1
|
Shen Y, Huang W, Nie J, Zhang L. Progress Update on STING Agonists as Vaccine Adjuvants. Vaccines (Basel) 2025; 13:371. [PMID: 40333245 PMCID: PMC12030840 DOI: 10.3390/vaccines13040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Low antigen immunogenicity poses a significant challenge in vaccine development, often leading to inadequate immune responses and reduced vaccine efficacy. Therefore, the discovery of potent immune-enhancing adjuvants is crucial. STING (stimulator of interferon genes) agonists are a promising class of adjuvants which have been identified in various immune cells and are activated in response to DNA fragments, triggering a broad range of type-I interferon-dependent immune responses. Integrating STING agonists with vaccine components is an ideal strategy to bolster vaccine-induced immunity to infections and cancer cells. Several STING agonists are currently under investigation in preclinical studies and clinical trials; however, some have shown limited efficacy, while others exhibit off-target effects. To ensure safety, they are typically delivered with carriers that exhibit high biocompatibility and insolubility. In this review, we present the latest research on natural and synthetic STING agonists that have been effectively used in vaccine development, and summarize their application in adjuvant preventive and therapeutic vaccines. Additionally, we discuss the safety of STING agonists as vaccine adjuvants by reviewing potential delivery strategies. Overall, incorporating STING agonists into vaccine formulations represents a significant advancement in vaccine research with the potential to significantly enhance immune responses and improve vaccine efficacy. However, ongoing research is still required to identify the most effective and safe delivery strategies for STING agonists, as well as to evaluate their long-term safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Yanru Shen
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| |
Collapse
|
2
|
Huang F, Pan N, Wei Y, Zhao J, Aldarouish M, Wang X, Sun X, Wen Z, Chen Y, Wang L. Effects of Combinatorial Ubiquitinated Protein-Based Nanovaccine and STING Agonist in Mice With Drug-Resistant and Metastatic Breast Cancer. Front Immunol 2021; 12:707298. [PMID: 34589084 PMCID: PMC8475273 DOI: 10.3389/fimmu.2021.707298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
We previously reported that enriched ubiquitinated proteins (UPs) from tumor cells have the potential to be used as immunotherapy vaccine against cancer. Here we enriched UPs from epirubicin (EPB)-induced multi-drug-resistant cancer stem-like breast cancer cell line (4T1/EPB) and tested the efficacy of α-Al2O3-UPs-4T1/EPB (short for UPs-4T1/EPB) as therapeutic vaccine alone and in combination with the stimulator of interferon genes (STING) agonist in mice with drug-resistant and metastatic breast cancer. Vaccination with UPs-4T1/EPB exerted profound anti-tumor effects through augmented specific CD8+ T cell responses and amplified T cell receptor diversity of tumor-infiltrating lymphocytes (TILs). Importantly, the combination with STING agonist further facilitated the migration of mature CD8α+ dendritic cells to the lymph nodes and the infiltration of TILs within tumors, resulting in primary tumor regression and pulmonary metastasis eradication in mice. Moreover, the cured mice were completely resistant against a subsequent rechallenge with the same tumor. Our study indicates that this novel combinatorial immunotherapy with UPs-4T1/EPB vaccine and STING agonist is effective in mice with drug-resistant and metastatic breast cancer.
Collapse
Affiliation(s)
- Fang Huang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Ning Pan
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Yiting Wei
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Jinjin Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Mohanad Aldarouish
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xuru Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xiaotong Sun
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Zhifa Wen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Yongqiang Chen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Lixin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
3
|
Fu C, Tian G, Duan J, Liu K, Zhang C, Yan W, Wang Y. Therapeutic Antitumor Efficacy of Cancer Stem Cell-Derived DRibble Vaccine on Colorectal Carcinoma. Int J Med Sci 2021; 18:3249-3260. [PMID: 34400894 PMCID: PMC8364449 DOI: 10.7150/ijms.61510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy has been a promising strategy for colon cancer therapy, but the efficacy of dendritic cell vaccines is in part limited by immunogenicity of loaded antigens. In this study, we aimed to identify a putative tumor antigen that can generate or enhance anti-tumor immune responses against colon cancer. CD44+ colon cancer stem cells (CCSCs) were isolated from mouse colorectal carcinoma CT-26 cell cultures and induced to form defective ribosomal products-containing autophagosome-rich blebs (DRibbles) by treatment with rapamycin, bortezomib, and ammonium chloride. DRibbles were characterized by western blot and transmission electron microscopy. DCs generated from the mice bone marrow monocytes were cocultured with DRibbles, then surface markers of DCs were analyzed by flow cytometry. Meanwhile, the efficacy of DRibble-DCs was examined in vivo. Our results showed that CCSC-derived DRibbles upregulated CD80, CD86, major histocompatibility complex (MHC)-I, and MHC-II on DCs and induced proliferation of mouse splenic lymphocytes and CD8+ T cells. In a model of colorectal carcinoma using BALB/c mice with robust tumor growth and mortality, DC vaccine pulsed with CCSC-derived DRibbles suppressed tumor growth and extended survival. A lactate dehydrogenase test indicated a strong cytolytic activity of cytotoxic T-cells derived from mice vaccinated with CCSC-derived DRibbles against CT-26 cells. Furthermore, flow cytometry analyses showed that the percentages of IFN-γ-producing CD8+ T-cells were increased in SD-DC group compare with the other groups. These findings provide a rationale for novel immunotherapeutic anti-tumor approaches based on DRibbles derived from colon cancer stem cells.
Collapse
Affiliation(s)
- Changhao Fu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Geer Tian
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jinyue Duan
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Kun Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Chen Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Weiqun Yan
- Medical Institute of Regeneration Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
4
|
Deng J, Lu C, Liu C, Oveissi S, Fairlie WD, Lee EF, Bilsel P, Puthalakath H, Chen W. Influenza A virus infection-induced macroautophagy facilitates MHC class II-restricted endogenous presentation of an immunodominant viral epitope. FEBS J 2020; 288:3164-3185. [PMID: 33830641 DOI: 10.1111/febs.15654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
CD4+ T cells recognize peptides presented by major histocompatibility complex class II molecules (MHC-II). These peptides are generally derived from exogenous antigens. Macroautophagy has been reported to promote endogenous antigen presentation in viral infections. However, whether influenza A virus (IAV) infection-induced macroautophagy also leads to endogenous antigen presentation through MHC-II is still debated. In this study, we show that IAV infection leads to endogenous presentation of an immunodominant viral epitope NP311-325 by MHC-II to CD4+ T cells. Mechanistically, such MHC-II-restricted endogenous IAV antigen presentation requires de novo protein synthesis as it is inhibited by the protein synthesis inhibitor cycloheximide, and a functional ER-Golgi network as it is totally blocked by Brefeldin A. These results indicate that MHC-II-restricted endogenous IAV antigen presentation is dependent on de novo antigen and/or MHC-II synthesis, and transportation through the ER-Golgi network. Furthermore, such endogenous IAV antigen presentation by MHC-II is enhanced by TAP deficiency, indicating some antigenic peptides are of cytosolic origin. Most importantly, the bulk of such MHC-II-restricted endogenous IAV antigen presentation is blocked by autophagy inhibitors (3-MA and E64d) and deletion of autophagy-related genes, such as Beclin1 and Atg7. We have further demonstrated that in dendritic cells, IAV infection prevents autophagosome-lysosome fusion and promotes autophagosome fusion with MHC class II compartment (MIIC), which likely promotes endogenous IAV antigen presentation by MHC-II. Our results provide strong evidence that IAV infection-induced autophagosome formation facilitates endogenous IAV antigen presentation by MHC-II to CD4+ T cells. The implication for influenza vaccine design is discussed.
Collapse
Affiliation(s)
- Jieru Deng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - Chunni Lu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia.,School of Medicine, Deakin University, Waurn Ponds, Vic., Australia
| | - Chuanxin Liu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - Sara Oveissi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - W Douglas Fairlie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | - Erinna F Lee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | | | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
5
|
Ubiquitinated proteins enriched from tumor cells by a ubiquitin binding protein Vx3(A7) as a potent cancer vaccine. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:34. [PMID: 25886865 PMCID: PMC4405905 DOI: 10.1186/s13046-015-0156-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/07/2015] [Indexed: 11/29/2022]
Abstract
Background Our previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. In this study, we sought to detect whether ubiquitinated proteins enriched from tumor cells could be used directly as a novel cancer vaccine. Methods The ubiquitin binding protein Vx3(A7) was used to isolate ubiquitinated proteins from EL4 and B16-F10 tumor cells after blocking their proteasomal degradation pathway. C57BL/6 mice were vaccinated with different doses of Ub-enriched proteins via inguinal lymph nodes or subcutaneous injection and with DRibbles, Ub-depleted proteins and whole cell lysate as comparison groups, respectively. The lymphocytes from the vaccinated mice were re-stimulated with inactivated tumor cells and the levels of IFN-γ in the supernatant were detected by ELISA. Anti-tumor efficacy of Ub-enriched proteins vaccine was evaluated by monitoring tumor growth in established tumor mice models. Graphpad Prism 5.0 was used for all statistical analysis. Results We found that after stimulation with inactivated tumor cells, the lymphocytes from the Ub-enriched proteins-vaccinated mice secreted high level of IFN-γ in dose dependent manner, in which the priming vaccination via inguinal lymph nodes injection induced higher IFN-γ level than that via subcutaneous injection. Moreover, the level of secreted IFN-γ in the Ub-enriched proteins group was markedly higher than that in the whole cell lysate and Ub-depleted proteins. Interestingly, the lymphocytes from mice vaccinated with Ub-enriched proteins, but not Ub-depleted proteins and whole cell lysates, isolated from EL4 or B16-F10 tumor cells also produced an obvious level of IFN-γ when stimulated alternately with inactivated B16-F10 or EL4 tumor cells. Furthermore, Ub-enriched proteins vaccine showed a significant inhibitory effect on in vivo growth of homologous tumor, as well as allogeneic tumor, compared with Ub-depleted proteins and tumor cell lysate. Tumor growth was regressed after three times of vaccination with Ub-enriched proteins in contrast to other groups. Conclusion These results indicated that Ub-enriched proteins isolated from tumor cells may have a potential as a potent vaccine for immunotherapy against cancer.
Collapse
|
6
|
Modified vaccinia virus Ankara-infected dendritic cells present CD4+ T-cell epitopes by endogenous major histocompatibility complex class II presentation pathways. J Virol 2014; 89:2698-709. [PMID: 25520512 DOI: 10.1128/jvi.03244-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CD4(+) T lymphocytes play a central role in the immune system and mediate their function after recognition of their respective antigens presented on major histocompatibility complex II (MHCII) molecules on antigen-presenting cells (APCs). Conventionally, phagocytosed antigens are loaded on MHCII for stimulation of CD4(+) T cells. Certain epitopes, however, can be processed directly from intracellular antigens and are presented on MHCII (endogenous MHCII presentation). Here we characterized the MHCII antigen presentation pathways that are possibly involved in the immune response upon vaccination with modified vaccinia virus Ankara (MVA), a promising live viral vaccine vector. We established CD4(+) T-cell lines specific for MVA-derived epitopes as tools for in vitro analysis of MHCII antigen processing and presentation in MVA-infected APCs. We provide evidence that infected APCs are able to directly transfer endogenous viral proteins into the MHCII pathway to efficiently activate CD4(+) T cells. By using knockout mice and chemical inhibitory compounds, we further elucidated the molecular basis, showing that among the various subcellular pathways investigated, proteasomes and autophagy are key players in the endogenous MHCII presentation during MVA infection. Interestingly, although proteasomal processing plays an important role, neither TAP nor LAMP-2 was found to be involved in the peptide transport. Defining the molecular mechanism of MHCII presentation during MVA infection provides a basis for improving MVA-based vaccination strategies by aiming for enhanced CD4(+) T-cell activation by directing antigens into the responsible pathways. IMPORTANCE This work contributes significantly to our understanding of the immunogenic properties of pathogens by deciphering antigen processing pathways contributing to efficient activation of antigen-specific CD4(+) T cells. We identified autophagosome formation, proteasomal activity, and lysosomal integrity as being crucial for endogenous CD4(+) T-cell activation. Since poxvirus vectors such as MVA are already used in clinical trials as recombinant vaccines, the data provide important information for the future design of optimized poxviral vaccines for the study of advanced immunotherapy options.
Collapse
|
7
|
Spencer CT, Dragovic SM, Conant SB, Gray JJ, Zheng M, Samir P, Niu X, Moutaftsi M, Van Kaer L, Sette A, Link AJ, Joyce S. Sculpting MHC class II-restricted self and non-self peptidome by the class I Ag-processing machinery and its impact on Th-cell responses. Eur J Immunol 2013; 43:1162-72. [PMID: 23386199 DOI: 10.1002/eji.201243087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/02/2013] [Accepted: 01/30/2013] [Indexed: 01/14/2023]
Abstract
It is generally assumed that the MHC class I antigen (Ag)-processing (CAP) machinery - which supplies peptides for presentation by class I molecules - plays no role in class II-restricted presentation of cytoplasmic Ags. In striking contrast to this assumption, we previously reported that proteasome inhibition, TAP deficiency or ERAAP deficiency led to dramatically altered T helper (Th)-cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags. Herein, we tested whether altered Ag processing and presentation, altered CD4(+) T-cell repertoire, or both underlay the above finding. We found that TAP deficiency and ERAAP deficiency dramatically altered the quality of class II-associated self peptides suggesting that the CAP machinery impacts class II-restricted Ag processing and presentation. Consistent with altered self peptidomes, the CD4(+) T-cell receptor repertoire of mice deficient in the CAP machinery substantially differed from that of WT animals resulting in altered CD4(+) T-cell Ag recognition patterns. These data suggest that TAP and ERAAP sculpt the class II-restricted peptidome, impacting the CD4(+) T-cell repertoire, and ultimately altering Th-cell responses. Together with our previous findings, these data suggest multiple CAP machinery components sequester or degrade MHC class II-restricted epitopes that would otherwise be capable of eliciting functional Th-cell responses.
Collapse
Affiliation(s)
- Charles T Spencer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Eisenlohr LC, Luckashenak N, Apcher S, Miller MA, Sinnathamby G. Beyond the classical: influenza virus and the elucidation of alternative MHC class II-restricted antigen processing pathways. Immunol Res 2012; 51:237-48. [PMID: 22101673 DOI: 10.1007/s12026-011-8257-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CD4+ T cells (T(CD4+)) are activated by peptides, generally 13-17 amino acids in length, presented at the cell surface in combination with highly polymorphic MHC class II molecules. According to the classical model, these peptides are generated by endosomal digestion of internalized antigen and loaded onto MHC class II molecules in the late endosome. Historically, this "exogenous" pathway has been defined through the extensive use of purified proteins. However, the relatively recent use of clinically relevant antigens, those of influenza virus in our case, has revealed several additional pathways of peptide production, including some that are truly "endogenous", entailing synthesis of the protein within the infected cell. Indeed, some peptides appear to be created only via endogenous processing. The cell biology that underlies these alternative pathways remains poorly understood as do their relative contributions to defence against infectious agents and cancer, and the triggering of autoimmune diseases.
Collapse
Affiliation(s)
- Laurence C Eisenlohr
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
9
|
Li Y, Wang LX, Pang P, Cui Z, Aung S, Haley D, Fox BA, Urba WJ, Hu HM. Tumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy. Clin Cancer Res 2011; 17:7047-57. [PMID: 22068657 DOI: 10.1158/1078-0432.ccr-11-0951] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE We previously reported that autophagy in tumor cells plays a critical role in cross-presentation of tumor antigens and that autophagosomes are efficient antigen carriers for cross-priming of tumor-reactive CD8(+) T cells. Here, we sought to characterize further the autophagosome-enriched vaccine named DRibble (DRiPs-containing blebs), which is derived from tumor cells after inhibition of protein degradation, and to provide insights into the mechanisms responsible for their efficacy as a novel cancer immunotherapy. EXPERIMENTAL DESIGN DRibbles were characterized by Western blot and light or transmission electron microscopy. The efficiency of cross-presentation mediated by DRibbles was first compared with that of whole-tumor cells and pure proteins. The mechanisms of antigen cross-presentation by DRibbles were analyzed, and the antitumor efficacy of the DRibble vaccine was tested in 3LL Lewis lung tumors and B16F10 melanoma. RESULTS The DRibbles sequester both long-lived and short-lived proteins, including defective ribosomal products (DRiP), and damage-associated molecular pattern molecules exemplified by HSP90, HSP94, calreticulin, and HMGB1. DRibbles express ligands for CLEC9A, a newly described C-type lectin receptor expressed by a subset of conventional and plasmacytoid dendritic cells (DC), and cross-presentation was partially CLEC9A dependent. Furthermore, this autophagy-assisted antigen cross-presentation pathway involved both caveolae- and clathrin-mediated endocytosis and endoplasmic reticulum-associated degradation machinery. It depends on proteasome and TAP1, but not lysosome functions of antigen-presenting cells. Importantly, DCs loaded with autophagosome-enriched DRibbles can eradicate 3LL Lewis lung tumors and significantly delay the growth of B16F10 melanoma. CONCLUSIONS These data documented the unique characteristics and potent antitumor efficacy of the autophagosome-based DRibble vaccine. The efficacy of DRibble cancer vaccine will be further tested in clinical trials.
Collapse
Affiliation(s)
- Yuhuan Li
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon 97213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dragovic SM, Hill T, Christianson GJ, Kim S, Elliott T, Scott D, Roopenian DC, Van Kaer L, Joyce S. Proteasomes, TAP, and endoplasmic reticulum-associated aminopeptidase associated with antigen processing control CD4+ Th cell responses by regulating indirect presentation of MHC class II-restricted cytoplasmic antigens. THE JOURNAL OF IMMUNOLOGY 2011; 186:6683-92. [PMID: 21572029 DOI: 10.4049/jimmunol.1100525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytoplasmic Ags derived from viruses, cytosolic bacteria, tumors, and allografts are presented to T cells by MHC class I or class II molecules. In the case of class II-restricted Ags, professional APCs acquire them during uptake of dead class II-negative cells and present them via a process called indirect presentation. It is generally assumed that the cytosolic Ag-processing machinery, which supplies peptides for presentation by class I molecules, plays very little role in indirect presentation of class II-restricted cytoplasmic Ags. Remarkably, upon testing this assumption, we found that proteasomes, TAP, and endoplasmic reticulum-associated aminopeptidase associated with Ag processing, but not tapasin, partially destroyed or removed cytoplasmic class II-restricted Ags, such that their inhibition or deficiency led to dramatically increased Th cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags, both of which are indirectly presented. This effect was neither due to enhanced endoplasmic reticulum-associated degradation nor competition for Ag between class I and class II molecules. From these findings, a novel model emerged in which the cytosolic Ag-processing machinery regulates the quantity of cytoplasmic peptides available for presentation by class II molecules and, hence, modulates Th cell responses.
Collapse
Affiliation(s)
- Srdjan M Dragovic
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Doucet JD, Forget MA, Grange C, Rouxel RN, Arbour N, von Messling V, Lapointe R. Endogenously expressed matrix protein M1 and nucleoprotein of influenza A are efficiently presented by class I and class II major histocompatibility complexes. J Gen Virol 2011; 92:1162-1171. [DOI: 10.1099/vir.0.029777-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Current influenza vaccines containing primarily hypervariable haemagglutinin and neuraminidase proteins must be prepared against frequent new antigenic variants. Therefore, there is an ongoing effort to develop influenza vaccines that also elicit strong and sustained cytotoxic responses against highly conserved determinants such as the matrix (M1) protein and nucleoprotein (NP). However, their antigenic presentation properties in humans are less defined. Accordingly, we analysed MHC class I and class II presentation of endogenously processed M1 and NP in human antigen presenting cells and observed expansion of both CD8+- and CD4+-specific effector T lymphocytes secreting gamma interferon and tumour necrosis factor. Further enhancement of basal MHC-II antigenic presentation did not improve CD4+ or CD8+ T-cell quality based on cytokine production upon challenge, suggesting that endogenous M1 and NP MHC-II presentation is sufficient. These new insights about T-lymphocyte expansion following endogenous M1 and NP MHC-I and -II presentation will be important to design complementary heterosubtypic vaccination strategies.
Collapse
Affiliation(s)
- Jean-Daniel Doucet
- Research Centre, Centre Hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Université de Montréal and Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Marie-Andrée Forget
- Research Centre, Centre Hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Université de Montréal and Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Cécile Grange
- Research Centre, Centre Hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Université de Montréal and Institut du Cancer de Montréal, Montréal, Québec, Canada
| | | | - Nathalie Arbour
- Research Centre, Centre Hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Université de Montréal and Institut du Cancer de Montréal, Montréal, Québec, Canada
| | | | - Réjean Lapointe
- Research Centre, Centre Hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Université de Montréal and Institut du Cancer de Montréal, Montréal, Québec, Canada
| |
Collapse
|
12
|
Huang L, Kuhls MC, Eisenlohr LC. Hydrophobicity as a driver of MHC class I antigen processing. EMBO J 2011; 30:1634-44. [PMID: 21378750 DOI: 10.1038/emboj.2011.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 02/02/2011] [Indexed: 11/09/2022] Open
Abstract
The forces that drive conversion of nascent protein to major histocompatibility complex (MHC) class I-restricted peptides remain unknown. We explored the fundamental property of overt hydrophobicity as such a driver. Relocation of a membrane glycoprotein to the cytosol via signal sequence ablation resulted in rapid processing of nascent protein not because of the misfolded luminal domain but because of the unembedded transmembrane (TM) domain, which serves as a dose-dependent degradation motif. Dislocation of the TM domain during the natural process of endoplasmic reticulum-associated degradation (ERAD) similarly accelerated peptide production, but in the context of markedly prolonged processing that included nonnascent species. These insights into intracellular proteolytic pathways and their selective contributions to MHC class I-restricted peptide supply, may point to new approaches in rational vaccine design.
Collapse
Affiliation(s)
- Lan Huang
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
13
|
Steele JC, Rao A, Marsden JR, Armstrong CJ, Berhane S, Billingham LJ, Graham N, Roberts C, Ryan G, Uppal H, Walker C, Young LS, Steven NM. Phase I/II trial of a dendritic cell vaccine transfected with DNA encoding melan A and gp100 for patients with metastatic melanoma. Gene Ther 2011; 18:584-93. [PMID: 21307889 DOI: 10.1038/gt.2011.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This trial tested a dendritic cell (DC) therapeutic cancer vaccine in which antigen is loaded using a novel non-viral transfection method enabling the uptake of plasmid DNA condensed with a cationic peptide. Proof of principle required the demonstration of diverse T lymphocyte responses following vaccination, including multiple reactivities restricted through both major histocompatibility complex (MHC) class I and II. Patients with advanced melanoma were offered four cycles of vaccination with autologous DC expressing melan A and gp100. Disease response was measured using Response Evaluation Criteria in Solid Tumours. Circulating MHC class I- and II-restricted responses were measured against peptide and whole antigen targets using interferon-γ ELIspot and enzyme-linked immunosorbent assay assays, respectively. Responses were analyzed across the trial population and presented descriptively for some individuals. Twenty-five patients received at least one cycle. Vaccination was well tolerated. Three patients had reduction in disease volume. Across the trial population, vaccination resulted in an expansion of effector responses to both antigens, to the human leukocyte antigen A2-restricted modified epitope, melan A ELAGIGILTV, and to a panel of MHC class I- and II-restricted epitopes. Vaccination with mature DC non-virally transfected with DNA encoding antigen had biological effect causing tumour regression and inducing diverse T lymphocyte responses.
Collapse
Affiliation(s)
- J C Steele
- Cancer Research UK Clinical Trials Unit, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S, Iwasaki A. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 2010; 32:227-39. [PMID: 20171125 DOI: 10.1016/j.immuni.2009.12.006] [Citation(s) in RCA: 392] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 10/09/2009] [Accepted: 12/10/2009] [Indexed: 12/24/2022]
Abstract
Autophagy is known to be important in presentation of cytosolic antigens on MHC class II (MHC II). However, the role of autophagic process in antigen presentation in vivo is unclear. Mice with dendritic cell (DC)-conditional deletion in Atg5, a key autophagy gene, showed impaired CD4(+) T cell priming after herpes simplex virus infection and succumbed to rapid disease. The most pronounced defect of Atg5(-/-) DCs was the processing and presentation of phagocytosed antigens containing Toll-like receptor stimuli for MHC class II. In contrast, cross-presentation of peptides on MHC I was intact in the absence of Atg5. Although induction of metabolic autophagy did not enhance MHC II presentation, autophagic machinery was required for optimal phagosome-to-lysosome fusion and subsequent processing of antigen for MHC II loading. Thus, our study revealed that DCs utilize autophagic machinery to optimally process and present extracellular microbial antigens for MHC II presentation.
Collapse
Affiliation(s)
- Heung Kyu Lee
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Antigen processing via autophagy--not only for MHC class II presentation anymore? Curr Opin Immunol 2010; 22:89-93. [PMID: 20149615 DOI: 10.1016/j.coi.2010.01.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/25/2010] [Accepted: 01/25/2010] [Indexed: 12/23/2022]
Abstract
T cells monitor intracellular and extracellular protein composition via proteolytic products that are displayed to them on major histocompatibility complex (MHC) molecules. For this purpose it has been documented that MHC class II molecules, which were originally thought to just display lysosomal products of endocytosed proteins to CD4(+) helper T cells, can also present intracellular substrates of autophagic pathways. This has triggered the interest of immunologists into the role of autophagy in antigen processing in general, and recently additional autophagic mechanisms for intracellular and extracellular antigen processing onto MHC class I molecules for presentation to CD8(+) cytolytic T cells have been revealed. Here, I will review the contribution of autophagy for MHC class I and class II antigen processing and presentation to T cells.
Collapse
|
16
|
Nedjic J, Aichinger M, Mizushima N, Klein L. Macroautophagy, endogenous MHC II loading and T cell selection: the benefits of breaking the rules. Curr Opin Immunol 2009; 21:92-7. [PMID: 19246181 DOI: 10.1016/j.coi.2009.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/21/2009] [Accepted: 01/30/2009] [Indexed: 12/26/2022]
Abstract
Functional and biochemical assays indicate a substantial contribution of intracellularly derived peptides to the MHC class II 'ligandome'. Macroautophagy, a process traditionally known for its role in cellular housekeeping and adaptation to nutrient withdrawal, is an attractive candidate pathway for endogenous MHC class II loading. Work in cell culture systems, including antigen presentation assays, co-localization studies and sequencing of MHC class II bound peptides, demonstrates that substrates of autophagy can be loaded onto MHC class II. Advances in the development of mouse models to monitor or genetically disrupt macroautophagy now provide the basis for elucidating the immunological relevance of autophagy in vivo. Here, we will discuss recent findings suggesting a crucial role of macroautophagy in thymic epithelial cells for the generation of peptide/MHC class II ligands for positive selection and induction of T cell tolerance.
Collapse
Affiliation(s)
- Jelena Nedjic
- Institute for Immunology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
17
|
Abstract
Macroautophagy is a catabolic process for the lysosomal turnover of cell organelles and protein aggregates. Lysosomal degradation products are displayed by major histocompatibility class II molecules to CD4(+) T cells in the steady state for tolerance induction and during infections to mount adaptive immune responses. It has recently been shown that macroautophagy substrates can also give rise to MHC class II ligands. We review here the breadth of antigens that may utilize this pathway and the possible implications of this alternate route to MHC class II antigen presentation for immunity and tolerance. Based on this discussion, it is apparent that the regulation of macroautophagy may be beneficial in various disease settings in order to enhance adaptive immune responses or to reduce autoimmunity.
Collapse
|
18
|
Su Y, Carey G, Maric M, Scott DW. B cells induce tolerance by presenting endogenous peptide-IgG on MHC class II molecules via an IFN-gamma-inducible lysosomal thiol reductase-dependent pathway. THE JOURNAL OF IMMUNOLOGY 2008; 181:1153-60. [PMID: 18606668 DOI: 10.4049/jimmunol.181.2.1153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated that splenic B cells, transduced with peptide-IgG fusion proteins, are efficient tolerogenic APCs in vivo. Specific hyporesponsiveness to epitopes encoded in the peptide-IgG fusion protein has been achieved to over one dozen Ags, and clinical efficacy has been established in animal models for several autoimmune diseases and hemophilia. Previous studies also demonstrated that tolerance in this system requires MHC class II expression by the transduced B cells. Yet, the mechanisms of this B cell tolerogenic processing pathway remain unclear. In this study, we show that MHC class II molecules on tolerogenic B cells present epitopes derived from endogenous, but not exogenous (secreted), peptide-IgG fusion protein. These class II epitopes from the IgG fusion protein are processed in lysosomes/endosomes in an IFN-gamma-inducible lysosomal thiol reductase-dependent manner. We suggest that the MHC class II presentation of endogenously produced fusion protein epitopes represents a novel mechanism for tolerance induced by peptide-IgG-transduced B cells. An understanding of this process might provide insights into central and peripheral tolerance induced by other professional and nonprofessional APCs.
Collapse
Affiliation(s)
- Yan Su
- Department of Surgery and Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Autophagy is a homeostatic process that enables eukaryotic cells to deliver cytoplasmic constituents for lysosomal degradation, to recycle nutrients and to survive during starvation. In addition to these primordial functions, autophagy has emerged as a key mechanism in orchestrating innate and adaptive immune responses to intracellular pathogens. Autophagy restricts viral infections as well as replication of intracellular bacteria and parasites and delivers pathogenic determinants for TLR stimulation and for MHC class II presentation to the adaptive immune system. Apart from its role in defense against pathogens, autophagy-mediated presentation of self-antigens in the steady state could have a crucial role in the induction and maintenance of CD4(+) T-cell tolerance. This review describes the mechanisms by which the immune system utilizes autophagic degradation of cytoplasmic material to regulate adaptive immune responses.
Collapse
|
20
|
Helson R, Olszewska W, Singh M, Megede JZ, Melero JA, O'Hagan D, Openshaw PJM. Polylactide-co-glycolide (PLG) microparticles modify the immune response to DNA vaccination. Vaccine 2007; 26:753-61. [PMID: 18191308 DOI: 10.1016/j.vaccine.2007.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/16/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
Priming with the major surface glycoprotein G of respiratory syncytial virus (RSV) expressed by recombinant vaccinia leads to strong Th2 responses and lung eosinophilia during viral challenge. We now show that DNA vaccination in BALB/c mice with plasmids encoding G attenuated RSV replication but also enhanced disease with lung eosinophilia and increased IL-4/5 production. However, formulating the DNA with PLG microparticles reduced the severity of disease during RSV challenge without significantly lessening protection against viral replication. PLG formulation greatly reduced lung eosinophilia and prevented the induction of IL-4 and IL-5 during challenge, accompanied by a less marked CD4+ T cell response and a restoration of the CD8+ T cell recruitment seen during infection of non-vaccinated animals. After RSV challenge, lung eosinophilia was enhanced and prolonged in mice vaccinated with DNA encoding a secreted form of G; this effect was virtually prevented by PLG formulation. Therefore, PLG microparticulate formulation modifies the pattern of immune responses induced by DNA vaccination boosts CD8+ T cell priming and attenuates Th2 responses. We speculate that PLG microparticles affect antigen uptake and processing, thereby influencing the outcome of DNA vaccination.
Collapse
Affiliation(s)
- Rebecca Helson
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College, St. Mary's Campus, Paddington, London W2 1PG, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The two main proteolytic machineries of eukaryotic cells, lysosomes and proteasomes, receive substrates by different routes. Polyubiquitination targets proteins for proteasomal degradation, whereas autophagy delivers intracellular material for lysosomal hydrolysis. The importance of autophagy for cell survival has long been appreciated, but more recently, its essential role in both innate and adaptive immunity has been characterized. Autophagy is now recognized to restrict viral infections and replication of intracellular bacteria and parasites. Additionally, this pathway delivers cytoplasmic antigens for MHC class II presentation to the adaptive immune system, which then in turn is able to regulate autophagy. At the same time, autophagy plays a role in the survival and the cell death of T cells. Thus, the immune system utilizes autophagic degradation of cytoplasmic material, to both restrict intracellular pathogens and regulate adaptive immunity.
Collapse
Affiliation(s)
- Dorothee Schmid
- Laboratory of Viral Immunobiology and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
22
|
Schmid D, Pypaert M, Münz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 2006; 26:79-92. [PMID: 17182262 PMCID: PMC1805710 DOI: 10.1016/j.immuni.2006.10.018] [Citation(s) in RCA: 535] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/11/2006] [Accepted: 10/19/2006] [Indexed: 12/19/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules present products of lysosomal proteolysis to CD4(+) T cells. Although extracellular antigen uptake is considered to be the main source of MHC class II ligands, a few intracellular antigens have been described to gain access to MHC class II loading after macroautophagy. However, the general relevance and efficacy of this pathway is unknown. Here we demonstrated constitutive autophagosome formation in MHC class II-positive cells, including dendritic, B, and epithelial cells. The autophagosomes continuously fuse with multivesicular MHC class II-loading compartments. This pathway was of functional relevance, because targeting of the influenza matrix protein 1 to autophagosomes via fusion to the autophagosome-associated protein Atg8/LC3 led to strongly enhanced MHC class II presentation to CD4(+) T cell clones. We suggest that macroautophagy constitutively and efficiently delivers cytosolic proteins for MHC class II presentation and can be harnessed for improved helper T cell stimulation.
Collapse
Affiliation(s)
- Dorothee Schmid
- Laboratory of Viral Immunobiology and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10021
| | - Marc Pypaert
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Christian Münz
- Laboratory of Viral Immunobiology and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10021
- *correspondence should be addressed to: Christian Münz (; phone: 212-327-7612; fax: 212-327-7887)
| |
Collapse
|
23
|
Ohashi M, Horie K, Hoshikawa Y, Nagata K, Osaki M, Ito H, Sairenji T. Accumulation of Epstein-Barr virus (EBV) BMRF1 protein EA-D during latent EBV activation of Burkitt's lymphoma cell line Raji. Microbes Infect 2006; 9:150-9. [PMID: 17223371 DOI: 10.1016/j.micinf.2006.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/29/2006] [Accepted: 11/06/2006] [Indexed: 11/25/2022]
Abstract
As a new model to elucidate molecular mechanisms in Epstein-Barr virus (EBV) activation, we tested the tetracycline-inducible (Tet-On)/BZLF1-oriP plasmid system in Raji cells. Cells transfected with this Tet-On plasmid did not activate EBV by doxycycline and surprisingly EBV latency was disrupted with large amounts of BMRF1 protein (EA-D) being accumulated in the cells. Brilliant EA-D fluorescence was markedly condensed in small sized cells, intra-cellular vesicles, and extra-cellular particles. Scanning electron microscopy demonstrated the extra-cellular particles to be covered with a membrane. EA-D molecules of 58, 50, 48, and 44kDa were expressed in the cells. The high (58 and 50kDa) and low (48 and 44kDa) EA-D molecules appeared in the early and late stages, respectively. Low EA-D molecules were detected mostly in EA-D positive cells separated into the heaviest density layer of a discontinuous Percoll gradient. Such molecules could be created from high EA-D molecules by protein phosphatase treatment. The EA-D molecules that appeared similar were detected in EBV-activated P3HR-1 and Akata cells. Several hypotheses concerning the accumulation of EA-D molecules of various polymorphic forms and their phosphorylation/dephosphorylation in this model system are presented, with possible biological and clinical relevance.
Collapse
Affiliation(s)
- Makoto Ohashi
- Division of Biosignaling, Department of Biomedical Science, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Taylor GS, Long HM, Haigh TA, Larsen M, Brooks J, Rickinson AB. A Role for Intercellular Antigen Transfer in the Recognition of EBV-Transformed B Cell Lines by EBV Nuclear Antigen-Specific CD4+T Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3746-56. [PMID: 16951335 DOI: 10.4049/jimmunol.177.6.3746] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD4+ T cell response to EBV may have an important role in controlling virus-driven B lymphoproliferation because CD4+ T cell clones to a subset of EBV nuclear Ag (EBNA) epitopes can directly recognize virus-transformed lymphoblastoid cell lines (LCLs) in vitro and inhibit their growth. In this study, we used a panel of EBNA1, 2, 3A, and 3C-specific CD4+ T cell clones to study the route whereby endogenously expressed EBNAs access the HLA class II-presentation pathway. Two sets of results spoke against a direct route of intracellular access. First, none of the clones recognized cognate Ag overexpressed in cells from vaccinia vectors but did recognize Ag fused to an endo/lysosomal targeting sequence. Second, focusing on clones with the strongest LCL recognition that were specific for EBNA2- and EBNA3C-derived epitopes LCL recognition was unaffected by inhibiting autophagy, a postulated route for intracellular Ag delivery into the HLA class II pathway in LCL cells. Subsequently, using these same epitope-specific clones, we found that Ag-negative cells with the appropriate HLA-restricting allele could be efficiently sensitized to CD4+ T cell recognition by cocultivation with Ag-positive donor lines or by exposure to donor line-conditioned culture medium. Sensitization was mediated by a high m.w. antigenic species and required active Ag processing by recipient cells. We infer that intercellular Ag transfer plays a major role in the presentation of EBNA-derived CD4 epitopes by latently infected target cells.
Collapse
Affiliation(s)
- Graham S Taylor
- Cancer Research U.K. Institute for Cancer Studies, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
CD4(+) T cells co-ordinate adaptive immunity and are required for immunological memory establishment and maintenance. They are thought to primarily recognize extracellular antigens, which are endocytosed, processed by lysosomal proteases and then presented on major histocompatibility complex (MHC) class II. However, recent studies have demonstrated that viral, tumour and autoantigens can gain access to this antigen presentation pathway from within cells by autophagy. This review will discuss the autophagic pathways that contribute to endogenous MHC class II antigen processing. Furthermore, potential characteristics of autophagy substrates, qualifying them to access these pathways, and regulation of autophagy will be considered. Finally, I will suggest how antigen presentation after autophagy might contribute to immune surveillance of infected and transformed cells.
Collapse
Affiliation(s)
- Christian Münz
- Laboratory of Viral Immunobiology and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|
26
|
Schmid D, Münz C. Immune surveillance of intracellular pathogens via autophagy. Cell Death Differ 2006; 12 Suppl 2:1519-27. [PMID: 16247499 DOI: 10.1038/sj.cdd.4401727] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MHC class II molecules are thought to present peptides derived from extracellular proteins to CD4+ T cells, which are important mediators of adaptive immunity to infections. In contrast, autophagy delivers constitutively cytosolic material for lysosomal degradation and has so far been recognized as an efficient mechanism of innate immunity against bacteria and viruses. Recent studies, however, link these two pathways and suggest that intracellular cytosolic and nuclear antigens are processed for MHC class II presentation after autophagy.
Collapse
Affiliation(s)
- D Schmid
- Laboratory of Viral Immunobiology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
27
|
Schmid D, Dengjel J, Schoor O, Stevanovic S, Münz C. Autophagy in innate and adaptive immunity against intracellular pathogens. J Mol Med (Berl) 2006; 84:194-202. [PMID: 16501849 DOI: 10.1007/s00109-005-0014-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/19/2005] [Indexed: 12/19/2022]
Abstract
Autophagy delivers cytoplasmic constituents for lysosomal degradation. Recent studies have demonstrated that this pathway mediates resistance to pathogens and is targeted for immune evasion by viruses and bacteria. Lysosomal degradation products, including pathogenic determinants, are then surveyed by the adaptive immune system to elicit antigen-specific T cell responses. CD4(+) T helper cells have been shown to recognize nuclear and cytosolic antigens via presentation by major histocompatibility complex (MHC) class II molecules after autophagy. Furthermore, some sources of natural MHC class II ligands display characteristics of autophagy substrates, and autophagosomes fuse with late endosomes, in which MHC class II loading is thought to occur. Although MHC class II antigen processing via autophagy has so far mainly been described for professional antigen-presenting cells like B cells, macrophages, and dendritic cells, it might be even more important for cells with less endocytic potential, like epithelial cells, when these express MHC class II at sites of inflammation. Therefore, autophagy might contribute to immune surveillance of intracellular pathogens via MHC class II presentation of intracellular pathogen-derived peptides.
Collapse
Affiliation(s)
- Dorothee Schmid
- Laboratory of Viral Immunobiology, and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Major histocompatibility (MHC) class II molecules function to present antigenic peptides to CD4 T lymphocytes. The pathways by which these molecules present exogenous antigens have been extensively studied. However by contrast, far less is known about the processing and trafficking of cytosolic antigens, which can also serve as an alternative source of ligands for MHC class II molecules. Self-proteins, tumor antigens, as well as viral proteins found within the cytosol of cells, can be presented via MHC class II molecules, resulting in the activation of specific CD4 T cells. Studies have begun to reveal unique steps as well as some similarities in the pathways for cytosolic and exogenous antigen presentation. Recent developments in this area are summarized here.
Collapse
Affiliation(s)
- Delu Zhou
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, and Walther Cancer Institute, Indianapolis, IN 46202, USA
| | | |
Collapse
|
29
|
Dissanayake SK, Tuera N, Ostrand-Rosenberg S. Presentation of Endogenously Synthesized MHC Class II-Restricted Epitopes by MHC Class II Cancer Vaccines Is Independent of Transporter Associated with Ag Processing and the Proteasome. THE JOURNAL OF IMMUNOLOGY 2005; 174:1811-9. [PMID: 15699107 DOI: 10.4049/jimmunol.174.4.1811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell-based vaccines consisting of invariant chain-negative tumor cells transfected with syngeneic MHC class II (MHC II) and costimulatory molecule genes are prophylactic and therapeutic agents for the treatment of murine primary and metastatic cancers. Vaccine efficacy is due to direct presentation of endogenously synthesized, MHC II-restricted tumor peptides to CD4+ T cells. Because the vaccine cells lack invariant chain, we have hypothesized that, unlike professional APC, the peptide-binding groove of newly synthesized MHC II molecules may be accessible to peptides, allowing newly synthesized MHC II molecules to bind peptides that have been generated in the proteasome and transported into the endoplasmic reticulum via the TAP complex. To test this hypothesis, we have compared the Ag presentation activity of multiple clones of TAP-negative and TAP-positive tumor cells transfected with I-Ak genes and the model Ag hen egg white lysozyme targeted to the endoplasmic reticulum or cytoplasm. Absence of TAP does not diminish Ag presentation of three hen egg white lysozyme epitopes. Likewise, cells treated with proteasomal and autophagy inhibitors are as effective APC as untreated cells. In contrast, drugs that block endosome function significantly inhibit Ag presentation. Coculture experiments demonstrate that the vaccine cells do not release endogenously synthesized molecules that are subsequently endocytosed and processed in endosomal compartments. Collectively, these data indicate that vaccine cell presentation of MHC II-restricted endogenously synthesized epitopes occurs via a mechanism independent of the proteasome and TAP complex, and uses a pathway that overlaps with the classical endosomal pathway for presentation of exogenously synthesized molecules.
Collapse
Affiliation(s)
- Samudra K Dissanayake
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
30
|
Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Münz C. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2004; 307:593-6. [PMID: 15591165 DOI: 10.1126/science.1104904] [Citation(s) in RCA: 657] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4+ T cells classically recognize antigens that are endocytosed and processed in lysosomes for presentation on major histocompatibility complex (MHC) class II molecules. Here, endogenous Epstein-Barr virus nuclear antigen 1 (EBNA1) was found to gain access to this pathway by autophagy. On inhibition of lysosomal acidification, EBNA1, the dominant CD4+ T cell antigen of latent Epstein-Barr virus infection, slowly accumulated in cytosolic autophagosomes. In addition, inhibition of autophagy decreased recognition by EBNA1-specific CD4+ T cell clones. Thus, lysosomal processing after autophagy may contribute to MHC class II-restricted surveillance of long-lived endogenous antigens including nuclear proteins relevant to disease.
Collapse
Affiliation(s)
- Casper Paludan
- Laboratory of Viral Immunobiology, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Johnson DC, Hegde NR. Inhibition of the MHC class II antigen presentation pathway by human cytomegalovirus. Curr Top Microbiol Immunol 2002; 269:101-15. [PMID: 12224504 DOI: 10.1007/978-3-642-59421-2_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Human cytomegalovirus (HCMV) causes serious disease in immunocompromised individuals. Normally, anti-HCMV immune response controls virus replication following reactivation from latency. However, HCMV, like other large herpesviruses, encodes immune evasion proteins that allow the virus to replicate, for a time or in specific tissues, and produce viral progeny in the face of robust host immunity. HCMV glycoproteins US2, US3, US6 and US11 all inhibit different stages of the MHC class I antigen presentation pathway and can reduce recognition by CD8+ T lymphocytes. Here, we discuss two novel inhibitors of the MHC class II antigen presentation pathway, HCMV glycoproteins US2 and US3. Both US2 and US3 can inhibit presentation of exogenous protein antigens to CD4+ T lymphocytes in in vitro assays. US2 causes degradation of MHC class II molecules: HLA-DR-alpha and HLA-DM-alpha, as well as class I heavy chain (HC), but does not affect DR-beta or DM-beta chains. Mutant forms of US2 have been constructed that can bind to DR-alpha and class I HC but do not cause their degradation, separating the binding step from other processes that precede degradation. We also found evidence that US2-induced degradation of class I and II proteins involves a cellular component, other than Sec61, that is limiting in quantity. Unlike US2, US3 binds newly synthesized class II alpha/beta complexes, reducing the association with the invariant chain (Ii) and causing mislocalization of class II complexes in cells. US3 expression reduces accumulation of class II complexes in peptide-loading compartments and loading of peptides. Since US2 and US3 are expressed solely within HCMV-infected cells, it appears that these viral proteins have evolved to inhibit presentation of endogenous, intracellular viral antigens to anti-HCMV CD4+ T cells. This is different from how the MHC class II pathway is normally viewed, as a pathway for presentation of exogenous, extracellular proteins. The existence of these proteins indicates the importance of class II-mediated presentation of endogenous antigens in signalling virus infection to CD4+ T cells.
Collapse
Affiliation(s)
- D C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97201, USA
| | | |
Collapse
|
32
|
Shastri N, Schwab S, Serwold T. Producing nature's gene-chips: the generation of peptides for display by MHC class I molecules. Annu Rev Immunol 2002; 20:463-93. [PMID: 11861610 DOI: 10.1146/annurev.immunol.20.100301.064819] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene-chips contain thousands of nucleotide sequences that allow simultaneous analysis of the complex mixture of RNAs transcribed in cells. Like these gene-chips, major histocompatibility complex (MHC) class I molecules display a large array of peptides on the cell surface for probing by the CD8(+) T cell repertoire. The peptide mixture represents fragments of most, if not all, intracellular proteins. The antigen processing machinery accomplishes the daunting task of sampling these proteins and cleaving them into the precise set of peptides displayed by MHC I molecules. It has long been believed that antigenic peptides arose as by-products of normal protein turnover. Recent evidence, however, suggests that the primary source of peptides is newly synthesized proteins that arise from conventional as well as cryptic translational reading frames. It is increasingly clear that for many peptides the C-terminus is generated in the cytoplasm, and N-terminal trimming occurs in the endoplasmic reticulum in an MHC I-dependent manner. Nature's gene-chips are thus both parsimonious and elegant.
Collapse
Affiliation(s)
- Nilabh Shastri
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| | | | | |
Collapse
|
33
|
Lüder CG, Seeber F. Toxoplasma gondii and MHC-restricted antigen presentation: on degradation, transport and modulation. Int J Parasitol 2001; 31:1355-69. [PMID: 11566303 DOI: 10.1016/s0020-7519(01)00260-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Resistance against Toxoplasma gondii, an obligate intracellular protozoan parasite surrounded by a parasitophorous vacuolar membrane, is mediated by the cellular arm of the immune system, namely CD8+ and CD4+ T cells. Thus, priming and activation of these cells by presentation of antigenic peptides in the context of major histocompatibility complex class I and class II molecules have to take place. This is despite the fact that the vacuolar membrane avoids fusion with the endocytic compartment and acts like a molecular sieve, restricting passive diffusion of larger molecules. This raises several cell biological and immunological questions which will be discussed in this review in the context of our current knowledge about major histocompatibility complex-restricted antigen presentation in other systems: (1) By which pathways are parasite-derived antigens presented to T cells? (2) Has the parasite evolved mechanisms to interfere with major histocompatibility complex-restricted antigen presentation in order to avoid immune recognition? (3) To what extent and by which mechanism is antigenic material, originating from the parasite, able to pass through the vacuolar membrane into the cytosol of the infected cell and is it then accessible to the antigen presentation machinery of the infected cell? (4) What are the actual antigen-presenting cells which prime specific T cells in lymphoid organs? An understanding of these mechanisms will not only provide new insights into the pathogenesis of Toxoplasma gondii and possibly other intravacuolar parasites, but will also improve vaccination strategies.
Collapse
Affiliation(s)
- C G Lüder
- Department of Bacteriology, Georg-August-Universität Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany.
| | | |
Collapse
|
34
|
Mukherjee P, Dani A, Bhatia S, Singh N, Rudensky AY, George A, Bal V, Mayor S, Rath S. Efficient presentation of both cytosolic and endogenous transmembrane protein antigens on MHC class II is dependent on cytoplasmic proteolysis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2632-41. [PMID: 11509605 DOI: 10.4049/jimmunol.167.5.2632] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptides from extracellular proteins presented on MHC class II are mostly generated and loaded in endolysosomal compartments, but the major pathways responsible for loading peptides from APC-endogenous sources on MHC class II are as yet unclear. In this study, we show that MHC class II molecules present peptides from proteins such as OVA or conalbumin introduced into the cytoplasm by hyperosmotic pinosome lysis, with efficiencies comparable to their presentation via extracellular fluid-phase endocytosis. This cytosolic presentation pathway is sensitive to proteasomal inhibitors, whereas the presentation of exogenous Ags taken up by endocytosis is not. Inhibitors of nonproteasomal cytosolic proteases can also inhibit MHC class II-restricted presentation of cytosolically delivered protein, without inhibiting MHC class I-restricted presentation from the same protein. Cytosolic processing of a soluble fusion protein containing the peptide epitope I-Ealpha(52-68) yields an epitope that is similar to the one generated during constitutive presentation of I-Ealpha as an endogenous transmembrane protein, but is subtly different from the one generated in the exogenous pathway. Constitutive MHC class II-mediated presentation of the endogenous transmembrane protein I-Ealpha is also specifically inhibited over time by inhibitors of cytosolic proteolysis. Thus, Ag processing in the cytoplasm appears to be essential for the efficient presentation of endogenous proteins, even transmembrane ones, on MHC class II, and the proteolytic pathways involved may differ from those used for MHC class I-mediated presentation.
Collapse
Affiliation(s)
- P Mukherjee
- National Institute of Immunology, New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Linnemann T, Jung G, Walden P. Detection and quantification of CD4(+) T cells with specificity for a new major histocompatibility complex class II-restricted influenza A virus matrix protein epitope in peripheral blood of influenza patients. J Virol 2000; 74:8740-3. [PMID: 10954576 PMCID: PMC116386 DOI: 10.1128/jvi.74.18.8740-8743.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2000] [Accepted: 06/19/2000] [Indexed: 11/20/2022] Open
Abstract
FVFTLTVPS was identified as the core sequence of a new major histocompatibility complex class II-restricted T-cell epitope of influenza virus matrix protein. Epitope-specific CD4(+) T cells were detected in the peripheral blood of patients with frequencies of up to 0.94%, depending on the number of additional terminal amino acids.
Collapse
Affiliation(s)
- T Linnemann
- Department of Dermatology and Allergy, Charité, Medical School of the Humboldt University, D-10089 Berlin, Germany
| | | | | |
Collapse
|
36
|
Lich JD, Elliott JF, Blum JS. Cytoplasmic processing is a prerequisite for presentation of an endogenous antigen by major histocompatibility complex class II proteins. J Exp Med 2000; 191:1513-24. [PMID: 10790426 PMCID: PMC2213437 DOI: 10.1084/jem.191.9.1513] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Accepted: 02/17/2000] [Indexed: 11/08/2022] Open
Abstract
Biochemical and functional studies have demonstrated major histocompatibility complex (MHC) class II-restricted presentation of select epitopes derived from cytoplasmic antigens, with few insights into the processing reactions necessary for this alternate pathway. Efficient presentation of an immunodominant epitope derived from glutamate decarboxylase (GAD) was observed regardless of whether this antigen was delivered exogenously or via a cytoplasmic route into human histocompatibility leukocyte antigen class II-DR4(+) antigen-presenting cells. Presentation of exogenous as well as cytoplasmic GAD required the intersection of GAD peptides and newly synthesized class II proteins. By contrast, proteolytic processing of this antigen was highly dependent upon the route of antigen delivery. Exogenous GAD followed the classical pathway for antigen processing, with an absolute requirement for endosomal/lysosomal acidification as well as cysteine and aspartyl proteases resident within these organelles. Presentation of endogenous GAD was dependent upon the action of cytoplasmic proteases, including the proteasome and calpain. Thus, translocation of processed antigen from the cytoplasm into membrane organelles is necessary for class II-restricted presentation via this alternate pathway. Further trimming of these peptides after translocation was mediated by acidic proteases within endosomes/lysosomes, possibly after or before class II antigen binding. These studies suggest that processing of exogenous and cytoplasmic proteins occurs through divergent but overlapping pathways. Furthermore, two cytoplasmic proteases, the proteasome and calpain, appear to play important roles in MHC class II-restricted antigen presentation.
Collapse
Affiliation(s)
- John D. Lich
- Department of Microbiology and Immunology and the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - John F. Elliott
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Janice S. Blum
- Department of Microbiology and Immunology and the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
37
|
Le Roy E, Mühlethaler-Mottet A, Davrinche C, Mach B, Davignon JL. Escape of human cytomegalovirus from HLA-DR-restricted CD4(+) T-cell response is mediated by repression of gamma interferon-induced class II transactivator expression. J Virol 1999; 73:6582-9. [PMID: 10400755 PMCID: PMC112742 DOI: 10.1128/jvi.73.8.6582-6589.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV), a betaherpesvirus, is a pathogen which escapes immune recognition through various mechanisms. In this paper, we show that HCMV down regulates gamma interferon (IFN-gamma)-induced HLA-DR expression in U373 MG astrocytoma cells due to a defect downstream of STAT1 phosphorylation and nuclear translocation. Repression of class II transactivator (CIITA) mRNA expression is detected within the first hours of IFN-gamma-HCMV coincubation and results in the absence of HLA-DR synthesis. This defect leads to the absence of presentation of the major immediate-early protein IE1 to specific CD4(+) T-cell clones when U373 MG cells, used as antigen-presenting cells, are treated with IFN-gamma plus HCMV. However, presentation of endogenously synthesized IE1 can be restored when U373 MG cells are transfected with CIITA prior to infection with HCMV. Altogether, the data indicate that the defect induced by HCMV resides in the activation of the IFN-gamma-responsive promoter of CIITA. This is the first demonstration of a viral inhibition of CIITA expression.
Collapse
|
38
|
Bonifaz LC, Arzate S, Moreno J. Endogenous and exogenous forms of the same antigen are processed from different pools to bind MHC class II molecules in endocytic compartments. Eur J Immunol 1999; 29:119-31. [PMID: 9933093 DOI: 10.1002/(sici)1521-4141(199901)29:01<119::aid-immu119>3.0.co;2-o] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current studies were carried out to examine the basis for the differences in the antigenic peptides generated from exogenous and endogenous forms of hen egg white lysozyme (HEL). The role of different intracellular compartments in the generation and binding of HEL peptides derived from two endogenous forms of HEL, either secreted (sHEL) or retained in the endoplasmic reticulum (ER, KDELHEL), presented by MHC class II molecules was examined and compared to exogenous HEL. Initially it was found that antigen-presenting cells bearing both intracellular forms of HEL generated and presented a number of IAk-restricted HEL epitopes to T cell hybridomas, although sHEL was processed more efficiently than KDEL-HEL. There were differences, however, for some determinants between endogenous and exogenous HEL. At equivalent antigen-presenting efficiencies, endogenous HEL-bearing cells displayed a lower surface density of IAk-bound HEL-52-61-related peptides than cells pulsed with exogenous HEL, as detected by a specific monoclonal antibody. Neither endogenous HEL degradation nor peptide binding to MHC class II molecules occurred in the ER. Processing of sHEL and KDELHEL appears to take place either in a post-trans-Golgi network acidic compartment or in the cytosol, whereas peptide binding to MHC class II molecules occurs in endocytic compartments. Furthermore, the peptides generated were derived from an endogenous source rather than from secreted and re-endocytosed HEL. Thus, processing of endogenous HEL is from a different pool than exogenous HEL and occurs in different compartments.
Collapse
Affiliation(s)
- L C Bonifaz
- Research Unit on Immunobiology and Rheumatology, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, DF
| | | | | |
Collapse
|
39
|
Wood P, Elliott T. Glycan-regulated antigen processing of a protein in the endoplasmic reticulum can uncover cryptic cytotoxic T cell epitopes. J Exp Med 1998; 188:773-8. [PMID: 9705959 PMCID: PMC2213365 DOI: 10.1084/jem.188.4.773] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1998] [Revised: 05/04/1998] [Indexed: 11/25/2022] Open
Abstract
We and others have shown that influenza A nucleoprotein (NP) targeted to the secretory pathway cannot be processed to yield several cytotoxic T lymphocyte (CTL) epitopes in cell lines that lack the transporter associated with antigen processing (TAP). However, a large COOH-terminal fragment of NP is processed and presented in these cells. Full-length NP is cotranslationally glycosylated in the lumen of the endoplasmic reticulum at two sites distal to the major H2-Kk and H2-Db restricted CTL epitopes, and we show here that pharmacological or genetic inhibition of N-linked glycosylation, leads to the processing and presentation of both these epitopes in a TAP-independent way.
Collapse
Affiliation(s)
- P Wood
- Institute for Molecular Medicine and Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | |
Collapse
|
40
|
Gautam AM, Liblau R, Chelvanayagam G, Steinman L, Boston T. A Viral Peptide with Limited Homology to a Self Peptide Can Induce Clinical Signs of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Molecular mimicry has been suggested as a mode of autoreactive T cell stimulation in autoimmune diseases. Myelin basic protein (MBP) peptide 1–11 induces experimental autoimmune encephalomyelitis (EAE) in susceptible strains of mice. Here we show that a herpesvirus Saimiri (HVS) peptide, AAQRRPSRPFA, with a limited homology to MBP1–11 peptide, ASQKRPSQRHG (underlined letters showing homology), can stimulate a panel of MBP1–11-specific T cell hybridomas and more importantly cause EAE in mice. We demonstrate that this is due to cross-recognition of these two peptides by TCRs. Results presented in this communication are the first demonstration that a viral peptide with homology at just 5 amino acids with a self peptide can induce clinical signs of EAE in mice. These findings have important implications in understanding the breakdown of T cell tolerance to self Ags in autoimmune diseases by means of cross-reactivity with unrelated peptides.
Collapse
Affiliation(s)
- Anand M. Gautam
- *Antigen Presentation Laboratory, Division of Immunology and Cell Biology and Human Genetics Group, Division of Molecular Medicine, John Curtin School of Medical Research, Australian National University, Canberra, Australia; and
| | | | | | - Lawrence Steinman
- §Institut National de la Santé et de la Recherche Médicale, CJF 9608, Pitie-Salpetriere Hospital, Paris, France
| | - Tanya Boston
- *Antigen Presentation Laboratory, Division of Immunology and Cell Biology and Human Genetics Group, Division of Molecular Medicine, John Curtin School of Medical Research, Australian National University, Canberra, Australia; and
| |
Collapse
|
41
|
Abstract
Peptides are the means by which immune effector T cells recognize and defend against the foreign proteins of pathogens. T cell recognition of these molecules, however, is strictly dependent on peptide binding to the receptor-like molecules of the major histocompatibility complex (MHC) locus. The basic unit of recognition is a trimolecular complex consisting of the T cell antigen receptor, the MHC molecule, and the MHC-bound peptide ligand. The multistep process that culminates in MHC presentation of peptides to T cells begins in the last phases of protein catabolism. While the individual roles of many key molecules involved in peptide presentation have recently been defined, there still remain many questions regarding processing of proteins into MHC-bound peptides. This review summarizes the recent developments in peptide antigen processing for MHC molecules, with focus on how proteins are believed to be sampled and selected for degradation into peptides.
Collapse
Affiliation(s)
- A Maffei
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | |
Collapse
|
42
|
Naturally Processed Tissue- and Differentiation Stage-Specific Autologous Peptides Bound by HLA Class I and II Molecules of Chronic Myeloid Leukemia Blasts. Blood 1997. [DOI: 10.1182/blood.v90.12.4938] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractStructural analysis of naturally processed peptides bound to the HLA class I and class II molecules of chronic myeloid leukemia (CML) blast cells was performed to characterize the antigen processing and autoantigen repertoire in this hematopoietic malignancy. Self-peptides derived from the carboxy-terminal end of the breakpoint cluster region (bcr) protein, as well as several differentiation stage- and tissue-specific self-antigens characteristic of early stages of myeloid differentiation, such as c-fes, c-pim, granulocyte-macrophage colony-stimulating factor receptor α chain, proteinase 3, and cathepsin G, were identified. A common characteristic of several of the high copy-number self-peptides identified in this study is the participation of their parent proteins in signal transduction or myeloid effector function. Because bcr-abl junctional peptides bind to a limited number of major histocompatibility complex (MHC) class I alleles, an effective peptide-based immunotherapy strategy for CML requires identification of further tumor-associated or tissue-specific peptide antigens binding to common MHC alleles such as HLA-A2. The differentiation stage- and tissue-specific MHC-bound peptides found in this study, as well as the naturally processed proteins from which they are derived, may represent autoantigens towards which T-cell responses may potentially be developed for immunotherapy of hematopoietic malignancies such as CML.
Collapse
|
43
|
Naturally Processed Tissue- and Differentiation Stage-Specific Autologous Peptides Bound by HLA Class I and II Molecules of Chronic Myeloid Leukemia Blasts. Blood 1997. [DOI: 10.1182/blood.v90.12.4938.4938_4938_4946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural analysis of naturally processed peptides bound to the HLA class I and class II molecules of chronic myeloid leukemia (CML) blast cells was performed to characterize the antigen processing and autoantigen repertoire in this hematopoietic malignancy. Self-peptides derived from the carboxy-terminal end of the breakpoint cluster region (bcr) protein, as well as several differentiation stage- and tissue-specific self-antigens characteristic of early stages of myeloid differentiation, such as c-fes, c-pim, granulocyte-macrophage colony-stimulating factor receptor α chain, proteinase 3, and cathepsin G, were identified. A common characteristic of several of the high copy-number self-peptides identified in this study is the participation of their parent proteins in signal transduction or myeloid effector function. Because bcr-abl junctional peptides bind to a limited number of major histocompatibility complex (MHC) class I alleles, an effective peptide-based immunotherapy strategy for CML requires identification of further tumor-associated or tissue-specific peptide antigens binding to common MHC alleles such as HLA-A2. The differentiation stage- and tissue-specific MHC-bound peptides found in this study, as well as the naturally processed proteins from which they are derived, may represent autoantigens towards which T-cell responses may potentially be developed for immunotherapy of hematopoietic malignancies such as CML.
Collapse
|
44
|
Abstract
The evolution of vaccine strategies has seen a move from whole organisms to recombinant proteins, and further towards the ultimate in minimalist vaccinology, the epitope. The epitope-based approach is clearly compelling as only a relatively tiny, but immunologically relevant, sequence is often capable of inducing protective immunity against a large and complex pathogen. The post-reductionist era in epitope-based vaccinology has seen a quest to re-construct complexity and design vaccines containing many epitopes. The hope is that such multi-epitope vaccines might induce immunity against multiple antigenic targets, multiple strain variants, and/or even multiple pathogens. The ability of DNA vaccination to co-deliver a series of antibody and/or CD4 T cell epitopes remains largely unexplored. Successful viral vector and DNA-based experimental vaccines coding for multiple contiguous CD8 CTL epitopes have, however, recently been described. This simple CTL poly-epitope (or polytope) strategy may find application in the design of vaccines against several diseases including EBV, HIV and cancer.
Collapse
Affiliation(s)
- A Suhrbier
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Brisbane, Australia.
| |
Collapse
|