1
|
Gui Z, Al Moussawy M, Sanders SM, Abou-Daya KI. Innate Allorecognition in Transplantation: Ancient Mechanisms With Modern Impact. Transplantation 2024; 108:1524-1531. [PMID: 38049941 PMCID: PMC11188633 DOI: 10.1097/tp.0000000000004847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2023]
Abstract
Through the effective targeting of the adaptive immune system, solid organ transplantation became a life-saving therapy for organ failure. However, beyond 1 y of transplantation, there is little improvement in transplant outcomes. The adaptive immune response requires the activation of the innate immune system. There are no modalities for the specific targeting of the innate immune system involvement in transplant rejection. However, the recent discovery of innate allorecognition and innate immune memory presents novel targets in transplantation that will increase our understanding of organ rejection and might aid in improving transplant outcomes. In this review, we look at the latest developments in the study of innate allorecognition and innate immune memory in transplantation.
Collapse
Affiliation(s)
- Zeping Gui
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Mouhamad Al Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Steven M. Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Khodor I. Abou-Daya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
2
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Zhang H, Gao A, Liu Q, Zhang F, Wang S, Chen X, Shi W, Zhang Y, Liu Q, Zheng Y, Sun Y. ILT4 reprograms glucose metabolism to promote tumor progression in triple-negative breast cancer. J Cell Sci 2023; 136:jcs260964. [PMID: 37622462 DOI: 10.1242/jcs.260964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and poorly treated subtype of breast cancer. Identifying novel drivers and mechanisms for tumor progression is essential for precise targeted therapy of TNBC. Immunoglobulin-like transcript 4 (ILT4; also known as LILRB2) is a classic myeloid suppressor for their activation and immune response. Our recent results found that ILT4 is also highly expressed in lung cancer cells, where it has a role in promoting immune evasion and thus tumor formation. However, the expression and function of ILT4 in breast cancer remains elusive. Here, using our patient cohort and public database analysis, we found that TNBC displayed the most abundant ILT4 expression among all breast cancer subtypes. Functionally, enriched ILT4 promoted TNBC cell proliferation, migration and invasion in vitro, as well as tumor growth and metastasis in vivo. Further mechanistic analysis revealed that ILT4 reprogrammed aerobic glycolysis of tumor cells via AKT-mTOR signaling-mediated glucose transporter 3 (GLUT3; also known as SLC2A3) and pyruvate kinase muscle 2 (PKM2, an isoform encoded by PKM) overexpression. ILT4 inhibition in TNBC reduced tumor progression and GLUT3 and PKM2 expression in vivo. Our study identified a novel driver for TNBC progression and proposed a promising strategy to combat TNBC by targeting ILT4.
Collapse
Affiliation(s)
- Haiqin Zhang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013 Shandong, P. R. China
- Department of Oncology, Central hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
| | - Aiqin Gao
- Department of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117 Shandong, P. R. China
| | - Qiaohong Liu
- Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
| | - Fang Zhang
- Department of Oncology, Central hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
| | - Shuyun Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Xiaozheng Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Wenjing Shi
- Jinan Central Hospital, Shandong University, Jinan, 250013 Shandong, P. R. China
| | - Ye Zhang
- Department of Oncology, Jinan Central Hospital, Weifang Medical University, Weifang, 250013 Shandong, P. R. China
| | - Qian Liu
- Department of Oncology, Jinan Central Hospital, Weifang Medical University, Weifang, 250013 Shandong, P. R. China
| | - Yan Zheng
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
| | - Yuping Sun
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
- Phase I Clinical Research Center, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Jinan, 250117 Shandong, P. R. China
| |
Collapse
|
4
|
Zhang M, Yang J, Zhang J, Huang C, Liu H, Zhang P, Zhai Y, Liu L, Yang J. Research progress of B subfamily of leucocyte immunoglobulin-like receptors in inflammation. Int J Immunogenet 2023; 50:107-116. [PMID: 37038910 DOI: 10.1111/iji.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Leucocyte immunoglobulin-like receptors subfamily B (LILRB) belongs to the type I transmembrane glycoproteins, which is the immunosuppressive receptor. LILRBs are widely expressed in bone marrow cells, hematopoietic stem cells, nerve cells and other body cells. Studies have found that LILRBs receptor can bind to a variety of ligands and has a variety of biological functions such as regulating inflammatory response, immune tolerance and cell differentiation. Inflammatory reaction plays a vital role in resisting microorganisms. The function of inhibitory immune receptors can recognize the signs of infection and promote the function of anti-microbial effect. The inflammatory response must be strictly regulated to prevent excessive inflammation and tissue damage. Therefore, it is of general interest to understand the role of LILRBs in the inflammatory response. Because they can inhibit the anti-microbial response of neutrophils, some human pathogens use these receptors to escape immunity. This article reviews the biological role of LILRBs in the inflammatory response. We focus on the known ligands of LILRBs, their different roles after binding with ligands, and how these receptors help to form neutrophil responses during infection. Recent studies have shown that LILRBs recruit phosphatases through intracellular tyrosine-based immunoreceptor inhibitory motifs to negatively regulate immune activation, thereby transmitting inflammation-related signals, suggesting that LILRBs may be an ideal target for the treatment of inflammatory diseases. Here, we describe in detail the regulation of LILRBs on the inflammatory response, its signal transduction mode in inflammation, and the progress in the treatment of inflammatory diseases, providing a reference for further research.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Peiyue Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Li Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| |
Collapse
|
5
|
Jelinek AL, Futas J, Burger PA, Horin P. Comparative genomics of the Leukocyte Receptor Complex in carnivores. Front Immunol 2023; 14:1197687. [PMID: 37234165 PMCID: PMC10206138 DOI: 10.3389/fimmu.2023.1197687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Background The mammalian Leukocyte Receptor Complex (LRC) chromosomal region may contain gene families for the killer cell immunoglobulin-like receptor (KIR) and/or leukocyte immunoglobulin-like receptor (LILR) collections as well as various framing genes. This complex region is well described in humans, mice, and some domestic animals. Although single KIR genes are known in some Carnivora, their complements of LILR genes remain largely unknown due to obstacles in the assembly of regions of high homology in short-read based genomes. Methods As part of the analysis of felid immunogenomes, this study focuses on the search for LRC genes in reference genomes and the annotation of LILR genes in Felidae. Chromosome-level genomes based on single-molecule long-read sequencing were preferentially sought and compared to representatives of the Carnivora. Results Seven putatively functional LILR genes were found across the Felidae and in the Californian sea lion, four to five genes in Canidae, and four to nine genes in Mustelidae. They form two lineages, as seen in the Bovidae. The ratio of functional genes for activating LILRs to inhibitory LILRs is slightly in favor of inhibitory genes in the Felidae and the Canidae; the reverse is seen in the Californian sea lion. This ratio is even in all of the Mustelidae except the Eurasian otter, which has a predominance of activating LILRs. Various numbers of LILR pseudogenes were identified. Conclusions The structure of the LRC is rather conservative in felids and the other Carnivora studied. The LILR sub-region is conserved within the Felidae and has slight differences in the Canidae, but it has taken various evolutionary paths in the Mustelidae. Overall, the process of pseudogenization of LILR genes seems to be more frequent for activating receptors. Phylogenetic analysis found no direct orthologues across the Carnivora which corroborate the rapid evolution of LILRs seen in mammals.
Collapse
Affiliation(s)
- April L. Jelinek
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno (VETUNI), Brno, Czechia
| | - Jan Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno (VETUNI), Brno, Czechia
- Research Group Animal Immunogenomics, Central European Institute of Technology (CEITEC) VETUNI, Brno, Czechia
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna (VETMEDUNI), Vienna, Austria
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno (VETUNI), Brno, Czechia
- Research Group Animal Immunogenomics, Central European Institute of Technology (CEITEC) VETUNI, Brno, Czechia
| |
Collapse
|
6
|
Dave BP, Shah KC, Shah MB, Chorawala MR, Patel VN, Shah PA, Shah GB, Dhameliya TM. Unveiling the modulation of Nogo receptor in neuroregeneration and plasticity: Novel aspects and future horizon in a new frontier. Biochem Pharmacol 2023; 210:115461. [PMID: 36828272 DOI: 10.1016/j.bcp.2023.115461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Multiple Sclerosis, Hereditary Spastic Paraplegia, and Amyotrophic Lateral Sclerosis have emerged as the most dreaded diseases due to a lack of precise diagnostic tools and efficient therapies. Despite the fact that the contributing factors of NDs are still unidentified, mounting evidence indicates the possibility that genetic and cellular changes may lead to the significant production of abnormally misfolded proteins. These misfolded proteins lead to damaging effects thereby causing neurodegeneration. The association between Neurite outgrowth factor (Nogo) with neurological diseases and other peripheral diseases is coming into play. Three isoforms of Nogo have been identified Nogo-A, Nogo-B and Nogo-C. Among these, Nogo-A is mainly responsible for neurological diseases as it is localized in the CNS (Central Nervous System), whereas Nogo-B and Nogo-C are responsible for other diseases such as colitis, lung, intestinal injury, etc. Nogo-A, a membrane protein, had first been described as a CNS-specific inhibitor of axonal regeneration. Several recent studies have revealed the role of Nogo-A proteins and their receptors in modulating neurite outgrowth, branching, and precursor migration during nervous system development. It may also modulate or affect the inhibition of growth during the developmental processes of the CNS. Information about the effects of other ligands of Nogo protein on the CNS are yet to be discovered however several pieces of evidence have suggested that it may also influence the neuronal maturation of CNS and targeting Nogo-A could prove to be beneficial in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Maitri B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Vishvas N Patel
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Palak A Shah
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar 380023, Gujarat, India
| | - Gaurang B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
7
|
New Targets for Antiviral Therapy: Inhibitory Receptors and Immune Checkpoints on Myeloid Cells. Viruses 2022; 14:v14061144. [PMID: 35746616 PMCID: PMC9230063 DOI: 10.3390/v14061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
Immune homeostasis is achieved by balancing the activating and inhibitory signal transduction pathways mediated via cell surface receptors. Activation allows the host to mount an immune response to endogenous and exogenous antigens; suppressive modulation via inhibitory signaling protects the host from excessive inflammatory damage. The checkpoint regulation of myeloid cells during immune homeostasis raised their profile as important cellular targets for treating allergy, cancer and infectious disease. This review focuses on the structure and signaling of inhibitory receptors on myeloid cells, with particular attention placed on how the interplay between viruses and these receptors regulates antiviral immunity. The status of targeting inhibitory receptors on myeloid cells as a new therapeutic approach for antiviral treatment will be analyzed.
Collapse
|
8
|
Abstract
Checkpoint blockade therapies that target inhibitory receptors on T cells have revolutionized clinical oncology. Antibodies targeting CTLA-4 or the PD-1/PD-L1 axis are now successfully used alone or in combination with chemotherapy for numerous tumor types. Despite the clinical success of checkpoint blockade therapies, tumors exploit multiple mechanisms to escape or subvert the anti-tumor T cell response. Within the tumor microenvironment, tumor-associated macrophages (TAM) can suppress T cell responses and facilitate tumor growth in various ways, ultimately debilitating clinical responses to T cell checkpoint inhibitors. There is therefore significant interest in identifying biologicals and drugs that target immunosuppressive TAM within the tumor microenvironment and can be combined with immune checkpoint inhibitors. Here we review approaches that are currently being evaluated to convert immunosuppressive TAM into immunostimulatory macrophages that promote T cell responses and tumor elimination. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment that impact anti-tumor immune responses and susceptibility to checkpoint blockade. TAMs are very heterogeneous and can be either immunosuppressive or immunostimulatory. Here, Molgora and Colonna review current strategies that aim to reprogram TAMs to enhance rather than inhibit immune responses.
Collapse
|
9
|
Liu B, Cheng W, Cheng D, Pu J, Nie Z, Xia C, Chen Y, Yang C. PirB functions as an intrinsic suppressor in hippocampal neural stem cells. Aging (Albany NY) 2021; 13:16062-16071. [PMID: 34120891 PMCID: PMC8266311 DOI: 10.18632/aging.203134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/18/2021] [Indexed: 12/05/2022]
Abstract
Neural stem cells play pivotal roles during prenatal development and throughout life. Here, we report that Paired immunoglobulin-like receptor B (PirB) functions as a suppressor during brain neurogenesis in the adult mouse. PirB expression increased with age during development, and its deficiency promoted neural stem cell proliferation and differentiation in vivo and in vitro. Furthermore, we detected an increase in Type 1 neural stem cells in PirB-deficient mice compared to their wild-type littermates. PirB deficiency promoted stemness marker gene expression of Sox2 and KLF4 by activating Akt1 phosphorylation. These findings suggest that PirB inhibits the self-renewal and differentiation capacities of neural stem cells. Thus, PirB may have the potential to serve as a therapeutic target for treatment of reduced neurogenesis in adults due to aging or other pathological conditions.
Collapse
Affiliation(s)
- Baiyang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Dating Cheng
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jun Pu
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhi Nie
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Cuifeng Xia
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| |
Collapse
|
10
|
Biological Effects of β-Glucans on Osteoclastogenesis. Molecules 2021; 26:molecules26071982. [PMID: 33915775 PMCID: PMC8036280 DOI: 10.3390/molecules26071982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.
Collapse
|
11
|
Abou-Daya KI, Oberbarnscheidt MH. Innate allorecognition in transplantation. J Heart Lung Transplant 2021; 40:557-561. [PMID: 33958265 DOI: 10.1016/j.healun.2021.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Successful allogeneic transplantation has been made possible by suppressing activation of the adaptive immune system. Current immunosuppressive therapy prevents rejection by targeting T and B cells. Despite this effective treatment, it is the innate immune system, which includes dendritic cells, monocytes, natural killer cells, that is responsible for the initiation of the adaptive immune response. Recent work has described that the innate immune system is capable of recognizing allogeneic nonself and some of the mechanisms of innate allorecognition have been uncovered. Better understanding of the role of the innate immune system in initiation and maintenance of the allo-immune response has potential to lead to better treatment strategies for transplant patients, prolonging allograft survival. Here, we review advances in our understanding of innate allorecognition in transplantation.
Collapse
Affiliation(s)
- Khodor I Abou-Daya
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
12
|
Brooks AJ, Ishikawa M, Fernández-Rojo MA, Vivian JP, Rossjohn J, Waters MJ. Reply. Hepatology 2021; 73:1239. [PMID: 32865232 DOI: 10.1002/hep.31531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Andrew J Brooks
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia.,The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Mayumi Ishikawa
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia.,Center for Endocrinology, Diabetes and ArteriosclerosisNippon Medical School Musashikosugi HospitalKawasakiJapan
| | - Manuel A Fernández-Rojo
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia.,The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia.,Hepatic Fibrosis GroupQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia.,School of MedicineThe University of QueenslandHerston, BrisbaneQLDAustralia.,Hepatic Regenerative Medicine LaboratoryMadrid Institute for Advanced Studies in FoodCEI UAM+CSICMadridSpain
| | - Julian P Vivian
- Department of Biochemistry and Molecular Biology School of Biomedical SciencesMonash UniversityClaytonVicAustralia.,Australian Research Council Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonVicAustralia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology School of Biomedical SciencesMonash UniversityClaytonVicAustralia.,Australian Research Council Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonVicAustralia.,Institute of Infection and ImmunityCardiff University School of MedicineHeath ParkCardiffUnited Kingdom
| | - Michael J Waters
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
13
|
Gao A, Liu X, Lin W, Wang J, Wang S, Si F, Huang L, Zhao Y, Sun Y, Peng G. Tumor-derived ILT4 induces T cell senescence and suppresses tumor immunity. J Immunother Cancer 2021; 9:e001536. [PMID: 33653799 PMCID: PMC7929805 DOI: 10.1136/jitc-2020-001536] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current immunotherapies including checkpoint blockade therapy have limited success rates in certain types of cancers. Identification of alternative checkpoint molecules for the development of effective strategies for tumor immunotherapy is urgently needed. Immunoglobulin-like transcript 4 (ILT4) is an immunosuppressive molecule expressed in both myeloid innate cells and malignant tumor cells. However, the role of tumor-derived ILT4 in regulating cancer biology and tumor immunity remains unclear. METHODS ILT4 expression in tumor cells and patient samples was determined by real-time PCR, flow cytometry, and immunohistochemistry. T cell senescence induced by tumor was evaluated using multiple markers and assays. Moreover, metabolic enzyme and signaling molecule expression and lipid droplets in tumor cells were determined using real-time PCR, western blot and oil red O staining, respectively. Loss-of-function and gain-of-function strategies were used to identify the causative role of ILT4 in tumor-induced T cell senescence. In addition, breast cancer and melanoma mouse tumor models were performed to demonstrate the role of ILT4 as a checkpoint molecule for tumor immunotherapy. RESULTS We reported that ILT4 is highly expressed in human tumor cells and tissues, which is negatively associated with clinical outcomes. Furthermore, tumor-derived ILT4/PIR-B (ILT4 ortholog in mouse) is directly involved in induction of cell senescence in naïve/effector T cells mediated by tumor cells in vitro and in vivo. Mechanistically, ILT4/PIR-B increases fatty acid synthesis and lipid accumulation in tumor cells via activation of MAPK ERK1/2 signaling, resulting in promotion of tumor growth and progression, and induction of effector T cell senescence. In addition, blocking tumor-derived PIR-B can reprogram tumor metabolism, prevent senescence development in tumor-specific T cells, and enhance antitumor immunity in both breast cancer and melanoma mouse models. CONCLUSIONS These studies identify a novel mechanism responsible for ILT4-mediated immune suppression in the tumor microenvironment, and prove a novel concept of ILT4 as a critical checkpoint molecule for tumor immunotherapy.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunosenescence
- Immunotherapy, Adoptive
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Paracrine Communication
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Escape
- Tumor Microenvironment
Collapse
Affiliation(s)
- Aiqin Gao
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Xia Liu
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Jingnan Wang
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
| | - Shuyun Wang
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
| | - Fusheng Si
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Lan Huang
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
14
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Furumaya C, Martinez-Sanz P, Bouti P, Kuijpers TW, Matlung HL. Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Front Immunol 2020; 11:2100. [PMID: 32983165 PMCID: PMC7492657 DOI: 10.3389/fimmu.2020.02100] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, cancer immunotherapies such as checkpoint blockade and adoptive T cell transfer have been a game changer in many aspects and have improved the treatment for various malignancies considerably. Despite the clinical success of harnessing the adaptive immunity to combat the tumor, the benefits of immunotherapy are still limited to a subset of patients and cancer types. In recent years, neutrophils, the most abundant circulating leukocytes, have emerged as promising targets for anti-cancer therapies. Traditionally regarded as the first line of defense against infections, neutrophils are increasingly recognized as critical players during cancer progression. Evidence shows the functional plasticity of neutrophils in the tumor microenvironment, allowing neutrophils to exert either pro-tumor or anti-tumor effects. This review describes the tumor-promoting roles of neutrophils, focusing on their myeloid-derived suppressor cell activity, as well as their role in tumor elimination, exerted mainly via antibody-dependent cellular cytotoxicity. We will discuss potential approaches to therapeutically target neutrophils in cancer. These include strategies in humans to either silence the pro-tumor activity of neutrophils, or to activate or enhance their anti-tumor functions. Redirecting neutrophils seems a promising approach to harness innate immunity to improve treatment for cancer patients.
Collapse
Affiliation(s)
- Charita Furumaya
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Paula Martinez-Sanz
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Panagiota Bouti
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Zhao D, Abou-Daya KI, Dai H, Oberbarnscheidt MH, Li XC, Lakkis FG. Innate Allorecognition and Memory in Transplantation. Front Immunol 2020; 11:918. [PMID: 32547540 PMCID: PMC7270276 DOI: 10.3389/fimmu.2020.00918] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, we have witnessed a decline in the rates of acute rejection without significant improvement in chronic rejection. Current treatment strategies principally target the adaptive immune response and not the innate response. Therefore, better understanding of innate immunity in transplantation and how to target it is highly desirable. Here, we review the latest advances in innate immunity in transplantation focusing on the roles and mechanisms of innate allorecognition and memory in myeloid cells. These novel concepts could explain why alloimmune response do not abate over time and shed light on new molecular pathways that can be interrupted to prevent or treat chronic rejection.
Collapse
Affiliation(s)
- Daqiang Zhao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Khodor I Abou-Daya
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hehua Dai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xian C Li
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Lewis Marffy AL, McCarthy AJ. Leukocyte Immunoglobulin-Like Receptors (LILRs) on Human Neutrophils: Modulators of Infection and Immunity. Front Immunol 2020; 11:857. [PMID: 32477348 PMCID: PMC7237751 DOI: 10.3389/fimmu.2020.00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Neutrophils have a crucial role in defense against microbes. Immune receptors allow neutrophils to sense their environment, with many receptors functioning to recognize signs of infection and to promote antimicrobial effector functions. However, the neutrophil response must be tightly regulated to prevent excessive inflammation and tissue damage, and regulation is achieved by expression of inhibitory receptors that can raise activation thresholds. The leukocyte immunoglobulin-like receptor (LILR) family contain activating and inhibitory members that can up- or down-regulate immune cell activity. New ligands and functions for LILR continue to emerge. Understanding the role of LILR in neutrophil biology is of general interest as they can activate and suppress antimicrobial responses of neutrophils and because several human pathogens exploit these receptors for immune evasion. This review focuses on the role of LILR in neutrophil biology. We focus on the current knowledge of LILR expression on neutrophils, the known functions of LILR on neutrophils, and how these receptors may contribute to shaping neutrophil responses during infection.
Collapse
Affiliation(s)
- Alexander L Lewis Marffy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Alex J McCarthy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Dai H, Lan P, Zhao D, Abou-Daya K, Liu W, Chen W, Friday AJ, Williams AL, Sun T, Chen J, Chen W, Mortin-Toth S, Danska JS, Wiebe C, Nickerson P, Li T, Mathews LR, Turnquist HR, Nicotra ML, Gingras S, Takayama E, Kubagawa H, Shlomchik MJ, Oberbarnscheidt MH, Li XC, Lakkis FG. PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science 2020; 368:1122-1127. [PMID: 32381589 DOI: 10.1126/science.aax4040] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/02/2019] [Accepted: 04/10/2020] [Indexed: 12/18/2022]
Abstract
Immunological memory specific to previously encountered antigens is a cardinal feature of adaptive lymphoid cells. However, it is unknown whether innate myeloid cells retain memory of prior antigenic stimulation and respond to it more vigorously on subsequent encounters. In this work, we show that murine monocytes and macrophages acquire memory specific to major histocompatibility complex I (MHC-I) antigens, and we identify A-type paired immunoglobulin-like receptors (PIR-As) as the MHC-I receptors necessary for the memory response. We demonstrate that deleting PIR-A in the recipient or blocking PIR-A binding to donor MHC-I molecules blocks memory and attenuates kidney and heart allograft rejection. Thus, innate myeloid cells acquire alloantigen-specific memory that can be targeted to improve transplant outcomes.
Collapse
Affiliation(s)
- Hehua Dai
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peixiang Lan
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Daqiang Zhao
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khodor Abou-Daya
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wentao Liu
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Wenhao Chen
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Andrew J Friday
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda L Williams
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tao Sun
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianjiao Chen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven Mortin-Toth
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jayne S Danska
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Chris Wiebe
- Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Nickerson
- Department of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Tengfang Li
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa R Mathews
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hêth R Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew L Nicotra
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Evolutionary Biology and Medicine (CEBaM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eiji Takayama
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Hiromi Kubagawa
- Humoral Immune Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Kurihara Y, Takai T, Takei K. Nogo receptor antagonist LOTUS exerts suppression on axonal growth-inhibiting receptor PIR-B. J Neurochem 2020; 155:285-299. [PMID: 32201946 DOI: 10.1111/jnc.15013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/08/2023]
Abstract
Damaged axons in the adult mammalian central nervous system have a restricted regenerative capacity mainly because of Nogo protein, which is a major myelin-associated axonal growth inhibitor with binding to both receptors of Nogo receptor-1 (NgR1) and paired immunoglobulin-like receptor (PIR)-B. Lateral olfactory tract usher substance (LOTUS) exerts complete suppression of NgR1-mediated axonal growth inhibition by antagonizing NgR1. However, the regulation of PIR-B functions in neurons remains unknown. In this study, protein-protein interactions analyses found that LOTUS binds to PIR-B and abolishes Nogo-binding to PIR-B completely. Reverse transcription-polymerase chain reaction and immunocytochemistry revealed that PIR-B is expressed in dorsal root ganglions (DRGs) from wild-type and Ngr1-deficient mice (male and female). In these DRG neurons, Nogo induced growth cone collapse and neurite outgrowth inhibition, but treatment with the soluble form of LOTUS completely suppressed them. Moreover, Nogo-induced growth cone collapse and neurite outgrowth inhibition in Ngr1-deficient DRG neurons were neutralized by PIR-B function-blocking antibodies, indicating that these Nogo-induced phenomena were mediated by PIR-B. Our data show that LOTUS negatively regulates a PIR-B function. LOTUS thus exerts an antagonistic action on both receptors of NgR1 and PIR-B. This may lead to an improvement in the defective regeneration of axons following injury.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|
20
|
Oliva S, Azouz NP, Stronati L, Rothenberg ME. Recent advances in potential targets for eosinophilic esophagitis treatments. Expert Rev Clin Immunol 2020; 16:421-428. [PMID: 32163308 DOI: 10.1080/1744666x.2020.1742110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Diagnostic and therapeutic strategies in eosinophilic esophagitis (EoE) are constantly evolving. Recently, the improved understanding of EoE pathogenesis has led to identification of a variety of other potential targets that have never been considered before.Areas covered: In September 2019, we performed structured literature searches in Medline and PubMed, Cochrane meta-analyses, and abstracts of international congresses to review new potential therapeutic approaches for EoE.Expert opinion: The advent of omics disciplines has been helping in finding new molecular targets in EoE pathogenesis and may provide future guidance for deep phenotyping of the disease and therefore facilitate the possibility of personalized medicine. Interestingly, these new treatments should be focused on the restoration of epithelial barrier dysfunction, downregulation of specific molecular pathways of eosinophilic inflammation, and finally, prevention of esophageal remodeling. In this review, we highlight the most recent insights in EoE pathogenesis, which open new pathways for developing new therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Salvatore Oliva
- Pediatric Gastroenterology and Liver Unit, Maternal and Child Health Department, Sapienza - University of Rome, Rome, Italy.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza-University of Rome, Rome, Italy
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Understanding regulatory B cells in autoimmune diseases: the case of multiple sclerosis. Curr Opin Immunol 2019; 61:26-32. [PMID: 31445312 DOI: 10.1016/j.coi.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023]
Abstract
The suppressive function of B cells is mediated mostly through their provision of cytokines with anti-inflammatory properties, in particular interleukin-10. This B cell activity has been convincingly described in mice with autoimmune, infectious, as well as malignant diseases, and evidence is accumulating of its relevance in human. This review provides a personal view of this B cell function using multiple sclerosis and its animal model experimental autoimmune encephalomyelitis as representative examples, in an attempt to bridge observations obtained in mice and human, with the goal of providing a coherent transversal framework to further explore this field, and eventually manipulate this B cell function therapeutically.
Collapse
|
22
|
Németh T, Futosi K, Szabó M, Aradi P, Saito T, Mócsai A, Jakus Z. Importance of Fc Receptor γ-Chain ITAM Tyrosines in Neutrophil Activation and in vivo Autoimmune Arthritis. Front Immunol 2019; 10:252. [PMID: 30858848 PMCID: PMC6397848 DOI: 10.3389/fimmu.2019.00252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
Activating Fcγ receptors associated with Fc receptor γ-chain (FcRγ) are critical for mediating neutrophil effector functions in immune complex-mediated autoimmune diseases. FcRγ contains ITAM tyrosines and the in vivo role of these tyrosines has not been defined in neutrophils and arthritis. In this study, the in vivo functions of FcRγ ITAM tyrosines were characterized using wild type and ITAM tyrosine mutant (Y65F/Y76F) transgenic mice crossed to an FcRγ-deficient genetic background. FcRγ-deficient neutrophils showed undetectable cell surface expression of the activating Fcγ receptor IV, defective immune complex-induced superoxide production, degranulation and spreading. Although the re-expression of both the wild type and the ITAM tyrosine mutant (Y65F/Y76F) FcRγ could restore activating Fcγ receptor expression of FcRγ-deficient neutrophils, only the wild type transgenic form could mediate Fcγ receptor-dependent effector functions. In contrast, neutrophils carrying ITAM tyrosine mutant FcRγ were unable to produce superoxide, mediate degranulation and perform active spreading. In addition, our results confirmed the protection of FcRγ-deficient mice from autoimmune arthritis. Importantly, the presence of the wild type FcRγ transgene, in contrast to the ITAM tyrosine mutant transgene, partially reversed autoimmune arthritis development. The reversing effect of the wild type transgene was even more robust when animals carried the wild type transgene in a homozygous form. Collectively, FcRγ ITAM tyrosines play a critical role in the induction of neutrophil effector responses, the initiation and progression of an autoantibody-induced experimental arthritis in vivo, indicating a signaling, rather than just a receptor stabilizing function of the molecule.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Marcell Szabó
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Petra Aradi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Fu Y, Yang Z, Huang J, Cheng X, Wang X, Yang S, Ren L, Lian Z, Han H, Zhao Y. Identification of Two Nonrearranging IgSF Genes in Chicken Reveals a Novel Family of Putative Remnants of an Antigen Receptor Precursor. THE JOURNAL OF IMMUNOLOGY 2019; 202:1992-2004. [PMID: 30770416 DOI: 10.4049/jimmunol.1801305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/22/2019] [Indexed: 11/19/2022]
Abstract
In this study, we identified a pair of nonrearranging VJ-joined Ig superfamily genes, termed putative remnants of an Ag receptor precursor (PRARP) genes, in chicken. Both genes encode a single V-set Ig domain consisting of a canonical J-like segment and a potential immunoreceptor tyrosine-based inhibitory or switch motif in the cytoplasmic region. In vitro experiments showed that both genes were expressed at the cell surface as membrane proteins, and their recombinant products formed a monomer and a disulfide-linked homodimer or a heterodimer. These two genes were mainly expressed in B and T cells and were upregulated in response to stimulation with poly(I:C) in vitro and vaccination in vivo. Orthologs of PRARP have been identified in bony fish, amphibians, reptiles, and other birds, and a V-C1 structure similar to that of Ig or TCR chains was found in all these genes, with the exception of those in avian species, which appear to contain degenerated C1 domains or divergent Ig domains. Phylogenetic analyses suggested that the newly discovered genes do not belong to any known immune receptor family and appear to be a novel gene family. Further elucidation of the functions of PRARP and their origin might provide significant insights into the evolution of the immune system of jawed vertebrates.
Collapse
Affiliation(s)
- Yanbin Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jinwei Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, People's Republic of China; and
| | - Shiping Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhengxing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
24
|
Vlieg HC, Huizinga EG, Janssen BJC. Structure and flexibility of the extracellular region of the PirB receptor. J Biol Chem 2019; 294:4634-4643. [PMID: 30674550 DOI: 10.1074/jbc.ra118.004396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/14/2019] [Indexed: 11/06/2022] Open
Abstract
Murine paired immunoglobulin receptor B (PirB) and its human ortholog leukocyte immunoglobulin-like receptor B2 (LILRB2) are widely expressed inhibitory receptors that interact with a diverse set of extracellular ligands and exert functions ranging from down-regulation of immune responses to inhibition of neuronal growth. However, structural information that could shed light on how PirB interacts with its ligands is lacking. Here, we report crystal structures of the PirB ectodomain; the first full ectodomain structure for a LILR family member, at 3.3-4.5 Å resolution. The structures reveal that PirB's six Ig-like domains are arranged at acute angles, similar to the structures of leukocyte immunoglobulin-like receptor (LILR) and killer-cell immunoglobulin-like receptor (KIR). We observe that this regular arrangement is followed throughout the ectodomain, resulting in an extended zigzag conformation. In two out of the five structures reported here, the repeating zigzag is broken by the first domain that can adopt two alternative orientations. Quantitative binding experiments revealed a 9 μm dissociation constant for PirB-myelin-associated glycoprotein (MAG) ectodomain interactions. Taken together, these structural findings and the observed PirB-MAG interactions are compatible with a model for intercellular signaling in which the PirB extracellular domains, which point away from the cell surface, enable interaction with ligands in trans.
Collapse
Affiliation(s)
- Hedwich C Vlieg
- From Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Eric G Huizinga
- From Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Bert J C Janssen
- From Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
25
|
Abstract
Synapse formation is mediated by a surprisingly large number and wide variety of genes encoding many different protein classes. One of the families increasingly implicated in synapse wiring is the immunoglobulin superfamily (IgSF). IgSF molecules are by definition any protein containing at least one Ig-like domain, making this family one of the most common protein classes encoded by the genome. Here, we review the emerging roles for IgSF molecules in synapse formation specifically in the vertebrate brain, focusing on examples from three classes of IgSF members: ( a) cell adhesion molecules, ( b) signaling molecules, and ( c) immune molecules expressed in the brain. The critical roles for IgSF members in regulating synapse formation may explain their extensive involvement in neuropsychiatric and neurodevelopmental disorders. Solving the IgSF code for synapse formation may reveal multiple new targets for rescuing IgSF-mediated deficits in synapse formation and, eventually, new treatments for psychiatric disorders caused by altered IgSF-induced synapse wiring.
Collapse
Affiliation(s)
- Scott Cameron
- Center for Neuroscience, University of California, Davis, California 95618, USA; ,
| | | |
Collapse
|
26
|
Cellular Receptors of Amyloid β Oligomers (AβOs) in Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19071884. [PMID: 29954063 PMCID: PMC6073792 DOI: 10.3390/ijms19071884] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
It is estimated that Alzheimer’s disease (AD) affects tens of millions of people, comprising not only suffering patients, but also their relatives and caregivers. AD is one of age-related neurodegenerative diseases (NDs) characterized by progressive synaptic damage and neuronal loss, which result in gradual cognitive impairment leading to dementia. The cause of AD remains still unresolved, despite being studied for more than a century. The hallmark pathological features of this disease are senile plaques within patients’ brain composed of amyloid beta (Aβ) and neurofibrillary tangles (NFTs) of Tau protein. However, the roles of Aβ and Tau in AD pathology are being questioned and other causes of AD are postulated. One of the most interesting theories proposed is the causative role of amyloid β oligomers (AβOs) aggregation in the pathogenesis of AD. Moreover, binding of AβOs to cell membranes is probably mediated by certain proteins on the neuronal cell surface acting as AβO receptors. The aim of our paper is to describe alternative hypotheses of AD etiology, including genetic alterations and the role of misfolded proteins, especially Aβ oligomers, in Alzheimer’s disease. Furthermore, in this review we present various putative cellular AβO receptors related to toxic activity of oligomers.
Collapse
|
27
|
ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2018; 1869:278-285. [DOI: 10.1016/j.bbcan.2018.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
|
28
|
Wang J, Zhang Y, Xia J, Cai T, Du J, Chen J, Li P, Shen Y, Zhang A, Fu B, Gao X, Miao F, Zhang J, Teng G. Neuronal PirB Upregulated in Cerebral Ischemia Acts as an Attractive Theranostic Target for Ischemic Stroke. J Am Heart Assoc 2018; 7:JAHA.117.007197. [PMID: 29378731 PMCID: PMC5850238 DOI: 10.1161/jaha.117.007197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Ischemic stroke is a complex disease with multiple etiologies and clinical manifestations. Paired immunoglobulin-like receptor B (PirB), which is originally thought to function exclusively in the immune system, is now also known to be expressed by neurons. A growing number of studies indicate that PirB can inhibit neurite outgrowth and restrict neuronal plasticity. The aim of the study is to investigate whether PirB can be an attractive theranostic target for ischemic stroke. METHODS AND RESULTS First, we investigated the spatial-temporal expression of PirB in multiple ischemic stroke models, including transient middle cerebral artery occlusion, photothrombotic cerebral cortex ischemia, and the neuronal oxygen glucose deprivation model. Then, anti-PirB immunoliposome nanoprobe was developed by thin-film hydration method and investigated its specific targeting in vitro and in vivo. Finally, soluble PirB ectodomain (sPirB) protein delivered by polyethylene glycol-modified nanoliposome was used as a therapeutic reagent for ischemic stroke by blocking PirB binding to its endogenous ligands. These results showed that PirB was significantly upregulated after cerebral ischemic injury in ischemic stroke models. Anti-PirB immunoliposome nanoprobe was successfully developed and specifically bound to PirB in vitro. There was accumulation of anti-PirB immunoliposome nanoprobe in the ischemic hemisphere in vivo. Soluble PirB ectodomains remarkably improved ischemic stroke model recovery by liposomal delivery system. CONCLUSIONS These data indicated that PirB was a significant element in the pathological process of cerebral ischemia. Therefore, PirB may act as a novel theranostic target for ischemic stroke.
Collapse
Affiliation(s)
- Jie Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China.,Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Jing Xia
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Tingting Cai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Jiawei Du
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Jinpeng Chen
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Ping Li
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Bo Fu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xueren Gao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Fenqin Miao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China .,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China
| |
Collapse
|
29
|
Rothe K, Raulien N, Köhler G, Pierer M, Quandt D, Wagner U. Autoimmune arthritis induces paired immunoglobulin-like receptor B expression on CD4 + T cells from SKG mice. Eur J Immunol 2017; 47:1457-1467. [PMID: 28664612 DOI: 10.1002/eji.201646747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 01/17/2023]
Abstract
The chronic, destructive autoimmune arthritis in SKG mice, which closely resembles human rheumatoid arthritis, is the result of self-reactive T cells escaping thymic deletion. Since the inhibitory receptor LIR-1 is up-regulated on auto-reactive T cells in human rheumatoid arthritis, the role of its murine ortholog PIR-B was investigated. Peripheral CD4+ T cells from SKG mice were found to frequently express PIR-B, and this population produces more frequently IL-17 upon in vitro stimulation compared to PIR-B- cells. A much larger fraction of PIR-B+ T cells, however, was found to secret no IL-17, but IFN-γ. With regards to the clinical course of the disease, high frequencies of PIR-B+ CD4+ T cells were found to be associated with a milder course of arthritis, suggesting that the net effect of PIR-B expression is suppression of autoreactive T cells. Our results indicate that overexpression of PIR-B on IL-17-producing SKG CD4+ T cells might represent an effective counter-regulatory mechanism against the destructive potential of those cells. More importantly, a major population of PIR-B+ T cells in SKG mice appears to play an inhibitory role by way of their IFN-γ production, since high frequencies of those cells ameliorate the disease.
Collapse
Affiliation(s)
- Kathrin Rothe
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Leipzig, Germany
| | - Nora Raulien
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Leipzig, Germany
| | | | - Matthias Pierer
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Leipzig, Germany
| | - Dagmar Quandt
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Leipzig, Germany
| | - Ulf Wagner
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Leipzig, Germany
| |
Collapse
|
30
|
Therapeutic application of human leukocyte antigen-G1 improves atopic dermatitis-like skin lesions in mice. Int Immunopharmacol 2017; 50:202-207. [PMID: 28675838 DOI: 10.1016/j.intimp.2017.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022]
Abstract
Human leukocyte antigen (HLA)-G is an immune checkpoint molecule that plays critical roles in immune response and in triggering inhibitory signaling to immune cells such as T cells, natural killer cells, and antigen-presenting cells. Thus, the application of HLA-G can be considered for treating immune response-related inflammatory disorders. We have previously reported that treatment with HLA-G1 and HLA-G2 ameliorates the joint swelling associated with collagen-induced arthritis of DBA/1 mice, an animal model for rheumatoid arthritis. In this study, we further investigated the effects of HLA-G1 on atopic dermatitis (AD), the most common inflammatory skin disorder. AD-like lesions were induced with the extract of the house dust mite Dermatophagoides farinae in NC/Nga mice. Continuous administration of HLA-G1 ameliorated the AD-like skin lesions in the mice. Furthermore, production of immunoglobulin E, interleukin (IL)-13, and IL-17A was significantly reduced in HLA-G1-treated mice, suggesting a Th2/Th17-mediated immune-inhibitory function of HLA-G1 in vivo. Our studies shed light on novel therapeutic strategies with recombinant HLA-G proteins for immune reaction-mediated chronic inflammatory disorders.
Collapse
|
31
|
The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases. Biomed Pharmacother 2017; 91:632-644. [PMID: 28494417 DOI: 10.1016/j.biopha.2017.04.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/08/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
|
32
|
Ukai H, Kawahara A, Hirayama K, Case MJ, Aino S, Miyabe M, Wakita K, Oogi R, Kasayuki M, Kawashima S, Sugimoto S, Chikamatsu K, Nitta N, Koga T, Shigemoto R, Takai T, Ito I. PirB regulates asymmetries in hippocampal circuitry. PLoS One 2017; 12:e0179377. [PMID: 28594961 PMCID: PMC5464656 DOI: 10.1371/journal.pone.0179377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B). By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI) proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB), an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.
Collapse
Affiliation(s)
- Hikari Ukai
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Aiko Kawahara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Keiko Hirayama
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Matthew Julian Case
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Shotaro Aino
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Masahiro Miyabe
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ken Wakita
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ryohei Oogi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Michiyo Kasayuki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shihomi Kawashima
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shunichi Sugimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Kanako Chikamatsu
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Noritaka Nitta
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Tsuneyuki Koga
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Isao Ito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
33
|
Li Y, Sun Z, Cao Q, Chen M, Luo H, Lin X, Xiao F. Role of amyloid β protein receptors in mediating synaptic plasticity. Biomed Rep 2017; 6:379-386. [PMID: 28413635 PMCID: PMC5374942 DOI: 10.3892/br.2017.863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 11/05/2022] Open
Abstract
There are few diseases in modern biomedicine that have garnered as much scientific interest and public concern as Alzheimer's disease (AD). The amyloid hypothesis has become the dominant model of AD pathogenesis; however, the details of the hypothesis are changing over time. Recently, given the increasing recognition, subtle effects of amyloid β protein (Aβ) on synaptic efficacy may be critical to AD progression. Synaptic plasticity is the important neurochemical foundation of learning and memory. Recent studies have identified that soluble Aβ oligomers combine with certain receptors to impair synaptic plasticity in AD, which advanced the amyloid hypothesis. The aim of the present review was to summarize the role of Aβ-relevant receptors in regulating synaptic plasticity and their downstream signaling cascades, which may provide novel insights into the understanding of the pathogenesis of AD and the development of therapeutic strategies to slow down the progression of AD-associated memory decline in the early stages.
Collapse
Affiliation(s)
- Yu Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhongqing Sun
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiaoyu Cao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
34
|
Kang X, Kim J, Deng M, John S, Chen H, Wu G, Phan H, Zhang CC. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016; 15:25-40. [PMID: 26636629 PMCID: PMC4825776 DOI: 10.1080/15384101.2015.1121324] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.
Collapse
Affiliation(s)
- Xunlei Kang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Jaehyup Kim
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Mi Deng
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Samuel John
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Heyu Chen
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Guojin Wu
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hiep Phan
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Cheng Cheng Zhang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
35
|
Ben Baruch-Morgenstern N, Mingler MK, Stucke E, Besse JA, Wen T, Reichman H, Munitz A, Rothenberg ME. Paired Ig-like Receptor B Inhibits IL-13-Driven Eosinophil Accumulation and Activation in the Esophagus. THE JOURNAL OF IMMUNOLOGY 2016; 197:707-14. [PMID: 27324131 DOI: 10.4049/jimmunol.1501873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
Abstract
Eosinophilic esophagitis (EoE) is a Th2 cytokine-associated disease characterized by eosinophil infiltration, epithelial cell hyperplasia, and tissue remodeling. Recent studies highlighted a major contribution for IL-13 in EoE pathogenesis. Paired Ig-like receptor B is a cell surface immune-inhibitory receptor that is expressed by eosinophils and postulated to regulate eosinophil development and migration. We report that Pirb is upregulated in the esophagus after inducible overexpression of IL-13 (CC10-Il13(Tg) mice) and is overexpressed by esophageal eosinophils. CC10-Il13(Tg)/Pirb(-/-) mice displayed increased esophageal eosinophilia and EoE pathology, including epithelial cell thickening, fibrosis, and angiogenesis, compared with CC10-Il13(Tg)/Pirb(+/+) mice. Transcriptome analysis of primary Pirb(+/+) and Pirb(-/-) esophageal eosinophils revealed increased expression of transcripts associated with promoting tissue remodeling in Pirb(-/-) eosinophils, including profibrotic genes, genes promoting epithelial-to-mesenchymal transition, and genes associated with epithelial growth. These data identify paired Ig-like receptor B as a molecular checkpoint in IL-13-induced eosinophil accumulation and activation, which may serve as a novel target for future therapy in EoE.
Collapse
Affiliation(s)
- Netali Ben Baruch-Morgenstern
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel; and
| | - Melissa K Mingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Emily Stucke
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - John A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel; and
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel; and
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
36
|
van Rees DJ, Szilagyi K, Kuijpers TW, Matlung HL, van den Berg TK. Immunoreceptors on neutrophils. Semin Immunol 2016; 28:94-108. [PMID: 26976825 PMCID: PMC7129252 DOI: 10.1016/j.smim.2016.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Neutrophil activities must be tightly controlled to maintain immune homeostasis. Activating and inhibitory receptors balance the outcome of immune cell activation. Immunoreceptors contain Ig-like extracellular domains and signal via ITAMs or ITIMs. Syk or SHP/SHIP mediate downstream signaling after immunoreceptor activation. Targeting immunoreceptors provides opportunities for therapeutic interventions.
Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Dieke J van Rees
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Zhang F, Zheng J, Kang X, Deng M, Lu Z, Kim J, Zhang C. Inhibitory leukocyte immunoglobulin-like receptors in cancer development. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1216-25. [PMID: 26566804 DOI: 10.1007/s11427-015-4925-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/16/2015] [Indexed: 01/21/2023]
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRB1-5) signal through immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their intracellular domains and recruit phosphatases protein tyrosine phosphatase, non-receptor type 6 (PTPN6, SHP-1), protein tyrosine phosphatase, non-receptor type 6 (PTPN6, SHP-2), or Src homology 2 domain containing inositol phosphatase (SHIP) to negatively regulate immune cell activation. These receptors are known to play important regulatory roles in immune and neuronal functions. Recent studies demonstrated that several of these receptors are expressed by cancer cells. Importantly, they may directly regulate development, drug resistance, and relapse of cancer, and the activity of cancer stem cells. Although counterintuitive, these findings are consistent with the generally immune-suppressive and thus tumor-promoting roles of the inhibitory receptors in the immune system. This review focuses on the ligands, expression pattern, signaling, and function of LILRB family in the context of cancer development. Because inhibition of the signaling of certain LILRBs directly blocks cancer growth and stimulates immunity that may suppress tumorigenesis, but does not disturb normal development, LILRB signaling pathways may represent ideal targets for treating hematological malignancies and perhaps other tumors.
Collapse
Affiliation(s)
- FeiFei Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - JunKe Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - XunLei Kang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - Mi Deng
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ZhiGang Lu
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - Jaehyup Kim
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ChengCheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|
38
|
Liu J, Wang Y, Fu W. Axon regeneration impediment: the role of paired immunoglobulin-like receptor B. Neural Regen Res 2015; 10:1338-1342. [PMID: 26487866 PMCID: PMC4590251 DOI: 10.4103/1673-5374.162771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 02/05/2023] Open
Abstract
Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor (NgR), the paired immunoglobulin-like receptor B (PirB) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of NgR and PirB almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. PirB participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. PirB is an inhibitory receptor similar to NgR, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of PirB, and concludes that PirB is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.
Collapse
Affiliation(s)
- Jing Liu
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
| | - Yan Wang
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
- Graduate School, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wei Fu
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
- Graduate School, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
39
|
Kimura T, Endo S, Inui M, Saitoh SI, Miyake K, Takai T. Endoplasmic Protein Nogo-B (RTN4-B) Interacts with GRAMD4 and Regulates TLR9-Mediated Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:5426-36. [PMID: 25917084 DOI: 10.4049/jimmunol.1402006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
Abstract
TLRs are distributed in their characteristic cellular or subcellular compartments to efficiently recognize specific ligands and to initiate intracellular signaling. Whereas TLRs recognizing pathogen-associated lipids or proteins are localized to the cell surface, nucleic acid-sensing TLRs are expressed in endosomes and lysosomes. Several endoplasmic reticulum (ER)-resident proteins are known to regulate the trafficking of TLRs to the specific cellular compartments, thus playing important roles in the initiation of innate immune responses. In this study, we show that an ER-resident protein, Nogo-B (or RTN4-B), is necessary for immune responses triggered by nucleic acid-sensing TLRs, and that a newly identified Nogo-B-binding protein (glucosyltransferases, Rab-like GTPase activators and myotubularins [GRAM] domain containing 4 [GRAMD4]) negatively regulates the responses. Production of inflammatory cytokines in vitro by macrophages stimulated with CpG-B oligonucleotides or polyinosinic:polycytidylic acid was attenuated in the absence of Nogo-B, which was also confirmed in serum samples from Nogo-deficient mice injected with polyinosinic:polycytidylic acid. Although a deficiency of Nogo-B did not change the incorporation or delivery of CpG to endosomes, the localization of TLR9 to endolysosomes was found to be impaired. We identified GRAMD4 as a downmodulator for TLR9 response with a Nogo-B binding ability in ER, because our knockdown and overexpression experiments indicated that GRAMD4 suppresses the TLR9 response and knockdown of Gramd4 strongly enhanced the response in the absence of Nogo-B. Our findings indicate a critical role of Nogo-B and GRAMD4 in trafficking of TLR9.
Collapse
Affiliation(s)
- Toshifumi Kimura
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Masanori Inui
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| |
Collapse
|
40
|
Inui M, Hirota S, Hirano K, Fujii H, Sugahara-Tobinai A, Ishii T, Harigae H, Takai T. Human CD43+ B cells are closely related not only to memory B cells phenotypically but also to plasmablasts developmentally in healthy individuals. Int Immunol 2015; 27:345-55. [PMID: 25744616 DOI: 10.1093/intimm/dxv009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/02/2015] [Indexed: 01/02/2023] Open
Abstract
CD20(+)CD27(+)CD43(+) B (CD43(+) B) cells have been newly defined among PBMCs and proposed to be human B1 cells. However, it is controversial as to whether they are orthologs of murine B1 cells and how they are related to other B-cell populations, particularly CD20(+)CD27(+)CD43(-) memory B cells and CD20(low)CD27(high)CD43(high) plasmablasts. Our objective is to identify phenotypically the position of CD43(+) B cells among peripheral B-lineage cell compartments in healthy donors, with reference to B-cell subsets from patients with systemic lupus erythematosus (SLE). We found that CD43(+) B cells among PBMCs from healthy subjects were indistinguishable phenotypically from memory B cells in terms of surface markers, and spontaneous in vitro Ig and IL-10 secretion capability, but quite different from plasmablasts. However, a moderate correlation was found in the frequency of CD43(+) B cells with that of plasmablasts in healthy donors but not in SLE patients. An in vitro differentiation experiment indicated that CD43(+) B cells give rise to plasmablasts more efficiently than do memory B cells, suggesting that they are more closely related to plasmablasts developmentally than are memory B cells, which is also supported by quantitative PCR analysis of mRNA expression of B-cell and plasma cell signature genes. Thus, we conclude that, in healthy individuals, CD43(+) B cells are closely related not only to memory B cells phenotypically but also to plasmablasts developmentally, although the developmental origin of CD43(+) B cells is not necessarily the same as that of plasmablasts.
Collapse
Affiliation(s)
- Masanori Inui
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Saeko Hirota
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kumiko Hirano
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hiroshi Fujii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akiko Sugahara-Tobinai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Tomonori Ishii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
41
|
Immunoregulatory function of PIR-A/B+ DCs in the inflammatory responses of dextran sodium sulfate-induced colitis. J Gastroenterol 2014; 49:1367-77. [PMID: 24077781 DOI: 10.1007/s00535-013-0879-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/02/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dendritic cells (DCs) may play an important role in forms of inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis. DCs are generally recognized as initiators of acquired immunity and also serve as regulators of both innate and acquired immunity. We used the animal model of colitis induced by dextran sodium sulfate (DSS), and examined whether DCs prepared from the colon show immunoregulatory roles in the termination of DSS-induced colitis. METHODS C57BL/6 mice exposed to DSS for 5 days developed acute colitis. DCs were isolated from the large intestinal lamina propria, and then analyzed for phenotypical, functional, and genetic data. RESULTS Only PIR-A/B(low) conventional DCs (cDCs) were detected in the steady state. However, after the treatment of DSS, PIR-A/B(high) cDCs appeared and gradually increased from day 5 to day 7, at which time the DSS-induced colitis was terminated. Then, allogeneic mixed leukocyte reaction (MLR) was performed. The stimulatory activity of PIR-A/B(high) cDCs obtained on day 7 was very low, and the addition of PIR-A/B(high) cDCs suppressed the T cell proliferation in MLR, indicating the immunoregulatory role of PIR-A/B(high) cDCs. The immunoregulatory role of PIR-A/B(high) cDCs was confirmed by the in vivo transfer experiment, showing their therapeutic effect on DSS-induced colitis. The message level of TGFβi was significantly higher in PIR-A/B(high) cDCs, while that of IFN-γ was highly upregulated in PIR-A/B(low) cDCs, being well in accordance with the fact that PIR-A/B(high) cDCs showed a suppressive function against activated T cells. CONCLUSION PIR-A/B(high) cDCs showed a suppressive function against activated T cells by producing inhibitory cytokines.
Collapse
|
42
|
Leukocyte immunoglobulin-like receptor B1 is critical for antibody-dependent dengue. Proc Natl Acad Sci U S A 2014; 111:2722-7. [PMID: 24550301 DOI: 10.1073/pnas.1317454111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Viruses must evade the host innate defenses for replication and dengue is no exception. During secondary infection with a heterologous dengue virus (DENV) serotype, DENV is opsonized with sub- or nonneutralizing antibodies that enhance infection of monocytes, macrophages, and dendritic cells via the Fc-gamma receptor (FcγR), a process termed antibody-dependent enhancement of DENV infection. However, this enhancement of DENV infection is curious as cross-linking of activating FcγRs signals an early antiviral response by inducing the type-I IFN-stimulated genes (ISGs). Entry through activating FcγR would thus place DENV in an intracellular environment unfavorable for enhanced replication. Here we demonstrate that, to escape this antiviral response, antibody-opsonized DENV coligates leukocyte Ig-like receptor-B1 (LILRB1) to inhibit FcγR signaling for ISG expression. This immunoreceptor tyrosine-based inhibition motif-bearing receptor recruits Src homology phosphatase-1 to dephosphorylate spleen tyrosine kinase (Syk). As Syk is a key intermediate of FcγR signaling, LILRB1 coligation resulted in reduced ISG expression for enhanced DENV replication. Our findings suggest a unique mechanism for DENV to evade an early antiviral response for enhanced infection.
Collapse
|
43
|
Gou Z, Mi Y, Jiang F, Deng B, Yang J, Gou X. PirB is a novel potential therapeutic target for enhancing axonal regeneration and synaptic plasticity following CNS injury in mammals. J Drug Target 2014; 22:365-71. [PMID: 24405091 DOI: 10.3109/1061186x.2013.878939] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A major barrier to axonal regeneration in mammals is the unfavorable extracellular environment that develops following injury to the central nervous system (CNS). In particular, three myelin-associated inhibitory proteins (MAIs) - Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) - are known to inhibit axonal regeneration and functional recovery. These MAIs share a common receptor, glycosylphosphatidylinositol-anchored Nogo receptor (NgR). However, paired immunoglobulin-like receptor B (PirB) - which was originally identified as a receptor for class I major histocompatibility complex (MHCI) in the immune system - is also expressed in neurones and plays a similarly inhibitory role in axonal regeneration and synaptic plasticity following CNS injury through its association with MAIs. Importantly, suppression of PirB activity through antibody antagonism or genetic means can partially relieve the inhibition of neurite outgrowth in vitro and in vivo. In this review, we present the molecular features, expression patterns and known signaling pathways of PirB, and we specifically focus on putative roles for PirB in the CNS and its potential as a target of molecular therapies for enhancing axonal regeneration and synaptic plasticity following CNS injury.
Collapse
Affiliation(s)
- Zhaoyu Gou
- College of Life Science, China West Normal University , Nanchong , China and
| | | | | | | | | | | |
Collapse
|
44
|
Kubagawa H, Kubagawa Y, Jones D, Nasti TH, Walter MR, Honjo K. The old but new IgM Fc receptor (FcμR). Curr Top Microbiol Immunol 2014; 382:3-28. [PMID: 25116093 DOI: 10.1007/978-3-319-07911-0_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IgM is the first Ig isotype to appear during phylogeny, ontogeny and the immune response. The importance of both pre-immune "natural" and antigen-induced "immune" IgM antibodies in immune responses to pathogens and self-antigens has been established by studies of mutant mice deficient in IgM secretion. Effector proteins interacting with the Fc portion of IgM, such as complement and complement receptors, have thus far been proposed, but fail to fully account for the IgM-mediated immune protection and regulation of immune responses. Particularly, the role of the Fc receptor for IgM (FcμR) in such effector functions has not been explored until recently. We have identified an authentic FcμR in humans using a functional cloning strategy and subsequently in mice by RT-PCR and describe here its salient features and the immunological consequences of FcμR deficiency in mice. Since the FcμR we cloned was identical to Toso or Fas inhibitory molecule 3 (FAIM3), there have been spirited debates regarding the real function of FcμR/Toso/FAIM3 and we will also comment on this topic.
Collapse
Affiliation(s)
- Hiromi Kubagawa
- Division of Laboratory Medicine, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35209, USA,
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The CD200:CD200R1 inhibitory signaling pathway has been implicated in playing a prominent role in limiting inflammation in a wide range of inflammatory diseases. CD200R1 signaling inhibits the expression of proinflammatory molecules including tumor necrosis factor, interferons, and inducible nitric oxide synthase in response to selected stimuli. Unsurprisingly, due to the regulatory role that CD200R1 plays in multiple inflammatory pathways, an increasing number of parasitic, bacterial, and viral pathogens exploit this pathway to suppress host defenses. A complete understanding of the pathways regulated by CD200R1 signaling and the diverse mechanisms that pathogens have evolved to manipulate the CD200:CD200R1 pathway can help identify clinical situations where targeting this interaction can be of therapeutic benefit. In this review, we compare CD200R1 to other pathogen-targeted inhibitory receptors and highlight how this signaling pathway is utilized by a diverse number of pathogens and, therefore, may represent a novel targeting strategy for the treatment of infectious diseases.
Collapse
MESH Headings
- Animals
- Antigens, CD/physiology
- Antigens, Surface/physiology
- Extracellular Fluid/immunology
- Extracellular Fluid/microbiology
- Extracellular Fluid/virology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Immunoglobulins/physiology
- Inflammation/genetics
- Inflammation/microbiology
- Inflammation/virology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/virology
- Lectins, C-Type/physiology
- Mice
- Orexin Receptors
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/immunology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/physiology
- Receptors, KIR/administration & dosage
- Receptors, KIR/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Christine A Vaine
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Roy J Soberman
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
46
|
Davidson CL, Cameron LE, Burshtyn DN. The AP-1 transcription factor JunD activates the leukocyte immunoglobulin-like receptor 1 distal promoter. Int Immunol 2013; 26:21-33. [PMID: 24038602 DOI: 10.1093/intimm/dxt038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leukocyte immunoglobulin-like receptor 1 (LILRB1) is an inhibitory receptor that binds classical and non-classical MHC-I as well as UL18, a viral MHC-I homolog. LILRB1 is encoded within the leukocyte receptor complex and is widely expressed on immune cells. Two distinct promoters used differentially by lymphoid and myeloid cells were previously identified, but little is known regarding molecular regulation of each promoter or cell-type-specific usage. Here, we have investigated the transcriptional regulation of human LILRB1 focusing on elements that drive expression in NK cells. We found that while both the distal and proximal promoter regions are active in reporter plasmids in lymphoid and myeloid cells, the proximal promoter is used minimally to transcribe LILRB1 in NK cells compared with monocytes. We defined a 120-bp core region of transcriptional activity in the distal promoter that can bind several factors in NK cell nuclear extracts. Within this region, we investigated overlapping putative AP-1 sites. An inhibitor of JNK decreased LILRB1 transcript in a LILRB1⁺ NK cell line. Upon examining binding of specific AP-1 factors, we found JunD associated with the LILRB1 distal promoter. Finally, depletion of JunD led to a decrease in distal promoter transcript, indicating an activating role for JunD in regulation of LILRB1 transcription. This study presents the first description of regions/factors required for activity of the LILRB1 distal promoter, the first description of a role for JunD in NK cells and suggests a potential mechanism for dynamic regulation of LILRB1 by cytokines.
Collapse
Affiliation(s)
- Chelsea L Davidson
- Department of Medical Microbiology and Immunology, University of Alberta, 6-043 Katz Building, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
47
|
Karo-Atar D, Moshkovits I, Eickelberg O, Königshoff M, Munitz A. Paired immunoglobulin-like receptor-B inhibits pulmonary fibrosis by suppressing profibrogenic properties of alveolar macrophages. Am J Respir Cell Mol Biol 2013; 48:456-64. [PMID: 23258232 DOI: 10.1165/rcmb.2012-0329oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Macrophages are lung-resident cells that play key roles in fibrosis. Surprisingly, pathways that inhibit macrophage functions, especially in idiopathic pulmonary fibrosis (IPF), receive little attention. The cell-surface molecule paired immunoglobulin-like receptor B (PIR-B) can suppress macrophage activation. However, its role in pulmonary fibrosis remains unknown. We sought to define the role of PIR-B in IPF. The expression of PIR-B was assessed (by quantitative PCR and flow cytometry) after bleomycin treatment. Differential cell counts, histopathology, and profibrogenic-mediator expression, for example, collagen, α-smooth muscle actin, resistin-like molecule-α (Relm-α), matrix metalloproteinase (MMP)-12, and tissue inhibitor of metalloproteinase (TIMP)-1, were determined (by ELISA quantitative PCR and flow cytometry) in the lungs of wild-type and Pirb(-/-) mice after bleomycin or IL-4 treatment. Bone marrow-derived wild-type and Pirb(-/-) macrophages were stimulated with IL-4 and assessed for Relm-α and MMP-12 expression. PIR-B was up-regulated in lung myeloid cells after bleomycin administration. Bleomycin-treated Pirb(-/-) mice displayed increased lung histopathology and an increased expression of collagen and of the IL-4-associated profibrogenic markers Relm-α, MMP-12, TIMP-1, and osteopontin, which were localized to alveolar macrophages. Increased profibrogenic mediator expression in Pirb(-/-) mice was not attributable to increased IL-4/IL-13 concentrations, suggesting that PIR-B negatively regulates IL-4-induced macrophage activation. Indeed, IL-4-treated Pirb(-/-) mice displayed increased Relm-α expression and Relm-α(+) macrophage concentrations. IL-4-activated Pirb(-/-) macrophages displayed increased Relm-α and MMP-12 induction. Finally, leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3)/immunoglobulin-like transcript-5, the human PIR-B orthologue, was expressed and up-regulated in lung biopsies from patients with IPF. Our results establish a key role for PIR-B in IPF, likely via the regulation of macrophage activation. Therefore, PIR-B/LILRB3 may offer a possible target for suppressing macrophage profibrogenic activity in IPF.
Collapse
Affiliation(s)
- Danielle Karo-Atar
- Department of Microbiology and Clinical Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
48
|
Akkaya M, Barclay AN. How do pathogens drive the evolution of paired receptors? Eur J Immunol 2013; 43:303-13. [DOI: 10.1002/eji.201242896] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/06/2012] [Accepted: 12/18/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Munir Akkaya
- Sir William Dunn School of Pathology; University of Oxford; Oxford United Kingdom
| | - A. Neil Barclay
- Sir William Dunn School of Pathology; University of Oxford; Oxford United Kingdom
| |
Collapse
|
49
|
Nakayama M, Kurokawa K, Nakamura K, Lee BL, Sekimizu K, Kubagawa H, Hiramatsu K, Yagita H, Okumura K, Takai T, Underhill DM, Aderem A, Ogasawara K. Inhibitory receptor paired Ig-like receptor B is exploited by Staphylococcus aureus for virulence. THE JOURNAL OF IMMUNOLOGY 2012; 189:5903-11. [PMID: 23152562 DOI: 10.4049/jimmunol.1201940] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The innate immune system has developed to acquire a wide variety of pattern-recognition receptors (PRRs) to identify potential pathogens, whereas pathogens have also developed to escape host innate immune responses. ITIM-bearing receptors are attractive targets for pathogens to attenuate immune responses against them; however, the in vivo role of the inhibitory PRRs in host-bacteria interactions remains unknown. We demonstrate in this article that Staphylococcus aureus, a major Gram-positive bacteria, exploits inhibitory PRR paired Ig-like receptor (PIR)-B on macrophages to suppress ERK1/2 and inflammasome activation, and subsequent IL-6 and IL-1β secretion. Consequently, Pirb(-/-) mice infected with S. aureus showed enhanced inflammation and more effective bacterial clearance, resulting in resistance to the sepsis. Screening of S. aureus mutants identified lipoteichoic acid (LTA) as an essential bacterial cell wall component required for binding to PIR-B and modulating inflammatory responses. In vivo, however, an LTA-deficient S. aureus mutant was highly virulent and poorly recognized by macrophages in both wild-type and Pirb(-/-) mice, demonstrating that LTA recognition by PRRs other than PIR-B mediates effective bacterial elimination. These results provide direct evidence that bacteria exploit the inhibitory receptor for virulence, and host immune system counterbalances the infection.
Collapse
Affiliation(s)
- Masafumi Nakayama
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Izawa K, Yamanishi Y, Maehara A, Takahashi M, Isobe M, Ito S, Kaitani A, Matsukawa T, Matsuoka T, Nakahara F, Oki T, Kiyonari H, Abe T, Okumura K, Kitamura T, Kitaura J. The receptor LMIR3 negatively regulates mast cell activation and allergic responses by binding to extracellular ceramide. Immunity 2012; 37:827-39. [PMID: 23123064 DOI: 10.1016/j.immuni.2012.08.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 08/06/2012] [Indexed: 11/24/2022]
Abstract
Mast cells (MCs) are key effector cells in allergic reactions. However, the inhibitory mechanism that prevents excessive activation of MCs remains elusive. Here we show that leukocyte mono-immunoglobulin-like receptor 3 (LMIR3; also called CD300f) is a negative regulator of MC activation in vivo. LMIR3 deficiency exacerbated MC-dependent allergic responses in mice, including anaphylaxis, airway inflammation, and dermatitis. Both physical binding and functional reporter assays via an extracellular domain of LMIR3 showed that several extracellular lipids (including ceramide) and lipoproteins were possible ligands for LMIR3. Importantly, MCs were frequently surrounded by extracellular ceramide in vivo. Upon engagement of high-affinity immunoglobulin E receptor, extracellular ceramide-LMIR3 binding inhibited MC activation via immunoreceptor tyrosine-based inhibitory and switch motifs of LMIR3. Moreover, pretreatment with LMIR3-Fc fusion protein or antibody against either ceramide or LMIR3 interfered with this binding in vivo, thereby exacerbating passive cutaneous anaphylaxis. Thus, the interaction between extracellular ceramide and LMIR3 suppressed MC-dependent allergic responses.
Collapse
Affiliation(s)
- Kumi Izawa
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|