1
|
Zhu J, Jia X, Ren S, Zhang Z, Li H, Wang J, Song B, Wu W, Peng C. Inhibition of Polo-Like Kinase 1 Dampens the Replication of Vaccinia Virus in Mammalian Cells. J Med Virol 2025; 97:e70240. [PMID: 39953955 DOI: 10.1002/jmv.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Since the eradication of smallpox, zoonotic poxviruses, such as the mpox virus (MPXV), continue to pose a threat to public health. Identifying drugs that reduce poxvirus infection and replication, as well as understanding their molecular mechanisms, is essential for epidemic control. Polo-like kinase 1 (PLK1) has been shown to facilitate vaccinia virus (VACV) infection and replication. This study confirms the effects of the PLK1 inhibitors HMN-214 and ON-01910 on VACV replication in A549 cells. Both viral titers and DNA loads were significantly reduced in treated cells after infection. Additionally, ON-01910 demonstrated broad-spectrum antiviral activity against the lumpy skin disease virus (LSDV) and the infectious bovine rhinotracheitis virus (IBRV) in vitro. PLK1 knockdown in A549 cells also led to a reduction in VACV protein expression, viral titers, and DNA levels. Further analysis showed that VACV infection leads to the accumulation of PLK1 near viral factories. However, despite its strong in vitro effects, ON-01910 did not significantly reduce VACV replication in mice. These findings highlight the critical role of PLK1 in VACV replication and its potential as a target for antiviral therapy against orthopoxviruses.
Collapse
Affiliation(s)
- Junda Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuejiao Jia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuning Ren
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zihui Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hua Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baifen Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Shariati A, Khani P, Nasri F, Afkhami H, Khezrpour A, Kamrani S, Shariati F, Alavimanesh S, Modarressi MH. mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy. Biomark Res 2024; 12:157. [PMID: 39696625 DOI: 10.1186/s40364-024-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Harnessing the power of the immune system to target cancer cells is one of the most appealing approaches for cancer therapy. Among these immunotherapies, messenger ribonucleic acid (mRNA) cancer vaccines are worthy of consideration, as they have demonstrated promising results in clinical trials. These vaccines have proven to be safe and well-tolerated. They can be easily mass-produced in a relatively short time and induce a systemic immune response effective against both the primary tumor and metastases. Transcripts encoding immunomodulatory molecules can also be incorporated into the mRNA, enhancing its efficacy. On the other hand, there are some challenges associated with their application, including mRNA instability, insufficient uptake by immune cells, and intrinsic immunogenicity, which can block mRNA translation. Many innovations have been suggested to overcome these obstacles, including structural modification (such as 5' cap modification), optimizing delivery vehicles (especially dendritic cells (DCs) and nanoparticles), and using antigens that can enhance immunogenicity by circumventing tolerance mechanisms. A popular approach is to combine mRNA cancer vaccines with traditional and novel cancer treatments like chemotherapy, radiotherapy, and immune checkpoint blockade (ICB). They are most efficacious when combined with other therapies like ICBs. There is still a long way to go before these vaccines enter the standard of care for cancer patients, but with the incredible pace of development in this field, their clinical application will soon be witnessed. This review highlights the recent advances and challenges of mRNA cancer vaccines. Finally, some of the most prominent clinical applications of these vaccines will be reviewed.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
3
|
Pant A, Brahim Belhaouari D, Dsouza L, Yang Z. Stimulation of neutral lipid synthesis via viral growth factor signaling and ATP citrate lyase during vaccinia virus infection. J Virol 2024; 98:e0110324. [PMID: 39475274 DOI: 10.1128/jvi.01103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024] Open
Abstract
Fatty acid metabolism can provide various products essential for viral infections. How vaccinia virus (VACV), the prototype of poxviruses, modulates fatty acid metabolism is not well understood. Here, we show that VACV infection results in increased neutral lipid droplet synthesis, the organelles that play a crucial role in storing and mobilizing fatty acids for energy production via β-oxidation. Citrate is the first tricarboxylic acid (TCA) cycle intermediate that can be transported to the cytosol to be converted to acetyl-CoA for de novo fatty acid biosynthesis. We found that VACV infection stimulates the S455 phosphorylation of ATP citrate lyase (ACLY), a pivotal enzyme that links citrate metabolism with lipid metabolism. We demonstrate that the inhibition of neutral lipid droplet synthesis and ACLY severely suppresses VACV replication. Remarkably, we found that virus growth factor (VGF)-induced signaling is essential for the VACV-mediated upregulation of ACLY phosphorylation and neutral lipid droplets. Finally, we report that VGF-induced EGFR-Akt pathway and ACLY phosphorylation are important for VACV stimulation of neutral lipid synthesis. These findings identified a new way of rewiring cell metabolism by a virus and a novel function for VGF in the governance of virus-host interactions through the induction of a key enzyme at the crossroads of the TCA cycle and fatty acid metabolism. Our study also provides a mechanism for the role played by VGF and its downstream signaling cascades in the modulation of lipid metabolism in VACV-infected cells.IMPORTANCENeutral lipid droplets are vital players in cellular metabolism. Here, we showed that VACV induces neutral lipid droplet synthesis in infected primary human foreskin fibroblasts and identified the cellular and viral factors needed. We identified VACV encoded growth factor (VGF) as an essential viral factor that induces cellular EGFR-Akt signaling to increase lipid droplets. Interestingly, VACV increases the S455 phosphorylation of ACLY, a key metabolic enzyme that sits at the crossroads of carbohydrate and lipid metabolism in a VGF-EGFR-Akt-dependent manner. We also found that ACLY is vital for VACV-induced lipid droplet synthesis. Our findings identified the modulation of ACLY by a virus and identified it as a potential target for antiviral development against pathogenic poxviruses. Our study also expands the role of growth factor signaling in boosting VACV replication by targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Djamal Brahim Belhaouari
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Zhu J, Wang Z, Li Y, Zhang Z, Ren S, Wang J, Xie S, Liao Z, Song B, Wu W, Yan F, Peng C. Trimerized S expressed by modified vaccinia virus Ankara (MVA) confers superior protection against lethal SARS-CoV-2 challenge in mice. J Virol 2024; 98:e0052124. [PMID: 38874361 PMCID: PMC11264693 DOI: 10.1128/jvi.00521-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
The reoccurrence of successive waves of SARS-CoV-2 variants suggests the exploration of more vaccine alternatives is imperative. Modified vaccinia virus Ankara (MVA) is a virus vector exhibiting excellent safety as well as efficacy for vaccine development. Here, a series of recombinant MVAs (rMVAs) expressing monomerized or trimerized S proteins from different SARS-CoV-2 variants are engineered. Trimerized S expressed from rMVAs is found predominantly as trimers on the surface of infected cells. Remarkably, immunization of mice with rMVAs demonstrates that S expressed in trimer elicits higher levels of binding IgG and IgA, as well as neutralizing antibodies for matched and mismatched S proteins than S in the monomer. In addition, trimerized S expressed by rMVA induces enhanced cytotoxic T-cell responses than S in the monomer. Importantly, the rMVA vaccines expressing trimerized S exhibit superior protection against a lethal SARS-CoV-2 challenge as the immunized animals all survive without displaying any pathological conditions. This study suggests that opting for trimerized S may represent a more effective approach and highlights that the MVA platform serves as an ideal foundation to continuously advance SARS-CoV-2 vaccine development. IMPORTANCE MVA is a promising vaccine vector and has been approved as a vaccine for smallpox and mpox. Our analyses suggested that recombinant MVA expressing S in trimer (rMVA-ST) elicited robust cellular and humoral immunity and was more effective than MVA-S-monomer. Importantly, the rMVA-ST vaccine was able to stimulate decent cross-reactive neutralization against pseudoviruses packaged using S from different sublineages, including Wuhan, Delta, and Omicron. Remarkably, mice immunized with rMVA-ST were completely protected from a lethal challenge of SARS-CoV-2 without displaying any pathological conditions. Our results demonstrated that an MVA vectored vaccine expressing trimerized S is a promising vaccine candidate for SARS-CoV-2 and the strategy might be adapted for future vaccine development for coronaviruses.
Collapse
Affiliation(s)
- Junda Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenshan Wang
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yarui Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zihui Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuning Ren
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijie Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiyi Liao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baifen Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Feihu Yan
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Adegboye O, Alele F, Pak A, Alakunle E, Emeto T, Leggat P, Okeke M. Monkeypox Outbreak 2022, from a Rare Disease to Global Health Emergence: Implications for Travellers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:355-368. [PMID: 38801590 DOI: 10.1007/978-3-031-57165-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Monkeypox (mpox), a zoonotic disease caused by the monkeypox virus (MPXV), poses a significant public health threat with the potential for global dissemination beyond its endemic regions in Central and West Africa. This study explores the multifaceted aspects of monkeypox, covering its epidemiology, genomics, travel-related spread, mass gathering implications, and economic consequences. Epidemiologically, mpox exhibits distinct patterns, with variations in age and gender susceptibility. Severe cases can arise in immunocompromised individuals, underscoring the importance of understanding the factors contributing to its transmission. Genomic analysis of MPXV highlights its evolutionary relationship with the variola virus and vaccinia virus. Different MPXV clades exhibit varying levels of virulence and transmission potential, with Clade I associated with higher mortality rates. Moreover, the role of recombination in MPXV evolution remains a subject of interest, with implications for understanding its genetic diversity. Travel and mass gatherings play a pivotal role in the spread of monkeypox. The ease of international travel and increasing globalization have led to outbreaks beyond African borders. The economic ramifications of mpox outbreaks extend beyond public health. Direct treatment costs, productivity losses, and resource-intensive control efforts can strain healthcare systems and economies. While vaccination and mitigation strategies have proven effective, the cost-effectiveness of routine vaccination in non-endemic countries remains a subject of debate. This study emphasizes the role of travel, mass gatherings, and genomics in its spread and underscores the economic impacts on affected regions. Enhancing surveillance, vaccination strategies, and public health measures are essential in controlling this emerging infectious disease.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Menzies School of Health Research, Charles Darwin University, Casuarina, NT, 0811, Australia.
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| | - Faith Alele
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Anton Pak
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
- Centre for the Business and Economics of Health, The University of Queensland, Brisbane, QLD, 4067, Australia
| | - Emmanuel Alakunle
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, 640001, Nigeria
| | - Theophilus Emeto
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Peter Leggat
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Malachy Okeke
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, 640001, Nigeria
| |
Collapse
|
6
|
Zhu J, Gao X, Li Y, Zhang Z, Xie S, Ren S, Li Y, Li H, Niu K, Fu S, Deng Y, Li Y, Moss B, Wu W, Peng C. Human FAM111A inhibits vaccinia virus replication by degrading viral protein I3 and is antagonized by poxvirus host range factor SPI-1. Proc Natl Acad Sci U S A 2023; 120:e2304242120. [PMID: 37607234 PMCID: PMC10469034 DOI: 10.1073/pnas.2304242120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Zoonotic poxviruses such as mpox virus (MPXV) continue to threaten public health safety since the eradication of smallpox. Vaccinia virus (VACV), the prototypic poxvirus used as the vaccine strain for smallpox eradication, is the best-characterized member of the poxvirus family. VACV encodes a serine protease inhibitor 1 (SPI-1) conserved in all orthopoxviruses, which has been recognized as a host range factor for modified VACV Ankara (MVA), an approved smallpox vaccine and a promising vaccine vector. FAM111A (family with sequence similarity 111 member A), a nuclear protein that regulates host DNA replication, was shown to restrict the replication of a VACV SPI-1 deletion mutant (VACV-ΔSPI-1) in human cells. Nevertheless, the detailed antiviral mechanisms of FAM111A were unresolved. Here, we show that FAM111A is a potent restriction factor for VACV-ΔSPI-1 and MVA. Deletion of FAM111A rescued the replication of MVA and VACV-ΔSPI-1 and overexpression of FAM111A significantly reduced viral DNA replication and virus titers but did not affect viral early gene expression. The antiviral effect of FAM111A necessitated its trypsin-like protease domain and DNA-binding domain but not the PCNA-interacting motif. We further identified that FAM111A translocated into the cytoplasm upon VACV infection by degrading the nuclear pore complex via its protease activity, interacted with VACV DNA-binding protein I3, and promoted I3 degradation through autophagy. Moreover, SPI-1 from VACV, MPXV, or lumpy skin disease virus was able to antagonize FAM111A by prohibiting its nuclear export. Our findings reveal the detailed mechanism by which FAM111A inhibits VACV and provide explanations for the immune evasive function of VACV SPI-1.
Collapse
Affiliation(s)
- Junda Zhu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Yijing Li
- Aricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Zihui Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Shijie Xie
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Shuning Ren
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yarui Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Hua Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Kang Niu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Shufang Fu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yining Deng
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
7
|
Langenmayer MC, Luelf-Averhoff AT, Marr L, Jany S, Freudenstein A, Adam-Neumair S, Tscherne A, Fux R, Rojas JJ, Blutke A, Sutter G, Volz A. Newly Designed Poxviral Promoters to Improve Immunogenicity and Efficacy of MVA-NP Candidate Vaccines against Lethal Influenza Virus Infection in Mice. Pathogens 2023; 12:867. [PMID: 37513714 PMCID: PMC10383309 DOI: 10.3390/pathogens12070867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Influenza, a respiratory disease mainly caused by influenza A and B, viruses of the Orthomyxoviridae, is still a burden on our society's health and economic system. Influenza A viruses (IAV) circulate in mammalian and avian populations, causing seasonal outbreaks with high numbers of cases. Due to the high variability in seasonal IAV triggered by antigenic drift, annual vaccination is necessary, highlighting the need for a more broadly protective vaccine against IAV. The safety tested Modified Vaccinia virus Ankara (MVA) is licensed as a third-generation vaccine against smallpox and serves as a potent vector system for the development of new candidate vaccines against different pathogens. Here, we generated and characterized recombinant MVA candidate vaccines that deliver the highly conserved internal nucleoprotein (NP) of IAV under the transcriptional control of five newly designed chimeric poxviral promoters to further increase the immunogenic properties of the recombinant viruses (MVA-NP). Infections of avian cell cultures with the recombinant MVA-NPs demonstrated efficient synthesis of the IAV-NP which was expressed under the control of the five new promoters. Prime-boost or single shot immunizations in C57BL/6 mice readily induced circulating serum antibodies' binding to recombinant IAV-NP and the robust activation of IAV-NP-specific CD8+ T cell responses. Moreover, the MVA-NP candidate vaccines protected C57BL/6 mice against lethal respiratory infection with mouse-adapted IAV (A/Puerto Rico/8/1934/H1N1). Thus, further studies are warranted to evaluate the immunogenicity and efficacy of these recombinant MVA-NP vaccines in other IAV challenge models in more detail.
Collapse
Affiliation(s)
- Martin C Langenmayer
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | | | - Lisa Marr
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Sylvia Jany
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Astrid Freudenstein
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Silvia Adam-Neumair
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Alina Tscherne
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Juan J Rojas
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- Immunology Unit, Department of Pathology and Experimental Therapies, Faculty of Medicine and Health Sciences, University of Barcelona-Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
- Institute for Veterinary Pathology, LMU Munich, 80539 Munich, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- German Center of Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| |
Collapse
|
8
|
Shakiba Y, Vorobyev PO, Yusubalieva GM, Kochetkov DV, Zajtseva KV, Valikhov MP, Kalsin VA, Zabozlaev FG, Semkina AS, Troitskiy AV, Baklaushev VP, Chumakov PM, Lipatova AV. Oncolytic therapy with recombinant vaccinia viruses targeting the interleukin-15 pathway elicits a synergistic response. Mol Ther Oncolytics 2023; 29:158-168. [PMID: 37387795 PMCID: PMC10300409 DOI: 10.1016/j.omto.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/10/2023] [Indexed: 07/01/2023] Open
Abstract
We developed recombinant variants of oncolytic vaccinia virus LIVP strain expressing interleukin-15 (IL-15) or its receptor subunit alpha (IL-15Rα) to stimulate IL-15-dependent immune cells. We evaluated their oncolytic activity either alone or in combination with each other in vitro and in vivo using the murine CT26 colon carcinoma and 4T1 breast carcinoma models. We demonstrated that the admixture of these recombinant variants could promote the generation of the IL-15/IL-15Rα complex. In vitro studies indicated that 4T1 breast cancer cells were more susceptible to the developed recombinant viruses. In vivo studies showed significant survival benefits and tumor regression in 4T1 breast cancer syngeneic mice that received a combination of LIVP-IL15-RFP with LIVP-IL15Ra-RFP. Histological analysis showed recruited lymphocytes at the tumor region, while no harmful effects to the liver or spleen of the animals were detected. Evaluating tumor-infiltrated lymphocytes represented profound activation of cytotoxic T cells and macrophages in mice receiving combination therapy. Thus, our experiments showed superior oncolytic effectiveness of simultaneous injection of LIVP-IL15-RFP and LIVP-IL15Ra-RFP in breast cancer-bearing mice. The combined therapy by these recombinant variants represents a potent and versatile approach for developing new immunotherapies for breast cancer.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies, FMBA of Russia, 117513 Moscow, Russian Federation
| | - Dmitry V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ksenia V. Zajtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marat P. Valikhov
- Department of Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University 117997 Moscow, Russia
| | - Vladimir A. Kalsin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russian Federation
| | - Fedor G. Zabozlaev
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russian Federation
| | - Alevtina S. Semkina
- Department of Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University 117997 Moscow, Russia
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russian Federation
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies, FMBA of Russia, 117513 Moscow, Russian Federation
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Shakiba Y, Vorobyev PO, Mahmoud M, Hamad A, Kochetkov DV, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:823-841. [PMID: 37748878 DOI: 10.1134/s000629792306010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 09/27/2023]
Abstract
Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Marah Mahmoud
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Azzam Hamad
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Gaukhar M Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Cotter CA, Americo JL, Earl PL, Moss B. Protection from SARS-CoV-2 Variants by MVAs expressing matched or mismatched S administered intranasally to mice. NPJ Vaccines 2023; 8:47. [PMID: 36973267 PMCID: PMC10040904 DOI: 10.1038/s41541-023-00645-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
SARS-CoV-2 vaccines prevent severe disease but are less efficient in averting infection and transmission of variant strains, making it imperative to explore ways of enhancing protection. Use of inbred mice expressing the human SARS-CoV-2 receptor facilitates such investigations. We employed recombinant MVAs (rMVAs) expressing modified S of several SARS-CoV-2 strains and compared their ability to neutralize variants, bind S proteins and protect K18-hACE2 mice against SARS-CoV-2 challenge when administered intramuscularly or intranasally. The rMVAs expressing Wuhan, Beta and Delta S induced substantial cross neutralizing activities to each other but very low neutralization of Omicron; while rMVA expressing Omicon S induced neutralizing antibody predominanly to Omicron. In mice primed and boosted with rMVA expressing the Wuhan S, neutralizing antibodies to Wuhan increased after one immunization with rMVA expressing Omicron S due to original antigenic sin, but substantial neutralizing antibody to Omicron required a second immunization. Nevertheless, monovalent vaccines with S mismatched to the challenge virus still protected against severe disease and reduced the amounts of virus and subgenomic RNAs in the lungs and nasal turbinates, though not as well as vaccines with matched S. Passive transfer of Wuhan immune serum with Omicron S binding but undetectable neutralizing activity reduced infection of the l-ungs by Omicron suggesting additional effector functions. Notably, there was less infectious virus and viral subgenomic RNAs in the nasal turbinates and lungs when the rMVAs were administered intranasally rather than intramuscularly and this held true for vaccines that were matched or mismatched to the challenge strain of SARS-CoV-2.
Collapse
Affiliation(s)
- Catherine A Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Shakiba Y, Vorobyev PO, Naumenko VA, Kochetkov DV, Zajtseva KV, Valikhov MP, Yusubalieva GM, Gumennaya YD, Emelyanov EA, Semkina AS, Baklaushev VP, Chumakov PM, Lipatova AV. Oncolytic Efficacy of a Recombinant Vaccinia Virus Strain Expressing Bacterial Flagellin in Solid Tumor Models. Viruses 2023; 15:828. [PMID: 37112810 PMCID: PMC10142208 DOI: 10.3390/v15040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Oncolytic viral therapy is a promising novel approach to cancer treatment. Oncolytic viruses cause tumor regression through direct cytolysis on the one hand and recruiting and activating immune cells on the other. In this study, to enhance the antitumor efficacy of the thymidine kinase-deficient vaccinia virus (VV, Lister strain), recombinant variants encoding bacterial flagellin (subunit B) of Vibrio vulnificus (LIVP-FlaB-RFP), firefly luciferase (LIVP-Fluc-RFP) or red fluorescent protein (LIVP-RFP) were developed. The LIVP-FLuc-RFP strain demonstrated exceptional onco-specificity in tumor-bearing mice, detected by the in vivo imaging system (IVIS). The antitumor efficacy of these variants was explored in syngeneic murine tumor models (B16 melanoma, CT26 colon cancer and 4T1 breast cancer). After intravenous treatment with LIVP-FlaB-RFP or LIVP-RFP, all mice tumor models exhibited tumor regression, with a prolonged survival rate in comparison with the control mice. However, superior oncolytic activity was observed in the B16 melanoma models treated with LIVP-FlaB-RFP. Tumor-infiltrated lymphocytes and the cytokine analysis of the serum and tumor samples from the melanoma-xenografted mice treated with these virus variants demonstrated activation of the host's immune response. Thus, the expression of bacterial flagellin by VV can enhance its oncolytic efficacy against immunosuppressive solid tumors.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Victor A. Naumenko
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, 119034 Moscow, Russia
| | - Dmitry V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ksenia V. Zajtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marat P. Valikhov
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Egor A. Emelyanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
Developing Anti-Babesia bovis Blood Stage Vaccines: A New Perspective Regarding Synthetic Vaccines. Int J Mol Sci 2023; 24:ijms24065219. [PMID: 36982294 PMCID: PMC10049154 DOI: 10.3390/ijms24065219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 03/12/2023] Open
Abstract
Bovine babesiosis is caused by the Apicomplexa parasites from the genus Babesia. It is one of the most important tick-borne veterinary diseases worldwide; Babesia bovis being the species associated with the most severe clinical signs of the disease and causing the greatest economic losses. Many limitations related to chemoprophylaxis and the acaricides control of transmitting vectors have led to the adoption of live attenuated vaccine immunisation against B. bovis as an alternative control strategy. However, whilst this strategy has been effective, several drawbacks related to its production have prompted research into alternative methodologies for producing vaccines. Classical approaches for developing anti-B. bovis vaccines are thus discussed in this review and are compared to a recent functional approach to highlight the latter’s advantages when designing an effective synthetic vaccine targeting this parasite.
Collapse
|
13
|
Brennan G, Stoian AMM, Yu H, Rahman MJ, Banerjee S, Stroup JN, Park C, Tazi L, Rothenburg S. Molecular Mechanisms of Poxvirus Evolution. mBio 2023; 14:e0152622. [PMID: 36515529 PMCID: PMC9973261 DOI: 10.1128/mbio.01526-22] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Poxviruses are often thought to evolve relatively slowly because they are double-stranded DNA pathogens with proofreading polymerases. However, poxviruses have highly adaptable genomes and can undergo relatively rapid genotypic and phenotypic change, as illustrated by the recent increase in human-to-human transmission of monkeypox virus. Advances in deep sequencing technologies have demonstrated standing nucleotide variation in poxvirus populations, which has been underappreciated. There is also an emerging understanding of the role genomic architectural changes play in shaping poxvirus evolution. These mechanisms include homologous and nonhomologous recombination, gene duplications, gene loss, and the acquisition of new genes through horizontal gene transfer. In this review, we discuss these evolutionary mechanisms and their potential roles for adaption to novel host species and modulating virulence.
Collapse
Affiliation(s)
- Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Ana M. M. Stoian
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Huibin Yu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - M. Julhasur Rahman
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Shefali Banerjee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Jeannine N. Stroup
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Chorong Park
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
14
|
Zhao Z, Huang C, Zhu X, Qi Z, Cao Y, Li P, Bao H, Sun P, Bai X, Fu Y, Li K, Zhang J, Ma X, Wang J, Yuan H, Li D, Liu Z, Zhang Q, Lu Z. Creation of poxvirus expressing foot-and-mouth and peste des petits ruminant disease virus proteins. Appl Microbiol Biotechnol 2023; 107:639-650. [PMID: 36586016 DOI: 10.1007/s00253-022-12351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Foot-and-mouth disease (FMD) and Peste des petits ruminant disease (PPR) are acute and severe infectious diseases of sheep and are listed as animal diseases for compulsory immunization. However, there is no dual vaccine to prevent these two diseases. The Modified Vaccinia virus Ankara strain (MVA) has been widely used in the construction of recombinant live vector vaccine because of its large capacity of foreign gene, wide host range, high safety, and immunogenicity. In this study, MVA-GFP recombinant virus skeleton was used to construct dual live vector vaccines against FMD and PPR. METHODS The recombinant plasmid pUC57-FMDV P1-2A3CPPRV FH was synthesized and transfected into MVA-GFP infected CEF cells for homologous recombination. RESULTS The results showed that a recombinant virus without fluorescent labeling was obtained after multiple rounds of plaque screening. The recombinant virus successfully expressed the target proteins, and the empty capsid of FMDV could be observed by transmission electron microscope (TME), and the expression levels of foreign proteins (VP1 and VP3) detected by ELISA were like those detected in FMDV-infected cells. This study laid the foundation for the successful construction of a live vector vaccine against FMD and PPR. KEY POINTS • A recombinant MVA expressing FMDVP12A3C and PRRV HF proteins • Both the FMDV and PRRV proteins inserted into the virus were expressed • The proteins expressed by the recombinant poxvirus were assembled into VLPs.
Collapse
Affiliation(s)
- Zhixun Zhao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Caiyun Huang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Zheng Qi
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Jian Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China.
| | - Qiang Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China.
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
15
|
Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol 2023; 88:81-95. [PMID: 36526110 DOI: 10.1016/j.semcancer.2022.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
16
|
Israeli O, Guedj-Dana Y, Shifman O, Lazar S, Cohen-Gihon I, Amit S, Ben-Ami R, Paran N, Schuster O, Weiss S, Zvi A, Beth-Din A. Rapid Amplicon Nanopore Sequencing (RANS) for the Differential Diagnosis of Monkeypox Virus and Other Vesicle-Forming Pathogens. Viruses 2022; 14:1817. [PMID: 36016439 PMCID: PMC9416277 DOI: 10.3390/v14081817] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
As of July 2022, more than 16,000 laboratory-confirmed monkeypox (MPX) cases have been reported worldwide. Until recently, MPX was a rare viral disease seldom detected outside Africa. MPX virus (MPXV) belongs to the Orthopoxvirus (OPV) genus and is a genetically close relative of the Variola virus (the causative agent of smallpox). Following the eradication of smallpox, there was a significant decrease in smallpox-related morbidity and the population's immunity to other OPV-related diseases such as MPX. In parallel, there was a need for differential diagnosis between the different OPVs' clinical manifestations and diseases with similar symptoms (i.e., chickenpox, herpes simplex). The current study aimed to provide a rapid genetic-based diagnostic tool for accurate and specific identification of MPXV and additional related vesicle-forming pathogens. We initially assembled a list of 14 relevant viral pathogens, causing infectious diseases associated with vesicles, prone to be misdiagnosed as MPX. Next, we developed an approach that we termed rapid amplicon nanopore sequencing (RANS). The RANS approach uses diagnostic regions that harbor high homology in their boundaries and internal diagnostic SNPs that, when sequenced, aid the discrimination of each pathogen within a group. During a multiplex PCR amplification, a dA tail and a 5'-phosphonate were simultaneously added, thus making the PCR product ligation ready for nanopore sequencing. Following rapid sequencing (a few minutes), the reads were compared to a reference database and the nearest strain was identified. We first tested our approach using samples of known viruses cultured in cell lines. All the samples were identified correctly and swiftly. Next, we examined a variety of clinical samples from the 2022 MPX outbreak. Our RANS approach identified correctly all the PCR-positive MPXV samples and mapped them to strains that were sequenced during the 2022 outbreak. For the subset of samples that were negative for MPXV by PCR, we obtained definite results, identifying other vesicle-forming viruses: Human herpesvirus 3, Human herpesvirus 2, and Molluscum contagiosum virus. This work was a proof-of-concept study, demonstrating the potential of the RANS approach for rapid and discriminatory identification of a panel of closely related pathogens. The simplicity and affordability of our approach makes it straightforward to implement in any genetics lab. Moreover, other differential diagnostics panels might benefit from the implementation of the RANS approach into their diagnostics pipelines.
Collapse
Affiliation(s)
- Ofir Israeli
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Yehoudit Guedj-Dana
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Ohad Shifman
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Shirley Lazar
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Inbar Cohen-Gihon
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Sharon Amit
- Clinical Microbiology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Ronen Ben-Ami
- Infectious Diseases Unit Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv P.O. Box 39040, Israel
| | - Nir Paran
- Departments of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Ofir Schuster
- Departments of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Shay Weiss
- Departments of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Anat Zvi
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Adi Beth-Din
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| |
Collapse
|
17
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
18
|
Depierreux DM, Altenburg AF, Soday L, Fletcher-Etherington A, Antrobus R, Ferguson BJ, Weekes MP, Smith GL. Selective modulation of cell surface proteins during vaccinia infection: A resource for identifying viral immune evasion strategies. PLoS Pathog 2022; 18:e1010612. [PMID: 35727847 PMCID: PMC9307158 DOI: 10.1371/journal.ppat.1010612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/22/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
The interaction between immune cells and virus-infected targets involves multiple plasma membrane (PM) proteins. A systematic study of PM protein modulation by vaccinia virus (VACV), the paradigm of host regulation, has the potential to reveal not only novel viral immune evasion mechanisms, but also novel factors critical in host immunity. Here, >1000 PM proteins were quantified throughout VACV infection, revealing selective downregulation of known T and NK cell ligands including HLA-C, downregulation of cytokine receptors including IFNAR2, IL-6ST and IL-10RB, and rapid inhibition of expression of certain protocadherins and ephrins, candidate activating immune ligands. Downregulation of most PM proteins occurred via a proteasome-independent mechanism. Upregulated proteins included a decoy receptor for TRAIL. Twenty VACV-encoded PM proteins were identified, of which five were not recognised previously as such. Collectively, this dataset constitutes a valuable resource for future studies on antiviral immunity, host-pathogen interaction, poxvirus biology, vector-based vaccine design and oncolytic therapy. Vaccinia virus (VACV) is the vaccine used to eradicate smallpox and an excellent model for studying host-pathogen interactions. Many VACV-mediated immune evasion strategies are known, however how immune cells recognise VACV-infected cells is incompletely understood because of the complexity of surface proteins regulating such interactions. Here, a systematic study of proteins on the cell surface at different times during infection with VACV is presented. This shows not only the precise nature and kinetics of appearance of VACV proteins, but also the selective alteration of cellular surface proteins. The latter thereby identified potential novel immune evasion strategies and host proteins regulating immune activation. Comprehensive comparisons with published datasets provided further insight into mechanisms used to regulate surface protein expression. Such comparisons also identified proteins that are targeted by both VACV and human cytomegalovirus (HCMV), and which are therefore likely to represent host proteins regulating immune recognition and activation. Collectively, this work provides a valuable resource for studying viral immune evasion mechanisms and novel host proteins critical in host immunity.
Collapse
Affiliation(s)
| | | | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| |
Collapse
|
19
|
He Q, Gao H, Tan D, Zhang H, Wang JZ. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B 2022; 12:2969-2989. [PMID: 35345451 PMCID: PMC8942458 DOI: 10.1016/j.apsb.2022.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Patients exhibit good tolerance to messenger ribonucleic acid (mRNA) vaccines, and the choice of encoded molecules is flexible and diverse. These vaccines can be engineered to express full-length antigens containing multiple epitopes without major histocompatibility complex (MHC) restriction, are relatively easy to control and can be rapidly mass produced. In 2021, the U.S. Food and Drug Administration (FDA) approved the first mRNA-based coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer and BioNTech, which has generated enthusiasm for mRNA vaccine research and development. Based on the above characteristics and the development of mRNA vaccines, mRNA cancer vaccines have become a research hotspot and have undergone rapid development, especially in the last five years. This review analyzes the advances in mRNA cancer vaccines from various perspectives, including the selection and expression of antigens/targets, the application of vectors and adjuvants, different administration routes, and preclinical evaluation, to reflect the trends and challenges associated with these vaccines.
Collapse
|
20
|
Bréard E, Turpaud M, Beaud G, Postic L, Fablet A, Beer M, Sailleau C, Caignard G, Viarouge C, Hoffmann B, Vitour D, Zientara S. Development and Validation of an ELISA for the Detection of Bluetongue Virus Serotype 4-Specific Antibodies. Viruses 2021; 13:v13091741. [PMID: 34578322 PMCID: PMC8473233 DOI: 10.3390/v13091741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
In this article, we describe the development and evaluation of a double antigen sandwich enzyme-linked immunosorbent assay (ELISA) able to detect serotype 4-specific antibodies from BTV-4 infected or vaccinated animals using a recombinant BTV-4 VP2 protein. The coding sequence of VP2 was inserted into a pVote plasmid by recombination in the Gateway® cloning system. Vaccinia virus (VacV) was used as a vector for the expression of the recombinant VP2. After production in BSR cells, recombinant VP2 was purified by immunoprecipitation using a FLAG tag and then used both as the coated ELISA antigen and as the HRP-tagged conjugate. The performance of the ELISA was evaluated with 1186 samples collected from BTV negative, infected or vaccinated animals. The specificity and sensitivity of the BTV-4 ELISA were above the expected standards for the detection of anti-BTV-4 VP2 antibodies in animals reared in Europe or in the Mediterranean basin. Cross-reactions were observed with reference sera for serotypes 10 and 20, and to a lesser extent with serotypes 12, 17 and 24, due to their genetic proximity to serotype 4. Nevertheless, these serotypes have never been detected in Europe and the Mediterranean area. This ELISA, which requires only the production of a recombinant protein, can be used to detect BTV serotype 4-specific antibodies and is therefore an attractive alternative diagnostic method to serum neutralization.
Collapse
Affiliation(s)
- Emmanuel Bréard
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
- Correspondence:
| | - Mathilde Turpaud
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Georges Beaud
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Lydie Postic
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Aurore Fablet
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (B.H.)
| | - Corinne Sailleau
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Grégory Caignard
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Cyril Viarouge
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (B.H.)
| | - Damien Vitour
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Stéphan Zientara
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| |
Collapse
|
21
|
Pant A, Dsouza L, Cao S, Peng C, Yang Z. Viral growth factor- and STAT3 signaling-dependent elevation of the TCA cycle intermediate levels during vaccinia virus infection. PLoS Pathog 2021; 17:e1009303. [PMID: 33529218 PMCID: PMC7880457 DOI: 10.1371/journal.ppat.1009303] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/12/2021] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
Metabolism is a crucial frontier of host-virus interaction as viruses rely on their host cells to provide nutrients and energy for propagation. Vaccinia virus (VACV) is the prototype poxvirus. It makes intensive demands for energy and macromolecules in order to build hundreds and thousands of viral particles in a single cell within hours of infection. Our comprehensive metabolic profiling reveals profound reprogramming of cellular metabolism by VACV infection, including increased levels of the intermediates of the tri-carboxylic acid (TCA) cycle independent of glutaminolysis. By investigating the level of citrate, the first metabolite of the TCA cycle, we demonstrate that the elevation of citrate depends on VACV-encoded viral growth factor (VGF), a viral homolog of cellular epidermal growth factor. Further, the upregulation of citrate is dependent on STAT3 signaling, which is activated non-canonically at the serine727 upon VACV infection. The STAT3 activation is dependent on VGF, and VGF-dependent EGFR and MAPK signaling. Together, our study reveals a novel mechanism by which VACV manipulates cellular metabolism through a specific viral factor and by selectively activating a series of cellular signaling pathways. Vaccinia virus (VACV) is a large DNA virus with an acute and increasing demand for energy and macromolecules to build hundreds and thousands of viral particles in a single cell within hours of infection. The demand postulates reprogramming of the TCA cycle, as it is the central metabolic hub of a cell that generates metabolites for energy production and macromolecule synthesis. We show that VACV infection reprograms cellular metabolism globally, elevating the TCA cycle intermediate levels and modulating related cell metabolism. The elevation of the TCA cycle intermediates depends on the virus-encoded growth factor that stimulates non-canonical STAT3 signaling during VACV infection. Our results provide the metabolic foundation of viral growth factor to boost VACV infection.
Collapse
Affiliation(s)
- Anil Pant
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Lara Dsouza
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Chen Peng
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
22
|
O’Connell CM, Jasperse B, Hagen CJ, Titong A, Verardi PH. Replication-inducible vaccinia virus vectors with enhanced safety in vivo. PLoS One 2020; 15:e0230711. [PMID: 32240193 PMCID: PMC7117657 DOI: 10.1371/journal.pone.0230711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/06/2020] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus (VACV) has been used extensively as the vaccine against smallpox and as a viral vector for the development of recombinant vaccines and cancer therapies. Replication-competent, non-attenuated VACVs induce strong, long-lived humoral and cell-mediated immune responses and can be effective oncolytic vectors. However, complications from uncontrolled VACV replication in vaccinees and their close contacts can be severe, particularly in individuals with predisposing conditions. In an effort to develop replication-competent VACV vectors with improved safety, we placed VACV late genes encoding core or virion morphogenesis proteins under the control of tet operon elements to regulate their expression with tetracycline antibiotics. These replication-inducible VACVs would only express the selected genes in the presence of tetracyclines. VACVs inducibly expressing the A3L or A6L genes replicated indistinguishably from wild-type VACV in the presence of tetracyclines, whereas there was no evidence of replication in the absence of antibiotics. These outcomes were reflected in mice, where the VACV inducibly expressing the A6L gene caused weight loss and mortality equivalent to wild-type VACV in the presence of tetracyclines. In the absence of tetracyclines, mice were protected from weight loss and mortality, and viral replication was not detected. These findings indicate that replication-inducible VACVs based on the conditional expression of the A3L or A6L genes can be used for the development of safer, next-generation live VACV vectors and vaccines. The design allows for administration of replication-inducible VACV in the absence of tetracyclines (as a replication-defective vector) or in the presence of tetracyclines (as a replication-competent vector) with enhanced safety.
Collapse
Affiliation(s)
- Caitlin M. O’Connell
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Brittany Jasperse
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Caitlin J. Hagen
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Allison Titong
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Paulo H. Verardi
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
23
|
Working Safely with Vaccinia Virus: Laboratory Technique and Review of Published Cases of Accidental Laboratory Infections with Poxviruses. Methods Mol Biol 2020. [PMID: 31240668 DOI: 10.1007/978-1-4939-9593-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Vaccinia virus, the prototype Orthopoxvirus, is widely used in the laboratory as a model system to study various aspects of viral biology and virus-host interactions, as a protein expression system, as a vaccine vector, and as an oncolytic agent. The ubiquitous use of vaccinia viruses in laboratories around the world raises certain safety concerns because the virus can be a pathogen in individuals with immunological and dermatological abnormalities, and on occasion can cause serious problems in normal hosts. This chapter reviews standard operating procedures when working with vaccinia virus and reviews published cases of accidental laboratory infections with poxviruses.
Collapse
|
24
|
Repair of a previously uncharacterized second host-range gene contributes to full replication of modified vaccinia virus Ankara (MVA) in human cells. Proc Natl Acad Sci U S A 2020; 117:3759-3767. [PMID: 32019881 DOI: 10.1073/pnas.1921098117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA), a widely used vaccine vector for expression of genes of unrelated pathogens, is safe, immunogenic, and can incorporate large amounts of added DNA. MVA was derived by extensively passaging the chorioallantois vaccinia virus Ankara (CVA) vaccine strain in chicken embryo fibroblasts during which numerous mutations and deletions occurred with loss of replicative ability in most mammalian cells. Restoration of the deleted C12L gene, encoding serine protease inhibitor 1, enhances replication of MVA in human MRC-5 cells but only slightly in other human cells. Here we show that repair of the inactivated C16L/B22R gene of MVA enhances replication in numerous human cell lines. This previously uncharacterized gene is present at both ends of the genome of many orthopoxviruses and is highly conserved in most, including smallpox and monkeypox viruses. The C16L/B22R gene is expressed early in infection from the second methionine of the previously annotated Copenhagen strain open reading frame (ORF) as a 17.4-kDa protein. The C16/B22 and C12 proteins together promote MVA replication in human cells to levels that are comparable to titers in chicken embryo fibroblasts. Both proteins enhance virion assembly, but C16/B22 increases proteolytic processing of core proteins in A549 cells consistent with higher infectious virus titers. Furthermore, human A549 cells expressing codon-optimized C16L/B22R and C12L genes support higher levels of MVA replication than cell lines expressing neither or either alone. Identification of the genes responsible for the host-range defect of MVA may allow more rational engineering of vaccines for efficacy, safety, and propagation.
Collapse
|
25
|
Khusro A, Aarti C, Rivas-Caceres RR, Barbabosa-Pliego A. Equine Herpesvirus-I Infection in Horses: Recent Updates on its Pathogenicity, Vaccination, and Preventive Management Strategies. J Equine Vet Sci 2020; 87:102923. [PMID: 32172913 DOI: 10.1016/j.jevs.2020.102923] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most common and ubiquitous viral pathogens infecting equines, particularly horses worldwide. The EHV-1 is known to induce not only humoral but also cellular immune responses in horses. Respiratory distress, abortion in pregnant mares, neurological disorders, and neonatal foal deaths represent EHV-1 infection. Despite the limited success of inactivated, subunit, live, and DNA vaccines, over the past few decades, vaccination remains the prime preventive option to combat EHV-1 infection in horses. However, current vaccines lack the potentiality to protect the neurological form of infections in horses. There is desperate necessity to search effectual EHV-1 vaccines that may stimulate not only mucosal and systemic cellular immunity but also humoral immunity in the horses. This review highlights the state of knowledge regarding EHV-1 biology, EHV-1 pathogenesis, and disparate vaccines studied in the past to prevent EHV-1 infection. The review also underlines the best management strategies which certainly need to be adopted by veterinarians in order to avoid and prevent EHV-1 infection and outbreak in horses in the future.
Collapse
Affiliation(s)
- Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
| | - Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
| | | | - Alberto Barbabosa-Pliego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
| |
Collapse
|
26
|
Affiliation(s)
- Stewart Sell
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA
| |
Collapse
|
27
|
Primary Human B Cells at Different Differentiation and Maturation Stages Exhibit Distinct Susceptibilities to Vaccinia Virus Binding and Infection. J Virol 2019; 93:JVI.00973-19. [PMID: 31292245 DOI: 10.1128/jvi.00973-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023] Open
Abstract
Vaccinia virus (VACV), the prototypical member of the poxvirus family, was used as a live-virus vaccine to eradicate smallpox worldwide and has recently received considerable attention because of its potential as a prominent vector for the development of vaccines against infectious diseases and as an oncolytic virus for cancer therapy. Studies have demonstrated that VACV exhibits an extremely strong bias for binding to and infection of primary human antigen-presenting cells (APCs), including monocytes, macrophages, and dendritic cells. However, very few studies have assessed the interactions of VACV with primary human B cells, a main type of professional APCs. In this study, we evaluated the susceptibility of primary human peripheral B cells at various differentiation and maturation stages to VACV binding, infection, and replication. We found that plasmablasts were resistant to VACV binding, while other B subsets, including transitional, mature naive, memory, and plasma cells, were highly susceptible to VACV binding. VACV binding preference was likely associated with differential expression of chemokine receptors, particularly CXCR5. Infection studies showed that plasmablast, plasma, transitional, and mature naive B cells were resistant to VACV infection, while memory B cells were preferentially infected. VACV infection in ex vivo B cells was abortive, which occurred at the stage of late viral gene expression. In contrast, activated B cells were permissive to productive VACV infection. Thus, primary human B cells at different differentiation stages exhibit distinct susceptibilities to VACV binding and infection, and the infections are abortive and productive in ex vivo and activated B cells, respectively.IMPORTANCE Our results provide critical information to the field of poxvirus binding and infection tropism. We demonstrate that VACV preferentially infects memory B cells that play an important role in a rapid and vigorous antibody-mediated immune response upon reinfection by a pathogen. Additionally, this work highlights the potential of B cells as natural cellular models to identify VACV receptors or dissect the molecular mechanisms underlying key steps of the VACV life cycle, such as binding, penetration, entry, and replication in primary human cells. The understanding of VACV biology in human primary cells is essential for the development of a safe and effective live-virus vector for oncolytic virus therapy and vaccines against smallpox, other pathogens, and cancer.
Collapse
|
28
|
Pant A, Cao S, Yang Z. Asparagine Is a Critical Limiting Metabolite for Vaccinia Virus Protein Synthesis during Glutamine Deprivation. J Virol 2019; 93:e01834-18. [PMID: 30996100 PMCID: PMC6580962 DOI: 10.1128/jvi.01834-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Viruses actively interact with host metabolism because viral replication relies on host cells to provide nutrients and energy. Vaccinia virus (VACV; the prototype poxvirus) prefers glutamine to glucose for efficient replication to the extent that VACV replication is hindered in glutamine-free medium. Remarkably, our data show that VACV replication can be fully rescued from glutamine depletion by asparagine supplementation. By global metabolic profiling, as well as genetic and chemical manipulation of the asparagine supply, we provide evidence demonstrating that the production of asparagine, which exclusively requires glutamine for biosynthesis, accounts for VACV's preference of glutamine to glucose rather than glutamine's superiority over glucose in feeding the tricarboxylic acid (TCA) cycle. Furthermore, we show that sufficient asparagine supply is required for efficient VACV protein synthesis. Our study highlights that the asparagine supply, the regulation of which has been evolutionarily tailored in mammalian cells, presents a critical barrier to VACV replication due to a high asparagine content of viral proteins and a rapid demand of viral protein synthesis. The identification of asparagine availability as a critical limiting factor for efficient VACV replication suggests a new direction of antiviral strategy development.IMPORTANCE Viruses rely on their infected host cells to provide nutrients and energy for replication. Vaccinia virus, the prototypic member of the poxviruses, which comprise many significant human and animal pathogens, prefers glutamine to glucose for efficient replication. Here, we show that the preference is not because glutamine is superior to glucose as the carbon source to fuel the tricarboxylic acid cycle for vaccinia virus replication. Rather interestingly, the preference is because the asparagine supply for efficient viral protein synthesis becomes limited in the absence of glutamine, which is necessary for asparagine biosynthesis. We provide further genetic and chemical evidence to demonstrate that asparagine availability plays a critical role in efficient vaccinia virus replication. This discovery identifies a weakness of vaccinia virus and suggests a possible direction to intervene in poxvirus infection.
Collapse
Affiliation(s)
- Anil Pant
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
29
|
Abstract
Neuroblastoma (NB) is a common and deadly malignancy mostly observed in children. Evolution of therapeutic options for NB led to the addition of immunotherapeutic modalities to the previously recruited chemotherapeutic options. Molecular studies of the NB cells resulted in the discovery of many tumor-associated genes and antigens such as MYCN gene and GD2. MYCN gene and GD2 surface antigen are two of the most practical discoveries regarding immunotherapy of neuroblastoma. The GD2 antigen has been targeted in many animal and human studies including Phase III clinical trials. Even though these antigens have changed the face of pediatric neuroblastoma, they do not take as much credit in immunotherapy of adult-onset neuroblastoma. Monoclonal antibodies have been designed to detect this antigen on the surface of NB tumor cells. Despite bettering the outcomes for NB patients, current therapies still fail in many cases. Studies are underway to discover more specific tumor-associated antigens and more effective treatment options. In the current narrative, immunotherapy of NB - from emerging of this therapeutic backbone in NB to the latest discoveries regarding this malignancy - has been reviewed.
Collapse
Affiliation(s)
- Parnian Jabbari
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Sara Hanaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| |
Collapse
|
30
|
Marzook NB, Newsome TP. Construction and Isolation of Recombinant Vaccinia Virus Expressing Fluorescent Proteins. Methods Mol Biol 2019; 2023:73-92. [PMID: 31240671 DOI: 10.1007/978-1-4939-9593-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vaccinia virus recombinants that express fluorescent proteins have a variety of applications such as the identification of infected cells, efficient screening for genetically modified strains, and molecular characterization of virus replication and spread. The detection of fluorescent proteins and viral-fluorescent fusion proteins by fluorescence microscopy is noninvasive and can be used to describe protein localization in live cells and track the intracellular movement of virus particles. This chapter describes a number of approaches for the construction of plasmids and subsequent generation and isolation of fluorescent recombinant viruses.
Collapse
Affiliation(s)
- N Bishara Marzook
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - Timothy P Newsome
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Conrad SJ, Liu J. Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes. Methods Mol Biol 2019; 1937:189-209. [PMID: 30706397 DOI: 10.1007/978-1-4939-9065-8_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatments with poxvirus vectors can have long-lasting immunological impact in the host, and thus they have been extensively studied to treat diseases and for vaccine development. More importantly, the oncolytic properties of poxviruses have led to their development as cancer therapeutics. Two poxviruses, vaccinia virus (VACV) and myxoma virus (MYXV), have been extensively studied as virotherapeutics with promising results. Vaccinia virus vectors have advanced to the clinic and have been tested as oncolytic therapeutics for several cancer types with successes in phase I/II clinical trials. In addition to oncolytic applications, MYXV has been explored for additional applications including immunotherapeutics, purging of cancer progenitor cells, and treatments for graft-versus-host diseases. These novel therapeutic applications have encouraged its advancement into clinical trials. To meet the demands of different treatment needs, VACV and MYXV can be genetically engineered to express therapeutic transgenes. The engineering process used in poxvirus vectors can be very different from that of other DNA virus vectors (e.g., the herpesviruses). This chapter is intended to serve as a guide to those wishing to engineer poxvirus vectors for therapeutic transgene expression and to produce viral preparations for preclinical studies.
Collapse
Affiliation(s)
- Steven J Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA. .,The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
32
|
Deng L, Fan J, Ding Y, Zhang J, Zhou B, Zhang Y, Huang B. Oncolytic efficacy of thymidine kinase-deleted vaccinia virus strain Guang9. Oncotarget 2018; 8:40533-40543. [PMID: 28465492 PMCID: PMC5522336 DOI: 10.18632/oncotarget.17125] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 11/29/2022] Open
Abstract
Oncolytic virotherapy is being developed as a promising platform for cancer therapy due to its ability to lyse cancer cells in a tumor-specific manner. Vaccinia virus has been used as a live vaccine in the smallpox eradication program and now is being potential in cancer therapy with a great safety profile. Vaccinia strain Guang9 (VG9) is an attenuated Chinese vaccinia virus and its oncolytic efficacy has been evaluated in our previous study. To improve the tumor selectivity and oncolytic efficacy, we here developed a thymidine kinase (TK)-deleted vaccinia virus based on Guang9 strain. The viral replication, marker gene expression and cytotoxicity in various cell lines were evaluated; antitumor effects in vivo were assessed in multiple tumor models. In vitro, the TK-deleted vaccinia virus replicated rapidly, but the cytotoxicity varied in different cell lines. It was notably attenuated in normal cells and resting cells in vitro, while tumor-selectively replicated in vivo. Significant antitumor effects were observed both in murine melanoma tumor model and human hepatoma tumor model. It significantly inhibited the growth of subcutaneously implanted tumors and prolonged the survival of tumor-bearing mice. Collectively, TK-deleted vaccinia strain Guang9 is a promising constructive virus vector for tumor-directed gene therapy and will be a potential therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Lili Deng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Jun Fan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Yuedi Ding
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Jue Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Bin Zhou
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Yi Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Biao Huang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
33
|
Yuan X, Lin H, Li B, He K, Fan H. Swinepox virus vector-based vaccines: attenuation and biosafety assessments following subcutaneous prick inoculation. Vet Res 2018; 49:14. [PMID: 29415767 PMCID: PMC5804073 DOI: 10.1186/s13567-018-0510-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/20/2017] [Indexed: 11/10/2022] Open
Abstract
Swinepox virus (SPV) has several advantages as a potential clinical vector for a live vector vaccine. In this study, to obtain a safer and more efficient SPV vector, three SPV mutants, Δ003, Δ010, and ΔTK were successfully constructed. A virus replication experiment showed that these SPV mutants had lower replication abilities compared to wtSPV in 10 different host-derived cell lines. Animal experiments with mouse and rabbit models demonstrate that these three mutants and wtSPV did not cause any clinical signs of dermatitis. No fatalities were observed during a peritoneal challenge assay with these mutants and wtSPV in a mouse model. Additionally, the three mutants and wtSPV were not infectious at 60 h after vaccination in rabbit models. Furthermore, we evaluated biosafety, immunogenicity and effectiveness of the three mutants in 65 1-month-old piglets. The results show that there were no clinical signs of dermatitis in the Δ003 and ΔTK vaccination groups. However, mild signs were observed in the Δ010 vaccination groups when virus titres were high, and apparent clinical signs were observed at the sites of inoculation. Samples from all experimental pig groups were assessed by qPCR, and no SPV genomic DNA was found in five organs, faeces or blood. This suggests that the infectious abilities of wtSPV and the SPV mutants were poor and limited. In summary, this study indicates that two mutants of SPV, Δ003 and ΔTK, may be promising candidates for an attenuated viral vector in veterinary medicine.
Collapse
Affiliation(s)
- Xiaomin Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Veterinary Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Li
- Institute of Veterinary Research, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Research, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
34
|
Hancock G, Hellner K, Dorrell L. Therapeutic HPV vaccines. Best Pract Res Clin Obstet Gynaecol 2018; 47:59-72. [PMID: 29108943 DOI: 10.1016/j.bpobgyn.2017.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022]
Abstract
High-risk human papillomavirus (HPV) infection is known to be a necessary factor for cervical and anogenital malignancies. Cervical cancers account for over a quarter of a million deaths annually. Despite the availability of prophylactic vaccines, HPV infections remain extremely common worldwide. Furthermore, these vaccines are ineffective at clearing pre-existing infections and associated preinvasive lesions. As cervical dysplasia can regress spontaneously, a therapeutic HPV vaccine that boosts host immunity could have a significant impact on the morbidity and mortality associated with HPV. Therapeutic vaccines differ from prophylactic vaccines in that they are aimed at generating cell-mediated immunity rather than neutralising antibodies. This review will cover various therapeutic vaccine strategies in development for the treatment of HPV-associated lesions and cancers.
Collapse
Affiliation(s)
- Gemma Hancock
- Nuffield Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, NDM Research Building, Old Road Campus, Headington, Oxford, UK.
| | - Karin Hellner
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, NDM Research Building, Old Road Campus, Headington, Oxford, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
35
|
|
36
|
Brun MJ, Gomez EJ, Suh J. Stimulus-responsive viral vectors for controlled delivery of therapeutics. J Control Release 2017; 267:80-89. [PMID: 28842318 PMCID: PMC5723212 DOI: 10.1016/j.jconrel.2017.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
Virus-based therapies have gained momentum as the next generation of treatments for a variety of serious diseases. In order to make these therapies more controllable, stimulus-responsive viral vectors capable of sensing and responding to specific environmental inputs are currently being developed. A number of viruses naturally respond to endogenous stimuli, such as pH, redox, and proteases, which are present at different concentrations in diseases and at different organ and organelle sites. Additionally, rather than relying on natural viral properties, efforts are underway to engineer viruses to respond to endogenous stimuli in new ways as well as to exogenous stimuli, such as temperature, magnetic field, and optical light. Viruses with stimulus-responsive capabilities, either nature-evolved or human-engineered, will be reviewed to capture the current state of the field. Stimulus-responsive viral vector design considerations as well as gaps in current research efforts will be identified.
Collapse
Affiliation(s)
- Mitchell J Brun
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Eric J Gomez
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, United States; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States.
| |
Collapse
|
37
|
Koblentz GD. The De Novo Synthesis of Horsepox Virus: Implications for Biosecurity and Recommendations for Preventing the Reemergence of Smallpox. Health Secur 2017; 15:620-628. [PMID: 28836863 DOI: 10.1089/hs.2017.0061] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In March 2017, the American biotech company Tonix announced that a Canadian scientist had synthesized horsepox virus as part of a project to develop a safer vaccine against smallpox. The first de novo synthesis of an orthopoxvirus, a closely related group of viruses that includes horsepox and the variola virus that causes smallpox, crosses an important Rubicon in the field of biosecurity. The synthesis of horsepox virus takes the world one step closer to the reemergence of smallpox as a threat to global health security. That threat has been held at bay for the past 40 years by the extreme difficulty of obtaining variola virus and the availability of effective medical countermeasures. The techniques demonstrated by the synthesis of horsepox have the potential to erase both of these barriers. The primary risk posed by this research is that it will open the door to the routine and widespread synthesis of other orthopoxviruses, such as vaccinia, for use in research, public health, and medicine. The normalization and globalization of orthopoxvirus synthesis for these beneficial applications will create a cadre of laboratories and scientists that will also have the capability and expertise to create infectious variola virus from synthetic DNA. Unless the safeguards against the synthesis of variola virus are strengthened, the capability to reintroduce smallpox into the human population will be globally distributed and either loosely or completely unregulated, providing the foundation for a disgruntled or radicalized scientist, sophisticated terrorist group, unscrupulous company, or rogue state to recreate one of humanity's most feared microbial enemies. The reemergence of smallpox-because of a laboratory accident or an intentional release-would be a global health disaster. International organizations, national governments, the DNA synthesis industry, and the synthetic biology community all have a role to play in devising new approaches to preventing the reemergence of smallpox.
Collapse
|
38
|
Chaurasiya S, Warner S. Viroimmunotherapy for Colorectal Cancer: Clinical Studies. Biomedicines 2017; 5:E11. [PMID: 28536354 PMCID: PMC5423497 DOI: 10.3390/biomedicines5010011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is a leading cause of cancer incidence and death. Therapies for those with unresectable or recurrent disease are not considered curative at present. More effective and less toxic therapies are desperately needed. Historically, the immune system was thought to be an enemy to oncolytic viral therapy. Thinking that oncolysis would be the only mechanism for cell death, oncolytic virologists theorized that immune clearance was a detriment to oncolysis. Recent advances in our understanding of the tumor microenvironment, and the interplay of tumor survival and a patient's immune system have called into question our understanding of both arenas. It remains unclear what combination of restrictions or enhancements of innate and/or cell-mediated immunity can yield the highest likelihood of viral efficacy. This article reviews the variety of mechanisms explored for viruses such as immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
- Shyambabu Chaurasiya
- Beckman Research Institute, City of Hope National Medical Center, Duarte 91010, CA, USA.
| | - Susanne Warner
- Beckman Research Institute, City of Hope National Medical Center, Duarte 91010, CA, USA.
| |
Collapse
|
39
|
Oliveira GP, Andrade ACDSP, Rodrigues RAL, Arantes TS, Boratto PVM, Silva LKDS, Dornas FP, Trindade GDS, Drumond BP, La Scola B, Kroon EG, Abrahão JS. Promoter Motifs in NCLDVs: An Evolutionary Perspective. Viruses 2017; 9:v9010016. [PMID: 28117683 PMCID: PMC5294985 DOI: 10.3390/v9010016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 01/18/2023] Open
Abstract
For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations.
Collapse
Affiliation(s)
- Graziele Pereira Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Ana Cláudia Dos Santos Pereira Andrade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Thalita Souza Arantes
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Paulo Victor Miranda Boratto
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Ludmila Karen Dos Santos Silva
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Fábio Pio Dornas
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Giliane de Souza Trindade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université., 27 Boulevard Jean Moulin, Faculté de Médecine, 13385 Marseille Cedex 05, France.
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
40
|
Condreay JP, Kost TA, Mickelson CA. Emerging Considerations in Virus-Based Gene Transfer Systems. BIOLOGICAL SAFETY 2016:221-246. [DOI: 10.1128/9781555819637.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
41
|
Abstract
Cancer is one of the major leading death causes of diseases. Prevention and treatment of cancer is an important way to decrease the incidence of tumorigenesis and prolong patients' lives. Subversive achievements on cancer immunotherapy have recently been paid much attention after many failures in basic and clinical researches. Based on deep analysis of genomics and proteomics of tumor antigens, a variety of cancer vaccines targeting tumor antigens have been tested in preclinical and human clinical trials. Many therapeutic cancer vaccines alone or combination with other conventional treatments for cancer obtained spectacular efficacy, indicating the tremendously potential application in clinic. With the illustration of underlying mechanisms of cancer immune regulation, valid, controllable, and persistent cancer vaccines will play important roles in cancer treatment, survival extension and relapse and cancer prevention. This chapter mainly summarizes the recent progresses and developments on cancer vaccine research and clinical application, thus exploring the existing obstacles in cancer vaccine research and promoting the efficacy of cancer vaccine.
Collapse
|
42
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
43
|
Improved safety of a replication-competent poxvirus-based HIV vaccine with the introduction of the HSV-TK/GCV suicide gene system. Vaccine 2016; 34:3447-53. [PMID: 27195760 DOI: 10.1016/j.vaccine.2016.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Replication-competent vaccinia viruses (VACVs) show prolonged antigen expression time and greater stimulation of immune responses than their replication-incompetent counterparts. However, there is the potential risk of serious post-vaccination complications, especially for children and immunocompromised individuals, leading to safety concerns about the reintroduction of VACV as a vaccine vector. In this study, we improved the safety of the vaccinia virus TianTan (VACV-TT) based HIV vaccine by introducing the HSV-TK/GCV suicide gene system, which is composed of the herpes simplex virus type 1 thymidine kinase gene (HSV-tk) and the antiviral drug ganciclovir (GCV). MATERIALS AND METHODS By inserting the HSV-tk gene into the replication-competent VACV-TT genome, a new vector, TT-TK (VACV-TT expressing the HSV-tk gene), and a candidate vaccine, TT-EnvTK (TT-TK expressing the HIV-1 env gene), were constructed. RESULTS The new vector TT-TK exhibited reduced replication capacity both in vitro and in vivo in the presence of GCV. GCV inhibited the replication of TT-TK in the brains of mice and skin of rabbits, and provided 100% protection in mice against lethal challenge with TT-TK at a dose of 80mg/kg/day. Furthermore, the candidate vaccine TT-EnvTK induced cellular and humoral immunity against HIV-1 antigen that was comparable to the immunity induced by VTKgpe (VACV-TT expressing HIV-1 env, gag, and pol genes). DISCUSSION These promising results suggest a new strategy to mitigate the potential risk of post-vaccination complications from replication-competent VACV-based HIV vaccines.
Collapse
|
44
|
Fernández-Escobar M, Baldanta S, Reyburn H, Guerra S. Use of functional genomics to understand replication deficient poxvirus-host interactions. Virus Res 2016; 216:1-15. [PMID: 26519757 DOI: 10.1016/j.virusres.2015.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
High-throughput genomics technologies are currently being used to study a wide variety of viral infections, providing insight into which cellular genes and pathways are regulated after infection, and how these changes are related, or not, to efficient elimination of the pathogen. This article will focus on how gene expression studies of infections with non-replicative poxviruses currently used as vaccine vectors provide a global perspective of the molecular events associated with the viral infection in human cells. These high-throughput genomics approaches have the potential to lead to the identification of specific new properties of the viral vector or novel cellular targets that may aid in the development of more effective pox-derived vaccines and antivirals.
Collapse
Affiliation(s)
- Mercedes Fernández-Escobar
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Sara Baldanta
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Hugh Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| |
Collapse
|
45
|
Oral Immunization with Recombinant Vaccinia Virus Prime and Intramuscular Protein Boost Provides Protection against Intrarectal Simian-Human Immunodeficiency Virus Challenge in Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:204-12. [PMID: 26718849 DOI: 10.1128/cvi.00597-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) acquisition occurs predominantly through mucosal transmission. We hypothesized that greater mucosal immune responses and protective efficacy against mucosal HIV-1 infection may be achieved by prime-boost immunization at mucosal sites. We used a macaque model to determine the safety, immunogenicity, and protective efficacy of orally delivered, replication-competent but attenuated recombinant vaccinia viruses expressing full-length HIV-1 SF162 envelope (Env) or simian immunodeficiency virus (SIV) Gag-Pol proteins. We examined the dose and route that are suitable for oral immunization with recombinant vaccinia viruses. We showed that sublingual inoculation of two vaccinia virus-naive pigtailed macaques with 5 × 10(8) PFU of recombinant vaccinia viruses was safe. However, sublingual inoculation with a higher dose or tonsillar inoculation resulted in secondary oral lesions, indicating the need to optimize the dose and route for oral immunization with replication-competent vaccinia virus vectors. Oral priming alone elicited antibody responses to vaccinia virus and to the SF162 Env protein. Intramuscular immunization with the SF162 gp120 protein at either 20 or 21 weeks postpriming resulted in a significant boost in antibody responses in both systemic and mucosal compartments. Furthermore, we showed that immune responses induced by recombinant vaccinia virus priming and intramuscular protein boosting provided protection against intrarectal challenge with the simian-human immunodeficiency virus SHIV-SF162-P4.
Collapse
|
46
|
Maertzdorf J, Kaufmann S, Weiner J. Molecular signatures for vaccine development. Vaccine 2015; 33:5256-61. [DOI: 10.1016/j.vaccine.2015.03.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/03/2015] [Accepted: 03/23/2015] [Indexed: 01/12/2023]
|
47
|
Construction and characterization of novel fowlpox virus shuttle vectors. Virus Res 2014; 197:59-66. [PMID: 25529440 DOI: 10.1016/j.virusres.2014.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022]
Abstract
Viral vectors are important vehicles in vaccine research. Avipoxviruses including fowlpox virus (FPV) play major roles in viral vaccine vector development for the prevention and therapy of human and other veterinary diseases due to their immunomodulatory effects and safety profile. Recently, we analyzed the genomic and proteomic backgrounds of the Chinese FPV282E4 strain. Based on analysis of the whole genome of FPV282E4, the FPV150 and FPV193 loci were chosen as insertion sites for foreign genes, and two shuttle vectors with a triple-gene expression cassette were designed and constructed. Homologous recombination between the FPV virus genome and sequences within the shuttle plasmids in infected cells was confirmed. The recombinants were obtained through several rounds of plaque purification using enhanced green fluorescent protein as a reporter and evaluated for the correct expression of foreign genes in vitro using RT-PCR, real-time PCR and Western blotting. Morphogenesis and growth kinetics were assayed via transmission electron microscopy and viral titering, respectively. Results showed that recombinant viruses were generated and correctly expressed foreign genes in CEF, BHK-21 and 293T cells. At least three different exogenous genes could be expressed simultaneously and stably over multiple passages. Additionally, the FPV150 mutation, FPV193 deletion and insertion of foreign genes did not affect the morphogenesis, replication and proliferation of recombinant viruses in cells. Our study contributes to the improvement of FPV vectors for multivalent vaccines.
Collapse
|
48
|
Masuelli L, Fantini M, Benvenuto M, Sacchetti P, Giganti MG, Tresoldi I, Lido P, Lista F, Cavallo F, Nanni P, Schlom J, Modesti A, Bei R. Intratumoral delivery of recombinant vaccinia virus encoding for ErbB2/Neu inhibits the growth of salivary gland carcinoma cells. J Transl Med 2014; 12:122. [PMID: 24886178 PMCID: PMC4029891 DOI: 10.1186/1479-5876-12-122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background The antitumor activity induced by intratumoral vaccination with poxvirus expressing a tumor antigen was shown to be superior to that induced by subcutaneous vaccination. Salivary gland carcinomas overexpress ErbB2. Trastuzumab, a monoclonal antibody to ErbB2, was proposed for salivary gland tumors treatment. We explored the effectiveness of intratumoral vaccination with the recombinant vaccinia virus ErbB2/Neu (rV-neuT) vaccine in hampering the growth of transplanted Neu-overexpressing BALB-neuT salivary gland cancer cells (SALTO) in BALB-neuT mice. Methods BALB-neuT male mice were subcutaneously injected with SALTO tumor cells and intratumorally vaccinated twice with different doses of either rV-neuT or V-wt (wild-type). Tumors were measured weekly. The presence of anti-ErbB2/Neu antibodies was assayed by ELISA, immunoprecipitation or indirect immunofluorescence. Biological activity of immune sera was investigated by analyzing antibody-dependent cellular cytotoxicity (ADCC), SALTO cells proliferation and apoptosis, ErbB2/Neu receptor down regulation and ERK1/2 phosphorylation. Anti-Neu T cell immunity was investigated by determining the release of IL-2 and IFN-gamma in T cells supernatant. Survival curves were determined using the Kaplan-Meier method and compared using the log-rank test. Differences in tumor volumes, number of apoptotic cells, titer of the serum, percentage of ADCC were evaluated through a two-tailed Student’s t-test. Results rV-neuT intratumoral vaccination was able to inhibit the growth of SALTO cancer cells in a dose-dependent manner. The anti-Neu serum titer paralleled in vivo antitumor activity of rV-neuT vaccinated mice. rV-neuT immune serum was able to mediate ADCC, inhibition of SALTO cells proliferation, down regulation of the ErbB2/Neu receptor, inhibition of ERK1/2 phosphorylation and induction of apoptosis, thus suggesting potential mechanisms of in vivo tumor growth interference. In addition, spleen T cells of rV-neuT vaccinated mice released IFN-gamma and IL-2 upon in vitro stimulation with several Neu-specific peptides located in the extracellular domain of Neu sequence. Conclusions rV-neuT intratumoral vaccination could be employed to induce an efficient antitumor response and reject transplanted salivary gland tumors. Our findings may have important implications for the design of cancer vaccine protocols for the treatment of salivary gland tumors and other accessible tumors using intratumoral injection of recombinant vaccinia virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
49
|
Ozsahin E, Sezen K, Demirbag Z. Transcriptional analysis of ORF amv133 of Amsacta moorei entomopoxvirus. Arch Virol 2014; 159:2541-7. [DOI: 10.1007/s00705-014-2096-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
|
50
|
Differential induction of apoptosis, interferon signaling, and phagocytosis in macrophages infected with a panel of attenuated and nonattenuated poxviruses. J Virol 2014; 88:5511-23. [PMID: 24599993 DOI: 10.1128/jvi.00468-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Due to the essential role macrophages play in antiviral immunity, it is important to understand the intracellular and molecular processes that occur in macrophages following infection with various strains of vaccinia virus, particularly those used as vaccine vectors. Similarities as well as differences were found in macrophages infected with different poxvirus strains, particularly at the level of virus-induced apoptosis and the expression of immunomodulatory genes, as determined by microarray analyses. Interestingly, the attenuated modified vaccinia Ankara virus (MVA) was particularly efficient in triggering apoptosis and beta interferon (IFN-β) secretion and in inducing changes in the expression of genes associated with increased activation of innate immunity, setting it apart from the other five vaccinia virus strains tested. Taken together, these results increase our understanding of how these viruses interact with human macrophages, at the cellular and molecular levels, and suggest mechanisms that may underlie their utility as recombinant vaccine vectors. IMPORTANCE Our studies clearly demonstrate that there are substantial biological differences in the patterns of cellular gene expression between macrophages infected with different poxvirus strains and that these changes are due specifically to infection with the distinct viruses. For example, a clear induction in IFN-β mRNA was observed after infection with MVA but not with other poxviruses. Importantly, antiviral bioassays confirmed that MVA-infected macrophages secreted a high level of biologically active type I IFN. Similarly, the phagocytic capacity of macrophages was also specifically increased after infection with MVA. Although the main scope of this study was not to test the vaccine potential of MVA as there are several groups in the field working extensively on this aspect, the characteristics/phenotypes we observed at the in vitro level clearly highlight the inherent advantages that MVA possesses in comparison to other poxvirus strains.
Collapse
|