1
|
Lalle G, Lautraite R, Bouherrou K, Plaschka M, Pignata A, Voisin A, Twardowski J, Perrin-Niquet M, Stéphan P, Durget S, Tonon L, Ardin M, Degletagne C, Viari A, Belgarbi Dutron L, Davoust N, Postler TS, Zhao J, Caux C, Caramel J, Dalle S, Cassier PA, Klein U, Schmidt-Supprian M, Liblau R, Ghosh S, Grinberg-Bleyer Y. NF-κB subunits RelA and c-Rel selectively control CD4+ T cell function in multiple sclerosis and cancer. J Exp Med 2024; 221:e20231348. [PMID: 38563819 PMCID: PMC10986815 DOI: 10.1084/jem.20231348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The outcome of cancer and autoimmunity is often dictated by the effector functions of CD4+ conventional T cells (Tconv). Although activation of the NF-κB signaling pathway has long been implicated in Tconv biology, the cell-autonomous roles of the separate NF-κB transcription-factor subunits are unknown. Here, we dissected the contributions of the canonical NF-κB subunits RelA and c-Rel to Tconv function. RelA, rather than c-Rel, regulated Tconv activation and cytokine production at steady-state and was required for polarization toward the TH17 lineage in vitro. Accordingly, RelA-deficient mice were fully protected against neuroinflammation in a model of multiple sclerosis due to defective transition to a pathogenic TH17 gene-expression program. Conversely, Tconv-restricted ablation of c-Rel impaired their function in the microenvironment of transplanted tumors, resulting in enhanced cancer burden. Moreover, Tconv required c-Rel for the response to PD-1-blockade therapy. Our data reveal distinct roles for canonical NF-κB subunits in different disease contexts, paving the way for subunit-targeted immunotherapies.
Collapse
Affiliation(s)
- Guilhem Lalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Raphaëlle Lautraite
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Khaled Bouherrou
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Maud Plaschka
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Aurora Pignata
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR INSERM 1291, CNRS 5051, Université Toulouse III, Toulouse, France
| | - Allison Voisin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julie Twardowski
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Perrin-Niquet
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre Stéphan
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Sarah Durget
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurie Tonon
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Maude Ardin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyril Degletagne
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Viari
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Nathalie Davoust
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure of Lyon, CNRS UMR 5239, INSERM U1293, Lyon, France
| | - Thomas S. Postler
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jingyao Zhao
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christophe Caux
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julie Caramel
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe A. Cassier
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Ulf Klein
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR INSERM 1291, CNRS 5051, Université Toulouse III, Toulouse, France
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
2
|
Butcher MJ, Gurram RK, Zhu X, Chen X, Hu G, Lazarevic V, Zhao K, Zhu J. GATA3 induces the pathogenicity of Th17 cells via regulating GM-CSF expression. Front Immunol 2023; 14:1186580. [PMID: 37449212 PMCID: PMC10337884 DOI: 10.3389/fimmu.2023.1186580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
T-bet-expressing Th17 (T-bet+RORγt+) cells are associated with the induction of pathology during experimental autoimmune encephalomyelitis (EAE) and the encephalitic nature of these Th17 cells can be explained by their ability to produce GM-CSF. However, the upstream regulatory mechanisms that control Csf2 (gene encoding GM-CSF) expression are still unclear. In this study, we found that Th17 cells dynamically expressed GATA3, the master transcription factor for Th2 cell differentiation, during their differentiation both in vitro and in vivo. Early deletion of Gata3 in three complimentary conditional knockout models by Cre-ERT2, hCd2 Cre and Tbx21 Cre, respectively, limited the pathogenicity of Th17 cells during EAE, which was correlated with a defect in generating pathogenic T-bet-expressing Th17 cells. These results indicate that early GATA3-dependent gene regulation is critically required to generate a de novo encephalitogenic Th17 response. Furthermore, a late deletion of Gata3 via Cre-ERT2 in the adoptive transfer EAE model resulted in a cell intrinsic failure to induce EAE symptoms which was correlated with a substantial reduction in GM-CSF production without affecting the generation and/or maintenance of T-bet-expressing Th17 cells. RNA-Seq analysis of Gata3-sufficient and Gata3-deficient CNS-infiltrating CD4+ effector T cells from mixed congenic co-transfer recipient mice revealed an important, cell-intrinsic, function of GATA3 in regulating the expression of Egr2, Bhlhe40, and Csf2. Thus, our data highlights a novel role for GATA3 in promoting and maintaining the pathogenicity of T-bet-expressing Th17 cells in EAE, via putative regulation of Egr2, Bhlhe40, and GM-CSF expression.
Collapse
Affiliation(s)
- Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Fulford TS, Grumont R, Wirasinha RC, Ellis D, Barugahare A, Turner SJ, Naeem H, Powell D, Lyons PA, Smith KGC, Scheer S, Zaph C, Klein U, Daley SR, Gerondakis S. c-Rel employs multiple mechanisms to promote the thymic development and peripheral function of regulatory T cells in mice. Eur J Immunol 2021; 51:2006-2026. [PMID: 33960413 DOI: 10.1002/eji.202048900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023]
Abstract
The NF-κB transcription factor c-Rel is a critical regulator of Treg ontogeny, controlling multiple points of the stepwise developmental pathway. Here, we found that the thymic Treg defect in c-Rel-deficient (cRel-/- ) mice is quantitative, not qualitative, based on analyses of TCR repertoire and TCR signaling strength. However, these parameters are altered in the thymic Treg-precursor population, which is also markedly diminished in cRel-/- mice. Moreover, c-Rel governs the transcriptional programme of both thymic and peripheral Tregs, controlling a core of genes involved with immune signaling, and separately in the periphery, cell cycle progression. Last, the immune suppressive function of peripheral cRel-/- tTregs is diminished in a lymphopenic model of T cell proliferation and is associated with decreased stability of Foxp3 expression. Collectively, we show that c-Rel is a transcriptional regulator that controls multiple aspects of Treg development, differentiation, and function via distinct mechanisms.
Collapse
Affiliation(s)
- Thomas S Fulford
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Raelene Grumont
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Rushika C Wirasinha
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Darcy Ellis
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Adele Barugahare
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Monash Bioinformatics Platform, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Stephen J Turner
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Department of Microbiology, Monash University, Melbourne, Australia
| | - Haroon Naeem
- Monash Bioinformatics Platform, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - David Powell
- Monash Bioinformatics Platform, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, England, UK.,Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, England, UK.,Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
| | - Sebastian Scheer
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, LS2 7TF
| | - Stephen R Daley
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Steve Gerondakis
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
The many-sided contributions of NF-κB to T-cell biology in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:245-300. [PMID: 34074496 DOI: 10.1016/bs.ircmb.2020.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
T cells (or T lymphocytes) exhibit a myriad of functions in immune responses, ranging from pathogen clearance to autoimmunity, cancer and even non-lymphoid tissue homeostasis. Therefore, deciphering the molecular mechanisms orchestrating their specification, function and gene expression pattern is critical not only for our comprehension of fundamental biology, but also for the discovery of novel therapeutic targets. Among the master regulators of T-cell identity, the functions of the NF-κB family of transcription factors have been under scrutiny for several decades. However, a more precise understanding of their pleiotropic functions is only just emerging. In this review we will provide a global overview of the roles of NF-κB in the different flavors of mature T cells. We aim at highlighting the complex and sometimes diverging roles of the five NF-κB subunits in health and disease.
Collapse
|
5
|
The Supernatant of Tonsil-Derived Mesenchymal Stem Cell Has Antiallergic Effects in Allergic Rhinitis Mouse Model. Mediators Inflamm 2020; 2020:6982438. [PMID: 32322164 PMCID: PMC7166282 DOI: 10.1155/2020/6982438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/12/2020] [Indexed: 01/09/2023] Open
Abstract
Methods We isolated T-MSCs from human palatine tonsil and evaluated the ingredients of T-MSCs-CM. The effect of T-MSCs-CM was evaluated in the AR mouse model that was randomly divided into five groups (negative control, positive control, and T-MSCs-CM treated (0.1 mg, 1 mg, and 10 mg)). To investigate the therapeutic effect, we analyzed rhinitis symptoms, serum immunoglobulin (Ig), inflammatory cells, and cytokine expression. We also assessed T cell receptor signal, including MAP kinase (ERK/JNK), p65, and NFAT1. Results We identified the increment of TGF-β1, PGE2, and HGF in the T-MSCs-CM. In an animal study, the T-MSCs-CM-treated group showed significantly reduced allergic symptoms and infiltration of eosinophils and neutrophils in the nasal mucosa, whereas there was no significant difference in total IgE and the OVA-specific IgE level. Additionally, we found that the 10 mg T-MSCs-CM-treated group showed a significantly decreased IL-4 mRNA expression, compared to the (+) Con group. In the analysis of T cell receptor signal, the phosphorylation of MAP kinases, translocation of p65, and activation of NFAT1 were inhibited after T-MSCs-CM. Conclusions Our findings suggest that T-MSCs-CM showed a partial immunomodulatory effect on the AR mouse model by the inhibition of T cell activation via MAP kinase, p65, and NFAT1.
Collapse
|
6
|
Zhou Y, Cui C, Ma X, Luo W, Zheng SG, Qiu W. Nuclear Factor κB (NF-κB)-Mediated Inflammation in Multiple Sclerosis. Front Immunol 2020; 11:391. [PMID: 32265906 PMCID: PMC7105607 DOI: 10.3389/fimmu.2020.00391] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling cascade has been implicating in a broad range of biological processes, including inflammation, cell proliferation, differentiation, and apoptosis. The past three decades have witnessed a great progress in understanding the impact of aberrant NF-κB regulation on human autoimmune and inflammatory disorders. In this review, we discuss how aberrant NF-κB activation contributes to multiple sclerosis, a typical inflammatory demyelinating disease of the central nervous system, and its involvement in developing potential therapeutic targets.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunping Cui
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
8
|
Lin TH, Pajarinen J, Lu L, Nabeshima A, Cordova LA, Yao Z, Goodman SB. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:117-154. [PMID: 28215222 DOI: 10.1016/bs.apcsb.2016.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system.
Collapse
Affiliation(s)
- T-H Lin
- Stanford University, Stanford, CA, United States
| | - J Pajarinen
- Stanford University, Stanford, CA, United States
| | - L Lu
- Stanford University, Stanford, CA, United States
| | - A Nabeshima
- Stanford University, Stanford, CA, United States
| | - L A Cordova
- Stanford University, Stanford, CA, United States; Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Z Yao
- Stanford University, Stanford, CA, United States
| | - S B Goodman
- Stanford University, Stanford, CA, United States.
| |
Collapse
|
9
|
Bornancin F, Renner F, Touil R, Sic H, Kolb Y, Touil-Allaoui I, Rush JS, Smith PA, Bigaud M, Junker-Walker U, Burkhart C, Dawson J, Niwa S, Katopodis A, Nuesslein-Hildesheim B, Weckbecker G, Zenke G, Kinzel B, Traggiai E, Brenner D, Brüstle A, St. Paul M, Zamurovic N, McCoy KD, Rolink A, Régnier CH, Mak TW, Ohashi PS, Patel DD, Calzascia T. Deficiency of MALT1 Paracaspase Activity Results in Unbalanced Regulatory and Effector T and B Cell Responses Leading to Multiorgan Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:3723-34. [DOI: 10.4049/jimmunol.1402254] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
|
10
|
Martinez EM, Yoshida MC, Candelario TLT, Hughes-Fulford M. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Am J Physiol Regul Integr Comp Physiol 2015; 308:R480-8. [PMID: 25568077 DOI: 10.1152/ajpregu.00449.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Healthy immune function depends on precise regulation of lymphocyte activation. During the National Aeronautics and Space Administration (NASA) Apollo and Shuttle eras, multiple spaceflight studies showed depressed lymphocyte activity under microgravity (μg) conditions. Scientists on the ground use two models of simulated μg (sμg): 1) the rotating wall vessel (RWV) and 2) the random positioning machine (RPM), to study the effects of altered gravity on cell function before advancing research to the true μg when spaceflight opportunities become available on the International Space Station (ISS). The objective of this study is to compare the effects of true μg and sμg on the expression of key early T-cell activation genes in mouse splenocytes from spaceflight and ground animals. For the first time, we compared all three conditions of microgravity spaceflight, RPM, and RWV during immune gene activation of Il2, Il2rα, Ifnγ, and Tagap; moreover, we confirm two new early T-cell activation genes, Iigp1 and Slamf1. Gene expression for all samples was analyzed using quantitative real-time PCR (qRT-PCR). Our results demonstrate significantly increased gene expression in activated ground samples with suppression of mouse immune function in spaceflight, RPM, and RWV samples. These findings indicate that sμg models provide an excellent test bed for scientists to develop baseline studies and augment true μg in spaceflight experiments. Ultimately, sμg and spaceflight studies in lymphocytes may provide insight into novel regulatory pathways, benefiting both future astronauts and those here on earth suffering from immune disorders.
Collapse
Affiliation(s)
- Emily M Martinez
- Hughes-Fulford Laboratory, Department of Medicine Metabolism Division San Francisco Department of Veterans Affairs Medical Center and Northern California Institute for Research and Education, San Francisco, California; and
| | - Miya C Yoshida
- Hughes-Fulford Laboratory, Department of Medicine Metabolism Division San Francisco Department of Veterans Affairs Medical Center and Northern California Institute for Research and Education, San Francisco, California; and
| | - Tara Lynne T Candelario
- Hughes-Fulford Laboratory, Department of Medicine Metabolism Division San Francisco Department of Veterans Affairs Medical Center and Northern California Institute for Research and Education, San Francisco, California; and
| | - Millie Hughes-Fulford
- Hughes-Fulford Laboratory, Department of Medicine Metabolism Division San Francisco Department of Veterans Affairs Medical Center and Northern California Institute for Research and Education, San Francisco, California; and Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
11
|
O'Reilly LA, Hughes P, Lin A, Waring P, Siebenlist U, Jain R, Gray DHD, Gerondakis S, Strasser A. Loss of c-REL but not NF-κB2 prevents autoimmune disease driven by FasL mutation. Cell Death Differ 2014; 22:767-78. [PMID: 25361085 DOI: 10.1038/cdd.2014.168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 01/24/2023] Open
Abstract
FASL/FAS signaling imposes a critical barrier against autoimmune disease and lymphadenopathy. Mutant mice unable to produce membrane-bound FASL (FasL(Δm/Δm)), a prerequisite for FAS-induced apoptosis, develop lymphadenopathy and systemic autoimmune disease with immune complex-mediated glomerulonephritis. Prior to disease onset, FasL(Δm/Δm) mice contain abnormally high numbers of leukocytes displaying activated and elevated NF-κB-regulated cytokine levels, indicating that NF-κB-dependent inflammation may be a key pathological driver in this multifaceted autoimmune disease. We tested this hypothesis by genetically impairing canonical or non-canonical NF-κB signaling in FasL(Δm/Δm) mice by deleting the c-Rel or NF-κB2 genes, respectively. Although the loss of NF-κB2 reduced the levels of inflammatory cytokines and autoantibodies, the impact on animal survival was minor due to substantially accelerated and exacerbated lymphoproliferative disease. In contrast, a marked increase in lifespan resulting from the loss of c-REL coincided with a striking reduction in classical parameters of autoimmune pathology, including the levels of cytokines and antinuclear autoantibodies. Notably, the decrease in regulatory T-cell numbers associated with loss of c-REL did not exacerbate autoimmunity in FasL(Δm/Δm)c-rel(-/-) mice. These findings indicate that selective inhibition of c-REL may be an attractive strategy for the treatment of autoimmune pathologies driven by defects in FASL/FAS signaling that would be expected to circumvent many of the complications caused by pan-NF-κB inhibition.
Collapse
Affiliation(s)
- L A O'Reilly
- 1] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - P Hughes
- 1] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia [2] Department of Nephrology, The Royal Melbourne Hospital, Parkville 3052, Victoria, Australia
| | - A Lin
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
| | - P Waring
- Department of Pathology, The University of Melbourne, Parkville 3010 Victoria, Australia
| | - U Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - R Jain
- 1] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - D H D Gray
- 1] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - S Gerondakis
- Australian Centre for Blood Diseases and Department of Clinical Hematology, Monash University Central Clinical School, Melbourne 3004, Victoria, Australia
| | - A Strasser
- 1] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
12
|
Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies. Cell Mol Life Sci 2014; 71:2083-102. [PMID: 24419302 PMCID: PMC11113378 DOI: 10.1007/s00018-013-1545-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/22/2022]
Abstract
The nuclear factor κB or NF-κB transcription factor family plays a key role in several cellular functions, i.e. inflammation, apoptosis, cell survival, proliferation, angiogenesis, and innate and acquired immunity. The constitutive activation of NF-κB is typical of most malignancies and plays a major role in tumorigenesis. In this review, we describe NF-κB and its two pathways: the canonical pathway (RelA/p50) and the non-canonical pathway (RelB/p50 or RelB/p52). We then consider the role of the NF-κB subunits in the development and functional activity of B cells, T cells, macrophages and dendritic cells, which are the targets of hematological malignancies. The relevance of the two pathways is described in normal B and T cells and in hematological malignancies, acute and chronic leukemias (ALL, AML, CLL, CML), B lymphomas (DLBCLs, Hodgkin's lymphoma), T lymphomas (ATLL, ALCL) and multiple myeloma. We describe the interaction of NF-κB with the apoptotic pathways induced by TRAIL and the transcription factor p53. Finally, we discuss therapeutic anti-tumoral approaches as mono-therapies or combination therapies aimed to block NF-κB activity and to induce apoptosis (PARAs and Nutlin-3).
Collapse
Affiliation(s)
- Chiara Gasparini
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy,
| | | | | | | |
Collapse
|
13
|
Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation. Nat Commun 2014; 5:3551. [PMID: 24699451 PMCID: PMC4016562 DOI: 10.1038/ncomms4551] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/04/2014] [Indexed: 01/12/2023] Open
Abstract
TH1 and TH17 cells mediate neuroinflammation in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Pathogenic TH cells in EAE must produce the pro-inflammatory cytokine granulocyte-macrophage colony stimulating factor (GM-CSF). TH cell pathogenicity in EAE is also regulated by cell-intrinsic production of the immunosuppressive cytokine interleukin 10 (IL-10). Here, we demonstrate that mice deficient for the basic helix-loop-helix (bHLH) transcription factor Bhlhe40 (Bhlhe40−/−) are resistant to the induction of EAE. Bhlhe40 is required in vivo in a T cell-intrinsic manner, where it positively regulates the production of GM-CSF and negatively regulates the production of IL-10. In vitro, GM-CSF secretion is selectively abrogated in polarized Bhlhe40−/− TH1 and TH17 cells, and these cells show increased production of IL-10. Blockade of IL-10 receptor in Bhlhe40−/− mice renders them susceptible to EAE. These findings identify Bhlhe40 as a critical regulator of autoreactive T cell pathogenicity.
Collapse
|
14
|
Fu K, Sun X, Zheng W, Wier EM, Hodgson A, Tran DQ, Richard S, Wan F. Sam68 modulates the promoter specificity of NF-κB and mediates expression of CD25 in activated T cells. Nat Commun 2013; 4:1909. [PMID: 23715268 PMCID: PMC3684077 DOI: 10.1038/ncomms2916] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/19/2013] [Indexed: 12/23/2022] Open
Abstract
CD25, the alpha chain of the interleukin-2 receptor, is expressed in activated T cells and has a significant role in autoimmune disease and tumorigenesis; however, the mechanisms regulating transcription of CD25 remain elusive. Here we identify the Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel non-Rel component in the nuclear factor-kappaB (NF-κB) complex that confers CD25 transcription. Our results demonstrate that Sam68 has an essential role in the induction and maintenance of CD25 in T cells. T-cell receptor engagement triggers translocation of the inhibitor of NF-κB kinase alpha (IKKα) from the cytoplasm to the nucleus, where it phosphorylates Sam68, causing complex formation with NF-κB in the nucleus. These findings reveal the important roles of KH domain-containing components and their spatial interactions with IKKs in determining the binding targets of NF-κB complexes, thus shedding novel insights into the regulatory specificity of NF-κB.
Collapse
Affiliation(s)
- Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21025, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology. Trends Mol Med 2013; 19:604-13. [PMID: 24007818 DOI: 10.1016/j.molmed.2013.08.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 12/15/2022]
Abstract
The nuclear factor kappa B (NF-κB) signaling cascade plays a critical role in the regulation of immune and inflammatory responses and has been implicated in the pathogenesis of autoimmune demyelinating diseases such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the main animal model of MS. NF-κB is essential for peripheral immune cell activation and the induction of pathology, but also plays crucial roles in resident cells of the central nervous system (CNS) during disease development. Here we review recent evidence clarifying the role of NF-κB in the different cell compartments contributing to MS pathology and its implications for the development of therapeutic strategies for the treatment of MS and other demyelinating pathologies of the CNS.
Collapse
|
16
|
Yun HM, Oh JH, Shim JH, Ban JO, Park KR, Kim JH, Lee DH, Kang JW, Park YH, Yu D, Kim Y, Han SB, Yoon DY, Hong JT. Antitumor activity of IL-32β through the activation of lymphocytes, and the inactivation of NF-κB and STAT3 signals. Cell Death Dis 2013; 4:e640. [PMID: 23703385 PMCID: PMC3674373 DOI: 10.1038/cddis.2013.166] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokine and activation of lymphocytes are critical for tumor growth. We investigated whether interleukin (IL)-32β overexpression changes other cytokine levels and activates cytotoxic lymphocyte, and thus modify tumor growth. Herein, IL-32β inhibited B16 melanoma growth in IL-32β-overexpressing transgenic mice (IL-32β mice), and downregulated the expressions of anti-apoptotic proteins (bcl-2, IAP, and XIAP) and cell growth regulatory proteins (Ki-67 antigen (Ki-67) and proliferating cell nuclear antigen (PCNA)), but upregulated the expressions of pro-apoptotic proteins (bax, cleaved caspase-3, and cleaved caspase-9). IL-32β also inhibited colon and prostate tumor growth in athymic nude mice inoculated with IL-32β-transfected SW620 colon or PC3 prostate cancer cells. The forced expression of IL-32β also inhibited cell growth in cultured colon and prostate cancer cells, and these inhibitory effects were abolished by IL-32 small interfering RNA (siRNA). IL-10 levels were elevated, but IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were reduced in the tumor tissues and spleens of IL-32β mice, and athymic nude mice. The number of cytotoxic T (CD8(+)) and natural killer (NK) cells in tumor tissues, spleen, and blood was significantly elevated in IL-32β mice and athymic nude mice inoculated with IL-32β-transfected cancer cells. Constituted activated NF-κB and STAT3 levels were reduced in the tumor tissues of IL-32β mice and athymic nude mice, as well as in IL-32β-transfected cultured cancer cells. These findings suggest that IL-32β inhibits tumor growth by increasing cytotoxic lymphocyte numbers, and by inactivating the NF-κB and STAT3 pathways through changing of cytokine levels in tumor tissues.
Collapse
Affiliation(s)
- H-M Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee NJ, Choi DY, Song JK, Jung YY, Kim DH, Kim TM, Kim DJ, Kwon SM, Kim KB, Choi KE, Moon DC, Kim Y, Han SB, Hong JT. Deficiency of C–C chemokine receptor 5 suppresses tumor development via inactivation of NF–ĸB and inhibition of monocyte chemoattractant protein-1 in urethane-induced lung tumor model. Carcinogenesis 2012; 33:2520-8. [DOI: 10.1093/carcin/bgs265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Poke FS, Upcher WR, Sprod OR, Young A, Brettingham-Moore KH, Holloway AF. Depletion of c-Rel from cytokine gene promoters is required for chromatin reassembly and termination of gene responses to T cell activation. PLoS One 2012; 7:e41734. [PMID: 22860011 PMCID: PMC3408492 DOI: 10.1371/journal.pone.0041734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/25/2012] [Indexed: 01/17/2023] Open
Abstract
The role of the Nuclear Factor κB (NF-κB) transcription factor family in T cell function has been well described. The c-Rel family member is of particular importance in initiating T cell responses to antigen and regulating activation of inflammatory cytokine genes, including the Interleukin-2 (IL-2) and Granulocyte macrophage colony stimulating factor (GM-CSF) genes. c-Rel is required for chromatin remodeling of these gene promoters, which involves depletion of histones from the promoters in response to T cell activating signals. These chromatin remodeling events precede transcriptional activation of the genes. The subsequent down-regulation of cytokine gene expression is important in the termination of an immune response and here we examine this process at the murine GM-CSF and IL-2 genes. We show that the cytokine mRNA levels rapidly return to basal levels following stimulus removal and this is associated with reassembly of histones onto the promoter. Histone reassembly at the GM-CSF and IL-2 promoters occurs concomitantly with depletion of RelA, c-Rel and RNA polymerase II from the promoters. Furthermore we show that transcriptional down-regulation and chromatin reassembly is dependent on depletion of c-Rel from the nucleus, and that this is regulated by the nuclear translocation of the NF-κB inhibitor, IκBα. The nuclear activation of c-Rel therefore not only regulates the initiation of GM-CSF and IL-2 gene activation in response to T cell activation, but also the termination of these gene responses following the removal of the activating signal.
Collapse
Affiliation(s)
- Fiona S. Poke
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - William R. Upcher
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - Owen R. Sprod
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - Arabella Young
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Adele F. Holloway
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| |
Collapse
|
19
|
Chang TT, Walther I, Li CF, Boonyaratanakornkit J, Galleri G, Meloni MA, Pippia P, Cogoli A, Hughes-Fulford M. The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J Leukoc Biol 2012; 92:1133-45. [PMID: 22750545 DOI: 10.1189/jlb.0312157] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study tested the hypothesis that transcription of immediate early genes is inhibited in T cells activated in μg. Immunosuppression during spaceflight is a major barrier to safe, long-term human space habitation and travel. The goals of these experiments were to prove that μg was the cause of impaired T cell activation during spaceflight, as well as understand the mechanisms controlling early T cell activation. T cells from four human donors were stimulated with Con A and anti-CD28 on board the ISS. An on-board centrifuge was used to generate a 1g simultaneous control to isolate the effects of μg from other variables of spaceflight. Microarray expression analysis after 1.5 h of activation demonstrated that μg- and 1g-activated T cells had distinct patterns of global gene expression and identified 47 genes that were significantly, differentially down-regulated in μg. Importantly, several key immediate early genes were inhibited in μg. In particular, transactivation of Rel/NF-κB, CREB, and SRF gene targets were down-regulated. Expression of cREL gene targets were significantly inhibited, and transcription of cREL itself was reduced significantly in μg and upon anti-CD3/anti-CD28 stimulation in simulated μg. Analysis of gene connectivity indicated that the TNF pathway is a major early downstream effector pathway inhibited in μg and may lead to ineffective proinflammatory host defenses against infectious pathogens during spaceflight. Results from these experiments indicate that μg was the causative factor for impaired T cell activation during spaceflight by inhibiting transactivation of key immediate early genes.
Collapse
Affiliation(s)
- Tammy T Chang
- Department of Surgery, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Song JK, Park MH, Choi DY, Yoo HS, Han SB, Yoon DY, Hong JT. Deficiency of C-C chemokine receptor 5 suppresses tumor development via inactivation of NF-κB and upregulation of IL-1Ra in melanoma model. PLoS One 2012; 7:e33747. [PMID: 22567084 PMCID: PMC3342329 DOI: 10.1371/journal.pone.0033747] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/16/2012] [Indexed: 01/15/2023] Open
Abstract
To evaluate the relevance of C-C chemokine receptor type 5 (CCR5) expression and tumor development, we compared melanoma growth in CCR5 knockout (CCR5−/−) mice and wild type (CCR5+/+) mice. CCR5−/− mice showed reduced tumor volume, tumor weight, and increased survival rate when compared to CCR5+/+ mice. We investigated the activation of NF-κB since it is an implicated transcription factor in the regulation of genes involving cell growth, apoptosis, and tumor growth. Significant inhibition of DNA binding activity of NF-κB, and translocation of p50 and p65 into the nucleus through the inhibition of phosphorylation of IκB was found in the melanoma tissues of CCR5−/− mice compared to melanoma tissues of CCR5+/+ mice. NF-κB target apoptotic protein expression, such as cleaved caspase-3, cleaved PARP, and Bax, was elevated, whereas the survival protein expression levels, such as Bcl-2, C-IAP1, was decreased in the melanoma tissues of CCR5−/− mice. Interestingly, we found that the level of IL-1Ra, a tumor growth suppressive cytokine, was significantly elevated in tumor tissue and spleen of CCR5−/− mice compared to the level in CCR5+/+ mice. Moreover, infiltration of CD8+ cytotoxic T cell and CD57+ natural killer cells was significantly increased in melanoma tumor and spleen tissue of CCR5−/− mice compared to that of CCR5+/+ mice. Therefore, these results showed that CCR5 deficiency caused apoptotic cell death of melanoma through inhibition of NF-κB and upregulation of IL-1Ra.
Collapse
Affiliation(s)
- Ju Kyoung Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hwan Soo Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
A key role for NF-κB transcription factor c-Rel in T-lymphocyte-differentiation and effector functions. Clin Dev Immunol 2012; 2012:239368. [PMID: 22481964 PMCID: PMC3310234 DOI: 10.1155/2012/239368] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/13/2011] [Accepted: 12/31/2011] [Indexed: 01/01/2023]
Abstract
The transcription factors of the Rel/NF-κB family function as key regulators of innate and adoptive immunity. Tightly and temporally controlled activation of NF-κB-signalling pathways ensures prevention of harmful immune cell dysregulation, whereas a loss of control leads to pathological conditions such as severe inflammation, autoimmune disease, and inflammation-associated oncogenesis. Five family members have been identified in mammals: RelA (p65), c-Rel, RelB, and the precursor proteins NF-κB1 (p105) and NF-κB2 (p100), that are processed into p50 and p52, respectively. While RelA-containing dimers are present in most cell types, c-Rel complexes are predominately found in cells of hematopoietic origin. In T-cell lymphocytes, certain genes essential for immune function such as Il2 and Foxp3 are directly regulated by c-Rel. Additionally, c-Rel-dependent IL-12 and IL-23 transcription by macrophages and dendritic cells is crucial for T-cell differentiation and effector functions. Accordingly, c-Rel expression in T cells and antigen-presenting cells (APCs) controls a delicate balance between tolerance and immunity. This review gives a selective overview on recent progress in understanding of diverse roles of c-Rel in regulating adaptive immunity.
Collapse
|
22
|
Ruan Q, Chen YH. Nuclear factor-κB in immunity and inflammation: the Treg and Th17 connection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:207-21. [PMID: 21948370 DOI: 10.1007/978-1-4614-0106-3_12] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although nuclear factor-kB (NF-kB) is generally considered to be a pro-inflammatory transcription factor, recent studies indicate that it also plays a critical role in the development of an anti-inflammatory T cell subset called regulatory T (Treg) cells. Two NF-kB proteins, c-Rel and p65, drive the development of Treg cells by promoting the formation of a Foxp3-specific enhanceosome. Consequently, c-Rel-deficient mice have marked reductions in Treg cells, and c-Rel-deficient T cells are compromised in Treg cell differentiation. However, with the exception of Foxp3, most NF-kB target genes in immune cells are pro-inflammatory. These include several Th17-related cytokine genes and the retinoid-related orphan receptor-g (Rorg or Rorc) that specifies Th17 differentiation and lineage-specific function. T cells deficient in c-Rel or p65 are significantly compromised in Th17 differentiation, and c-Rel -deficient mice are defective in Th17 responses. Thus, NF-kB is required for the development of both anti-inflammatory Treg and pro-inflammatory Th17 cells.
Collapse
Affiliation(s)
- Qingguo Ruan
- Department of Pathology and Laboratory Medicine, 712 Stellar-Chance Laboratories, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
23
|
Wurster AL, Precht P, Pazin MJ. NF-κB and BRG1 bind a distal regulatory element in the IL-3/GM-CSF locus. Mol Immunol 2011; 48:2178-88. [PMID: 21831442 DOI: 10.1016/j.molimm.2011.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 01/15/2023]
Abstract
We investigated gene regulation at the IL-3/GM-CSF gene cluster. We found BRG1, a SWI/SNF remodeling ATPase, bound a distal element, CNSa. BRG1 binding was strongest in differentiated, stimulated T helper cells, paralleling IL-3 and GM-CSF expression. Depletion of BRG1 reduced IL-3 and GM-CSF transcription. BAF-specific SWI/SNF subunits bound to this locus and regulated IL-3 expression. CNSa was in closed chromatin in fibroblasts, open chromatin in differentiated T helper cells, and moderately open chromatin in naïve (undifferentiated) T helper cells; BRG1 was required for the most open state. CNSa increased transcription of a reporter in an episomal expression system, in a BRG1-dependent manner. The NF-κB subunit RelA/p65 bound CNSa in activated T helper cells. Inhibition of NF-κB blocked BRG1 binding to CNSa, chromatin opening at CNSa, and activation of IL-3 and GM-CSF. Together, these findings suggest CNSa is a distal enhancer that binds BRG1 and NF-κB.
Collapse
Affiliation(s)
- Andrea L Wurster
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, National Institutes of Health, USA
| | | | | |
Collapse
|
24
|
Campbell IK, van Nieuwenhuijze A, Segura E, O’Donnell K, Coghill E, Hommel M, Gerondakis S, Villadangos JA, Wicks IP. Differentiation of Inflammatory Dendritic Cells Is Mediated by NF-κB1–Dependent GM-CSF Production in CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:5468-77. [DOI: 10.4049/jimmunol.1002923] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Liou HC, Smith KA. The roles of c-rel and interleukin-2 in tolerance: a molecular explanation of self-nonself discrimination. Immunol Cell Biol 2010; 89:27-32. [PMID: 20975733 DOI: 10.1038/icb.2010.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The molecular mechanisms responsible for the exquisite discrimination between self and nonself molecules have remained enigmatic despite intense investigation. However, with the availability of adequate amounts of anergic lymphocytes produced by double transgenic mice, large numbers of immature B cells from sublethaly irradiated, hematopoietically-synchronized mice, as well as critical gene-deleted mice, it has been possible for the first time to uncover plausible molecular mechanisms that lead to tolerance versus immunity. The Rel family of transcription factors is expressed at different stages of lymphocyte maturation and differentiation. C-Rel is not activated by immature lymphocytes, which undergo either anergy or apoptosis when triggered by antigen receptors, but c-Rel is activated in mature lymphocytes. Antigen receptor triggering induces c-Rel-dependent survival and proliferative genetic programs. In T cells, a critical c-Rel-dependent gene encodes the T-cell growth factor interleukin-2 (IL-2). Thus, T cells from c-Rel gene-deleted mice produce inadequate quantities of IL-2, which renders them immunocompromised and unable to mount normal T-cell proliferative and differentiative responses. In the face of absolute IL-2 deficiency from birth, severe, multiorgan autoimmunity gradually ensues. Also, with more subtle IL-2 deficiency, organ/tissue-specific autoimmune disease becomes evident. Accordingly, both c-Rel and IL-2 appear to be key molecules for tolerance versus immunity, and doubtless will become foci for continued investigation, as well as future therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Hsiou-Chi Liou
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | | |
Collapse
|
26
|
Falvo JV, Tsytsykova AV, Goldfeld AE. Transcriptional control of the TNF gene. ACTA ACUST UNITED AC 2010; 11:27-60. [PMID: 20173386 DOI: 10.1159/000289196] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytokine TNF is a critical mediator of immune and inflammatory responses. The TNF gene is an immediate early gene, rapidly transcribed in a variety of cell types following exposure to a broad range of pathogens and signals of inflammation and stress. Regulation of TNF gene expression at the transcriptional level is cell type- and stimulus-specific, involving the recruitment of distinct sets of transcription factors to a compact and modular promoter region. In this review, we describe our current understanding of the mechanisms through which TNF transcription is specifically activated by a variety of extracellular stimuli in multiple cell types, including T cells, B cells, macrophages, mast cells, dendritic cells, and fibroblasts. We discuss the role of nuclear factor of activated T cells and other transcription factors and coactivators in enhanceosome formation, as well as the contradictory evidence for a role for nuclear factor kappaB as a classical activator of the TNF gene. We describe the impact of evolutionarily conserved cis-regulatory DNA motifs in the TNF locus upon TNF gene transcription, in contrast to the neutral effect of single nucleotide polymorphisms. We also assess the regulatory role of chromatin organization, epigenetic modifications, and long-range chromosomal interactions at the TNF locus.
Collapse
Affiliation(s)
- James V Falvo
- Immune Disease Institute and Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
27
|
El Mezayen R, El Gazzar M, Myer R, High KP. Aging-dependent upregulation of IL-23p19 gene expression in dendritic cells is associated with differential transcription factor binding and histone modifications. Aging Cell 2009; 8:553-65. [PMID: 19624579 DOI: 10.1111/j.1474-9726.2009.00502.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Age-associated changes in immune response increase the risk of infection and promote inflammation and autoimmunity in older adults. The newly discovered cytokine IL-23 contributes to the maintenance and expansion of Th-17 cells, which promote proinflammatory responses. Our preliminary findings suggested that Th-17 responses are increased in aged mice. IL-23 consists of p40 and p19 subunits. Expression of the p19 subunit is regulated at the transcriptional level by NF-kappaB p65 and c-Rel transcription factors. Using bone-marrow-derived dendritic cells (DCs) from C57BL/6 mice, we show that IL-23 protein production and p19 subunit mRNA levels are significantly increased in DCs from aged mice after activation with TLR ligands (LPS + R848) when compared with DCs of young adult mice. We found that the increase in p19 expression in aged cells is associated with chromatin remodeling characterized by di- and tri-methylation of histone H3K4 and binding of mainly c-Rel at the p19 promoter. In young DCs, the promoter is tri-methylated only at H3K4 and bound by both p65 and c-Rel. C-Rel knockdown restores p65 binding in aged cells but does not activate p19 expression, suggesting that c-Rel is critical for p19 expression. In addition, p65 knockdown significantly increases c-Rel binding and p19 expression in young DCs to levels close to those detected in old cells. Furthermore, the decrease in p65 binding at the p19 promoter in old DCs was specific to the p19 gene since p65 binding to the IL-12p40 promoter was not significantly different between old and young DCs. Our results demonstrate that selective changes in H3K4 methylation, and c-Rel and p65 binding at the p19 promoter occur in DCs and contribute to the upregulation of the p19 subunit expression and IL-23 protein production observed in aged mice. This suggests epigenetic and transcriptional mechanisms contribute to dysregulated inflammatory and autoimmune responses associated with aging.
Collapse
Affiliation(s)
- Rabab El Mezayen
- Section of Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
28
|
Xu J, Wu HF, Ang ES, Yip K, Woloszyn M, Zheng MH, Tan RX. NF-κB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev 2009; 20:7-17. [DOI: 10.1016/j.cytogfr.2008.11.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Inhibition of experimental autoimmune myocarditis: peripheral deletion of TcR Vβ 8.1, 8.2+ CD4+ T cells in TLR-4 deficient mice. J Autoimmun 2008; 31:180-7. [DOI: 10.1016/j.jaut.2008.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/13/2008] [Accepted: 06/30/2008] [Indexed: 11/20/2022]
|
30
|
Zeng H, Chen Y, Yu M, Xue L, Gao X, Morris SW, Wang D, Wen R. T cell receptor-mediated activation of CD4+CD44hi T cells bypasses Bcl10: an implication of differential NF-kappaB dependence of naïve and memory T cells during T cell receptor-mediated responses. J Biol Chem 2008; 283:24392-9. [PMID: 18583339 DOI: 10.1074/jbc.m802344200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies have demonstrated that Bcl10 (B-cell leukemia/lymphoma 10) is essential for T cell receptor-mediated NF-kappaB activation and subsequent proliferation and interleukin 2 (IL2) production. However, here we demonstrate that, contrary to expectations, Bcl10 is differentially required for T cell activation, including for both proliferation and cytokine production. When CD4+ and CD8+ T cells were divided based on expression levels of CD44, which distinguishes naïve cells (CD44lo) versus those that are antigen-experienced (CD44hi), IL2 production by and proliferation of CD4+CD44lo naïve cells and both subpopulations of CD8+ T cells were clearly Bcl10-dependent, whereas these same functional properties of CD4+CD44hi T cells occurred largely independent of Bcl10. As with the other subpopulations of T cells, CD4+CD44hi T cells did not activate the NF-kappaB pathway in the absence of Bcl10; nevertheless, these CD4+CD44hi antigen-experienced T cells efficiently secreted IL2 after T cell receptor stimulation. Strikingly, therefore, T cell receptor-mediated IL2 production in these cells is NF-kappaB-independent. Our studies suggest that antigen-experienced CD4+ T cells differ from their naïve counterparts and from CD8+ T cells in their ability to achieve activation independent of the Bcl10/NF-kappaB pathway.
Collapse
Affiliation(s)
- Hu Zeng
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 225001, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bunting K, Rao S, Hardy K, Woltring D, Denyer GS, Wang J, Gerondakis S, Shannon MF. Genome-Wide Analysis of Gene Expression in T Cells to Identify Targets of the NF-κB Transcription Factor c-Rel. THE JOURNAL OF IMMUNOLOGY 2007; 178:7097-109. [PMID: 17513759 DOI: 10.4049/jimmunol.178.11.7097] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well established that the NF-kappaB family of transcription factors serves a major role in controlling gene expression in response to T cell activation, but the genome-wide roles of individual family members remain to be determined. c-Rel, a member of the NF-kappaB family, appears to play a specific role in T cell function because T cells from c-Rel(-/-) animals are defective in their response to immune signals. We have used expression profiling to identify sets of genes that are affected by either deletion or overexpression of c-Rel in T cells. Very few of these genes exhibit a strong requirement for c-Rel; rather, c-Rel appears to modulate the expression of a large number of genes in these cells. The sets of c-Rel-affected genes are significantly enriched for genes containing consensus NF-kappaB/Rel sites in their proximal promoter regions. In addition, their promoters contain a higher average density of NF-kappaB/Rel sites compared with all genes represented on the microarrays. A transcriptional module comprised of two closely spaced c-Rel consensus sites is found with higher frequency in the c-Rel-affected gene sets and may represent an important control module for genes regulated by c-Rel or other NF-kappaB family members. We confirmed the importance of these findings on a subgroup of genes by using quantitative PCR to monitor gene expression as well as in vitro c-Rel/DNA binding assays and luciferase reporter assays. The c-Rel-regulated genes identified here support a role for c-Rel in inflammatory responses as well as in the promotion of cell growth and survival.
Collapse
Affiliation(s)
- Karen Bunting
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Carmody RJ, Ruan Q, Liou HC, Chen YH. Essential roles of c-Rel in TLR-induced IL-23 p19 gene expression in dendritic cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:186-91. [PMID: 17182554 DOI: 10.4049/jimmunol.178.1.186] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-23 plays crucial roles in both immunity against pathogens and autoimmunity against self. Although it is well recognized that IL-23 expression is restricted to the myeloid lineage and is tightly regulated at the transcriptional level, the nature of transcription factors required for IL-23 expression is poorly understood. We report, in this study, that murine dendritic cells deficient in c-Rel, a member of the NF-kappaB family, are severely compromised in their ability to transcribe the p19 gene, one of the two genes that encode the IL-23 protein. The p19 gene promoter contains three putative NF-kappaB binding sites, two of which can effectively bind c-Rel as determined by chromatin immunoprecipitation and EMSA. Unexpectedly, mutation of either of these two c-Rel binding sites completely abolished the p19 promoter activity induced by five TLRs (2, 3, 4, 6, and 9) and four members of the NF-kappaB family (c-Rel, p65, p100, and p105). Based on these observations, we conclude that c-Rel controls IL-23 p19 gene expression through two kappaB sites in the p19 promoter, and propose a c-Rel-dependent enhanceosome model for p19 gene activation.
Collapse
Affiliation(s)
- Ruaidhrí J Carmody
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
33
|
Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 2006; 25:6781-99. [PMID: 17072328 DOI: 10.1038/sj.onc.1209944] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nuclear factor-kappaB (NF-kappaB) signalling pathway serves a crucial role in regulating the transcriptional responses of physiological processes that include cell division, cell survival, differentiation, immunity and inflammation. Here we outline studies using mouse models in which the core components of the NF-kappaB pathway, namely the IkappaB kinase subunits (IKKalpha, IKKbeta and NEMO), the IkappaB proteins (IkappaBalpha, IkappaBbeta, IkappaBvarepsilon and Bcl-3) and the five NF-kappaB transcription factors (NF-kappaB1, NF-kappaB2, c-Rel, RelA and RelB), have been genetically manipulated using transgenic and knockout technology.
Collapse
Affiliation(s)
- S Gerondakis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Harris J, Olière S, Sharma S, Sun Q, Lin R, Hiscott J, Grandvaux N. Nuclear accumulation of cRel following C-terminal phosphorylation by TBK1/IKK epsilon. THE JOURNAL OF IMMUNOLOGY 2006; 177:2527-35. [PMID: 16888014 DOI: 10.4049/jimmunol.177.4.2527] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The NF-kappaB transcription factors are key regulators of immunomodulatory, cell cycle, and developmental gene regulation. NF-kappaB activity is mainly regulated through the phosphorylation of IkappaB by the IkappaB kinase (IKK) complex IKKalphabetagamma, leading to proteasome-mediated degradation of IkappaB, nuclear translocation of NF-kappaB dimers, DNA binding, and gene induction. Additionally, direct posttranslational modifications of NF-kappaB p65 and cRel subunits involving C-terminal phosphorylation has been demonstrated. The noncanonical IKK-related homologs, TNFR-associated factor family member-associated NF-kappaB activator (TANK)-binding kinase (TBK)1 and IKKepsilon, are also thought to play a role in NF-kappaB regulation, but their functions remain unclear. TBK1 and IKKepsilon were recently described as essential regulators of IFN gene activation through direct phosphorylation of the IFN regulatory factor-3 and -7 transcription factors. In the present study, we sought to determine whether IKKepsilon and TBK1 could modulate cRel activity via phosphorylation. TBK1 and IKKepsilon directly phosphorylate the C-terminal domain of cRel in vitro and in vivo and regulate nuclear accumulation of cRel, independently of the classical IkappaB/IKK pathway. IkappaBalpha degradation is not affected, but rather IKKepsilon-mediated phosphorylation of cRel leads to dissociation of the IkappaBalpha-cRel complex. These results illustrate a previously unrecognized aspect of cRel regulation, controlled by direct IKKepsilon/TBK1 phosphorylation.
Collapse
Affiliation(s)
- Jennifer Harris
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, 3755 chemin de la Cote Sainte Catherine, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Kim HP, Imbert J, Leonard WJ. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 2006; 17:349-66. [PMID: 16911870 DOI: 10.1016/j.cytogfr.2006.07.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-2 was discovered in 1976 as a T-cell growth factor. It was the first type I cytokine cloned and the first for which a receptor component was cloned. Its importance includes its multiple actions, therapeutic potential, and lessons for receptor biology, with three components differentially combining to form high, intermediate, and low-affinity receptors. IL-2Ralpha and IL-2Rbeta, respectively, are markers for double-negative thymocytes and regulatory T-cells versus memory cells. gamma(c), which is shared by six cytokines, is mutated in patients with X-linked severe-combined immunodeficiency. We now cover an under-reviewed area-the regulation of genes encoding IL-2 and IL-2R components, with an effort to integrate/explain this knowledge.
Collapse
Affiliation(s)
- Hyoung Pyo Kim
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, United States.
| | | | | |
Collapse
|
36
|
Sánchez-Valdepeñas C, Martín AG, Ramakrishnan P, Wallach D, Fresno M. NF-kappaB-inducing kinase is involved in the activation of the CD28 responsive element through phosphorylation of c-Rel and regulation of its transactivating activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:4666-74. [PMID: 16585559 DOI: 10.4049/jimmunol.176.8.4666] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous evidence suggested that NF-kappaB-inducing kinase (NIK) might regulate IL-2 synthesis. However, the molecular mechanism is not understood. In this study, we show that NIK is involved in CD3 plus CD28 activation of IL-2 transcription. Splenic T cells from aly/aly mice (that have a defective NIK protein) have a severe impairment in IL-2 and GM-CSF but not TNF secretion in response to CD3/CD28. This effect takes place at the transcriptional level as overexpression of alyNIK inhibits IL-2 promoter transcription. NIK activates the CD28 responsive element (CD28RE) of the IL-2 promoter and strongly synergizes with c-Rel in this activity. We found that NIK interacts with the N-terminal domain of c-Rel, mapping this interaction to aa 771-947 of NIK. Moreover, NIK phosphorylates the c-Rel C-terminal transactivation domain (TAD) and induces Gal4-c-Rel-transactivating activity. Anti-CD28 activated Gal4-c-Rel transactivation activity, and this effect was inhibited by a NIK-defective mutant. Deletion studies mapped the region of c-Rel responsive to NIK in aa 456-540. Mutation of several serines, including Ser471, in the TAD of c-Rel abrogated the NIK-enhancing activity of its transactivating activity. Interestingly, a Jurkat mutant cell line that expresses one of the mutations of c-Rel (Ser471Asn) has a severe defect in IL-2 and CD28RE-dependent transcription in response to CD3/CD28 or to NIK. Our results support that NIK may be controlling CD28RE-dependent transcription and T cell activation by modulating c-Rel phosphorylation of the TAD. This leads to more efficient transactivation of genes which are dependent on CD28RE sites where c-Rel binds such as the IL-2 promoter.
Collapse
Affiliation(s)
- Carmen Sánchez-Valdepeñas
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
Natoli G. Tuning up inflammation: how DNA sequence and chromatin organization control the induction of inflammatory genes by NF-kappaB. FEBS Lett 2006; 580:2843-9. [PMID: 16530189 DOI: 10.1016/j.febslet.2006.02.072] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 02/25/2006] [Indexed: 11/28/2022]
Abstract
NF-kappaB is a collective name given to a family of ubiquitous transcription factors (TFs) activated in response to inflammatory stimuli and environmental stressors, and required for the activation of many crucial inflammatory and immune response genes. NF-kappaB is activated by degradation of its cytoplasmic anchors, the IkappaBs, and subsequent nuclear translocation and accumulation. Once entered in the nucleus NF-kappaB activates transcription of hundreds of genes; however, each inflammatory gene must be expressed and turned off with peculiar kinetics that suit its specific function. Chromatin organization plays a major role in controlling the kinetics of NF-kappaB recruitment to target genes and it represents an integration point mediating TF cooperativity.
Collapse
Affiliation(s)
- Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| |
Collapse
|
38
|
Natoli G, De Santa F. Shaping alternative NF-κB-dependent gene expression programs: new clues to specificity. Cell Death Differ 2006; 13:693-6. [PMID: 16485027 DOI: 10.1038/sj.cdd.4401880] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
39
|
Bunting K, Wang J, Shannon MF. Control of interleukin-2 gene transcription: a paradigm for inducible, tissue-specific gene expression. VITAMINS AND HORMONES 2006; 74:105-45. [PMID: 17027513 DOI: 10.1016/s0083-6729(06)74005-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin-2 (IL-2) is a key cytokine that controls immune cell function, in particular the adaptive arm of the immune system, through its ability to control the clonal expansion and homeostasis of peripheral T cells. IL-2 is produced almost exclusively by T cells in response to antigenic stimulation and thus provides an excellent example of a cell-specific inducible gene. The mechanisms that control IL-2 gene transcription have been studied in detail for the past 20 years and our current understanding of the nature of the inducible and tissue-specific controls will be discussed.
Collapse
Affiliation(s)
- Karen Bunting
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | | |
Collapse
|
40
|
Mondor I, Schmitt-Verhulst AM, Guerder S. RelA regulates the survival of activated effector CD8 T cells. Cell Death Differ 2005; 12:1398-406. [PMID: 15920533 DOI: 10.1038/sj.cdd.4401673] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor of kappa B (NF-kappaB) transcription factors are critical regulators of T-cell activation and survival. The relative contribution of individual NF-kappaB members to these processes remains elusive. We investigated the role of RelA in the regulation of CD8 T-cell activation. We overexpressed, in mature CD8 T cells, a transactivation domain-deficient RelA molecule (p65TAD). We show that p65TAD forms homo- and heterodimers with p50 that bind kappaB sites and selectively inhibit RelA-dependent transactivation. Expression of p65TAD does not affect initial activation or cell cycle progression but induces the death of activated CD8 T cells in vitro and in vivo. However, the long-term survival of resting effector CD8 T cells seems not to be affected by p65TAD expression. Collectively, our results indicate that RelA is a critical regulator of survival of proliferating CD8 T cells but may be dispensable for the survival of resting effector T cells.
Collapse
Affiliation(s)
- I Mondor
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale/Centre National de la Recherche Scientifique/Université de la Méditerranée, Parc Scientifique de Luminy, Marseille, France
| | | | | |
Collapse
|
41
|
Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Osborne BA. Notch1 augments NF-kappaB activity by facilitating its nuclear retention. EMBO J 2005; 25:129-38. [PMID: 16319921 PMCID: PMC1356346 DOI: 10.1038/sj.emboj.7600902] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/15/2005] [Indexed: 12/12/2022] Open
Abstract
Notch1 specifically upregulates expression of the cytokine interferon-gamma in peripheral T cells through activation of NF-kappaB. However, how Notch mediates NF-kappaB activation remains unclear. Here, we examined the temporal relationship between Notch signaling and NF-kappaB induction during T-cell activation. NF-kappaB activation occurs within minutes of T-cell receptor (TCR) engagement and this activation is sustained for at least 48 h following TCR signaling. We used gamma-secretase inhibitor (GSI) to prevent the cleavage and subsequent activation of Notch family members. We demonstrate that GSI blocked the later, sustained NF-kappaB activation, but did not affect the initial activation of NF-kappaB. Using biochemical approaches, as well as confocal microscopy, we show that the intracellular domain of Notch1 (N1IC) directly interacts with NF-kappaB and competes with IkappaBalpha, leading to retention of NF-kappaB in the nucleus. Additionally, we show that N1IC can directly regulate IFN-gamma expression through complexes formed on the IFN-gamma promoter. Taken together, these data suggest that there are two 'waves' of NF-kappaB activation: an initial, Notch-independent phase, and a later, sustained activation of NF-kappaB, which is Notch dependent.
Collapse
Affiliation(s)
- Hyun Mu Shin
- Molecular and Cellular Biology Program, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Ok Hyun Cho
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Sridevi Gottipati
- Molecular and Cellular Biology Program, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Abdul H Fauq
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Gail E Sonenshein
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Barbara A Osborne
- Molecular and Cellular Biology Program, University of Massachusetts/Amherst, Amherst, MA, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst, Amherst, MA, USA
- Department of Veterinary and Animal Sciences, 311 Paige Laboratory, University of Massachusetts/Amherst, 161 Holdsworth Way, Amherst, MA 01003, USA. Tel.: +1 413 545 4882; Fax: +1 413 545 1446; E-mail:
| |
Collapse
|
42
|
Sanjabi S, Williams KJ, Saccani S, Zhou L, Hoffmann A, Ghosh G, Gerondakis S, Natoli G, Smale ST. A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes Dev 2005; 19:2138-51. [PMID: 16166378 PMCID: PMC1221885 DOI: 10.1101/gad.1329805] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The NF-kappaB family members p65 (RelA) and c-Rel recognize similar DNA sequences, yet the phenotypes of mutant mice suggest that these proteins regulate distinct sets of genes. Here we demonstrate that 46 unique residues within an 86-residue segment of the Rel homology region (RHR) of c-Rel are responsible for the c-Rel requirement for Il12b gene induction by lipopolysaccharide in bone marrow-derived macrophages. These same residues were responsible for the c-Rel requirement for Il12a induction in dendritic cells, and in both instances, no evidence of c-Rel-specific coactivator interactions was found. Although the residues of c-Rel and p65 that contact specific bases and the DNA backbone within nuclear factor-kappaB (NF-kappaB) recognition sequences are identical, homodimers of c-Rel and of a chimeric p65 protein containing the critical c-Rel residues bound with high affinity to a broader range of NF-kappaB recognition sequences than did wild-type p65 homodimers. These results demonstrate that the unique functions of closely related transcription factor family members can be dictated by differences in the range of DNA sequences recognized at high affinity, despite having similar binding site consensus sequences and DNA contact residues.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Howard Hughes Medical Institute, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cannarile L, Fallarino F, Agostini M, Cuzzocrea S, Mazzon E, Vacca C, Genovese T, Migliorati G, Ayroldi E, Riccardi C. Increased GILZ expression in transgenic mice up-regulates Th-2 lymphokines. Blood 2005; 107:1039-47. [PMID: 16204313 DOI: 10.1182/blood-2005-05-2183] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
GILZ (glucocorticoid-induced leucine zipper), a gene induced by dexamethasone, is involved in control of T lymphocyte activation and apoptosis. In the present study, using Gilz transgenic mice (TG), which overexpress GILZ in the T-cell lineage, we demonstrate that Gilz is implicated in T helper-2 (Th-2) response development. After in vitro stimulation by CD3/CD28 antibodies, peripheral naive CD4+ T cells from TG mice secrete more Th-2 cytokines such as interleukin-4 (IL-4), IL-5, IL-13, and IL-10, and produce less Th-1 cytokines such as interferon-gamma (IFN-gamma) than wild-type mice (WT). CD4+ TG lymphocytes up-regulated Th-2 cytokine expression in the specific response to ovalbumin chicken egg (OVA) antigen immunization. Up-regulation correlated with increased expression of GATA-3 and signal transducer and activator of transcription 6 (Stat6), Th-2-specific transcription factors and decreased expression of T-bet, a transcription factor involved in Th-1 differentiation. Finally, in TG mice delayed-type hypersensitivity, a Th-1 response, was inhibited and bleomycin-induced pulmonary fibrosis, a Th-2 mediated disease, was more severe. These results indicate that Gilz contributes to CD4+ commitment toward a Th-2 phenotype and suggest this contribution may be another mechanism accounting for glucocorticoid immunomodulation.
Collapse
Affiliation(s)
- Lorenza Cannarile
- Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The developmental program that commits a hematopoietic stem cell to the B lymphocyte lineage employs transcriptional regulators to enable the assembly of an antigen receptor complex with a useful specificity and with signalling competence. Once a naive IgM+ B cell is generated, it must correctly integrate signals from the antigen receptor with those from cytokine receptors and co-receptors delivering T cell help. The B cell responds through the regulated expression of genes that implement specific cell expansion and differentiation, secretion of high levels of high-affinity antibody, and generation of long-term memory. The transcriptional regulators highlighted in this chapter are those for which genetic evidence of function in IgM+ B cells in vivo has been provided, often in the form of mutant mice generated by conventional or conditional gene targeting. A critical developmental step is the maturation of bone marrow emigrant "transitional" B cells into the mature, long-lived cells of the periphery, and a number of the transcription factors discussed here impact on this process, yielding B cells with poor mitogenic responses in vitro. For mature B cells, it is clear that not only the nature, but the duration and amplitude of an activating signal are major determinants of the transcription factor activities enlisted, and so the ultimate outcome. The current challenge is the identification of the target genes that are activated to implement the correct response, so that we may more precisely and safely manipulate B cell behavior to predictably and positively influence humoral immune responses.
Collapse
Affiliation(s)
- L M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
45
|
Corn RA, Hunter C, Liou HC, Siebenlist U, Boothby MR. Opposing Roles for RelB and Bcl-3 in Regulation of T-Box Expressed in T Cells, GATA-3, and Th Effector Differentiation. THE JOURNAL OF IMMUNOLOGY 2005; 175:2102-10. [PMID: 16081776 DOI: 10.4049/jimmunol.175.4.2102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4+ T cells with a block in the NF-kappaB signaling pathway exhibit decreases in Th1 responses and diminished nuclear levels of multiple transactivating NF-kappaB/Rel/IkappaB proteins. To determine the lineage-intrinsic contributions of these transactivators to Th differentiation, T cells from mice deficient in specific subunits were cultured in exogenous cytokines promoting either Th1 or Th2 differentiation. RelB-deficient cells exhibited dramatic defects in Th1 differentiation and IFN-gamma production, whereas no consistent defect in either Th1 or Th2 responses was observed with c-Rel-deficient cells. In sharp contrast, Bcl-3-null T cells displayed no defect in IFN-gamma production, but their Th2 differentiation and IL-4, IL-5, and IL-13 production were significantly impaired. The absence of RelB led to a dramatic decrease in the expression of T-box expressed in T cells and Stat4. In contrast, Bcl-3-deficient cells exhibited decreased GATA-3, consistent with evidence that Bcl-3 can transactivate a gata3 promoter. These data indicate that Bcl-3 and RelB exert distinct and opposing effects on the expression of subset-determining transcription factors, suggesting that the characteristics of Th cell responses may be regulated by titrating the stoichiometry of transactivating NF-kappaB/Rel/IkappaB complexes in the nuclei of developing helper effector cells.
Collapse
Affiliation(s)
- Radiah A Corn
- Department of Microbiology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
In order for an immune response to be successful, it must be of the appropriate type and magnitude. Intracellular residing pathogens require a cell-mediated immune response, whereas extracellular pathogens evoke a humoral immune response. T-helper (Th) cells orchestrate the immune response and are divided into two subsets, Th1 and Th2 cells. Here, we discuss the mechanisms of Th2 development with a focus on signal transduction pathways that influence Th2 differentiation.
Collapse
Affiliation(s)
- Kerri A Mowen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Tian W, Nunez R, Cheng S, Ding Y, Tumang J, Lyddane C, Roman C, Liou HC. C-type lectin OCILRP2/Clr-g and its ligand NKRP1f costimulate T cell proliferation and IL-2 production. Cell Immunol 2005; 234:39-53. [PMID: 15963483 DOI: 10.1016/j.cellimm.2005.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/14/2005] [Accepted: 04/25/2005] [Indexed: 01/01/2023]
Abstract
We are reporting the identification of a novel C-type lectin receptor-ligand pair that is involved in T cell costimulation. The receptor, OCILRP2/Clr-g, is rapidly induced following T cell activation and maintained at a substantial level of up to 72 h. The ligand, NKRP1f, is predominantly expressed on dendritic cells (DC). The soluble OCILRP2-Ig blocking protein significantly suppresses specific antigen-stimulated T cell proliferation as well as IL-2 secretion both in vitro and in vivo; conversely, NKRP1f-expressing antigen presenting cells (APC) enhance B7.1/CD28-mediated costimulation for T cell proliferation through interaction with OCILRP2/Clr-g. Our studies reveal a unique functional interaction between two C-type lectins, OCILRP2/Clr-g and NKRP1f, during APC-mediated T cell costimulation and suggest a role for C-type lectins in maintaining T cell response or memory in vivo.
Collapse
Affiliation(s)
- Wenzhi Tian
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Brettingham-Moore KH, Rao S, Juelich T, Shannon MF, Holloway AF. GM-CSF promoter chromatin remodelling and gene transcription display distinct signal and transcription factor requirements. Nucleic Acids Res 2005; 33:225-34. [PMID: 15647505 PMCID: PMC546149 DOI: 10.1093/nar/gki161] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) plays a key role in myeloid cell function and is rapidly and transiently expressed in T cells in response to immune or inflammatory stimuli. Induction of GM-CSF gene expression is accompanied by changes in chromatin structure across the proximal promoter region of the gene. We show that the promoter remodelling and subsequent gene transcription occurs with distinct signal and transcription factor requirements. Activation of the protein kinase C (PKC) signalling pathway is sufficient to induce changes in chromatin structure across the promoter, but both the PKC and calcium signalling pathways are required for efficient gene transcription. Although NFAT transcription factors contribute to GM-CSF gene transcription, they are not required for promoter remodelling. However, the presence of the nuclear factor-κB transcription factor, c-Rel, in the nucleus is strongly correlated with and required for the events of chromatin remodelling.
Collapse
Affiliation(s)
| | - Sudha Rao
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National UniversityACT, Australia
| | - Torsten Juelich
- Division of Molecular Biosciences, John Curtin School of Medical Research, Australian National UniversityACT, Australia
| | - M. Frances Shannon
- Division of Molecular Biosciences, John Curtin School of Medical Research, Australian National UniversityACT, Australia
| | - Adele F. Holloway
- To whom correspondence should be addressed. Tel: +61 0 3 62262670; Fax: +61 03 62262703;
| |
Collapse
|
49
|
Dieckhoff K, Graf P, Beinhauer B, Schwaerzler C, Carballido JM, Neumann C, Zachmann K, Jung T. Deficient translocation of c-Rel is associated with impaired Th1 cytokine production in T cells from atopic dermatitis patients. Exp Dermatol 2005; 14:17-25. [PMID: 15660915 DOI: 10.1111/j.0906-6705.2005.00241.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Decreased production of T helper type 1 (Th1) cytokines, such as interferon-gamma (IFN-gamma) or interleukin-2 (IL-2), is a hallmark of atopic diseases. While accessory signals from antigen-presenting cells may be missing, T cells themselves may be suppressed in their ability to produce substantial amounts of Th1 cytokines. We show, in this study, that T cell receptor (TCR)-activated T cells from atopic dermatitis (AD) patients proliferate less than control T cells and produce lower amounts of IFN-gamma and IL-2, but comparable amounts of IL-4. Because mice lacking the nuclear factor kappa B (NF-kappaB) transcription factors - p65 or c-Rel - show reduced Th1, but undisturbed Th2 responses, we investigated the role of c-Rel and p65 for Th1 cytokine production in T cells from healthy and severe AD patients. TCR-activated primary T cells from healthy donors treated with c-Rel antisense oligonucleotides produced lower levels of IL-2 and IFN-gamma and proliferated less efficiently than the corresponding control T cells. Moreover, transfection of primary T cells with c-Rel or p65 enhanced proliferation and production of IL-2 and IFN-gamma. Nuclear extracts of activated primary T cells from AD donors bound weakly to NF-kappaB-specific oligonucleotides, compared to extracts from healthy control T cells. Western blotting studies revealed that nuclear, but not cytosolic, extracts from T cells of AD patients lacked significant amounts of c-Rel and p65. T cell clones derived from AD patients failed to sufficiently translocate c-Rel and p65 into the nucleus following activation. Thus, impaired nuclear translocation of c-Rel and p65 may determine an impaired Th1 cytokine response in AD.
Collapse
|
50
|
Nakata S, Matsumura I, Tanaka H, Ezoe S, Satoh Y, Ishikawa J, Era T, Kanakura Y. NF-κB Family Proteins Participate in Multiple Steps of Hematopoiesis through Elimination of Reactive Oxygen Species. J Biol Chem 2004; 279:55578-86. [PMID: 15485843 DOI: 10.1074/jbc.m408238200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To examine the roles for NF-kappaB family proteins in hematopoiesis, we first expressed dominant negative Rel/NF-kappaB(IkappaBSR) in a factor-dependent cell line, Ba/F3. Although IkappaBSR neither affected thrombopoietin-dependent nor gp130-mediated growth, it suppressed interleukin-3- and erythropoietin-dependent growth at low concentrations. In addition, IkappaBSR enhanced factor-deprived apoptosis through the accumulation of reactive oxygen species (ROS). When expressed in normal hematopoietic stem/progenitor cells, IkappaBSR induced apoptosis even in the presence of appropriate cytokines by accumulating ROS. We also expressed IkappaBSR in an inducible fashion at various stages of hematopoiesis using the OP9 system, in which hematopoietic cells are induced to develop from embryonic stem cells. When IkappaBSR was expressed at the stage of Flk-1(+) cells (putative hemangioblasts), IkappaBSR inhibited the development of primitive hematopoietic progenitor cells by inducing apoptosis through the ROS accumulation. Furthermore, when IkappaBSR was expressed after the development of hematopoietic progenitor cells, it inhibited their terminal differentiation toward erythrocytes, megakaryocytes, and granulocytes by inducing apoptosis through the ROS accumulation. These results indicate that NF-kappaB is required for preventing apoptosis at multiple steps of hematopoiesis by eliminating ROS.
Collapse
Affiliation(s)
- Soichi Nakata
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|