1
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Cao H, Molday RS, Hu J. Gene therapy: light is finally in the tunnel. Protein Cell 2012; 2:973-89. [PMID: 22231356 DOI: 10.1007/s13238-011-1126-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/27/2011] [Indexed: 01/23/2023] Open
Abstract
After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber's congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adeno-associated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.
Collapse
Affiliation(s)
- Huibi Cao
- Programme in Physiology and Experimental Medicine, Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5G, 1X8, Canada
| | | | | |
Collapse
|
4
|
Barese CN, Dunbar CE. Contributions of gene marking to cell and gene therapies. Hum Gene Ther 2011; 22:659-68. [PMID: 21261461 DOI: 10.1089/hum.2010.237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The first human genetic modification studies used replication-incompetent integrating vector vectors to introduce marker genes into T lymphocytes and subsequently into hematopoietic stem cells. Such studies have provided numerous insights into the biology of hematopoiesis and immune reconstitution and contributed to clinical development of gene and cell therapies. Tracking of hematopoietic reconstitution and analysis of the origin of residual malignant disease after hematopoietic transplantation has been possible via gene marking. Introduction of selectable marker genes has enabled preselection of specific T-cell populations for tumor and viral immunotherapy and reduced the threat of graft-versus-host disease, improving the survival of patients after allogeneic marrow transplantation. Marking studies in humans, murine xenografts, and large animals have helped optimize conditions for gene transfer into CD34(+) hematopoietic progenitors, contributing to the achievement of gene transfer efficiencies sufficient for clinical benefit in several serious genetic diseases such as X-linked severe combined immunodeficiency and adrenoleukodystrophy. When adverse events linked to insertional mutagenesis arose in clinical gene therapy trials for inherited immunodeficiencies, additional animal studies using gene-marking vectors have greatly increased our understanding of genotoxicity. The knowledge gained from these studies is being translated into new vector designs and clinical protocols, which we hope will continue to improve the efficiency, effectiveness and safety of these promising therapeutic approaches.
Collapse
Affiliation(s)
- Cecilia N Barese
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | | |
Collapse
|
5
|
Abstract
The β-thalassaemias are inherited anaemias that form the most common class of monogenic disorders in the world. Treatment options are limited, with allogeneic haematopoietic stem cell transplantation offering the only hope for lifelong cure. However, this option is not available for many patients as a result of either the lack of compatible donors or the increased risk of transplant-related mortality in subjects with organ damage resulting from accumulated iron. The paucity of alternative treatments for patients that fall into either of these categories has led to the development of a revolutionary treatment strategy based on gene therapy. This approach involves replacing allogeneic stem cell transplantation with the transfer of normal globin genes into patient-derived, autologous haematopoietic stem cells. This highly attractive strategy offers several advantages, including bypassing the need for allogeneic donors and the immunosuppression required to achieve engraftment of the transplanted cells and to eliminate the risk of donor-related graft-versus-host disease. This review discusses the many advances that have been made towards this endeavour as well as the hurdles that must still be overcome before gene therapy for β-thalassaemia, as well as many other gene therapy applications, can be widely applied in the clinic.
Collapse
|
6
|
Yannaki E, Stamatoyannopoulos G. Hematopoietic stem cell mobilization strategies for gene therapy of beta thalassemia and sickle cell disease. Ann N Y Acad Sci 2010; 1202:59-63. [PMID: 20712773 DOI: 10.1111/j.1749-6632.2010.05576.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective gene therapy for hemoglobinopathies will require high numbers of autologous gene-engineered hematopoetic stem cells to be reintroduced into the patients. Stem cell mobilization using G-CSF is the most convenient and effective approach to achieve this goal, but it can have severe side effects in sickle cell anemia and be potentially harmful in the case of severe thalassemia. Hence, the optimal way of collection of hematopoetic stem cells from patients with thalassemia and sickle cell disease needs to be determined. In this paper, we review the possible risks of G-CSF mobilization in hemoglobinopathies and we outline the approaches used in an on-going clinical trial in which pretreatment with hydroxyurea is used to reduce potential risks of G-CSF administration to patients with severe beta thalassemia.
Collapse
Affiliation(s)
- Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece.
| | | |
Collapse
|
7
|
Yannaki E, Psatha N, Athanasiou E, Karponi G, Constantinou V, Papadopoulou A, Tasouli A, Kaloyannidis P, Batsis I, Arsenakis M, Anagnostopoulos A, Fassas A. Mobilization of hematopoietic stem cells in a thalassemic mouse model: implications for human gene therapy of thalassemia. Hum Gene Ther 2010; 21:299-310. [PMID: 19795976 DOI: 10.1089/hum.2009.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF)-mobilized blood stem cells may become the preferable source of hematopoietic stem cells (HSCs) for gene therapy because of the higher yield of cells compared with conventional bone marrow harvesting. A G-CSF-associated risk of splenic rupture has been recognized in normal donors of HSCs, but limited information is available about the G-CSF effect in the presence of splenomegaly and extramedullary hematopoiesis. We investigated the G-CSF effect in a thalassemic mouse model (HBB(th-3)) as compared with a normal strain (C57BL/6), in terms of safety, mobilization efficacy, and distribution of stem cells among hematopoietic compartments. There was no death or clinical sequelae of splenic rupture in G-CSF-treated animals of either strain; however, hemorrhagic infarcts in the spleen were detected with low frequency in G-CSF-treated HBB(th-3) mice (12.5%). HBB(th-3) mice mobilized less effectively than C57BL/6 mice (Lin(-)Sca-1(+)c-Kit(+) cells/microl of peripheral blood mononuclear cells [PBMCs]: 90 +/- 55 vs. 255 +/- 174, respectively, p = 0.01; CFU-GM/ml PBMCs: 390 +/- 262 vs. 1131 +/- 875, p = 0.01) because of increased splenic trapping of hematopoietic stem and progenitor cells (Lin(-)Sca-1(+)c-Kit(+) cells per spleen (x10(5)): 487 +/- 35 vs. 109 +/- 19.6, p = 0.01; CFU-GM per spleen (x10(2)): 1470 +/- 347 vs. 530 +/- 425, p = 0.0006). Splenectomy restored the mobilization proficiency of thalassemic mice at comparable levels to normal mice and resulted in the development of a hematopoietic compensatory mechanism in the thalassemic liver that protected splenectomized mice from severe anemia. Our data imply that, in view of human gene therapy for thalassemia, either multiple cycles or alternative ways of mobilization may be required for a sufficient yield of transplantable HSCs. In addition, strategies to minimize the risk of G-CSF-induced splenic infarcts should be explored in a clinical setting.
Collapse
Affiliation(s)
- Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki 57010, Greece.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood 2009; 115:783-91. [PMID: 19965657 DOI: 10.1182/blood-2009-05-222760] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic granulomatous disease (CGD) is associated with significant morbidity and mortality from infection. The first CGD gene therapy trial resulted in only short-term marking of 0.01% to 0.1% of neutrophils. A recent study, using busulfan conditioning and an SFFV retrovirus vector, achieved more than 20% marking in 2 patients with X-linked CGD. However, oxidase correction per marked neutrophil was less than normal and not sustained. Despite this, patients clearly benefited in that severe infections resolved. As such, we initiated a gene therapy trial for X-CGD to treat severe infections unresponsive to conventional therapy. We treated 3 adult patients using busulfan conditioning and an MFGS retroviral vector encoding gp91(phox), achieving early marking of 26%, 5%, and 4% of neutrophils, respectively, with sustained long-term marking of 1.1% and 0.03% of neutrophils in 2 of the patients. Gene-marked neutrophils have sustained full correction of oxidase activity for 34 and 11 months, respectively, with full or partial resolution of infection in those 2 patients. Gene marking is polyclonal with no clonal dominance. We conclude that busulfan conditioning together with an MFGS vector is capable of achieving long-term correction of neutrophil oxidase function sufficient to provide benefit in management of severe infection. This study was registered at www.clinicaltrials.gov as #NCT00394316.
Collapse
|
9
|
Larochelle A, Choi U, Shou Y, Naumann N, Loktionova NA, Clevenger JR, Krouse A, Metzger M, Donahue RE, Kang E, Stewart C, Persons D, Malech HL, Dunbar CE, Sorrentino BP. In vivo selection of hematopoietic progenitor cells and temozolomide dose intensification in rhesus macaques through lentiviral transduction with a drug resistance gene. J Clin Invest 2009; 119:1952-63. [PMID: 19509470 DOI: 10.1172/jci37506] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 04/15/2009] [Indexed: 12/17/2022] Open
Abstract
Major limitations to gene therapy using HSCs are low gene transfer efficiency and the inability of most therapeutic genes to confer a selective advantage on the gene-corrected cells. One approach to enrich for gene-modified cells in vivo is to include in the retroviral vector a drug resistance gene, such as the P140K mutant of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT*). We transplanted 5 rhesus macaques with CD34+ cells transduced with lentiviral vectors encoding MGMT* and a fluorescent marker, with or without homeobox B4 (HOXB4), a potent stem cell self-renewal gene. Transgene expression and common integration sites in lymphoid and myeloid lineages several months after transplantation confirmed transduction of long-term repopulating HSCs. However, all animals showed only a transient increase in gene-marked lymphoid and myeloid cells after O6-benzylguanine (BG) and temozolomide (TMZ) administration. In 1 animal, cells transduced with MGMT* lentiviral vectors were protected and expanded after multiple courses of BG/TMZ, providing a substantial increase in the maximum tolerated dose of TMZ. Additional cycles of chemotherapy using 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) resulted in similar increases in gene marking levels, but caused high levels of nonhematopoietic toxicity. Inclusion of HOXB4 in the MGMT* vectors resulted in no substantial increase in gene marking or HSC amplification after chemotherapy treatment. Our data therefore suggest that lentivirally mediated gene transfer in transplanted HSCs can provide in vivo chemoprotection of progenitor cells, although selection of long-term repopulating HSCs was not seen.
Collapse
Affiliation(s)
- Andre Larochelle
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Budak-Alpdogan T, Rivière I. Genetic modification of human hematopoietic cells: preclinical optimization of oncoretroviral-mediated gene transfer for clinical trials. Methods Mol Biol 2009; 506:33-58. [PMID: 19110618 PMCID: PMC4360985 DOI: 10.1007/978-1-59745-409-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This chapter provides information about the oncoretroviral transduction of human hematopoietic stem/ progenitor cells under clinically applicable conditions. We describe in detail a short -60 h transduction protocol which consistently yields transduction efficiencies in the range of 30-50% with five different oncoretroviral vectors. We discuss a number of parameters that affect transduction efficiency, including the oncoretroviral vector characteristics, the vector stock collection, the source of CD34+ cells and transduction conditions.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| | | |
Collapse
|
11
|
Kelly PF, Radtke S, von Kalle C, Balcik B, Bohn K, Mueller R, Schuesler T, Haren M, Reeves L, Cancelas JA, Leemhuis T, Harris R, Auerbach AD, Smith FO, Davies SM, Williams DA. Stem cell collection and gene transfer in Fanconi anemia. Mol Ther 2008; 15:211-9. [PMID: 17164793 DOI: 10.1038/sj.mt.6300033] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic syndrome characterized by progressive bone marrow failure (BMF), congenital anomalies, and a predisposition to malignancy. Successful gene transfer into hematopoietic stem cells (HSCs) could reverse BMF in this disease. We developed clinical trials to determine whether a sufficient number of CD34(+) stem cells could be collected for gene modification and to evaluate the safety and efficacy of HSC-corrective gene transfer in FA genotype A (FANCA) patients. Here, we report that FA patients have significant depletion of their BM CD34(+) cell compartment even before severe pancytopenia is present. However, oncoretroviral-mediated ex vivo gene transfer was efficient in clinical scale in FA-A cells, leading to reversal of the cellular phenotype in a significant percentage of CD34(+) cells. Re-infusion of gene-corrected products in two patients was safe and well tolerated and accompanied by transient improvements in hemoglobin and platelet counts. Gene correction was transient, likely owing to the low dose of gene-corrected cells infused. Our early experience shows that stem cell collection is well tolerated in FA patients and suggests that collection be considered as early as possible in patients who are potential candidates for future gene transfer trials.
Collapse
Affiliation(s)
- Patrick F Kelly
- Fanconi Anemia Comprehensive Care Center, Divisions of Experimental Hematology and Hematology/Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cai S, Ernstberger A, Wang H, Bailey BJ, Hartwell JR, Sinn AL, Eckermann O, Linka Y, Goebel WS, Hanenberg H, Pollok KE. In vivo selection of hematopoietic stem cells transduced at a low multiplicity-of-infection with a foamy viral MGMT(P140K) vector. Exp Hematol 2008; 36:283-292. [PMID: 18279716 PMCID: PMC2699892 DOI: 10.1016/j.exphem.2007.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Using a clinically relevant transduction strategy, we investigated to what extent hematopoietic stem cells in lineage-negative bone marrow (Lin(neg) BM) could be genetically modified with an foamy virus (FV) vector that expresses the DNA repair protein, O(6)-methylguanine DNA methyltransferase (MGMT(P140K)) and selected in vivo with submyeloablative or myeloablative alkylator therapy. MATERIALS AND METHODS Lin(neg) BM was transduced at a low multiplicity-of-infection with the FV vector, MD9-P140K, which coexpresses MGMT(P140K) and the enhanced green fluorescent protein, transplanted into C57BL/6 mice, and mice treated with submyeloablative or myeloablative alkylator therapy. The BM was analyzed for the presence of in vivo selected, MD9-P140K-transduced cells at 6 months post-transplantation and subsequently transplanted into secondary recipient animals. RESULTS Following submyeloablative therapy, 55% of the mice expressed MGMT(P140K) in the BM. Proviral integration was observed in approximately 50% of committed BM-derived progenitors and analysis of proviral insertion sites indicated up to two integrations per transduced progenitor colony. Transduced BM cells selected with submyeloablative therapy reconstituted secondary recipient mice for up to 6 months post-transplantation. In contrast, after delivery of myeloablative therapy to primary recipient mice, only 25% survived. Hematopoietic stem cells were transduced because BM cells from the surviving animals reconstituted secondary recipients with MGMT(P140K)-positive cells for 5 to 6 months. CONCLUSIONS In vivo selection of MD9-P140K-transduced BM cells was more efficient following submyeloablative than myeloablative therapy. These data indicate that a critical number of transduced stem cells must be present to produce sufficient numbers of genetically modified progeny to protect against acute toxicity associated with myeloablative therapy.
Collapse
Affiliation(s)
- Shanbao Cai
- Department of Pediatrics, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
- Herman B Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
| | - Aaron Ernstberger
- Department of Pediatrics, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
- Herman B Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
| | - Haiyan Wang
- Department of Pediatrics, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
- Herman B Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
| | - Barbara J. Bailey
- Department of Pharmacology and Toxicolgoy, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
| | - Jennifer R. Hartwell
- Department of Pediatrics, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
- Herman B Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
| | - Anthony L. Sinn
- Department of Pediatrics, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
- Herman B Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
| | - Olaf Eckermann
- Department of Pediatric Hematology/Oncology and Clinical Immunology, Children's Hospital, Heinrich Heine University, Duesseldorf, Germany, 40225
| | - Yvonne Linka
- Department of Pediatric Hematology/Oncology and Clinical Immunology, Children's Hospital, Heinrich Heine University, Duesseldorf, Germany, 40225
| | - W. Scott Goebel
- Department of Pediatrics, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
- Herman B Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
| | - Helmut Hanenberg
- Department of Pediatrics, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
- Department of Pediatric Hematology/Oncology and Clinical Immunology, Children's Hospital, Heinrich Heine University, Duesseldorf, Germany, 40225
| | - Karen E. Pollok
- Department of Pediatrics, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
- Department of Pharmacology and Toxicolgoy, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
- Herman B Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children and Indiana University School of Medicine, Indianapolis, IN. 46202
| |
Collapse
|
13
|
Beard BC, Keyser KA, Trobridge GD, Peterson LJ, Miller DG, Jacobs M, Kaul R, Kiem HP. Unique integration profiles in a canine model of long-term repopulating cells transduced with gammaretrovirus, lentivirus, or foamy virus. Hum Gene Ther 2007; 18:423-34. [PMID: 17518616 DOI: 10.1089/hum.2007.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent advances have allowed for improved retrovirus-mediated gene transfer, and therapeutic benefits have been described in patients. These successes have shown the potential of hematopoietic stem cell (HSC) gene therapy, but treatment-related leukemia and benign expansion of gene-modified clones have shifted the attention toward safety. The delayed onset of adverse events in gene therapy clinical trials emphasizes the importance of long-term integration site studies in large animal models. We have addressed safety by characterizing the genomic location of 555 integration sites of the three most commonly used integrating retroviral vectors, that is, gammaretrovirus, lentivirus, and foamy virus, in long-term repopulating cells from dogs. Gammaretroviral integrants showed the most significant frequency of occurrence very close (<2.5 kb) to transcription start sites, but a substantial portion of all three retroviral integrants were within 50 kb. Importantly, gammaretroviral integrants were found more frequently in and near proto-oncogenes, suggesting this retroviral system may be the most prone to adverse gene activation. These data suggest that gammaretroviral vectors may have the highest intrinsic risk, but also emphasize that no vector system can be defined as "safe" based solely on integration profile.
Collapse
Affiliation(s)
- Brian C Beard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Suter SE, Gouthro TA, O'Malley T, Hartnett BJ, McSweeney PA, Moore PF, Felsburg PJ, Haskins ME, Henthorn PS. Marking of peripheral T-lymphocytes by retroviral transduction and transplantation of CD34+ cells in a canine X-linked severe combined immunodeficiency model. Vet Immunol Immunopathol 2007; 117:183-96. [PMID: 17442404 DOI: 10.1016/j.vetimm.2007.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/18/2007] [Accepted: 03/07/2007] [Indexed: 11/23/2022]
Abstract
A retrovirus vector containing an enhanced green fluorescent protein complimentary DNA (EGFP cDNA) was used to mark and dynamically follow vector-expressing cells in the peripheral blood of bone marrow transplanted X-linked severe combined immunodeficient dogs. CD34(+) cells isolated from young normal dogs were transduced, using a 2 day protocol, with an amphotropic retroviral vector that expressed enhanced green fluorescent protein (EGFP) and the canine common gamma chain (gammac) cDNAs. Following transplantation of the transduced cells, normal donor peripheral blood lymphocytes (PBL) appeared by 1 month post-bone marrow transplant (BMT) and rescued three of five treated dogs from their lethal immunodeficiency. PCR and flow cytometric analysis of post-BMT PBL documented the peripheral EGFP expressing cells as CD3(+) T cells, which varied from 0% to 28%. Sorting of EGFP(+) and EGFP(-) peripheral blood T cells from two dogs, followed by vector PCR analysis, showed no evidence of vector shutdown. EGFP expression in B cells or monocytes was not detected. These marking experiments demonstrate that the transduction protocol did not abolish the lymphoid engraftment capability of ex vivo transduced canine CD34(+) cells and supports the potential utility of the MSCV retroviral vector for gene transfer to XSCID affected canine hematopoietic progenitor cells (HPC).
Collapse
Affiliation(s)
- Steven E Suter
- Section of Medical Genetics, Department of Clinical Sciences, University of Pennsylvania School of Veterinary Medicine, 3900 Delancey Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chang AH, Sadelain M. The Genetic Engineering of Hematopoietic Stem Cells: the Rise of Lentiviral Vectors, the Conundrum of the LTR, and the Promise of Lineage-restricted Vectors. Mol Ther 2007; 15:445-56. [PMID: 17228317 DOI: 10.1038/sj.mt.6300060] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent studies on the integration patterns of different categories of retroviral vectors, the genotoxicity of long-terminal repeats (LTRs) and other genetic elements, the rise of lentiviral technology and the emergence of regulated vector systems providing tissue-restricted transgene expression and RNA interference, are profoundly changing the landscape of stem cell-based therapies. New developments in vector design and an increasing understanding of the mechanisms underlying insertional oncogenesis are ushering in a new phase in hematopoietic stem cell (HSC) engineering, thus bringing the hitherto exclusive reliance on LTR-driven, gamma-retroviral vectors to an end. Based on their ability to transduce non-dividing cells and their genomic stability, lentiviral vectors offer new prospects for the manipulation of HSCs. Tissue-specific vectors, as exemplified by globin vectors, not only provide therapeutic efficacy, but may also enhance safety, insofar that they restrict transgene expression in stem cells, progenitor cells and blood cells in all but the transcriptionally targeted lineage. This review provides a survey of these advances as well as several remaining challenges, focusing in particular on the importance of achieving adequate levels of protein expression from a limited number of vector copies per cell-ideally one to two.
Collapse
Affiliation(s)
- Alex H Chang
- Laboratory of Gene Transfer and Gene Expression, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
16
|
Wilcox DA, White GC. Gene Therapy for Platelet Disorders. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Dirsch O, Chi H, Gu YL, Ji Y, Broelsch C, Dahmen U. Influence of Stem Cell Mobilization and Liver Regeneration on Hepatic Parenchymal Chimerism in the Rat. Transplantation 2006; 81:1695-9. [PMID: 16794536 DOI: 10.1097/01.tp.0000226064.43949.9e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Despite the newly discovered plasticity of hematopoietic stem cells, their capacity to "transdifferentiate" into parenchymal cells and the regulation of this process is not yet elucidated. The present study was designed to investigate the effect of stem cell mobilization and liver regeneration on this process using a syngeneic rat female-to-male liver transplantation model. METHODS Rate and frequency of Y-chromosome containing hepatocytes was determined by fluorescence-in situ hybridization (FISH) using a rat Y-chromosome specific probe. Rats were subjected to full-size or partial liver transplantation with and without stem cell mobilization using granulocyte colony stimulating factor (G-CSF). The effect of stem cell mobilization was confirmed by assessing the white blood count and by evaluating the migration of granulopoietic precursor cells to the liver. RESULTS Treatment with G-CSF induced a twofold increase of peripheral white blood cells and a strong influx of granulopoietic precursor cells into the liver. Transplantation of a partial liver graft was followed by a 90% recovery of the original liver weight within a week, demonstrating the strong regenerative stimulus. Irrespective of the experimental model, the incidence and rate of Y-chromosome containing hepatocytes never exceeded 0.77%. CONCLUSION Neither stem cell mobilization nor liver regeneration enhanced the incidence or rate of stem cell derived hepatocytes in a liver graft with unimpaired regenerative potential.
Collapse
Affiliation(s)
- Olaf Dirsch
- Institute of Pathology, University Hospital Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Chen J, Larochelle A, Fricker S, Bridger G, Dunbar CE, Abkowitz JL. Mobilization as a preparative regimen for hematopoietic stem cell transplantation. Blood 2006; 107:3764-71. [PMID: 16439683 PMCID: PMC1895779 DOI: 10.1182/blood-2005-09-3593] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 12/08/2005] [Indexed: 01/13/2023] Open
Abstract
Current myeloablative conditioning regimens for hematopoietic stem cell (HSC) transplantation are associated with significant morbidity and mortality. Thus, alternative strategies to promote engraftment of infused HSCs with increased safety warrant investigation. Using parabiotic mice, we determined that, after mobilization with AMD3100 (a CXCR4 antagonist), HSCs exited from marrow, transited blood, and engrafted in open niches in partner marrow. We then hypothesized that mobilization before transplantation might vacate niches and improve HSC engraftment. When PeP3(b) mice were treated with AMD3100 at 2 hours before the transplantation of 4 x 10(7) marrow cells, donor cell engraftment was higher (4.6% +/- 1.1%) than in control animals (no AMD3100; 1.0% +/- 0.24%, P < .001). When mice received weekly injections of AMD3100 on 3 consecutive weeks and marrow cells were transplanted 2 hours after each mobilization, donor cell engraftment further increased (9.1% +/- 1.7%, P = .001). In contrast, in similar experiments with Balb/cByJ mice that mobilize poorly, there was no difference between the donor cell engraftment of AMD3100-treated and control recipients. These results indicate that the number of available niches regulates the number of HSCs. In addition, mobilization with AMD3100 may provide a safer preparative approach for HSC transplantation in genetic and other nonmalignant disorders.
Collapse
Affiliation(s)
- Jing Chen
- Medicine/Hematology, University of Washington, Box 357710, Seattle, 98195, USA
| | | | | | | | | | | |
Collapse
|
19
|
Beard BC, Mezquita P, Morris JC, Kiem HP. Efficient transduction and engraftment of G-CSF-mobilized peripheral blood CD34+ cells in nonhuman primates using GALV-pseudotyped gammaretroviral vectors. Mol Ther 2006; 14:212-7. [PMID: 16631413 DOI: 10.1016/j.ymthe.2006.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 11/26/2022] Open
Abstract
The optimal stem cell source for stem cell gene therapy has yet to be determined. Most large-animal studies have utilized peripheral blood or marrow-derived cells collected after administration of granulocyte colony-stimulating factor (G-SCF) and stem cell factor (SCF); however, SCF is unavailable for clinical use in the United States and the European Union. A recent study in a competitive repopulation assay in the rhesus macaque showed very inefficient marking of G-CSF-mobilized (G/only) peripheral blood (G-PBSC) CD34(+) cells relative to G-CSF and SCF-mobilized cells using vectors with an amphotropic pseudotype. Because G-PBSC would be the preferred target cell population for most clinical stem cell gene therapy applications, we asked whether we could achieve efficient transduction and engraftment of G-PBSC using Phoenix-GALV-pseudotyped vectors. We transplanted three baboons with G/only mobilized CD34(+) cells transduced with GALV-pseudotyped retroviral vectors. We observed high-level, persistent engraftment of gene-modified G-PBSC in all animals with gene marking levels in granulocytes up to 60%. We analyzed amphotropic (PIT2) and GALV (PIT1) receptor expression in G/only cells and found preferential expression of PIT1 after G/only, which may explain the inferior results with amphotropic pseudotypes. These findings demonstrate that high stem cell gene transfer levels can be achieved using G-CSF-mobilized PBSC with Phoenix-GALV-pseudotyped vectors.
Collapse
Affiliation(s)
- Brian C Beard
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
20
|
Trobridge G, Beard BC, Kiem HP. Hematopoietic stem cell transduction and amplification in large animal models. Hum Gene Ther 2006; 16:1355-66. [PMID: 16390267 DOI: 10.1089/hum.2005.16.1355] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Progress in retroviral gene transfer to large animal hematopoietic stem cells (HSCs) has led to efficient, reproducible long-term marking in both canine and nonhuman primate models. Successes for HSC gene therapy have occurred in the severe combined immunodeficiency setting, in which transduced cells have a selective advantage. However, for most diseases, the therapeutic transgene does not confer a sufficient survival advantage, and increasing the percentage of gene-marked cells in vivo will be necessary to observe a therapeutic effect. In vivo amplification should expand the potential of HSC gene therapy, and progress in this area has benefited greatly from the use of large animal models where efficacy and toxicity have often not correlated with results in murine models. To date, the best results have been observed with O(6)-methylguanine-DNA methyltransferase (MGMT) selection, with which increases in gene-marked repopulating cells have been maintained long-term, likely because of the toxicity of 1,3-bis-(2-chloroethyl)-1-nitrosourea and temozolomide to quiescent HSCs. Using MGMT selection, long-term marking levels exceeding 50% can now be routinely attained with minimal toxicity. There is cause to be optimistic that HSC gene therapy with in vivo amplification will soon allow the treatment of several genetic and infectious diseases.
Collapse
Affiliation(s)
- Grant Trobridge
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
21
|
Horn PA, Morris JC, Neff T, Kiem HP. Stem cell gene transfer--efficacy and safety in large animal studies. Mol Ther 2005; 10:417-31. [PMID: 15336643 DOI: 10.1016/j.ymthe.2004.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022] Open
Affiliation(s)
- Peter A Horn
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, 98109, USA
| | | | | | | |
Collapse
|
22
|
Trobridge G, Beard BC, Kiem HP. Hematopoietic Stem Cell Transduction and Amplification in Large Animal Models. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Abstract
Stem cell gene therapy has long been limited by low gene transfer efficiency to hematopoietic stem cells. Recent years have witnessed clinical success in select diseases such as X-linked severe combined immunodeficiency (SCID) and ADA deficiency. Arguably, the single most important factor responsible for the increased efficacy of these recent protocols is the fact that the genetic correction provided a selective in vivo survival advantage. Since, for most diseases, there will be no selective advantage of gene-corrected cells, there has been a significant effort to arm vectors with a survival advantage. Two-gene vectors can be used to introduce the therapeutic gene and a selectable marker gene. Efficient in vivo selection strategies have been demonstrated in clinically relevant large-animal models. Mutant forms of the DNA repair-enzyme methylguanine methyltransferase in particular have allowed for efficient in vivo selection and have achieved sustained marking with virtually 100% gene-modified cells in large animals, and with clinically acceptable toxicity. Translation of these strategies to the clinical setting is imminent. Here, we review how in vivo selection strategies can be used to make stem cell gene therapy applicable to the treatment of a wider scope of genetic diseases and patients.
Collapse
Affiliation(s)
- Tobias Neff
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | | | | |
Collapse
|
24
|
Bryder D, Björgvinsdóttir H, Sasaki Y, Jacobsen SEW. Deficiency of oncoretrovirally transduced hematopoietic stem cells and correction through ex vivo expansion. J Gene Med 2005; 7:137-44. [PMID: 15538726 DOI: 10.1002/jgm.658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Extensive efforts to develop hematopoietic stem cell (HSC) based gene therapy have been hampered by low gene marking. Major emphasis has so far been directed at improving gene transfer efficiency, but low gene marking in transplanted recipients might equally well reflect compromised repopulating activity of transduced cells, competing for reconstitution with endogenous and unmanipulated stem cells. METHODS The autologous settings of clinical gene therapy protocols preclude evaluation of changes in repopulating ability following transduction; however, using a congenic mouse model, allowing for direct evaluation of gene marking of lympho-myeloid progeny, we show here that these issues can be accurately addressed. RESULTS We demonstrate that conditions supporting in vitro stem cell self-renewal efficiently promote oncoretroviral-mediated gene transfer to multipotent adult bone marrow stem cells, without prior in vivo conditioning. Despite using optimized culture conditions, transduction resulted in striking losses of repopulating activity, translating into low numbers of gene marked cells in competitively repopulated mice. Subjecting transduced HSCs to an ex vivo expansion protocol following the transduction procedure could partially reverse this loss. CONCLUSIONS These studies suggest that loss of repopulating ability of transduced HSCs rather than low gene transfer efficiency might be the main problem in clinical gene therapy protocols, and that a clinically feasible ex vivo expansion approach post-transduction can markedly improve reconstitution with gene marked stem cells.
Collapse
Affiliation(s)
- David Bryder
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Hematopoietic Stem Cell Laboratory, Lund University, BMC B10, 221 84, Lund, Sweden
| | | | | | | |
Collapse
|
25
|
Richard RE, De Claro RA, Yan J, Chien S, Von Recum H, Morris J, Kiem HP, Dalgarno DC, Heimfeld S, Clackson T, Andrews R, Blau CA. Differences in F36VMpl-based in vivo selection among large animal models. Mol Ther 2005; 10:730-40. [PMID: 15451457 DOI: 10.1016/j.ymthe.2004.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/28/2004] [Accepted: 07/04/2004] [Indexed: 11/20/2022] Open
Abstract
Animal models are indispensable tools for understanding physiological and pathological processes, as well as for developing new therapies. Ultimately, the results of animal experimentation must provide information that can guide the development of therapeutic approaches in humans. Significant differences have been reported comparing a gene therapy approach between different animal models. However, little information exists describing differences among the available large animal models. Here we evaluated, in the hemopoietic cells of baboons, a system of selection that has previously demonstrated activity in mice, in dogs, and in human cells ex vivo. This system employs a derivative of the murine thrombopoietin receptor (F36Vmpl), which is conditionally activated in the presence of a small-molecule drug called a chemical inducer of dimerization (CID). Whereas cultured mouse, human, and, to a lesser extent, dog hemopoietic cells all proliferate in response to the F36Vmpl signal, we observed only a minor and variable response to the F36Vmpl signal in the cultured cells of baboons. Similarly, we have noted significant rises in the frequency of transduced hemopoietic cells in mice and in dogs upon CID administration in vivo; however, here we show that responses to CID administration in three baboons were modest and variable. These findings have general implications for the evaluation and development of new strategies for gene therapy.
Collapse
Affiliation(s)
- Robert E Richard
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bécard N, de Revel T, Sorg T, Dormont D, Le Grand R. Expression of human IL-1alpha after intramarrow gene transfer into healthy non-human primate by adenoviral vector. J Med Primatol 2005; 34:1-12. [PMID: 15667338 DOI: 10.1111/j.1600-0684.2004.00085.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interleukin-1alpha (IL-1alpha) is a multifunctional cytokine that stimulates myelopoiesis in macaque. However, daily systemic injections of IL-1alpha are associated with severe side effects. We therefore investigated the feasibility of a gene therapy strategy aimed at increasing the IL-1alpha local production in bone marrow with limited release of the vector into the blood circulation. Intra-medullar administration of adenoviral vector containing human IL-1alpha (huIL-1alpha) gene resulted in enhanced neutrophil, monocyte and platelet counts during the two first weeks after injection. The DNA vector, the transgene expression and the huIL-1alpha production was detected in treated bone marrow without significant detection of huIL-1alpha in the peripheral blood. Associated with huIL-1alpha production, we observed concomitant plasma C reactive protein and IL-1Ra peaks in the acellular fraction of treated bone marrow at days 3 and 7. No abnormal clinical side effects were observed in any of the animals following the adenoviral vector injection.
Collapse
Affiliation(s)
- Nicolas Bécard
- Commissariat à l'Energie Atomique, Laboratoire d'Immuno-Pathologie Experimentale, Service de Neurovirologie, CRSSA, EPHE, IPSC, 18 route du panorama, 92265 Fontenay-aux-Roses Cedex, France
| | | | | | | | | |
Collapse
|
27
|
Abstract
Over the past two decades, the ability to transfer genes into hematopoietic stem cells (HSCs) has provided new insights into the behavior of individual stem cells and offered a novel approach for the treatment of various inherited or acquired disorders. At present, gene transfer into HSCs has been achieved mainly using modified retroviruses. While retrovirus-based vectors could efficiently transduce murine HSCs, extrapolation of these methods to large mammals and human clinical trials resulted in very low numbers of gene-marked engrafted cells. In addition, in vitro progenitor assays used to optimize gene transfer procedures were found to poorly predict the outcome of stem cell gene transfer. The focus rapidly turned to the development of superior and more relevant preclinical assays in human stem cell gene transfer research. Xenogeneic transplant models and large animal transplantation system have been invaluable. The development of better assays for evaluating human gene therapy protocols and a better understanding of stem cell and vector biology has culminated over the past decade in multiple strategies to improve gene transfer efficiency into HSCs. Improved gene transfer vectors, optimization of cytokine combination, and incorporation of a recombinant fragment of fibronectin during transduction are examples of novel successful additions to the early gene transfer protocols that have contributed to the first unequivocal clinical benefits resulting from genetic manipulation of HSC.
Collapse
Affiliation(s)
- André Larochelle
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
28
|
Thomasson B, Peterson L, Thompson J, Goerner M, Kiem HP. Direct comparison of steady-state marrow, primed marrow, and mobilized peripheral blood for transduction of hematopoietic stem cells in dogs. Hum Gene Ther 2004; 14:1683-6. [PMID: 14633410 DOI: 10.1089/104303403322542329] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The optimal stem cell source for stem cell gene therapy has not been defined. Most gene transfer studies have used peripheral blood or marrow repopulating cells collected after administration of granulocyte colony-stimulating factor and stem cell factor (G-CSF/SCF). For clinical applications, however, growth factor administration may not be feasible. Thus, in the current study we used a competitive repopulation assay in the dog to directly compare transduction efficiency of steady-state marrow, G-CSF/SCF-primed marrow, and G-CSF/SCF-mobilized peripheral blood. Cells from all three sources were transduced, cryopreserved, and thawed together before infusion into myeloablated dogs. Gene marking in hematopoietic repopulating cells was assessed by polymerase chain reaction. While primed marrow resulted in the highest long-term marking levels, steady-state marrow was transduced at least as efficiently as mobilized peripheral blood in all three dogs. These results suggest that steady-state marrow may be an appropriate source for genetic modification of hematopoietic stem cells.
Collapse
Affiliation(s)
- Bobbie Thomasson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
29
|
Horn PA, Keyser KA, Peterson LJ, Neff T, Thomasson BM, Thompson J, Kiem HP. Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol. Blood 2004; 103:3710-6. [PMID: 14739227 DOI: 10.1182/blood-2003-07-2414] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34+ hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)– and granulocyte-colony stimulating factor (G-CSF)–primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.
Collapse
Affiliation(s)
- Peter A Horn
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Isenmann S, Schmeer C, Kretz A. How to keep injured CNS neurons viable—strategies for neuroprotection and gene transfer to retinal ganglion cells. Mol Cell Neurosci 2004; 26:1-16. [PMID: 15121174 DOI: 10.1016/j.mcn.2004.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 01/07/2004] [Accepted: 01/08/2004] [Indexed: 12/24/2022] Open
Affiliation(s)
- Stefan Isenmann
- Department of Neurology, University of Jena Medical School, 07747 Jena, Germany.
| | | | | |
Collapse
|
31
|
Li Z, Schwieger M, Lange C, Kraunus J, Sun H, van den Akker E, Modlich U, Serinsöz E, Will E, von Laer D, Stocking C, Fehse B, Schiedlmeier B, Baum C. Predictable and efficient retroviral gene transfer into murine bone marrow repopulating cells using a defined vector dose. Exp Hematol 2004; 31:1206-14. [PMID: 14662326 DOI: 10.1016/j.exphem.2003.08.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Current protocols of retroviral gene transfer into murine hematopoietic stem cells (HSC) result in variable gene transfer efficiency and involve various procedures that are not clinically applicable. We developed and evaluated a reliable transduction protocol that is more related to clinical methods. MATERIALS AND METHODS HSC were enriched from steady-state bone marrow by magnetic cell sorting (lineage depletion) and cultured in defined serum-free medium containing an improved growth factor cocktail (Flt3-ligand, stem cell factor, interleukin-3, interleukin-11). Cell-free ecotropic retroviral vector particles, generated by transient transfection of human 293T-based packaging cells, were preloaded at defined titers on CH296-coated tissue culture plates, thus largely avoiding serum contamination. These conditions were evaluated in 17 experiments involving 29 transduction cultures and 185 recipient mice. RESULTS After two rounds of infection, the gene marking rates in cultured mononuclear cells and stem/progenitor cells (Lin(-)c-Kit(+)) were 15 to 85% (53.7%+/-21.7%, n=23) and 30 to 95% (69.8%+/-20.4%, n=17), respectively. Even after one round of infection, gene transfer was efficient (31.2%+/-15.1%, n=12). Using identical conditions, gene transfer rates were highly reproducible. Average transgene expression in reconstituted animals correlated well with pretransplant data. Using a moderate multiplicity of infection, the majority of transduced cells carried less than three transgene copies. In addition, coinfection was possible to establish two different vectors in single cells. CONCLUSION The protocol described here achieves efficient retroviral transduction of murine bone marrow repopulating cells with a defined gene dosage, largely avoiding procedures that decrease stem cell output and repopulating capacity. This protocol may help to improve the predictive value of preclinical efficiency/toxicity studies for gene therapeutic interventions and basic research.
Collapse
Affiliation(s)
- Zhixiong Li
- Experimental Cell Therapy, Department of Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Persons DA, Allay JA, Bonifacino A, Lu T, Agricola B, Metzger ME, Donahue RE, Dunbar CE, Sorrentino BP. Transient in vivo selection of transduced peripheral blood cells using antifolate drug selection in rhesus macaques that received transplants with hematopoietic stem cells expressing dihydrofolate reductase vectors. Blood 2004; 103:796-803. [PMID: 12920024 DOI: 10.1182/blood-2003-05-1572] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the main obstacles for effective human gene therapy for hematopoietic disorders remains the achievement of an adequate number of genetically corrected blood cells. One approach to this goal is to incorporate drug resistance genes into vectors to enable in vivo selection of hematopoietic stem cells (HSCs). Although a number of drug resistance vectors enable HSC selection in murine systems, little is known about these systems in large animal models. To address this issue, we transplanted cells transduced with dihydrofolate resistance vectors into 6 rhesus macaques and studied whether selection of vector-expressing cells occurred following drug treatment with trimetrexate and nitrobenzylmercaptopurineriboside-phosphate. In some of the 10 administered drug treatment courses, substantial increases in the levels of transduced peripheral blood cells were noted; however, numbers returned to baseline levels within 17 days. Attempts to induce stem cell cycling with stem cell factor and granulocyte-colony stimulating factor prior to drug treatment did not lead to sustained enrichment for transduced cells. These data highlight an important species-specific difference between murine and nonhuman primate models for assessing in vivo HSC selection strategies and emphasize the importance of using drugs capable of inducing selective pressure at the level of HSCs.
Collapse
Affiliation(s)
- Derek A Persons
- Department of Hematology-Oncology, Division of Experimental Hematology, St. Jude Children's Research Hospital, 332 N Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tao W, Hangoc G, Cooper S, Broxmeyer HE. SDF-1α/CXCL12 enhances retroviral-mediated gene transfer into immature subsets of human and murine hematopoietic progenitor cells. Gene Ther 2003; 11:61-9. [PMID: 14681698 DOI: 10.1038/sj.gt.3302127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetic modification of hematopoietic stem and progenitor cells has the potential to treat diseases affecting blood cells. Oncoretroviral vectors have been used for gene therapy; however, clinical success has been limited in part by low gene transfer efficiencies. We found that the presence of stromal-derived factor 1 (SDF-1alpha)/CXCL12 during retroviral transduction significantly enhanced, in a dose-dependent fashion, gene transfer into immature subsets of high proliferative human and murine hematopoietic progenitor cells. Murine mononuclear bone marrow cells and purified c-Kit(+)Lin(-) bone marrow cells were prestimulated and transduced with the bicistronic retroviral vector MIEG3 on Retronectin-coated surfaces in the presence and absence of SDF-1. SDF-1 enhanced gene transduction of murine bone marrow and c-Kit(+)Lin(-) cells by 35 and 29%, respectively. Moreover, SDF-1 enhanced transduction of progenitors in these populations by 121 and 107%, respectively. SDF-1 also enhanced transduction of human immature subsets of high proliferative progenitors present in either nonadherent mononuclear or CD34(+) umbilical cord blood cells. Transduction of hematopoietic progenitors was further increased by preloading Retronectin-coated plates with retrovirus using low-speed centrifugation followed by increasing cell-virus interactions through brief centrifugation during the transduction procedure. These results may be of clinical relevance.
Collapse
Affiliation(s)
- W Tao
- Department of Microbiology and Immunology, The Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Gene therapy has been under development as a way to correct inborn errors for over 20 years. Immune deficiencies are favorable candidates for gene therapy because of the potential selective advantage of genetically corrected cells in these conditions. Gene therapy for immune deficiencies has been the only application to show incontrovertible benefit in clinical trials to date. Despite the success in treating the underlying disease, there have been two cases of insertional oncogenesis reported in one of these early phase trials. Gene therapy approaches and clinical trials for several inborn as well as acquired immune deficiencies will be reviewed.
Collapse
Affiliation(s)
- Barbara C Engel
- Division of Research Immunology/Bone Marrow Transplantation, Children's Hospital Los Angeles, California,
| | | |
Collapse
|
35
|
Walters MC, Nienhuis AW, Vichinsky E. Novel therapeutic approaches in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2003:10-34. [PMID: 12446417 DOI: 10.1182/asheducation-2002.1.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this update, selected clinical features of sickle cell disease and their management are reviewed. In addition, the current status of interventions that have curative potential for sickle cell disease is discussed, with particular attention focused on indications, methodology, recent results, and challenges to wider clinical application. In Section I, Dr. Nienhuis describes recent improvements in vector technology, safety, and replacement gene expression that are creating the potential for clinical application of this technology. In Section II, Dr. Vichinsky reviews our current understanding of the pathophysiology and treatment of pulmonary injury in sickle cell disease. The acute and chronic pulmonary complications of sickle cell disease, modulators and predictors of severity, and conventional and novel treatment of these complications are discussed. In Section III, Dr. Walters reviews the current status of hematopoietic cell transplantation for sickle cell disease. Newer efforts to expand its availability by identifying alternate sources of stem cells and by reducing the toxicity of transplantation are discussed.
Collapse
Affiliation(s)
- Mark C Walters
- Children's Hospital & Research Center, Oakland, University of California, San Francisco, 94609, USA
| | | | | |
Collapse
|
36
|
Wong W, Billing JS, Stranford SA, Hyde K, Fry J, Morris PJ, Wood KJ. Retroviral transfer of donor MHC class I or MHC class II genes into recipient bone marrow cells can induce operational tolerance to alloantigens in vivo. Hum Gene Ther 2003; 14:577-90. [PMID: 12718767 DOI: 10.1089/104303403764539350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Infusion of allogeneic, donor bone marrow (BM) can induce specific immunological unresponsiveness in vivo resulting in long-term acceptance of subsequent fully allogeneic, donor-type solid organ grafts, but this may be associated with graft-versus-host disease. We hypothesize that transfer of donor MHC gene(s) to recipient-type BM or hematopoietic stem cells would enable delivery of donor alloantigens to the recipient without the risk of graft-versus-host disease. This strategy could also potentially take advantage of linked suppression to induce specific unresponsiveness to additional alloantigens expressed by the solid organ graft. We found that infusion of 5 x 10(6) CBA (H-2(k)) recipient mouse BM cells transduced with a recombinant replication-defective retrovirus encoding either a single donor MHC class I or class II gene (H-2K(b) or H-2IA(b)) in combination with anti-CD4 monoclonal antibody resulted in long-term survival of C57BL/10 (H-2(b)) but not third-party NZW (H-2(z)) heart grafts. BM cells (3 x 10(3)) enriched for hematopoietic stem cells by sorting for c-Kit(+), lineage-negative cells, were able to induce long-term allograft survival in 50% of recipients after transduction with the vector encoding a single donor MHC class I gene. These results have important implications for future strategies to enhance clinical allograft survival by delivery of donor alloantigens.
Collapse
Affiliation(s)
- Wilson Wong
- Department of Nephrology and Transplantation, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Laufs S, Buss EC, Zeller WJ, Fruehauf S. Transfer of drug resistance genes in hematopoietic progenitors for chemoprotection: is it still an option? Drug Resist Updat 2003; 6:57-69. [PMID: 12729804 DOI: 10.1016/s1368-7646(03)00002-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For numerous malignancies a relationship between the intensity of antineoplastic chemotherapy and tumor response has been demonstrated. Myelotoxicity is the main cause of chemotherapy-associated morbidity and of treatment delays. The concept of myeloprotective cytostatic drug resistance gene transfer to normal hematopoietic stem cells (HSC) therefore sparks great enthusiasm. While initial studies using murine retroviral vectors on murine HSC showed that the concept works, a number of clinical studies in the last decade were not informative because of limitations in transduction efficiency and transgene expression.Furthermore, possible side effects such as unforeseen transgene activity and vector integration-based leukemogenesis have been reported. Among others, these developments raised some scepticism against the feasibility of myeloprotective gene transfer. Recently, considerable improvements have been achieved in vector design, HSC manipulation, selection protocols and risk assessment methods which are discussed in detail here. Based on these experimental studies successful clinical trials can now be anticipated.
Collapse
Affiliation(s)
- S Laufs
- Research Program Innovative Cancer Diagnostics and Therapy, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
38
|
Nakamura Y, Suda T, Nagata T, Aoshi T, Uchijima M, Yoshida A, Chida K, Koide Y, Nakamura H. Induction of protective immunity to Listeria monocytogenes with dendritic cells retrovirally transduced with a cytotoxic T lymphocyte epitope minigene. Infect Immun 2003; 71:1748-54. [PMID: 12654788 PMCID: PMC152038 DOI: 10.1128/iai.71.4.1748-1754.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the present study, we developed a cytotoxic T lymphocyte (CTL) epitope minigene-transduced dendritic cell (DC)-based vaccine against Listeria monocytogenes. Murine bone marrow-derived DCs were retrovirally transduced with a minigene for listeriolysin O (LLO) 91-99, a dominant CTL epitope of L. monocytogenes, and were injected into BALB/c mice intravenously. We found that the DC vaccine was capable of generating peptide-specific CD8+ T cells exhibiting LLO 91-99-specific cytotoxic activity and gamma interferon production, leading to induction of protective immunity to the bacterium. Furthermore, we demonstrated that the retrovirally transduced DC vaccine was more effective than a CTL epitope peptide-pulsed DC vaccine and a minigene DNA vaccine for eliciting antilisterial immunity. These results provide an alternative strategy in which retrovirally transduced DCs are used to design vaccines against intracellular pathogens.
Collapse
Affiliation(s)
- Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hematti P, Sellers SE, Agricola BA, Metzger ME, Donahue RE, Dunbar CE. Retroviral transduction efficiency of G-CSF+SCF-mobilized peripheral blood CD34+ cells is superior to G-CSF or G-CSF+Flt3-L-mobilized cells in nonhuman primates. Blood 2003; 101:2199-205. [PMID: 12424191 DOI: 10.1182/blood-2002-08-2663] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene transfer experiments in nonhuman primates have been shown to be predictive of success in human clinical gene therapy trials. In most nonhuman primate studies, hematopoietic stem cells (HSCs) collected from the peripheral blood or bone marrow after administration of granulocyte colony-stimulating factor (G-CSF) + stem cell factor (SCF) have been used as targets, but this cytokine combination is not generally available for clinical use, and the optimum target cell population has not been systematically studied. In our current study we tested the retroviral transduction efficiency of rhesus macaque peripheral blood CD34(+) cells collected after administration of different cytokine mobilization regimens, directly comparing G-CSF+SCF versus G-CSF alone or G-CSF+Flt3-L in competitive repopulation assays. Vector supernatant was added daily for 96 hours in the presence of stimulatory cytokines. The transduction efficiency of HSCs as assessed by in vitro colony-forming assays was equivalent in all 5 animals tested, but the in vivo levels of mononuclear cell and granulocyte marking was higher at all time points derived from target CD34(+) cells collected after G-CSF+SCF mobilization compared with target cells collected after G-CSF (n = 3) or G-CSF+Flt3-L (n = 2) mobilization. In 3 of the animals long-term marking levels of 5% to 25% were achieved, but originating only from the G-CSF+SCF-mobilized target cells. Transduction efficiency of HSCs collected by different mobilization regimens can vary significantly and is superior with G-CSF+SCF administration. The difference in transduction efficiency of HSCs collected from different sources should be considered whenever planning clinical gene therapy trials and should preferably be tested directly in comparative studies.
Collapse
Affiliation(s)
- Peiman Hematti
- Hematology Branch, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
40
|
Devine SM, Lazarus HM, Emerson SG. Clinical application of hematopoietic progenitor cell expansion: current status and future prospects. Bone Marrow Transplant 2003; 31:241-52. [PMID: 12621458 DOI: 10.1038/sj.bmt.1703813] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the past decade, we have witnessed significant advances in ex vivo hematopoietic stem cell culture expansion, progressing to the point where clinical trials are being designed and conducted. Preclinical milestone investigations provided data to enable expansion of portions of hematopoietic grafts in a clinical setting, indicating safety and feasibility of this approach. Data derived from current clinical trials indicate successful reconstitution of hematopoiesis after myeloablative chemoradiotherapy using infusion of ex vivo-expanded perfusion cultures. Future avenues of exploration will focus upon refining preclinical and clinical studies in which cocktails of available cytokines, novel molecules and sophisticated expansion systems will explore expansion of blood, marrow and umbilical cord blood cells.
Collapse
Affiliation(s)
- S M Devine
- Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
41
|
Kelly PF, Donahue RE, Vandergriff JA, Takatoku M, Bonifacino AC, Agricola BA, Metzger ME, Dunbar CE, Nienhuis AW, Vanin EF. Prolonged multilineage clonal hematopoiesis in a rhesus recipient of CD34 positive cells marked with a RD114 pseudotyped oncoretroviral vector. Blood Cells Mol Dis 2003; 30:132-43. [PMID: 12667996 DOI: 10.1016/s1079-9796(03)00005-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ability to efficiently transfer a gene into repopulating hematopoietic stem cells would create many therapeutic opportunities. We have evaluated the ability of particles bearing an alternative envelope protein, that of the feline endogenous virus (RD114), to transduce stem cells in a nonhuman primate autologous transplantation model using rhesus macaques. We have previously shown this pseudotyped vector to be superior to the amphotropic vector at transducing cells in umbilical cord blood capable of establishing hematopoiesis in immunodeficient mice. Gene transfer efficiency as reflected by the number of genetically modified cells in hematopoietic tissues varied among the five monkeys studied from low levels (<1%) in three animals to much higher levels in two (20-60%). An animal that exhibited extremely high levels for several weeks was found by vector genome insertion site analysis to have reconstitution predominantly with a single clone of cells. This variability among animals is in keeping with computer simulations of reconstitution with limiting numbers of stem cells genetically modified at about 10% efficiency. Our studies provide insights into the biology of hematopoietic reconstitution and suggest approaches for increasing stem cell targeted gene transfer efficiency.
Collapse
Affiliation(s)
- Patrick F Kelly
- Division of Experimental Hematology, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hanazono Y, Terao K, Shibata H, Nagashima T, Ageyama N, Asano T, Ueda Y, Kato I, Kume A, Hasegawa M, Ozawa K. Introduction of the green fluorescent protein gene into hematopoietic stem cells results in prolonged discrepancy of in vivo transduction levels between bone marrow progenitors and peripheral blood cells in nonhuman primates. J Gene Med 2002; 4:470-7. [PMID: 12221639 DOI: 10.1002/jgm.307] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The green fluorescent protein (GFP) has proven a useful marker in retroviral gene transfer studies targeting hematopoietic stem cells (HSCs) in mice. However, several investigators have reported very low in vivo peripheral blood marking levels in nonhuman primates after transplantation of HSCs transduced with the GFP gene. We retrovirally marked cynomolgus monkey HSCs with the GFP gene, and tracked in vivo marking levels within both bone marrow progenitor cells and mature peripheral blood cells following autologous transplantation after myeloablative conditioning. METHODS Bone marrow cells were harvested from three cynomolgus macaques and enriched for the primitive fraction by CD34 selection. CD34(+) cells were transduced with one of three retroviral vectors all expressing the GFP gene and were infused after myeloablative total body irradiation (500 cGy x 2). Following transplantation, proviral levels and fluorescence were monitored among clonogenic bone marrow progenitors and mature peripheral blood cells. RESULTS Although 13-37% of transduced cells contained the GFP provirus and 11-13% fluoresced ex vivo, both provirus and fluorescence became almost undetectable in the peripheral blood within several months after transplantation regardless of the vectors used. However, on sampling of bone marrow at multiple time points, significant fractions (5-10%) of clonogenic progenitors contained the provirus and fluoresced ex vivo reflecting a significant discrepancy between GFP gene marking levels within bone marrow cells and their mature peripheral blood progeny. The discrepancy (at least one log) persisted for more than 1 year after transplantation. Since no cytotoxic T lymphocytes against GFP were detected in the animals, an immune response against GFP is an unlikely explanation for the low levels of transduced peripheral blood cells. Administration of granulocyte colony stimulating factor and stem cell factor resulted in mobilization of transduced bone marrow cells detectable as mature granulocyte progeny which expressed the GFP gene, suggesting that transduced progenitor cells in bone marrow could be mobilized into the peripheral blood and differentiated into granulocytes. CONCLUSIONS Low levels of GFP-transduced mature cells in the peripheral blood of nonhuman primates may reflect a block to differentiation associated with GFP; this block can be overcome in part by nonphysiological cytokine treatment ex vivo and in vivo.
Collapse
Affiliation(s)
- Yutaka Hanazono
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hanazono Y, Nagashima T, Takatoku M, Shibata H, Ageyama N, Asano T, Ueda Y, Dunbar CE, Kume A, Terao K, Hasegawa M, Ozawa K. In vivo selective expansion of gene-modified hematopoietic cells in a nonhuman primate model. Gene Ther 2002; 9:1055-64. [PMID: 12140733 DOI: 10.1038/sj.gt.3301781] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2001] [Accepted: 04/02/2002] [Indexed: 11/09/2022]
Abstract
A major problem limiting hematopoietic stem cell (HSC) gene therapy is the low efficiency of gene transfer into human HSCs using retroviral vectors. Strategies, which would allow in vivo expansion of gene-modified hematopoietic cells, could circumvent the problem. To this end, we developed a selective amplifier gene (SAG) consisting of a chimeric gene composed of the granulocyte colony-stimulating factor (G-CSF) receptor gene and the estrogen receptor gene hormone-binding domain. We have previously demonstrated that primary bone marrow progenitor cells transduced with the SAG could be expanded in response to estrogen in vitro. In the present study, we evaluated the efficacy of the SAG in the setting of a clinically applicable cynomolgus monkey transplantation protocol. Cynomolgus bone marrow CD34(+) cells were transduced with retroviral vectors encoding the SAG and reinfused into each myeloablated monkey. Three of the six monkeys that received SAG transduced HSCs showed an increase in the levels of circulating progeny containing the provirus in vivo following administration of estrogen or tamoxifen without any serious adverse effects. In one monkey examined in detail, transduced hematopoietic progenitor cells were increased by several-fold (from 5% to 30%). Retroviral integration site analysis revealed that this observed increase was polyclonal and no outgrowth of a dominant single clonal population was observed. These results demonstrate that the inclusion of our SAG in the retroviral construct allows selective in vivo expansion of genetically modified cells by a non-toxic hormone treatment.
Collapse
Affiliation(s)
- Y Hanazono
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Brian P Sorrentino
- Department of Hematology/Oncology, Division of Experimental Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
45
|
Kiem HP, Rasko JEJ, Morris J, Peterson L, Kurre P, Andrews RG. Ex vivo selection for oncoretrovirally transduced green fluorescent protein-expressing CD34-enriched cells increases short-term engraftment of transduced cells in baboons. Hum Gene Ther 2002; 13:891-9. [PMID: 12031122 DOI: 10.1089/10430340252939005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In an effort to improve hematopoietic stem cell gene transfer rates using gibbon ape leukemia virus (GALV)-pseudotype retroviral vectors in baboons, we have studied preselection of transduced green fluorescent protein (GFP)-expressing CD34-enriched marrow cells. Three animals were transplanted with GFP-selected (GS) CD34-enriched marrow. To ensure engraftment, preselected GFP-positive cells were infused together with unselected neo-transduced cells. After transduction on fibronectin, cells were cultured for an additional 2 days to allow for expression of GFP. GFP-expressing cells were enriched by fluorescence-activated cell sorting and infused together with cells from the unselected fractions after myeloablative irradiation of the recipient. Three other animals were transplanted with GFP-transduced CD34-enriched cells without prior GFP selection (GU). At 4 weeks after transplant, the percentage of GFP-expressing white blood cells was significantly higher in the GS group (6.6%) than in the GU group (1.3%) (p < 0.002). The higher gene transfer levels in the animals transplanted with GS cells gradually declined, and by day 100 after transplant, gene transfer levels were similar in both groups. PCR analysis performed on genomic DNA isolated from peripheral blood cells demonstrated that the decline in GFP-positive cells was due to the loss of gene-marked cells and not due to loss of expression. These results show that transplantation of CD34-positive marrow cells selected for GFP-positive cells after transduction provides high levels of transduced granulocytes in the short term. However, using this experimental design with concomitant infusion of unselected cells and the use of oncoretroviral vectors, preenrichment of vector-expressing, transduced CD34-enriched cells does not improve long-term persistence and expression.
Collapse
Affiliation(s)
- Hans-Peter Kiem
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Shi PA, Hematti P, von Kalle C, Dunbar CE. Genetic marking as an approach to studying in vivo hematopoiesis: progress in the non-human primate model. Oncogene 2002; 21:3274-83. [PMID: 12032769 DOI: 10.1038/sj.onc.1205320] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retroviral insertion site analysis following transplantation of marked hematopoietic stem cells (HSCs) is a powerful method for studying hematopoiesis in vivo. High-level gene transfer efficiency was achieved in murine models in the late 1980s, but early human gene transfer protocols into hematopoietic stem and progenitor cells using the murine methodology showed consistently poor results. The utility of non-human primates as pre-clinical models has since become apparent. Modifications in retroviral transduction conditions have resulted in stable long-term gene transfer efficiency as high as 15-20% to primitive repopulating cells in non-human primate models. This has permitted, for the first time in a large animal model, tracking of individual stem and progenitor cell clones via insertion site analysis, an advantage over competitive transplantation studies, which cannot firmly evaluate the number or life span of individual clones contributing to hematopoiesis. Retroviral tracking studies in mice suggest that stable hematopoiesis may be dominated by a small number of clones, but these studies have been limited by insensitive detection methods, low numbers of transplanted stem cells, and limited life span of immunodeficient mice. Autologous transplantation studies in non-human primates have just begun and have the potential to shed light on controversial issues such as the number of clones contributing to stable hematopoiesis, clonal succession, and lineage commitment, as well as the effect of clinically relevant manipulations such as cytokines, chemotherapy, and radiation on hematopoiesis. These approaches will have significant impact in studying various aspects of stem cell biology including the phenomenon of stem cell plasticity.
Collapse
Affiliation(s)
- Patricia A Shi
- Molecular Hematopoiesis Section, Hematology Branch, NHLBI, NIH, 9000 Rockville Pike, Bethesda, Maryland, MD 20892, USA
| | | | | | | |
Collapse
|
47
|
Emery DW, Nishino T, Murata K, Fragkos M, Stamatoyannopoulos G. Hematopoietic stem cell gene therapy. Int J Hematol 2002; 75:228-36. [PMID: 11999349 DOI: 10.1007/bf02982035] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gene therapy applications that target hematopoietic stem cells (HSCs) offer great potential for the treatment of hematologic disease. Despite this promise, clinical success has been limited by poor rates of gene transfer, poor engraftment of modified cells, and poor levels of gene expression. We describe here the basic approach used for HSC gene therapy, briefly review some of the seminal clinical trials in the field, and describe several recent advances directed toward overcoming these limitations.
Collapse
Affiliation(s)
- David W Emery
- University of Washington Department of Medicine, Seattle 98195-7720, USA
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Catherine M Verfaillie
- Division of Hematology, Department of Medicine, and Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
49
|
Kluge KA, Bonifacino AC, Sellers S, Agricola BA, Donahue RE, Dunbar CE. Retroviral transduction and engraftment ability of primate hematopoietic progenitor and stem cells transduced under serum-free versus serum-containing conditions. Mol Ther 2002; 5:316-22. [PMID: 11863422 DOI: 10.1006/mthe.2002.0544] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to efficiently transduce hematopoietic stem and progenitor cells under serum-free conditions would be desirable for safety and standardization of clinical gene therapy protocols. Using rhesus macaques, we studied the transduction efficiency and engraftment ability of CD34-enriched SCF/G-CSF mobilized progenitor cells (PBSC) transduced with standard amphotropic marking vectors under serum-free and serum-containing conditions. Supernatants were collected from producer cells 16 hours after serum-free medium or medium containing 10% fetal calf serum was added. Vector titers were approximately two- to threefold higher when producer cells were cultured in serum-containing medium. However, retroviral transduction of rhesus CFU-GM was improved using serum-free vector-containing medium. For analysis of engraftment with transduced cells, three macaques had CD34+ peripheral blood stem cells split into two fractions for transduction. One fraction was transduced using serum-free vector-containing medium, and the other fraction was transduced using standard serum-containing medium. The two fractions were re-infused simultaneously following total body irradiation. In all three animals, there was equivalent marking from both vectors for 7-9 months post-transplantation. These data are encouraging regarding the removal of serum-containing medium from clinical hematopoietic cell transduction protocols, given the lack of a detrimental effect on transduction and engraftment with transduced cells.
Collapse
|
50
|
Schiedlmeier B, Schilz AJ, Kühlcke K, Laufs S, Baum C, Zeller WJ, Eckert HG, Fruehauf S. Multidrug resistance 1 gene transfer can confer chemoprotection to human peripheral blood progenitor cells engrafted in immunodeficient mice. Hum Gene Ther 2002; 13:233-42. [PMID: 11812280 DOI: 10.1089/10430340252769761] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myelosuppression is the main side effect of cancer chemotherapy. An improved rate of retroviral vector-mediated gene transfer to hematopoietic stem cells, shown in more recent clinical trials, has created the basis to test the concept of myeloprotective gene therapy. We transplanted clinical-scale human peripheral blood progenitor cell grafts (n = 2) transduced with retroviral vector SF91m3, which contains the human multidrug resistance 1 gene (MDR1), into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Engrafted mice of one cohort were protected from paclitaxel toxicity (p < 0.05) and we noted a similar trend in the second cohort. In paclitaxel-treated mice that had received gene-transduced cells we found a significant increase in gene marking (p < 0.05 - p < 0.01) or P-glycoprotein expression (p < 0.01) compared with their chemotherapy-naive counterparts. This is the first report showing that cytostatic drug resistance gene therapy can mediate chemoprotection of human clinically relevant stem cell populations with marrow engraftment potential.
Collapse
|