expression of Phb1/2 and association with CD86 was low in resting B cells, whereas the level of expression and association increased primarily after priming with CD40. The CD86-induced increase in Oct-2 and IgG1 was less when either Phb1/2 expression was reduced by short hairpin RNA or the cytoplasmic domain of CD86 was truncated or mutated at serine/threonine protein kinase C phosphorylation sites, which did not affect Phb1/2 binding to CD86. Using this approach, we also show that Phb1/2 and the CD86 cytoplasmic domain are required for the CD86-induced phosphorylation of IκBα, which we previously reported leads to NF-κB p50/p65 activation, whereas only Phb1/2 was required for the CD86-induced phosphorylation of phospholipase Cγ2 and protein kinase Cα/β(II), which we have previously reported leads to NF-κB (p65) phosphorylation and subsequent nuclear translocation. Taken together, these findings suggest that Phb1/2 and the CD86 cytoplasmic domain cooperate to mediate CD86 signaling in a B cell through differential phosphorylation of distal signaling intermediates required to increase IgG1.
Collapse
Affiliation(s)
- Christopher R Lucas
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhong L, Cao F, You Q. Effect of TRAF6 on the biological behavior of human lung adenocarcinoma cell. Tumour Biol 2012; 34:231-9. [PMID: 23055197 DOI: 10.1007/s13277-012-0543-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 09/23/2012] [Indexed: 01/11/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a unique adaptor protein of the tumor necrosis factor receptor-associated factor family that mediates both tumor necrosis factor receptor and interleukin-1 receptor/Toll-like receptor signaling. A recent study showed that TRAF6 played an important role in tumorigenesis and invasion through activation of nuclear factor kappa B (NF-κB). However, the biological role of TRAF6 remains unknown in lung cancer up to now. To address the expression of TRAF6 in lung cancer cells, four lung cancer cell lines (A549, HCC827, NCI-H292, and 95-D) and human bronchial epithelial cells were used to detect the expression of TRAF6 protein by western blotting. Results indicated that TRAF6 displayed an upregulation in human lung cancer cell lines. To investigate the effects of TRAF6 on the biological behavior of human lung adenocarcinoma cell, we generated human lung adenocarcinoma A549 cell line in which TRAF6 was depleted. The results showed that downregulation of TRAF6 could decrease cell viability, suppress cell proliferation and invasion, and promote cell apoptosis. At the same time, we explored the effects of TRAF6 on the expression of the following proteins: phosphor-NF-κB (p-p65), cyclin D1, caspase-3, and matrix metalloproteinase 9 (MMP9). Downregulation of TRAF6 could decrease the expression of p-p65, cyclin D1, and MMP9 and increase the expression of caspase-3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, and invasion of A549 cell line, as well as the inhibition of A549 cell apoptosis by the activation of NF-κB. To make a long story short, the overexpression of TRAF6 might be related to the tumorigenesis and invasion of lung cancer.
Collapse
Affiliation(s)
- Lou Zhong
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, 20 Xishi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | | | | |
Collapse
|
49
|
Meng Q, Zheng M, Liu H, Song C, Zhang W, Yan J, Qin L, Liu X. TRAF6 regulates proliferation, apoptosis, and invasion of osteosarcoma cell. Mol Cell Biochem 2012; 371:177-86. [PMID: 22886393 DOI: 10.1007/s11010-012-1434-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/03/2012] [Indexed: 11/28/2022]
Abstract
TRAF6, a unique tumor necrosis factor receptor-associated factor (TRAF) family member, possesses a unique receptor-binding specificity that results in its crucial role as the signaling mediator for TNF receptor superfamily and interleukin-1 receptor/Toll-like receptor superfamily. TRAF6 plays an important role in tumorigenesis, invasion and metastasis. This study aimed to explore the expression of TRAF6 in osteosarcoma tissues and its correlation to the clinical pathology of osteosarcoma and to discuss the relationship between TRAF6 expression and osteosarcoma invasion. These data will provide the experimental base for the biological treatment of osteosarcoma in the future. Using RT-PCR and Western blot, the results showed that the expression rate of TRAF6 mRNA in osteosarcoma tissues was significantly higher than that in normal bone tissue (p < 0.05), that the expression rate of TRAF6 mRNA in the carcinoma tissues from patients with lung metastasis was significantly higher than that from patients without lung metastasis (p < 0.05), and that the expression rate of TRAF6 mRNA also increased with increasing Enneking stage (p < 0.05). However, the mRNA expression of TRAF6 in osteosarcoma was independent of the patient's gender, age, and tumor size (p > 0.05). The TRAF6 protein displayed an up-regulation in osteosarcoma tissues compared to normal bone tissue (p < 0.05), displayed an up-regulation in osteosarcoma tissues from patients with lung metastasis compared to from patients without lung metastasis (p < 0.05), and displayed a gradual increase with increasing Enneking stage (p < 0.05). By the technique of RNA interference, the expression of TRAF6 in the human osteosarcoma MG-63 cell line was down-regulated, and the invasive ability of MG-63 cells was examined. The results showed that TRAF6 protein expression was significantly decreased in the MG-63 cells from TRAF6 siRNA-transfected group (p < 0.05), and the proliferation ability of MG-63 cells and the number of MG-63 cells that passed through the Transwell chamber were significantly lower than that in the non-transfected control group as well as the transfected control group (p < 0.05). In addition, the percentage of MG-63 cells undergoing apoptosis was significantly higher in the TRAF6 siRNA-transfected group compared with the non-transfected control group as well as the transfected control group (p < 0.05). The expression of p-p65, cyclin D1, MMP-9 was down-regulated in the MG-63 cells from TRAF6 siRNA-transfected group. The expression of caspase 3 was up-regulated in the MG-63 cells from TRAF6 siRNA-transfected group compared to the non-transfected control group as well as the transfected control group (p < 0.05). To make a long story short, the overexpression of TRAF6 in osteosarcoma might be related to the tumorigenesis, invasion of osteosarcoma.
Collapse
Affiliation(s)
- Qingbing Meng
- Orthopedics Department, Yancheng City No. 1 People's Hospital, 16 Yue-He Road, Yancheng, Jiangsu 224005, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hildebrand JM, Yi Z, Buchta CM, Poovassery J, Stunz LL, Bishop GA. Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunol Rev 2012; 244:55-74. [PMID: 22017431 DOI: 10.1111/j.1600-065x.2011.01055.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A large and diverse group of receptors utilizes the family of cytoplasmic signaling proteins known as tumor necrosis factor receptor (TNFR)-associated factors (TRAFs). In recent years, there has been a resurgence of interest and exploration of the roles played by TRAF3 and TRAF5 in cellular regulation, particularly in cells of the immune system, the cell types of focus in this review. This work has revealed that TRAF3 and TRAF5 can play diverse roles for different receptors even in the same cell type, as well as distinct roles in different cell types. Evidence indicates that TRAF3 and TRAF5 play important roles beyond the TNFR-superfamily (SF) and viral mimics of its members, mediating certain innate immune receptor and cytokine receptor signals, and most recently, signals delivered by the T-cell receptor (TCR) signaling complex. Additionally, much research has demonstrated the importance of TRAF3-mediated cellular regulation via its cytoplasmic interactions with additional signaling proteins. In particular, we discuss below evidence for the participation by TRAF3 in a number of the regulatory post-translational modifications involving ubiquitin that are important in various signaling pathways.
Collapse
Affiliation(s)
- Joanne M Hildebrand
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|