1
|
Nyffenegger N, Flace A, Varol A, Altermatt P, Doucerain C, Sundstrom H, Dürrenberger F, Manolova V. The oral ferroportin inhibitor vamifeport prevents liver iron overload in a mouse model of hemochromatosis. Hemasphere 2024; 8:e147. [PMID: 39267817 PMCID: PMC11391117 DOI: 10.1002/hem3.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 09/15/2024] Open
Abstract
Hemochromatosis is an inherited iron overload condition caused by mutations that reduce the levels of the iron-regulatory hormone hepcidin or its binding to ferroportin. The hepcidin-ferroportin axis is pivotal to iron homeostasis, providing opportunities for therapeutic intervention in iron overload disorders like hemochromatosis. The aim of this study was to evaluate the efficacy of the oral ferroportin inhibitor vamifeport in the Hfe C282Y mouse model, which carries the most common mutation found in patients with hemochromatosis. A single oral dose of vamifeport lowered serum iron levels in Hfe C282Y mice, with delayed onset and shorter duration than observed in wild-type mice. Vamifeport induced transient hypoferremia by inhibiting ferroportin and resulted in a feedback regulation of liver Hamp in wild-type mice, which was absent in Hfe C282Y mice, reflecting the dysregulated systemic iron sensing in this hemochromatosis model. Chronic dosing with vamifeport led to sustained serum and liver iron reductions in Hfe C282Y mice, as well as markedly reducing liver Hamp expression in Hfe C282Y mice, suggesting distinct regulation of liver Hamp expression following acute or continuous iron restriction via vamifeport. At the tested dose, vamifeport retained its activity when combined with phlebotomy and did not significantly interfere with liver iron removal by phlebotomy in Hfe C282Y mice. These data demonstrate that chronic vamifeport treatment significantly reduces serum iron levels and prevents liver iron loading in the Hfe C282Y mouse model of hemochromatosis, thus providing preclinical proof of concept for the efficacy of vamifeport in hemochromatosis with or without phlebotomy.
Collapse
Affiliation(s)
| | - Anna Flace
- Research Zurich, CSL R&D Schlieren Switzerland
| | - Ahmet Varol
- Research Zurich, CSL R&D Schlieren Switzerland
| | | | | | | | | | | |
Collapse
|
2
|
Radak M, Ghamari N, Fallahi H. Identification of common factors among fibrosarcoma, rhabdomyosarcoma, and osteosarcoma by network analysis. Biosystems 2024; 235:105093. [PMID: 38052344 DOI: 10.1016/j.biosystems.2023.105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sarcoma cancers are uncommon malignant tumors, and there are many subgroups, including fibrosarcoma (FS), which mainly affects middle-aged and older adults in deep soft tissues. Rhabdomyosarcoma (RMS), on the other hand, is the most common soft-tissue sarcoma in children and is located in the head and neck area. Osteosarcomas (OS) is the predominant form of primary bone cancer among young adults, primarily resulting from sporadically random mutations. This frequently results in the dissemination of cancer cells to the lungs, commonly known as metastasis. Mesodermal cells are the origin of sarcoma cancers. In this study, a rather radical approach has been applied. Instead of comparing homogenous cancer types, we focus on three main subtypes of sarcoma: fibrosarcoma, rhabdomyosarcoma, and osteosarcoma, and compare their gene expression with normal cell groups to identify the differentially expressed genes (DEGs). Next, by applying protein-protein interaction (PPI) network analysis, we determine the hub genes and crucial factors, such as transcription factors (TFs), affected by these types of cancer. Our findings indicate a modification in a range of pathways associated with cell cycle, extracellular matrix, and DNA repair in these three malignancies. Results showed that fibrosarcoma (FS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) had 653, 1270, and 2823 differentially expressed genes (DEGs), respectively. Interestingly, there were 24 DEGs common to all three types. Network analysis showed that the fibrosarcoma network had two sub-networks identified in FS that contributed to the catabolic process of collagen via the G-protein coupled receptor signaling pathway. The rhabdomyosarcoma network included nine sub-networks associated with cell division, extracellular matrix organization, mRNA splicing via spliceosome, and others. The osteosarcoma network has 13 sub-networks, including mRNA splicing, sister chromatid cohesion, DNA repair, etc. In conclusion, the common DEGs identified in this study have been shown to play significant and multiple roles in various other cancers based on the literature review, indicating their significance.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Nakisa Ghamari
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| |
Collapse
|
3
|
Chen Y, Zhou Y, Zhou Z, Fang Y, Ma L, Zhang X, Xiong J, Liu L. Hypoimmunogenic human pluripotent stem cells are valid cell sources for cell therapeutics with normal self-renewal and multilineage differentiation capacity. Stem Cell Res Ther 2023; 14:11. [PMID: 36691086 PMCID: PMC9872349 DOI: 10.1186/s13287-022-03233-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoimmunogenic human pluripotent stem cells (hPSCs) are expected to serve as an unlimited cell source for generating universally compatible "off-the-shelf" cell grafts. However, whether the engineered hypoimmunogenic hPSCs still preserve their advantages of unlimited self-renewal and multilineage differentiation to yield functional tissue cells remains unclear. Here, we systematically studied the self-renewal and differentiation potency of three types of hypoimmunogenic hPSCs, established through the biallelic lesion of B2M gene to remove all surface expression of classical and nonclassical HLA class I molecules (B2Mnull), biallelic homologous recombination of nonclassical HLA-G1 to the B2M loci to knockout B2M while expressing membrane-bound β2m-HLA-G1 fusion proteins (B2MmHLAG), and ectopic expression of soluble and secreted β2m-HLA-G5 fusion proteins in B2MmHLAG hPSCs (B2Mm/sHLAG) in the most widely used WA09 human embryonic stem cells. Our results showed that hypoimmunogenic hPSCs with variable expression patterns of HLA molecules and immune compromising spectrums retained their normal self-renewal capacity and three-germ-layer differentiation potency. More importantly, as exemplified by neurons, cardiomyocytes and hepatocytes, hypoimmunogenic hPSC-derived tissue cells were fully functional as of their morphology, electrophysiological properties, macromolecule transportation and metabolic regulation. Our findings thus indicate that engineered hypoimmunogenic hPSCs hold great promise of serving as an unlimited universal cell source for cell therapeutics.
Collapse
Affiliation(s)
- Yifan Chen
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Yanjie Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Yujiang Fang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, China.
| | - Jie Xiong
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Sake HJ, Frenzel A, Lucas-Hahn A, Nowak-Imialek M, Hassel P, Hadeler KG, Hermann D, Becker R, Eylers H, Hein R, Baars W, Brinkmann A, Schwinzer R, Niemann H, Petersen B. Possible detrimental effects of beta-2-microglobulin knockout in pigs. Xenotransplantation 2019; 26:e12525. [PMID: 31119817 DOI: 10.1111/xen.12525] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite major improvements in pig-to-primate xenotransplantation, long-term survival of xenografts is still challenging. The major histocompatibility complex (MHC) class I, which is crucial in cellular immune response, is an important xenoantigen. Abrogating MHC class I expression on xenografts might be beneficial for extending graft survival beyond current limits. METHODS In this study, we employed the CRISPR/Cas9 system to target exon 2 of the porcine beta-2-microglobulin (B2M) gene to abrogate SLA class I expression on porcine cells. B2M-KO cells served as donor cells for somatic cell nuclear transfer, and cloned embryos were transferred to three recipient sows. The offspring were genotyped for mutations at the B2M locus, and blood samples were analyzed via flow cytometry for the absence of SLA class I molecules. RESULTS Pregnancies were successfully established and led to the birth of seven viable piglets. Genomic sequencing proved that all piglets carried biallelic modifications at the B2M locus leading to a frameshift, a premature stop codon, and ultimately a functional knockout. However, survival times of these animals did not exceed 4 weeks due to unexpected disease processes. CONCLUSION Here, we demonstrate the feasibility of generating SLA class I knockout pigs by targeting the porcine beta-2-microglobulin gene using the CRISPR/Cas9 system. Additionally, our findings indicate for the first time that this genetic modification might have a negative impact on the viability of the animals. These issues need to be solved to unveil the real value for xenotransplantation in the future.
Collapse
Affiliation(s)
| | - Antje Frenzel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Monika Nowak-Imialek
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Petra Hassel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Klaus-Gerd Hadeler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Doris Hermann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Roswitha Becker
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Heinke Eylers
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Rabea Hein
- Transplant Laboratory, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Wiebke Baars
- Transplant Laboratory, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Antje Brinkmann
- Transplant Laboratory, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Heiner Niemann
- REBIRTH/Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| |
Collapse
|
5
|
Barton JC, Edwards CQ, Acton RT. HFE gene: Structure, function, mutations, and associated iron abnormalities. Gene 2015; 574:179-92. [PMID: 26456104 PMCID: PMC6660136 DOI: 10.1016/j.gene.2015.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023]
Abstract
The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload.
Collapse
Affiliation(s)
- James C Barton
- Southern Iron Disorders Center, Birmingham, AL, USA and Department of Medicine; University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Corwin Q Edwards
- Department of Medicine, Intermountain Medical Center and University of Utah, Salt Lake City, UT, USA.
| | - Ronald T Acton
- Southern Iron Disorders Center, Birmingham, AL, USA and Department of Medicine; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA, Paris LL, Blankenship RL, Ray CN, Miner AC, Tector M, Tector AJ. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:5751-7. [PMID: 25339675 PMCID: PMC5922270 DOI: 10.4049/jimmunol.1402059] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pigs are emerging as important large animal models for biomedical research, and they may represent a source of organs for xenotransplantation. The MHC is pivotal to the function of the immune system in health and disease, and it is particularly important in infection and transplant rejection. Pigs deficient in class I MHC could serve as important reagents to study viral immunity as well as allograft and xenograft rejection. In this study, we report the creation and characterization of class I MHC knockout pigs using the Cas9 nuclease and guide RNAs. Pig fetal fibroblasts were genetically engineered using Cas9 and guide RNAs, and class I MHC(-) cells were then used as nuclear donors for somatic cell nuclear transfer. We produced three piglets devoid of all cell surface class I proteins. Although these animals have reduced levels of CD4(-)CD8(+) T cells in peripheral blood, the pigs appear healthy and are developing normally. These pigs are a promising reagent for immunological research.
Collapse
Affiliation(s)
- Luz M Reyes
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jose L Estrada
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Zheng Yu Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Rachel J Blosser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Rashod F Smith
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Richard A Sidner
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Leela L Paris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ross L Blankenship
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Caitlin N Ray
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Aaron C Miner
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - A Joseph Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202; Indiana University Health Transplant Institute, Indianapolis, IN 46202
| |
Collapse
|
7
|
MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun 2014; 5:3633. [PMID: 24736453 PMCID: PMC4024461 DOI: 10.1038/ncomms4633] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/12/2014] [Indexed: 12/13/2022] Open
Abstract
Subsets of rodent neurons are reported to express major histocompatibilty complex class I (MHC-I), but such expression has not been reported in normal adult human neurons. Here we provide evidence from immunolabel, RNA expression, and mass spectrometry analysis of postmortem samples that human catecholaminergic substantia nigra and locus coeruleus neurons express MHC-I, and that this molecule is inducible in human stem cell derived dopamine (DA) neurons. Catecholamine murine cultured neurons are more responsive to induction of MHC-I by gamma-interferon than other neuronal populations. Neuronal MHC-I is also induced by factors released from microglia activated by neuromelanin or alpha-synuclein, or high cytosolic DA and/or oxidative stress. DA neurons internalize foreign ovalbumin and display antigen derived from this protein by MHC-I, which triggers DA neuronal death in the presence of appropriate cytotoxic T-cells. Thus, neuronal MHC-I can trigger antigenic response, and catecholamine neurons may be particularly susceptible to T cell-mediated cytotoxic attack.
Collapse
|
8
|
Josson S, Matsuoka Y, Gururajan M, Nomura T, Huang WC, Yang X, Lin JT, Bridgman R, Chu CY, Johnstone PA, Zayzafoon M, Hu P, Zhau H, Berel D, Rogatko A, Chung LWK. Inhibition of β2-microglobulin/hemochromatosis enhances radiation sensitivity by induction of iron overload in prostate cancer cells. PLoS One 2013; 8:e68366. [PMID: 23874600 PMCID: PMC3707913 DOI: 10.1371/journal.pone.0068366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/16/2013] [Indexed: 11/20/2022] Open
Abstract
Background Bone metastasis is the most lethal form of several cancers. The β2-microglobulin (β2-M)/hemochromatosis (HFE) complex plays an important role in cancer development and bone metastasis. We demonstrated previously that overexpression of β2-M in prostate, breast, lung and renal cancer leads to increased bone metastasis in mouse models. Therefore, we hypothesized that β2-M is a rational target to treat prostate cancer bone metastasis. Results In this study, we demonstrate the role of β2-M and its binding partner, HFE, in modulating radiation sensitivity and chemo-sensitivity of prostate cancer. By genetic deletion of β2-M or HFE or using an anti-β2-M antibody (Ab), we demonstrate that prostate cancer cells are sensitive to radiation in vitro and in vivo. Inhibition of β2-M or HFE sensitized prostate cancer cells to radiation by increasing iron and reactive oxygen species and decreasing DNA repair and stress response proteins. Using xenograft mouse model, we demonstrate that anti-β2-M Ab sensitizes prostate cancer cells to radiation treatment. Additionally, anti-β2-M Ab was able to prevent tumor growth in an immunocompetent spontaneous prostate cancer mouse model. Since bone metastasis is lethal, we used a bone xenograft model to test the ability of anti-β2-M Ab and radiation to block tumor growth in the bone. Combination treatment significantly prevented tumor growth in the bone xenograft model by inhibiting β2-M and inducing iron overload. In addition to radiation sensitive effects, inhibition of β2-M sensitized prostate cancer cells to chemotherapeutic agents. Conclusion Since prostate cancer bone metastatic patients have high β2-M in the tumor tissue and in the secreted form, targeting β2-M with anti-β2-M Ab is a promising therapeutic agent. Additionally, inhibition of β2-M sensitizes cancer cells to clinically used therapies such as radiation by inducing iron overload and decreasing DNA repair enzymes.
Collapse
Affiliation(s)
- Sajni Josson
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (SJ); (LC)
| | - Yasuhiro Matsuoka
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Murali Gururajan
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Takeo Nomura
- Molecular Urology and Therapeutics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - Wen-Chin Huang
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Xiaojian Yang
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jin-tai Lin
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Roger Bridgman
- Hybridoma Facility, Auburn University, Auburn, Alabama, United States of America
| | - Chia-Yi Chu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Peter A. Johnstone
- Radiation Oncology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Majd Zayzafoon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peizhen Hu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Haiyen Zhau
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Dror Berel
- Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Andre Rogatko
- Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Leland W. K. Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (SJ); (LC)
| |
Collapse
|
9
|
The Pathology of Comparative Animal Models of Human Haemochromatosis. J Comp Pathol 2012; 147:460-78. [DOI: 10.1016/j.jcpa.2012.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 08/27/2012] [Accepted: 09/03/2012] [Indexed: 01/01/2023]
|
10
|
Blednov YA, Ponomarev I, Geil C, Bergeson S, Koob GF, Harris RA. Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict Biol 2012; 17:108-20. [PMID: 21309947 PMCID: PMC3117922 DOI: 10.1111/j.1369-1600.2010.00284.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Analysis of mouse brain gene expression, using strains that differ in alcohol consumption, provided a number of novel candidate genes that potentially regulate alcohol consumption. We selected six genes [beta-2-microglobulin (B2m), cathepsin S (Ctss), cathepsin F (Ctsf), interleukin 1 receptor antagonist (Il1rn), CD14 molecule (Cd14) and interleukin 6 (Il6)] for behavioral validation using null mutant mice. These genes are known to be important for immune responses but were not specifically linked to alcohol consumption by previous research. Null mutant mice were tested for ethanol intake in three tests: 24-hour two-bottle choice, limited access two-bottle choice and limited access to one bottle of ethanol. Ethanol consumption and preference were reduced in all the null mutant mice in the 24-hour two-bottle choice test, the test that was the basis for selection of these genes. No major differences were observed in consumption of saccharin or quinine in the null mutant mice. Deletion of B2m, Ctss, Il1rn, Cd14 and Il6 also reduced ethanol consumption in the limited access two bottle choice test for ethanol intake; with the Il1rn and Ctss null mutants showing reduced intake in all three tests (with some variation between males and females). These results provide the most compelling evidence to date that global gene expression analysis can identify novel genetic determinants of complex behavioral traits. Specifically, they suggest a novel role for neuroimmune signaling in regulation of alcohol consumption.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Department Pharmacology/Toxicology, University of Texas, Austin, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Murine models have made valuable contributions to our understanding of iron metabolism. Investigation of mice with inherited forms of anemia has led to the discovery of novel proteins involved in iron homeostasis. A growing number of murine models are being developed to investigate mitochondrial iron metabolism. Mouse strains are available for the major forms of hereditary hemochromatosis. Findings in murine models support the concept that the pathogenesis of nearly all forms of hereditary hemochromatosis involves inappropriately low expression of hepcidin. The availability of mice with floxed iron-related genes allows the study of the in vivo consequences of cell-selective deletion of these genes.
Collapse
Affiliation(s)
- Robert E Fleming
- Departments of Pediatrics and Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
12
|
Josson S, Nomura T, Lin JT, Huang WC, Wu D, Zhau HE, Zayzafoon M, Weizmann MN, Gururajan M, Chung LWK. β2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res 2011; 71:2600-10. [PMID: 21427356 PMCID: PMC3182156 DOI: 10.1158/0008-5472.can-10-3382] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone metastasis is one of the predominant causes of cancer lethality. This study demonstrates for the first time how β2-microglobulin (β2-M) supports lethal metastasis in vivo in human prostate, breast, lung, and renal cancer cells. β2-M mediates this process by activating epithelial to mesenchymal transition (EMT) to promote lethal bone and soft tissue metastases in host mice. β2-M interacts with its receptor, hemochromatosis (HFE) protein, to modulate iron responsive pathways in cancer cells. Inhibition of either β2-M or HFE results in reversion of EMT. These results demonstrate the role of β2-M in cancer metastasis and lethality. Thus, β2-M and its downstream signaling pathways are promising prognostic markers of cancer metastases and novel therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Sajni Josson
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Takeo Nomura
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Molecular Urology and Therapeutics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jen-Tai Lin
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wen-Chin Huang
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daqing Wu
- Molecular Urology and Therapeutics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haiyen E. Zhau
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Majd Zayzafoon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - M. Neale Weizmann
- Division of Endocrinology and Metabolism and Lipids, Emory University School of Medicine, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Murali Gururajan
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W. K. Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
13
|
Sebastiani G, Pantopoulos K. Disorders associated with systemic or local iron overload: from pathophysiology to clinical practice. Metallomics 2011; 3:971-86. [DOI: 10.1039/c1mt00082a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Factors influencing disease phenotype and penetrance in HFE haemochromatosis. Hum Genet 2010; 128:233-48. [DOI: 10.1007/s00439-010-0852-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 06/16/2010] [Indexed: 01/24/2023]
|
15
|
Pino S, Brehm MA, Covassin-Barberis L, King M, Gott B, Chase TH, Wagner J, Burzenski L, Foreman O, Greiner DL, Shultz LD. Development of novel major histocompatibility complex class I and class II-deficient NOD-SCID IL2R gamma chain knockout mice for modeling human xenogeneic graft-versus-host disease. Methods Mol Biol 2010; 602:105-17. [PMID: 20012395 DOI: 10.1007/978-1-60761-058-8_7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunodeficient mice have been used as recipients of human peripheral blood mononuclear cells (PBMC) for in vivo analyses of human xeno-graft-versus-host disease (GVHD). This xeno-GVHD model system in many ways mimics the human disease. The model system is established by intravenous or intraperitoneal injection of human PBMC or spleen cells into unconditioned or irradiated immunodeficient recipient mice. Recently, the development of several stocks of immunodeficient Prkdc ( scid ) (scid) and recombination activating 1 or 2 gene (Rag1 or Rag2) knockout mice bearing a targeted mutation in the gene encoding the IL2 receptor gamma chain (IL2rgamma) have been reported. The addition of the mutated IL2rgamma gene onto an immunodeficient mouse stock facilitates heightened engraftment with human PBMC. Stocks of mice with mutations in the IL2rgamma gene have been studied in several laboratories on NOD-scid, NOD-Rag1 ( null ), BALB/c-Rag1 ( null ), BALB/c-Rag2 ( null ), and Stock-H2(d)-Rag2 ( null ) strain backgrounds. Parameters to induce human xeno-GVHD in H2(d)-Rag2 ( null ) IL2rgamma ( null ) mice have been published, but variability in the frequency of disease and kinetics of GVHD were observed. The availability of the NOD-scid IL2rgamma ( null ) stock that engrafts more readily with human PBMC than does the Stock-H2(d)-Rag2 ( null ) IL2rgamma ( null ) stock should lead to a more reproducible humanized mouse model of GVHD and for the use in drug evaluation and validation. Furthermore, GVHD in human PBMC-engrafted scid mice has been postulated to result predominately from a human anti-mouse major histocompatibility complex (MHC) class II reactivity. Our recent development of NOD-scid IL2rgamma ( null ) beta2m ( null ) and NOD-scid IL2rgamma ( null ) Ab ( null ) stocks of mice now make it possible to investigate directly the role of host MHC class I and class II in the pathogenesis of GVHD in humanized mice using NOD-scid IL2rgamma ( null ) stocks that engraft at high levels with human PBMC and are deficient in murine MHC class I, class II, or both classes of MHC molecules.
Collapse
Affiliation(s)
- Steve Pino
- Department of Medicine, The University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Weiss G. Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta Gen Subj 2009; 1790:682-93. [DOI: 10.1016/j.bbagen.2008.08.006] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/27/2008] [Accepted: 08/14/2008] [Indexed: 02/08/2023]
|
17
|
Garrick MD, Garrick LM. Cellular iron transport. Biochim Biophys Acta Gen Subj 2009; 1790:309-25. [DOI: 10.1016/j.bbagen.2009.03.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 01/24/2023]
|
18
|
Bleackley MR, Wong AY, Hudson DM, Wu CHY, MacGillivray RT. Blood Iron Homeostasis: Newly Discovered Proteins and Iron Imbalance. Transfus Med Rev 2009; 23:103-23. [DOI: 10.1016/j.tmrv.2008.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Hepatic iron overload and hepatocellular carcinoma. Cancer Lett 2008; 286:38-43. [PMID: 19081672 DOI: 10.1016/j.canlet.2008.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 11/04/2008] [Indexed: 01/09/2023]
Abstract
The liver is the main storage site for iron in the body. Excess accumulation of iron in the liver has been well-documented in two human diseases, hereditary hemochromatosis and dietary iron overload in the African. Hepatic iron overload in these conditions often results in fibrosis and cirrhosis and may be complicated by the development of hepatocellular carcinoma. Malignant transformation usually occurs in the presence of cirrhosis, suggesting that free iron-induced chronic necroinflammatory hepatic disease plays a role in the hepatocarcinogenesis. However, the supervention of hepatocellular carcinoma in the absence of cirrhosis raises the possibility that ionic iron may also be directly hepatocarcinogenic. Support for this possibility is provided by a recently described animal model of dietary iron overload in which iron-free preneoplastic nodules and hepatocellular carcinoma developed in the absence of fibrosis or cirrhosis. The mechanisms by which iron induces malignant transformation have yet to be fully characterized but the most important appears to be the generation of oxidative stress. Free iron generates reactive oxygen intermediates that disrupt the redox balance of the cells and cause chronic oxidative stress. Oxidative stress leads to lipid peroxidation of unsaturated fatty acids in membranes of cells and organelles. Cytotoxic by-products of lipid peroxidation, such as malondialdehyde and 4-hydroxy-2'-nonenal, are produced and these impair cellular function and protein synthesis and damage DNA. Deoxyguanosine residues in DNA are also hydroxylated by reactive oxygen intermediates to form 8-hydroxy-2'-deoxyguanosine, a major promutagenic adduct that causes G:C to T:A transversions and DNA unwinding and strand breaks. Free iron also induces immunologic abnormalities that may decrease immune surveillance for malignant transformation.
Collapse
|
20
|
Abstract
Hereditary hemochromatosis (HH) is caused by chronic hyperabsorption of dietary iron. Progressive accumulation of excess iron within tissue parenchymal cells may lead to severe organ damage. The most prevalent type of HH is linked to mutations in the HFE gene, encoding an atypical major histocompatibility complex classImolecule. Shortly after its discovery in 1996, the hemochromatosis protein HFE was shown to physically interact with transferrin receptor 1 (TfR1) and impair the uptake of transferrin-bound iron in cells. However, these findings provided no clue why HFE mutations associate with systemic iron overload. It was later established that all forms of HH result from misregulation of hepcidin expression. This liver-derived circulating peptide hormone controls iron efflux from duodenal enterocytes and reticuloendothelial macrophages by promoting the degradation of the iron exporter ferroportin. Recent studies with animal models of HH uncover a crucial role of HFE as a hepatocyte iron sensor and upstream regulator of hepcidin. Thus, hepatocyte HFE is indispensable for signaling to hepcidin, presumably as a constituent of a larger iron-sensing complex. A working model postulates that the signaling activity of HFE is silenced when the protein is bound to TfR1. An increase in the iron saturation of plasma transferrin leads to displacement of TfR1 from HFE and assembly of the putative iron-sensing complex. In this way, iron uptake by the hepatocyte is translated into upregulation of hepcidin, reinforcing the concept that the liver is the major regulatory site for systemic iron homeostasis, and not merely an iron storage depot.
Collapse
|
21
|
Beta2-microglobulin-dependent bacterial clearance and survival during murine Klebsiella pneumoniae bacteremia. Infect Immun 2008; 77:360-6. [PMID: 18981251 DOI: 10.1128/iai.00909-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Klebsiella pneumoniae is a leading cause of both community-acquired and nosocomial gram-negative bacterial pneumonia. A significant clinical complication of Klebsiella pulmonary infections is peripheral blood dissemination, resulting in a systemic infection concurrent with the localized pulmonary infection. We report here on the critical importance of beta(2)-microglobulin expression during murine K. pneumoniae bacteremia. Beta(2)-microglobulin knockout mice displayed significantly increased mortality upon intravenous inoculation that correlated with increased bacterial burden in the blood, liver, and spleen. As beta(2)-microglobulin knockout mice lack both CD8(+) T cells and invariant NK T cells, mouse models specifically deficient in either cell population were examined to see if this would account for the increased mortality noted in beta(2)-microglobulin knockout mice. Surprisingly, neither CD8 T-cell-deficient (TAP-1 knockout; in vivo anti-CD8 antibody treatment) nor invariant NK (iNK) T-cell-deficient (CD1d knockout, J alpha281 knockout) mice were more susceptible to K. pneumoniae bacteremia. Combined, these studies clearly indicate the importance of a beta(2)-microglobulin-dependent but CD8 T-cell- and iNK T-cell-independent mechanism critical for survival during K. pneumoniae bacteremia.
Collapse
|
22
|
Thomsen M, Galvani S, Canivet C, Kamar N, Böhler T. Reconstitution of immunodeficient SCID/beige mice with human cells: applications in preclinical studies. Toxicology 2007; 246:18-23. [PMID: 18055093 DOI: 10.1016/j.tox.2007.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/16/2007] [Accepted: 10/20/2007] [Indexed: 10/22/2022]
Abstract
Experimental studies of the in vivo behaviour of human cells and tissues have become possible with the development of immunodeficient mice strains. Such mice accept readily allogeneic or xenogeneic grafts, including grafts of human cells or tissues, without rejection. In this review we describe different immunodeficient mouse strains that have been used for reconstitution by human immune cells. We subsequently go through the experience that we and others have had with reconstitution, and mention the adverse effects, in particular xenogeneic graft versus host reactions. The use of haematopoietic stem cells avoids such reactions but the immunological reconstitution may take several months. We then report the use of immunodeficient mice for the study of chronic vascular rejection of human mesenteric arteries due to cellular or humoral alloreaction. We have shown that SCID/beige mice grafted with a human artery at the place of the aorta developed a thickening of the intima of the human artery after 5-6 weeks, when they were reconstituted with spleen cells from another human donor. The thickening is mainly due to a proliferation of smooth muscle cells. The same type of lesion developed if they received injection of antibodies towards HLA class I antigens. The arteries of the mouse did not develop any lesion. The arterial lesions closely resembled those seen after clinical organ transplantation. Mice that received spleen cells from the same human donor developed little or no lesions. An important aspect of this experimental transplantation model is the possibility to test drugs that may be used in clinical transplantation. In recent experiments we have shown that novel immunosuppressive drugs can inhibit the hyperproliferation of smooth muscle cells in vitro. Preclinical testing in reconstituted SCID/beige mice grafted with human arteries will permit the evaluation of the potential use of these drugs to prevent chronic vascular rejection. The model also allows pharmacodynamic studies that give information on the biological impact of different drugs that may be used in experimental or clinical transplantation.
Collapse
Affiliation(s)
- Mogens Thomsen
- Institute of Molecular Medicine of Rangueil (I2MR), Centre Hospitalier Universitaire de Rangueil, BP 84225, 31432 Toulouse Cedex 4, France.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Progress in the characterization of genes involved in the control of iron homeostasis in humans and in mice has improved the definition of iron overload and of the cells affected by it. The cell involved in iron overload with the greatest effect on immunity is the macrophage. Intriguing evidence has emerged, however, in the last 12 years indicating that parenchymal iron overload is linked to genes classically associated with the immune system. This review offers an update of the genes and proteins relevant to iron metabolism expressed in cells of the innate immune system, and addresses the question of how this system is affected in clinical situations of iron overload. The relationship between iron and the major cells of adaptive immunity, the T lymphocytes, will also be reviewed. Most studies addressing this last question in humans were performed in the clinical model of Hereditary Hemochromatosis. Data will also be reviewed demonstrating how the disruption of molecules essentially involved in adaptive immune responses result in the spontaneous development of iron overload and how they act as modifiers of iron overload.
Collapse
Affiliation(s)
- Graça Porto
- Institute of Molecular and Cellular Biology, Rua do Campo Alegre, Porto 8234150, Portugal.
| | | |
Collapse
|
24
|
Abstract
The human body requires about 1-2 mg of iron per day for its normal functioning, and dietary iron is the only source for this essential metal. Since humans do not possess a mechanism for the active excretion of iron, the amount of iron in the body is determined by the amount absorbed across the proximal small intestine and, consequently, intestinal iron absorption is a highly regulated process. In recent years, the liver has emerged as a central regulator of both iron absorption and iron release from other tissues. It achieves this by secreting a peptide hormone called hepcidin that acts on the small intestinal epithelium and other cells to limit iron delivery to the plasma. Hepcidin itself is regulated in response to various systemic stimuli including variations in body iron stores, the rate of erythropoiesis, inflammation and hypoxia, the same stimuli that have been known for many years to modulate iron absorption. This review will summarize recent findings on the role played by the liver and hepcidin in the regulation of body iron absorption.
Collapse
Affiliation(s)
- Deepak Darshan
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane Queensland 4029, Australia
| | | |
Collapse
|
25
|
Cooper JC, Dealtry GB, Ahmed MA, Arck PC, Klapp BF, Blois SM, Fernández N. An impaired breeding phenotype in mice with a genetic deletion of beta-2 microglobulin and diminished MHC class I expression: role in reproductive fitness. Biol Reprod 2007; 77:274-9. [PMID: 17442853 PMCID: PMC7110103 DOI: 10.1095/biolreprod.106.057125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Beta-2 microglobulin (B2M) plays a pivotal role in the biology of mammals, including its association with major histocompatibility complex (MHC) Class I gene products. The latter molecules have been shown to affect reproduction in both mice and humans, although the exact mechanism is still unknown. Here we report the results of a longitudinal study of the reproductive performance of a genetically modified B2m deficient mouse strain with low MHC Class I expression. Our data show that this mouse strain has an impaired reproductive performance. However, the mice superovulate well and show a normal estrous cycle. Breeding studies from crosses between the transgenic mice and the wild-type parental strain show that B2m deficient mice have a significantly lower frequency of mating than the control B2m+/+ mice. In addition, the litter size and weaning success of B2m deficient mice were lower than the control. Perinatal lethality of the B2m deficient offspring was also inflicted by cannibalism of the young pups by the B2m deficient female. The impaired breeding phenotype (IBP) can be reversed by reintroducing the B2m gene in F1 heterozygous B2m+/− animals; thus the presence of B2M confers a normal breeding pattern. The acquisition of an impaired breeding phenotype (IBP) as a result of the knockout of B2m directly implicates B2M in the reproductive cycle of mice and raises the possibility of an effect of B2M on the reproduction of other mammals.
Collapse
Affiliation(s)
- Joanne C Cooper
- Department of Experimental Biology, Huntingdon Life Sciences Ltd., Alconbury, Huntingdon, Cambridgeshire PE28 4HS, England
| | | | | | | | | | | | | |
Collapse
|
26
|
Rodrigues P, Lopes C, Mascarenhas C, Arosio P, Porto G, De Sousa M. Comparative study between Hfe-/- and beta2m-/- mice: progression with age of iron status and liver pathology. Int J Exp Pathol 2006; 87:317-24. [PMID: 16875497 PMCID: PMC2517374 DOI: 10.1111/j.1365-2613.2006.00491.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatic iron overload in hemochomatosis patients can be highly variable but in general it develops in older patients. The purpose of this study was to compare development of iron load in of beta2m-/- and Hfe-/- mice paying special attention to liver pathology in older age groups. Liver iron content of beta2m-/-, Hfe-/- and control B6 mice of different ages (varying from 3 weeks to 18 months) was examined. Additional parameters (haematology indices, histopathology, lipid content and ferritin expression) were also studied in 18-month-old mice. The beta2m-/- strain presents higher hepatic iron content, hepatocyte nuclear iron inclusions, mitochondria abnormalities. In addition, hepatic steatosis was a common observation in this strain. In the liver of Hfe-/- mice, large mononuclear infiltrates positive for ferritin staining were commonly observed. The steatosis commonly observed the beta2m-/- mice may be a reflection of its higher hepatic iron content. The large hepatic mononuclear cell infiltrates seen in Hfe-/- stained for ferritin, may point to the iron sequestration capacity of lymphocytes and contribute to the clarification of the differences found in the progression of hepatic iron overload and steatosis in older animals from the two strains.
Collapse
Affiliation(s)
- Pedro Rodrigues
- Iron Genes and Immune System (IRIS), Institute for Molecular and Cell Biology (IBMC), Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
27
|
Grant GR, Robinson SW, Edwards RE, Clothier B, Davies R, Judah DJ, Broman KW, Smith AG. Multiple polymorphic loci determine basal hepatic and splenic iron status in mice. Hepatology 2006; 44:174-85. [PMID: 16799992 DOI: 10.1002/hep.21233] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polymorphisms of genes linked to iron metabolism may account for individual variability in hemochromatosis and iron status connected with liver and cardiovascular diseases, cancers, toxicity, and infection. Mouse strains exhibit marked differences in levels of non-heme iron, with C57BL/6J and SWR showing low and high levels, respectively. The genetic basis for this variability was examined using quantitative trait loci (QTL) analysis together with expression profiling and chromosomal positions of known iron-related genes. Non-heme iron levels in liver and spleen of C57BL/6J x SWR F2 mice were poorly correlated, indicating independent regulation. Highly significant (P < .01) polymorphic loci were found on chromosomes 2 and 16 for liver and on chromosomes 8 and 9 for spleen. With sex as a covariate, additional significant or suggestive (P < 0.1) QTL were detected on chromosomes 7, 8, 11, and 19 for liver and on chromosome 2 for spleen. A gene array showed no clear association between most loci and differential iron-related gene expression. The gene for transferrin and a transferrin-like gene map close to the QTL on chromosome 9. Transferrin saturation was significantly lower in C57BL/6J mice than in SWR mice, but there was no significant difference in the serum level of transferrin, hepatic expression, or functional change in cDNA sequence. beta2-Microglobulin, which, unlike other loci, was associated with C57BL/6J alleles, is a candidate for the chromosome 2 QTL for higher iron. In conclusion, the findings show the location of polymorphic genes that determine basal iron status in wild-type mice. Human equivalents may be pertinent in predisposition to hepatic and other disorders.
Collapse
Affiliation(s)
- Gemma R Grant
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hishikawa K, Iwai K. [Recent advance in the understanding of iron metabolism and its role on host defense]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2006; 28:372-80. [PMID: 16394640 DOI: 10.2177/jsci.28.372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Iron is an essential trace element for human beings, but at the same time, it is toxic for us to generate free radicals because of its high reactivity to molecular oxygen. Therefore, iron metabolism is tightly regulated. Recently, hepcidin, a peptide hormone secreted by hepatocytes in response to iron overload and inflammation, has been identified to be a predominant negative regulator of iron absorption in the duodenum and iron release from tissue macrophages. The discovery of hepcidin unexpectedly revealed the link between iron metabolism and host defense. Here we describe recent advance in our understanding on the regulation of iron metabolism, including our findings and discuss its relationship to various diseases.
Collapse
Affiliation(s)
- Kyoko Hishikawa
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University
| | | |
Collapse
|
29
|
Thomsen M, Yacoub-Youssef H, Marcheix B. Reconstitution of a human immune system in immunodeficient mice: models of human alloreaction in vivo. ACTA ACUST UNITED AC 2005; 66:73-82. [PMID: 16029426 DOI: 10.1111/j.1399-0039.2005.00409.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rodents have been widely used for studies in transplantation immunology because of their short reproduction period and the relative ease of generating inbred mutant or transgenic strains. However, although many biological mechanisms are similar between rodents and humans, several features clearly distinguish the immune system in these species. Consequently, it is rarely possible to extrapolate observations from rodent models directly into clinical practice. In vitro studies with human cells are useful for elucidation of basic mechanisms, but in order to study complex biological phenomena, in vivo studies are indispensable. In later years, a number of interesting models have been described where immunodeficient mice have been reconstituted with human cells, so-called humanized mice, in order to study human immune responses in vivo. This has opened a new field of experimental immunology that has been applied to areas such as cancer, autoimmunity, allergy, infections, and transplantation biology. In this review, we shall concentrate on the use of severe combined immunodeficient mice reconstituted with human immune or stem cells for studies of human alloreaction in vivo.
Collapse
Affiliation(s)
- M Thomsen
- INSERM U466, CHU Rangueil, Toulouse, France.
| | | | | |
Collapse
|
30
|
Friese MA, Fugger L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 2005; 128:1747-63. [PMID: 15975943 DOI: 10.1093/brain/awh578] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis afflicts more than 1 million individuals worldwide and is widely considered to be an autoimmune disease. Traditionally, CD4(+) T helper cells have almost exclusively been held responsible for its immunopathogenesis, partly because certain MHC class II alleles clearly predispose for developing multiple sclerosis and also, because of their importance in inducing experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. However, several strategies that target CD4(+) T cells beneficially in EAE have failed to ameliorate disease activity in multiple sclerosis, and some have even triggered exacerbations. Recently, the potential importance of CD8(+) T cells has begun to emerge. Physiologically, CD8(+) T cells are essential for detecting and eliminating abnormal cells, whether infected or neoplastic. In multiple sclerosis, genetic associations with MHC class I alleles have now been established, and CD8(+) as well as CD4(+) T cells have been found to invade and clonally expand in inflammatory central nervous system plaques. Recent animal models induced by CD8(+) T cells show interesting similarities to multiple sclerosis, in particular, in lesion distribution (more inflammation in the brain relative to the spinal cord), although not all of the features of the human disease are recapitulated. Here we outline the arguments for a possible role for CD8(+) T cells, a lymphocyte subset that has long been underrated in multiple sclerosis and should now be considered in new therapeutic approaches.
Collapse
Affiliation(s)
- Manuel A Friese
- MRC Human Immunology Unit and Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | |
Collapse
|
31
|
Muckenthaler MU, Rodrigues P, Macedo MG, Minana B, Brennan K, Cardoso EM, Hentze MW, de Sousa M. Molecular analysis of iron overload in beta2-microglobulin-deficient mice. Blood Cells Mol Dis 2005; 33:125-31. [PMID: 15315790 DOI: 10.1016/j.bcmd.2004.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 05/13/2004] [Indexed: 12/20/2022]
Abstract
Beta2-microglobulin knockout (beta2m-/-) mice represent an instructive model of spontaneous iron overload resembling genetic hemochromatosis. The mechanism of iron accumulation in this mouse model may be more complex than involving the MHC class I-like protein HFE. We report that beta2m-deficient mice, like Hfe-/- mice, lack the adaptive hepatic hepcidin mRNA increase to iron overload. The inverse correlation of hepatic iron levels and hepcidin mRNA expression in six beta2m-/- mice underlines the importance of hepcidin in regulating body iron stores. In contrast to Hfe-/- mice, beta2m-deficient mice display increased expression of the duodenal iron transporters DMT1 and ferroportin 1. This result implicates a broader role of beta2m in mammalian iron metabolism, suggesting that (an) additional beta2m-interacting protein(s) could be involved in controlling iron homeostasis, and highlighting the emerging connection of iron metabolism with the immune system.
Collapse
|
32
|
Vitte JM, Davoult B, Roblot N, Mayer M, Joshi V, Courageot S, Tronche F, Vadrot J, Moreau MH, Kemeny F, Melki J. Deletion of murine Smn exon 7 directed to liver leads to severe defect of liver development associated with iron overload. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1731-41. [PMID: 15509541 PMCID: PMC1618680 DOI: 10.1016/s0002-9440(10)63428-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Spinal muscular atrophy (SMA) is characterized by degeneration of lower motor neurons caused by mutations of the survival motor neuron 1 gene (SMN1). SMN is involved in various processes including the formation of the spliceosome, pre-mRNA splicing and transcription. To know whether SMN has an essential role in all mammalian cell types or an as yet unknown specific function in the neuromuscular system, deletion of murine Smn exon 7, the most frequent mutation found among SMA patients, has been restricted to liver. Homozygous mutation results in severe impairment of liver development associated with iron overload and lack of regeneration leading to dramatic liver atrophy and late embryonic lethality of mutant mice. These data strongly suggest an ubiquitous and essential role of full-length SMN protein in various mammalian cell types. In SMA patients, the residual amount of SMN allows normal function of various organs except motor neurons. However, data from mouse and human suggest that other tissues might be involved in severe form of SMA or during prolonged disease course which reinforce the need of therapeutic approaches targeted to all tissues. In addition, liver function of patients should be carefully investigated and followed up before and during therapeutic trials.
Collapse
Affiliation(s)
- Jérémie M Vitte
- Molecular Neurogenetics Laboratory, INSERM E-223, 2 rue Gaston Crémieux, CP5724, 91057 Evry, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boulanger LM, Shatz CJ. Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 2004; 5:521-31. [PMID: 15208694 DOI: 10.1038/nrn1428] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lisa M Boulanger
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, Pacific Hall 1212A, 9500 Gilman Drive, La Jolla, California, USA.
| | | |
Collapse
|
34
|
Kielmanowicz MG, Laham N, Coligan JE, Lemonnier F, Ehrlich R. Mouse HFE inhibits Tf-uptake and iron accumulation but induces non-transferrin bound iron (NTBI)-uptake in transformed mouse fibroblasts. J Cell Physiol 2004; 202:105-14. [PMID: 15389541 DOI: 10.1002/jcp.20095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Iron-uptake and storage are tightly regulated to guarantee sufficient iron for essential cellular processes and to prevent the production of damaging free radicals. A non-classical class I MHC molecule, the hemochromatosis factor (HFE), has been shown to regulate iron metabolism, potentially via its interaction with the transferrin receptor. Whereas, the effect of human HFE (hHFE) on transferrin/transferrin receptor association, as well as on transferrin receptor recycling and the level of cellular iron pools in various cell lines was analyzed, very little is known about the mouse HFE (mHFE) protein. In the following study, our aim was to analyze in more detail the function of mHFE. Surprisingly, we observed that over-expression of mHFE, but not of hHFE, in a mouse transformed cell line, results in a most significant inhibition of transferrin-uptake which correlated with apoptotic cell death. mHFE inhibited transferrin-uptake immediately following transfection and this inhibition persisted in the surviving stable transfectants. Concomitantly, cellular iron derived from transferrin-iron uptake was dramatically limited. The activation of a non-transferrin bound iron-uptake pathway that functions in the stable mHFE-transfected clones could explain their normal growth curves and survival. The hypothesis that iron starvation can induce iron-uptake by a novel transferrin-independent pathway is discussed.
Collapse
Affiliation(s)
- Merav Gleit Kielmanowicz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
35
|
Miranda CJ, Makui H, Soares RJ, Bilodeau M, Mui J, Vali H, Bertrand R, Andrews NC, Santos MM. Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood 2003; 102:2574-80. [PMID: 12805055 DOI: 10.1182/blood-2003-03-0869] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The clinical use of doxorubicin (DOX), an anthracycline chemotherapeutic agent, is limited by cardiotoxicity. The possible involvement of iron in DOX-induced cardiotoxicity became evident from studies in which iron chelators were shown to be cardioprotective. Iron overload is found in hereditary hemochromatosis, a genetic disorder prevalent in individuals of European descent. We hypothesized that Hfe deficiency may increase susceptibility to DOX-induced toxicity. Acute cardiotoxicity and iron changes were studied after treatment with DOX in Hfe knock-out (Hfe-/-) mice and wild-type mice. DOX-induced iron metabolism changes were intensified in Hfe-/- mice, which accumulated significantly more iron in the heart, liver, and pancreas, but less in the spleen compared with wild-type mice. In addition, Hfe-deficient mice exhibited significantly greater sensitivity to DOX-induced elevations in serum creatine kinase and aspartate aminotransferase. Increased mortality after chronic DOX treatment was observed in Hfe-/- mice and Hfe+/-mice compared with wild-type mice. DOX-treated Hfe-/- mice had a higher degree of mitochondrial damage and iron deposits in the heart than did wild-type mice. These data demonstrate that Hfe deficiency in mice increases susceptibility to DOX-induced cardiotoxicity and suggest that genetic mutations related to defects in iron metabolism may contribute to its cardiotoxicity in humans.
Collapse
Affiliation(s)
- Carlos J Miranda
- Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang AS, Davies PS, Carlson HL, Enns CA. Mechanisms of HFE-induced regulation of iron homeostasis: Insights from the W81A HFE mutation. Proc Natl Acad Sci U S A 2003; 100:9500-5. [PMID: 12874382 PMCID: PMC170947 DOI: 10.1073/pnas.1233675100] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mechanisms by which the hereditary hemochromatosis protein, HFE, decreases transferrin-mediated iron uptake were examined. Coimmunoprecipitation studies using solubilized cell extracts demonstrated that transferrin (Tf) competed with HFE for binding to the transferrin receptor (TfR) similar to previous in vitro studies using soluble truncated forms of HFE and the TfR. At concentrations of Tf approaching those found in the blood, no differences in Tf binding to cells were detected, which is consistent with the lower binding constant of HFE for TfR versus Tf. However, cells expressing HFE still showed a decrease in Tf-mediated iron uptake at concentrations of Tf sufficient to dissociate HFE from the TfR. These results indicate that the association of HFE with TfR is not essential for its ability to lower intracellular iron stores. To test the effect of HFE on lowering intracellular iron levels independently of its association with TfR, a mutated HFE (fW81AHFE) that shows greatly reduced affinity for the TfR was transfected into tetracycline-controlled transactivator HeLa cells. HeLa cells expressing fW81AHFE behaved in a similar manner to cells expressing wild-type HFE with respect to decreased intracellular iron levels measured by iron regulatory protein gel-shift assays and ferritin levels. The results indicate that HFE can lower intracellular iron levels independently of its interaction with the TfR.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell Biology L215, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
37
|
Andrews NC. Animal models of hereditary iron transport disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 509:1-17. [PMID: 12572986 DOI: 10.1007/978-1-4615-0593-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Nancy C Andrews
- Howard Hughes Medical Institute, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Abstract
Mechanisms whereby iron may act in carcinogenesis are induction of oxidative stress, facilitation of tumor growth, and modification of the immune system. Results of clinical and epidemiologic studies demonstrate a strong association between iron excess (even at mild levels) and the development of cancer at any site, but they do not indicate whether this reflects a causal link or an indirect association through other factors (i.e., aging, alcohol consumption, and insulin resistance). Findings obtained from experimental work are not conclusive with respect to a direct carcinogenic role of iron, but they support a carcinogenic or co-carcinogenic role of iron in chemically induced carcinogenesis.
Collapse
Affiliation(s)
- Yves Deugnier
- Clinique des Maladies du Foie and Centre d'Investigation Clinique, CHU Pontchaillou, 35033 Rennes, France.
| |
Collapse
|
39
|
Beutler E. The HFE Cys282Tyr mutation as a necessary but not sufficient cause of clinical hereditary hemochromatosis. Blood 2003; 101:3347-50. [PMID: 12707220 DOI: 10.1182/blood-2002-06-1747] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Ernest Beutler
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Arezzini B, Lunghi B, Lungarella G, Gardi C. Iron overload enhances the development of experimental liver cirrhosis in mice. Int J Biochem Cell Biol 2003; 35:486-95. [PMID: 12565710 DOI: 10.1016/s1357-2725(02)00298-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of iron in initiating liver fibrosis in iron overload diseases is not clearly established. Partly, this is due to the lack of suitable animal models that can produce the full liver pathology seen in genetic hemochromatosis. Recent advances in this field have demonstrated that iron may be interacting with other potential liver-damaging agents. The aim of this study was to investigate if feeding with carbonyl iron (CI) facilitates the development of carbon tetrachloride (CCl4)-induced liver fibrosis in the mouse. Mice were given a diet containing 3% CI and treated with CCl4 intraperitoneally twice weekly and 5% alcohol added to the drinking water for 12 weeks. Hepatic iron content increased 15- and 22-fold in animals receiving CI and CI + CCl4. At histological examination, iron-laden hepatocytes were found in CI treated animals, whereas these were absent in animals not exposed to CI. Mice receiving iron-enriched diet alone showed a mild fibrosis. Conversely, a marked collagen deposition was observed in CCl4 and CI + CCl4 groups. In particular, in this latter group, there was evidence of liver cirrhosis. Biochemical evaluation of collagen content substantiated histologic analysis. These results demonstrate that the addition of iron facilitates the development of cirrhosis in animals exposed to subtoxic doses of CCl4. This model may be useful in exploring the pathogenesis of liver cirrhosis. Moreover, its use in genetically altered mouse strains might provide new insight on the role of iron in fibrosis.
Collapse
Affiliation(s)
- Beatrice Arezzini
- Department of Pathophysiology and Experimental Medicine, University of Siena, via A. Moro, I-53100, Siena, Italy
| | | | | | | |
Collapse
|
41
|
Vahdati-Ben Arieh S, Laham N, Schechter C, Yewdell JW, Coligan JE, Ehrlich R. A single viral protein HCMV US2 affects antigen presentation and intracellular iron homeostasis by degradation of classical HLA class I and HFE molecules. Blood 2003; 101:2858-64. [PMID: 12456502 DOI: 10.1182/blood-2002-07-2158] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HFE is a nonclassical class I molecule that associates with beta 2-microglobulin (beta 2m) and with the transferrin receptor. HFE accumulates in transferrin-containing endosomes, and its overexpression in human cell lines correlates with decreased transferrin receptor (TFR)-mediated iron uptake and decreased intracellular iron pools. A mutation that interferes with proper folding and assembly of HFE complexes results in a severe iron-overload disease hereditary hemochromatosis. We previously suggested that viruses could also interfere with iron metabolism through the production of proteins that inactivate HFE, similarly to classical class I proteins. In particular, we demonstrated in a transient expression system that human cytomegalovirus (HCMV) US2 targeted HFE for proteasomal degradation. Here we demonstrate that the stable expression of HCMV US2 in HEK 293 cells constitutively expressing HFE leads to loss of HFE expression both intracellularly and on the cell surface, and the significant reduction of classical class I expression. Both HFE and classical class I molecules are targeted to degradation via a similar pathway. This HCMV US2-mediated degradation of HFE leads to increased intracellular iron pools as indicated by reduced synthesis of TfR and increased ferritin synthesis. Whether this interference with regulation of iron metabolism potentiates viral replication and/or promotes damage of HCMV-infected tissues remains to be determined. Nevertheless, the deleterious effect of US2 on the expression of HFE and classical class I major histo-compatibility complexes (MHC) provides HCMV with an efficient tool for altering cellular metabolic functions, as well as supporting the escape of virus-infected cells from cytotoxic T lymphocyte (CTL)-mediated immune responses.
Collapse
Affiliation(s)
- Sayeh Vahdati-Ben Arieh
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Wang J, Chen G, Pantopoulos K. The haemochromatosis protein HFE induces an apparent iron-deficient phenotype in H1299 cells that is not corrected by co-expression of beta 2-microglobulin. Biochem J 2003; 370:891-9. [PMID: 12464008 PMCID: PMC1223221 DOI: 10.1042/bj20021607] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2002] [Revised: 11/13/2002] [Accepted: 12/04/2002] [Indexed: 11/17/2022]
Abstract
HFE, an atypical MHC class I type molecule, has a critical, yet still elusive function in the regulation of systemic iron metabolism. HFE mutations are linked to hereditary haemochromatosis type 1, a common autosomal recessive disorder of iron overload. Most patients are homozygous for a C282Y point mutation that abrogates the interaction of HFE with beta(2)-microglobulin (beta(2)M) and, thus, impairs its proper processing and expression on the cell surface. An H63D substitution is also associated with disease. To investigate the function of HFE we have generated clones of human H1299 lung cancer cells that express wild-type, C282Y or H63D HFE under the control of a tetracycline-inducible promoter. Consistent with earlier observations in other cell lines, the expression of wild-type or H63D, but not C282Y, HFE induces an apparent iron-deficient phenotype, manifested in the activation of iron-regulatory protein and concomitant increase in transferrin receptor levels and decrease in ferritin content. This phenotype persists in cells expressing wild-type HFE after transfection with a beta(2)M cDNA. Whereas endogenous beta(2)M is sufficient for the presentation of at least a fraction of chimeric HFE on the cell surface, this effect is stimulated by approx. 2.8-fold in beta(2)M transfectants. The co-expression of exogenous beta(2)M does not significantly affect the half-life of HFE. These results suggest that the apparent iron-deficient phenotype elicited by HFE is not linked to beta(2)M insufficiency.
Collapse
Affiliation(s)
- Jian Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755 Cote-Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | |
Collapse
|
43
|
Guix P, Parera M, Castro JA, Picornell A, Ramón MM, Obrador A. [Molecular aspects of duodenal iron absorption]. GASTROENTEROLOGIA Y HEPATOLOGIA 2003; 26:86-93. [PMID: 12570892 DOI: 10.1016/s0210-5705(03)79047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P Guix
- Servicio de Análisis Clínicos. Hospital Universitario Son Dureta. Palma de Mallorca. Spain
| | | | | | | | | | | |
Collapse
|
44
|
Schaible UE, Collins HL, Priem F, Kaufmann SHE. Correction of the iron overload defect in beta-2-microglobulin knockout mice by lactoferrin abolishes their increased susceptibility to tuberculosis. J Exp Med 2002; 196:1507-13. [PMID: 12461085 PMCID: PMC2194267 DOI: 10.1084/jem.20020897] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
As a resident of early endosomal phagosomes, Mycobacterium tuberculosis is connected to the iron uptake system of the host macrophage. beta-2-microglobulin (beta2m) knockout (KO) mice are more susceptible to tuberculosis than wild-type mice, which is generally taken as a proof for the role of major histocompatibility complex class I (MHC-I)-restricted CD8 T cells in protection against M. tuberculosis. However, beta2m associates with a number of MHC-I-like proteins, including HFE. This protein regulates transferrin receptor mediated iron uptake and mutations in its gene cause hereditary iron overload (hemochromatosis). Accordingly, beta2m-deficient mice suffer from tissue iron overload. Here, we show that modulating the extracellular iron pool in beta2m-KO mice by lactoferrin treatment significantly reduces the burden of M. tuberculosis to numbers comparable to those observed in MHC class I-KO mice. In parallel, the generation of nitric oxide impaired in beta2m-KO mice was rescued. Conversely, iron overload in the immunocompetent host exacerbated disease. Consistent with this, iron deprivation in infected resting macrophages was detrimental for intracellular mycobacteria. Our data establish: (a) defective iron metabolism explains the increased susceptibility of beta2m-KO mice over MHC-I-KO mice, and (b) iron overload represents an exacerbating cofactor for tuberculosis.
Collapse
Affiliation(s)
- Ulrich E Schaible
- Max-Planck-Institute for Infection Biology, Schumannstrasse 21-22, D-10117 Berlin, Germany.
| | | | | | | |
Collapse
|
45
|
Abstract
Hereditary haemochromatosis is the prototype disease for primary iron overload. The disorder is very common, especially amongst subjects of Northern European extraction. It is characterized by an autosomal recessive mode of inheritance, and most cases are homozygous for the C282Y mutation in the HFE gene. Haemochromatosis is now recognized to be a complex genetic disease with probable significant environmental and genetic modifying factors. The early diagnosis of individuals at risk for the development of haemochromatosis is important, because survival and morbidity are improved if phlebotomy therapy is instituted before the development of cirrhosis. The cost-effectiveness and utility of large-scale screening for haemochromatosis have been questioned given that many individuals with the homozygous C282Y mutation do not have iron overload or end-organ damage. However, the use of phenotypic tests, such as serum transferrin-iron saturation, for initial screening avoids the problem of the identification of non-expressing homozygotes. Liver biopsy remains important in management to determine the presence or absence of cirrhosis, particularly amongst patients with serum ferritin levels greater than 1000 ng/mL or elevated liver enzymes. Those with non-HFE haemochromatosis who cannot be identified on genotypic testing should have a liver biopsy to establish diagnosis. Patients with end-stage liver disease may develop liver failure or primary liver cancer, and liver transplantation may be required. Liver transplantation for haemochromatosis is associated with a poorer outcome compared with other indications because of infections and cardiac complications.
Collapse
|
46
|
Holmström P, Marmur J, Eggertsen G, Gåfvels M, Stål P. Mild iron overload in patients carrying the HFE S65C gene mutation: a retrospective study in patients with suspected iron overload and healthy controls. Gut 2002; 51:723-30. [PMID: 12377814 PMCID: PMC1773427 DOI: 10.1136/gut.51.5.723] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS The role of the HFE S65C mutation in the development of hepatic iron overload is unknown. The aim of the present study was: (A) to determine the HFE S65C frequency in a Northern European population; and (B) to evaluate whether the presence of the HFE S65C mutation would result in a significant hepatic iron overload. PATIENTS AND METHODS Biochemical iron parameters and HFE mutation analysis (for the C282Y, H63D, and S65C mutations) were analysed in 250 healthy control subjects and collected retrospectively in 296 patients with suspected iron overload (elevated serum ferritin and/or transferrin saturation). The frequency of patients having at least mild iron overload, and mean serum ferritin and transferrin saturation values were calculated for each HFE genotype. For patients carrying the S65C mutation, clinical data, liver biopsy results, and amount of blood removed at phlebotomy were determined. RESULTS The HFE S65C mutation was found in 14 patients and eight controls. In controls, the S65C allele frequency was 1.6%. The S65C allele frequency was enriched in non-C282Y non-H63D chromosomes from patients (4.9%) compared with controls (1.9%) (p<0.05). Serum ferritin was significantly increased in controls carrying the S65C mutation compared with those without HFE mutations. Fifty per cent of controls and relatives having the S65C mutation had elevated serum ferritin levels or transferrin saturation. The number of iron overloaded patients was significantly higher among those having HFE S65C compared with those without any HFE mutation. Half of patients carrying the S65C mutation (7/14) had evidence of mild or moderate hepatic iron overload but no signs of extensive fibrosis in liver biopsies. Screening of relatives revealed one S65C homozygote who had no signs of iron overload. Compound heterozygosity with S65C and C282Y or H63D did not significantly increase the risk of iron overload compared with S65C heterozygosity alone. CONCLUSIONS The HFE S65C mutation may lead to mild to moderate hepatic iron overload but neither clinically manifest haemochromatosis nor iron associated extensive liver fibrosis was encountered in any of the patients carrying this mutation.
Collapse
Affiliation(s)
- P Holmström
- Division of Clinical Chemistry, Department of Medical Laboratory Science and Technology, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
47
|
Moos T, Trinder D, Morgan EH. Effect of iron status on DMT1 expression in duodenal enterocytes from beta2-microglobulin knockout mice. Am J Physiol Gastrointest Liver Physiol 2002; 283:G687-94. [PMID: 12181184 DOI: 10.1152/ajpgi.00346.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Divalent metal transporter I (DMT1) is thought to be involved in transport of iron across the apical cell membrane of villus duodenal cells. To determine its role in hereditary hemochromatosis (HH), we used beta2-microglobulin knockout (B2M-/-) mice that accumulate iron as in HH. The B2M-/- and control C57BL/6 (B2M+/+) mice were fed diets with different iron contents. Increasing the iron availability increased plasma iron levels in both B2M+/+ and B2M-/- mice. Reducing the iron availability decreased the plasma iron concentration in B2M+/+ mice but was without effect on plasma iron in B2M-/- mice. DMT1 was not detectable in mice fed normal or iron-loaded diets when using immunohistochemistry. In Western blots, however, the protein was consistently observed regardless of the dietary regimen. DMT1 expression was increased to the same extent in B2M+/+ and B2M-/- mice when fed an iron-poor diet. In both strains of mice fed an iron-poor diet, DMT1 was evenly distributed in the differentiated enterocytes from the base to the tip of the villi but was absent from the crypts of Lieberkühn. These data suggest that the observed effects were due to the state of iron deficiency in mucosal cells rather than genetic defect.
Collapse
Affiliation(s)
- Torben Moos
- Department of Medical Anatomy, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | | |
Collapse
|
48
|
Papanikolaou G, Papaioannou M, Politou M, Vavatsi N, Kioumi A, Tsiatsiou P, Marinaki P, Loukopoulos D, Christakis JI. Genetic heterogeneity underlies juvenile hemochromatosis phenotype: analysis of three families of northern Greek origin. Blood Cells Mol Dis 2002; 29:168-73. [PMID: 12490283 DOI: 10.1006/bcmd.2002.0553] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hereditary hemochromatosis is a genetically heterogeneous disease. Common HFE mutations (C282Y and H63D) are related to the majority of hereditary hemochromatosis cases in populations of Northern European ancestry (HFE1). Juvenile hemochromatosis (JH) is a more severe iron overload disorder, usually presenting at the second decade of life. The gene responsible for JH lies on a genetic locus at chromosome 1q. We have performed a genetic linkage study in three families of Northern Greek origin with typical clinical features of JH. In two families results were in accordance with linkage to chromosome 1q. In one family linkage of the disease to the genetic loci at 1q21, 7q22, and 6p22 was excluded. We suggest that more than one gene may underlie the JH phenotype. This genetic type of hemochromatosis may be designated 1q unlinked juvenile hemochromatosis. Family studies are necessary to establish the genetic diagnosis of JH.
Collapse
Affiliation(s)
- G Papanikolaou
- First Department of Medicine, Laikon Hospital, University of Athens Medical School, Athens 11527, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fergelot P, Ropert-Bouchet M, Abgueguen E, Orhant M, Radosavljevic M, Grimber G, Jouan H, Le Gall JY, Mosser J, Gilfillan S, Bahram S. Iron overload in mice expressing HFE exclusively in the intestinal villi provides evidence that HFE regulates a functional cross-talk between crypt and villi enterocytes. Blood Cells Mol Dis 2002; 28:348-60. [PMID: 12367579 DOI: 10.1006/bcmd.2002.0512] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hereditary hemochromatosis (HH), a common autosomal recessive disorder due to a mutation in HFE, which encodes an atypical MHC class I glycoprotein, is characterized by excessive absorption of dietary iron. Little is known however of the apparently complex pathophysiology of HFE involvement in the process of iron influx. Here, in order to tackle the issue in vivo, we decided to target HFE expression exclusively to the relevant tissue, intestinal epithelium. This was achieved by putting HFE under transcriptional control of the rat fatty acid binding protein (Fabpi) promoter. Quite unexpectedly, Fabpi-HFE mice had significantly elevated serum transferrin saturation levels in comparison to those of normal littermates. By a careful, layer by layer analysis of transgene expression along the crypt-villus axis, we were able to affirm that the ectopic expression of transgenic HFE in the differentiated villi enterocytes was responsible for ferric hyperabsorption, a phenomenon exacerbated in the absence of endogenous HFE expression, which we assessed by crossing the transgene onto an HFE(-/-) (knockout) background. This forced dichotomy between the absence of HFE in the crypt and expression in the villi provides experimental support that HFE functions as a "gatekeeper," regulating the cross-talk between the crypt and villi enterocytes and thereby modulating the avidity of mature enterocytes for dietary iron.
Collapse
Affiliation(s)
- Patricia Fergelot
- CNRS UMR6061, Faculté de Médecine, 2 avenue du Pr Léon Bernard, 35043 Rennes cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Markotić A, Marusić A, Tomac J, Müthing J. Ganglioside expression in tissues of mice lacking beta2-microglobulin. Clin Exp Immunol 2002; 128:27-35. [PMID: 11982587 PMCID: PMC1906375 DOI: 10.1046/j.1365-2249.2002.01802.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study presents a comparative analysis of gangliosides from lymphoid (spleen and thymus) and other (brain, liver, lungs and muscle) tissues of C57BL/6 mice lacking the gene for beta2-microglobulin (beta2M), a constitutive component of the MHC class I molecule. Ganglioside fractions in the tissues of mice homozygous (beta2M-/-) and heterozygous (beta2M-/+) for the gene deletion were determined by high performance thin-layer chromatography (HPTLC), followed by immunostaining with specific polyclonal antibodies. Ubiquitous gangliosides GM3(Neu5Ac) and GM3(Neu5Gc) were the dominant gangliosides in the lungs of the control beta2M-/+ mice, whereas the homozygous knockout mice had substantially decreased expression of these structures. The lungs of the beta2M-/- mice also had reduced expression of T-lymphocyte-specific GM1b-type gangliosides (GM1b and GalNAc-GM1b). beta2M-deficient mice also had more GM1a and GD1a gangliosides in the liver, and several neolacto-series gangliosides were increased in the brain and lungs. This study provides in vivo evidence that the beta2M molecule can influence the acquisition of a distinct ganglioside assembly in different mouse organs, implicating its non-immunological functions.
Collapse
Affiliation(s)
- A Markotić
- Department of Biochemistry, Split University School of Medicine, Split, Croatia.
| | | | | | | |
Collapse
|