1
|
Ling XX, Chen H, Fu BB, Ruan CS, Pana M, Zhou K, Fang ZR, Shao JT, Zhu FQ, Gao S. Xin-Ji-Er-Kang protects myocardial and renal injury in hypertensive heart failure in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153675. [PMID: 34332285 DOI: 10.1016/j.phymed.2021.153675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Xin-Ji-Er-Kang (XJEK) as a herbal formula of traditional Chinese medicine (TCM) has shown the protective effects on myocardial function as well as renal function in mouse models of myocardial infarction. HYPOTHESIS/PURPOSE We investigated the effects of XJEK on cardiovascular- and renal-function in a heart failure mouse model induced by high salt (HS) and the associated mechanisms. STUDY DESIGN For the purpose of assessing the effects of XJEK on a hypertensive heart failure model, mice were fed with 8% high salt diet. XJEK was administered by oral gavage for 8 weeks. Cardiovascular function parameters, renal function associated biomarkers and XJEK's impact on renin-angiotensin-aldosterone system (RAAS) activation were assessed. To determine the underlying mechanism, the calpain1/junctophilin-2 (JP2)/sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) pathway was further studied in AC16 cells after angiotensin II-challenge or after calpastatin small interfering RNA (siRNA) transfection. RESULTS Mice on HS-diet exhibited hypertensive heart failure along with progressive kidney injury. Similar to fosinopril, XJEK ameliorated hypertension, cardiovascular-and renal- dysfunction in mice of HS-diet group. XJEK inhibited HS-induced activation of RAAS and reversed the abnormal expression pattern of calpain1and JP2 protein in heart tissues. XJEK significantly improved cell viability of angiotensin II-challenged AC16 cells. Moreover, XJEK's impact on calpain1/JP2 pathway was partly diminished in AC16 cells transfected with calpastatin siRNA. CONCLUSION XJEK was found to exert cardiovascular- and renal protection in HS-diet induced heart failure mouse model. XJEK inhibited HS-diet induced RAAS activation by inhibiting the activity and expression of calpain1 and protected the junctional membrane complex (JMC) in cardiomyocytes.
Collapse
Affiliation(s)
- Xin-Xin Ling
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Hua Chen
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Bei-Bei Fu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Cheng-Shao Ruan
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Ming Pana
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Kai Zhou
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Zhi-Rui Fang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Jun-Tang Shao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| | - Feng-Qin Zhu
- Hefei Cancer Hospital, Chinese Academy of Science, Hefei 230032, China.
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
2
|
Xu H, Zhang L, Xu D, Deng W, Yang W, Tang F, Da M. Knockout of calpain-1 protects against high-fat diet-induced liver dysfunction in mouse through inhibiting oxidative stress and inflammation. Food Sci Nutr 2021; 9:367-374. [PMID: 33473299 PMCID: PMC7802557 DOI: 10.1002/fsn3.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
The present study was designed to investigate the significance of calpain-1 in the high-fat diet (HFD)-induced liver dysfunction and to explore the possible mechanism. C57 mice and calpain-1 knockout (KO) mice were fed with standard diet (SD) or HFD, respectively, for 16 weeks. The activities of calpain, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and superoxide dismutase (SOD) in serum and/or liver of mouse were measured. Lipid profiles in the serum and liver were examined. Contents of oxidized low-density lipoprotein (oxLDL), malondialdehyde (MDA), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) in serum or/and liver were detected. The results showed that compared with C57 mice fed with SD, HFD-fed C57 mice showed the increased activities of AST and ALT in the serum, which was decreased in calpain-1 KO mice fed with HFD. In addition, knockout of calpain-1 decreased the contents of oxLDL, MDA, TNF-α, and IL-6, while increased SOD activity, in serum and/or liver. However, knockout of calpain-1 had no effects on lipid profiles in both serum and liver. When fed with SD, all these parameters of C57 and calpain-1 KO mice were comparable except for decreased calpain activity in the liver of calpain-1 KO mice. The results suggested that knockout of calpain-1 protects against HFD-induced liver dysfunction through inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hao Xu
- Department of Oncology SurgeryGansu Provincial People's HospitalLanzhouGansu ProvinceChina
- School of Clinical MedicineNingxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Li Zhang
- Pharmacy DepartmentShaanxi Aerospace HospitalXi'anShaanxi ProvinceChina
| | - Duowen Xu
- Pharmacy DepartmentWuwei Medical AcademyWuweiGansu ProvinceChina
| | - Weibo Deng
- School of Clinical MedicineNingxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Wenbao Yang
- School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansu ProvinceChina
| | - Futian Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular DiseasesLanzhou University Second HospitalLanzouGansu ProvinceChina
| | - Mingxu Da
- Department of Oncology SurgeryGansu Provincial People's HospitalLanzhouGansu ProvinceChina
| |
Collapse
|
3
|
Shimada S, Fukai M, Shibata K, Sakamoto S, Wakayama K, Ishikawa T, Kawamura N, Fujiyoshi M, Shimamura T, Taketomi A. Heavy Water (D 2O) Containing Preservation Solution Reduces Hepatic Cold Preservation and Reperfusion Injury in an Isolated Perfused Rat Liver (IPRL) Model. J Clin Med 2019; 8:jcm8111818. [PMID: 31683811 PMCID: PMC6912838 DOI: 10.3390/jcm8111818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Heavy water (D2O) has many biological effects due to the isotope effect of deuterium. We previously reported the efficacy of D2O containing solution (Dsol) in the cold preservation of rat hearts. Here, we evaluated whether Dsol reduced hepatic cold preservation and reperfusion injury. Methods: Rat livers were subjected to 48-hour cold storage in University of Wisconsin (UW) solution or Dsol, and subsequently reperfused on an isolated perfused rat liver. Graft function, injury, perfusion kinetics, oxidative stress, and cytoskeletal integrity were assessed. Results: In the UW group, severe ischemia and reperfusion injury (IRI) was shown by histopathology, higher liver enzymes leakage, portal resistance, and apoptotic index, oxygen consumption, less bile production, energy charge, and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio (versus control). The Dsol group showed that these injuries were significantly ameliorated (versus the UW group). Furthermore, cytoskeletal derangement was progressed in the UW group, as shown by less degradation of α-Fodrin and by the inactivation of the actin depolymerization pathway, whereas these changes were significantly suppressed in the Dsol group. Conclusion: Dsol reduced hepatic IRI after extended cold preservation and subsequent reperfusion. The protection was primarily due to the maintenance of mitochondrial function, cytoskeletal integrity, leading to limiting oxidative stress, apoptosis, and necrosis pathways.
Collapse
Affiliation(s)
- Shingo Shimada
- Departments of Gastroenterological Surgery I; Hokkaido University Graduate School of Medicine; Kita15-Nishi7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Moto Fukai
- Transplant Surgery, Hokkaido University Graduate School of Medicine; Kita15-Nishi7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Kengo Shibata
- Departments of Gastroenterological Surgery I; Hokkaido University Graduate School of Medicine; Kita15-Nishi7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Sodai Sakamoto
- Departments of Gastroenterological Surgery I; Hokkaido University Graduate School of Medicine; Kita15-Nishi7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Kenji Wakayama
- Departments of Gastroenterological Surgery I; Hokkaido University Graduate School of Medicine; Kita15-Nishi7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Takahisa Ishikawa
- Departments of Gastroenterological Surgery I; Hokkaido University Graduate School of Medicine; Kita15-Nishi7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Norio Kawamura
- Transplant Surgery, Hokkaido University Graduate School of Medicine; Kita15-Nishi7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Masato Fujiyoshi
- Departments of Gastroenterological Surgery I; Hokkaido University Graduate School of Medicine; Kita15-Nishi7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Tsuyoshi Shimamura
- Central Clinical Facilities, Division of Organ Transplantation, Hokkaido University Hospital; Kita14-Nishi5, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Akinobu Taketomi
- Departments of Gastroenterological Surgery I; Hokkaido University Graduate School of Medicine; Kita15-Nishi7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
4
|
Román-Anguiano NG, Correa F, Cano-Martínez A, de la Peña-Díaz A, Zazueta C. Cardioprotective effects of Prolame and SNAP are related with nitric oxide production and with diminution of caspases and calpain-1 activities in reperfused rat hearts. PeerJ 2019; 7:e7348. [PMID: 31392096 PMCID: PMC6673759 DOI: 10.7717/peerj.7348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/25/2019] [Indexed: 01/26/2023] Open
Abstract
Cardiac tissue undergoes changes during ischemia-reperfusion (I-R) that compromise its normal function. Cell death is one of the consequences of such damage, as well as diminution in nitric oxide (NO) content. This signaling molecule regulates the function of the cardiovascular system through dependent and independent effects of cyclic guanosine monophosphate (cGMP). The independent cGMP pathway involves post-translational modification of proteins by S-nitrosylation. Studies in vitro have shown that NO inhibits the activity of caspases and calpains through S-nitrosylation of a cysteine located in their catalytic site, so we propose to elucidate if the regulatory mechanisms of NO are related with changes in S-nitrosylation of cell death proteins in the ischemic-reperfused myocardium. We used two compounds that increase the levels of NO by different mechanisms: Prolame, an amino-estrogenic compound with antiplatelet and anticoagulant effects that induces the increase of NO levels in vivo by activating the endothelial nitric oxide synthase (eNOS) and that has not been tested as a potential inhibitor of apoptosis. On the other hand, S-Nitroso-N-acetylpenicillamine (SNAP), a synthetic NO donor that has been shown to decrease cell death after inducing hypoxia-reoxygenation in cell cultures. Main experimental groups were Control, I-R, I-R+Prolame and I-R+SNAP. Additional groups were used to evaluate the NO action pathways. Contractile function represented as heart rate and ventricular pressure was evaluated in a Langendorff system. Infarct size was measured with 2,3,5-triphenyltetrazolium chloride stain. NO content was determined indirectly by measuring nitrite levels with the Griess reaction and cGMP content was measured by Enzyme-Linked ImmunoSorbent Assay. DNA integrity was evaluated by DNA laddering visualized on an agarose gel and by Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling assay. Activities of caspase-3, caspase-8, caspase-9 and calpain-1 were evaluated spectrophotometrically and the content of caspase-3 and calpain-1 by western blot. S-nitrosylation of caspase-3 and calpain-1 was evaluated by labeling S-nitrosylated cysteines. Our results show that both Prolame and SNAP increased NO content and improved functional recovery in post-ischemic hearts. cGMP-dependent and S-nitrosylation pathways were activated in both groups, but the cGMP-independent pathway was preferentially activated by SNAP, which induced higher levels of NO than Prolame. Although SNAP effectively diminished the activity of all the proteases, a correlative link between the activity of these proteases and S-nitrosylation was not fully established.
Collapse
Affiliation(s)
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiologia Ignacio Chávez, México, México
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiologia Ignacio Chávez, México, México
| | - Aurora de la Peña-Díaz
- Departamento de Biología Molecular, Instituto Nacional de Cardiologia Ignacio Chávez, México, México.,Departamento de Farmacología, Universidad Nacional Autónoma de México, México, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiologia Ignacio Chávez, México, México
| |
Collapse
|
5
|
Calpain silencing alleviates myocardial ischemia-reperfusion injury through the NLRP3/ASC/Caspase-1 axis in mice. Life Sci 2019; 233:116631. [PMID: 31278945 DOI: 10.1016/j.lfs.2019.116631] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022]
Abstract
AIMS Prior to reperfusion, Calpains remain inactive due to the acidic pH and elevated ionic strength in the ischemic myocardium; but Calpain is activated during myocardial reperfusion. The underlying mechanism of Calpain activation in the ischemia-reperfusion (I/R) is yet to be determined. Therefore, the present study aims to investigate the mechanism of Calpain in I/R-induced mice. MAIN METHODS In order to detect the function of Calpain and the NLRP3/ASC/Caspase-1 axis in cardiomyocyte pyroptosis, endoplasmic reticulum (ER) stress and myocardial function, the cardiomyocytes were treated with hypoxia-reoxygenation (H/R), and NLRP3 were silenced, Calpain was overexpressed and Caspase-1 inhibitors were used to determine cardiomyocyte pyroptosis. The results obtained from the cell experiments were then verified with an animal experiment in I/R mice. KEY FINDINGS There was an overexpression in Calpain, ASC, NLRP3, GRP78 and C/EBP homologous protein (CHOP) in cardiomyocytes following H/R. A significant increase was witnessed in lactic acid dehydrogenase (LDH) activity, cardiomyocyte pyroptosis rate, Calpain activity, reactive oxygen species (ROS) concentration, as well as activation of ER stress in cardiomyocytes after H/R. However, opposing results were observed in H/R cardiomyocytes that received siRNA Calpain, siRNA NLRP3 or Caspase-1 inhibitor treatment. Overall, the results obtained from the animal experiment were consistent with the results from the cell experiment. SIGNIFICANCE The silencing of Calpain suppresses the activation of the NLRP3/ASC/Caspase-1 axis, thus inhibiting ER stress in mice and improving myocardial dysfunction induced by I/R, providing a novel therapeutic pathway for I/R.
Collapse
|
6
|
Souchet B, Audrain M, Billard JM, Dairou J, Fol R, Orefice NS, Tada S, Gu Y, Dufayet-Chaffaud G, Limanton E, Carreaux F, Bazureau JP, Alves S, Meijer L, Janel N, Braudeau J, Cartier N. Inhibition of DYRK1A proteolysis modifies its kinase specificity and rescues Alzheimer phenotype in APP/PS1 mice. Acta Neuropathol Commun 2019; 7:46. [PMID: 30885273 PMCID: PMC6421685 DOI: 10.1186/s40478-019-0678-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/14/2019] [Indexed: 01/19/2023] Open
Abstract
Recent evidences suggest the involvement of DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1 A) in Alzheimer's disease (AD). Here we showed that DYRK1A undergoes a proteolytic processing in AD patients hippocampus without consequences on its kinase activity. Resulting truncated forms accumulate in astrocytes and exhibit increased affinity towards STAT3ɑ, a regulator of inflammatory process. These findings were confirmed in APP/PS1 mice, an amyloid model of AD, suggesting that this DYRK1A cleavage is a consequence of the amyloid pathology. We identified in vitro the Leucettine L41 as a compound able to prevent DYRK1A proteolysis in both human and mouse protein extracts. We then showed that intraperitoneal injections of L41 in aged APP/PS1 mice inhibit STAT3ɑ phosphorylation and reduce pro-inflammatory cytokines levels (IL1- β, TNF-ɑ and IL-12) associated to an increased microglial recruitment around amyloid plaques and decreased amyloid-β plaque burden. Importantly, L41 treatment improved synaptic plasticity and rescued memory functions in APP/PS1 mice. Collectively, our results suggest that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. Further evaluation of inhibitors of DYRK1A truncation promises a new therapeutic approach for AD.
Collapse
Affiliation(s)
- Benoît Souchet
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France.
- Université Paris Saclay, Saclay, France.
| | | | - Jean Marie Billard
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julien Dairou
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270, Paris, France
| | - Romain Fol
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France
| | | | - Satoru Tada
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France
| | - Yuchen Gu
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Emmanuelle Limanton
- Laboratoire Sciences Chimique de Rennes, UMR CNRS 6226, Groupe ICMV, Université de Rennes 1, 35042, Rennes, France
| | - François Carreaux
- Laboratoire Sciences Chimique de Rennes, UMR CNRS 6226, Groupe ICMV, Université de Rennes 1, 35042, Rennes, France
| | - Jean-Pierre Bazureau
- Laboratoire Sciences Chimique de Rennes, UMR CNRS 6226, Groupe ICMV, Université de Rennes 1, 35042, Rennes, France
| | - Sandro Alves
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France
| | - Laurent Meijer
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Nathalie Janel
- Sorbonne Paris Cité, Adaptive Functional Biology, Université Paris-Diderot, UMR CNRS, 8251, Paris, France
| | - Jérôme Braudeau
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France.
- CEA, DRF Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France.
| | - Nathalie Cartier
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France.
- Université Paris Saclay, Saclay, France.
- Institute for Brain and Spine (ICM) Hôpital Pitié -Salpêtrière, Université Paris Sorbonne, 47 boulevard de l'Hôpital 75013, Paris, France.
| |
Collapse
|
7
|
Killing Two Angry Birds with One Stone: Autophagy Activation by Inhibiting Calpains in Neurodegenerative Diseases and Beyond. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4741252. [PMID: 30895192 PMCID: PMC6393885 DOI: 10.1155/2019/4741252] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/27/2019] [Indexed: 12/21/2022]
Abstract
Proteolytic machineries execute vital cellular functions and their disturbances are implicated in diverse medical conditions, including neurodegenerative diseases. Interestingly, calpains, a class of Ca2+-dependent regulatory proteases, can modulate the degradational system of autophagy by cleaving proteins involved in this pathway. Moreover, both machineries are common players in many molecular pathomechanisms and have been targeted individually or together, as a therapeutic strategy in experimental setups. In this review, we briefly introduce calpains and autophagy, with their roles in health and disease, and focus on their direct pathologically relevant interplay in neurodegeneration and beyond. The modulation of calpain activity may comprise a promising treatment approach to attenuate the deregulation of these two essential mechanisms.
Collapse
|
8
|
Latour A, Gu Y, Kassis N, Daubigney F, Colin C, Gausserès B, Middendorp S, Paul JL, Hindié V, Rain JC, Delabar JM, Yu E, Arbones M, Mallat M, Janel N. LPS-Induced Inflammation Abolishes the Effect of DYRK1A on IkB Stability in the Brain of Mice. Mol Neurobiol 2019; 56:963-975. [PMID: 29850989 DOI: 10.1007/s12035-018-1113-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Down syndrome is characterized by premature aging and dementia with neurological features that mimic those found in Alzheimer's disease. This pathology in Down syndrome could be related to inflammation, which plays a role in other neurodegenerative diseases. We previously found a link between the NFkB pathway, long considered a prototypical proinflammatory signaling pathway, and the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). DYRK1A is associated with early onset of Alzheimer's disease in Down syndrome patients. Here, we sought to determine the role of DYRK1A on regulation of the NFkB pathway in the mouse brain. We found that over-expression of Dyrk1A (on a C57BL/6J background) stabilizes IκBα protein levels by inhibition of calpain activity and increases cytoplasmic p65 sequestration in the mouse brain. In contrast, Dyrk1A-deficient mice (on a CD1 background) have decreased IκBα protein levels with an increased calpain activity and decreased cytoplasmic p65 sequestration in the brain. Taken together, our results demonstrate a role of DYRK1A in regulation of the NFkB pathway. However, decreased IκBα and DYRK1A protein levels associated with an increased calpain activity were found in the brains of mice over-expressing Dyrk1A after lipopolysaccharide treatment. Although inflammation induced by lipopolysaccharide treatment has a positive effect on calpastatin and a negative effect on DYRK1A protein level, a positive effect on microglial activation is maintained in the brains of mice over-expressing Dyrk1A.
Collapse
Affiliation(s)
- Alizée Latour
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Yuchen Gu
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Nadim Kassis
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Fabrice Daubigney
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Catherine Colin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Blandine Gausserès
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Sandrine Middendorp
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015, Paris, France
| | | | | | - Jean-Maurice Delabar
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Eugene Yu
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Mariona Arbones
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB), 08028, Barcelona, Spain
| | - Michel Mallat
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Nathalie Janel
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France.
- Laboratoire BFA, Université Paris Diderot - Paris 7, Case 7104, 3 rue Marie-Andrée Lagroua Weill Hallé, 75205, Paris Cedex 13, France.
| |
Collapse
|
9
|
Baloula V, Fructuoso M, Kassis N, Gueddouri D, Paul JL, Janel N. Homocysteine-lowering gene therapy rescues signaling pathways in brain of mice with intermediate hyperhomocysteinemia. Redox Biol 2018; 19:200-209. [PMID: 30172984 PMCID: PMC6122394 DOI: 10.1016/j.redox.2018.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/05/2023] Open
Abstract
Hyperhomocysteinemia due to cystathionine beta synthase (CBS) deficiency is associated with diverse cognitive dysfunction. Considering the role of the serine/threonine kinase DYRK1A, not only in developmental defects with life-long structural and functional consequences, but also in multiple neurodegenerative diseases, its protein expression and kinase activity has been analyzed in brain of heterozygous CBS deficient mice and found to be increased. We previously demonstrated that specific liver treatment with an adenovirus expressing Dyrk1A normalizes hepatic DYRK1A level and decreases hyperhomocysteinemia in mice with moderate to intermediate hyperhomocysteinemia. We here use a hepatocyte-specific recombinant adeno-associated viral (AAV) serotype 8-mediated DYRK1A gene therapy (AAV2/8-DYRK1A) to analyze the effect of hepatic Dyrk1A gene transfer on some altered molecular mechanisms in brain of mice with intermediate hyperhomocysteinemia. Our selective hepatic treatment alleviates altered DYRK1A protein level and signaling pathways in brain of mice, the MAPK/ERK and PI3K/Akt pathways initiated by receptor tyrosine kinase, the BDNF dependent TrkB pathway, and NFkB pathway. These results demonstrate the positive effect of AAV2/8-DYRK1A gene transfer on neuropathological and inflammatory processes in brain of mice with intermediate hyperhomocysteinemia.
Collapse
Affiliation(s)
- Vanessa Baloula
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, F-75205 Paris, France
| | - Marta Fructuoso
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, F-75205 Paris, France; Cellular & Systems Neurobiology, Systems Biologyl Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Nadim Kassis
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, F-75205 Paris, France
| | - Dalale Gueddouri
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, F-75205 Paris, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015 Paris, France
| | - Nathalie Janel
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, F-75205 Paris, France.
| |
Collapse
|
10
|
Zazueta C, Buelna-Chontal M, Macías-López A, Román-Anguiano NG, González-Pacheco H, Pavón N, Springall R, Aranda-Frausto A, Bojalil R, Silva-Palacios A, Velázquez-Espejel R, Galvan Arzate S, Correa F. Cytidine-5'-Diphosphocholine Protects the Liver From Ischemia/Reperfusion Injury Preserving Mitochondrial Function and Reducing Oxidative Stress. Liver Transpl 2018; 24:1070-1083. [PMID: 29679463 DOI: 10.1002/lt.25179] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/09/2018] [Accepted: 03/31/2018] [Indexed: 12/25/2022]
Abstract
Cytidine-5'-diphosphocholine (CDP-choline) participates as an intermediary in the synthesis of phosphatidylcholine, an essential component of cellular membranes. Citicoline treatment has shown beneficial effects in cerebral ischemia, but its potential to diminish reperfusion damage in liver has not been explored. In this work, we evaluated the hepatoprotective effect of citicoline and its possible association with inflammatory/oxidative stress and mitochondrial function because they are the main cellular features of reperfusion damage. Ischemia/reperfusion (I/R) in rat livers was performed with the Pringle's maneuver, clamping the 3 elements of the pedicle (hepatic artery, portal vein, and biliary tract) for 30 minutes and then removing the clamp to allow hepatic reperfusion for 60 minutes. The I/R + citicoline group received the compound before I/R. Liver injury was evaluated by measuring aspartate aminotransferase and alanine aminotransferase as well as lactic acid levels in serum; proinflammatory cytokines, proresolving lipid mediators, and nuclear factor kappa B content were determined as indicators of the inflammatory response. Antioxidant effects were evaluated by measuring markers of oxidative stress and antioxidant molecules. Oxygen consumption and the activities of the respiratory chain were used to monitor mitochondrial function. CDP-choline reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT), as well as lactic acid levels in blood samples from reperfused rats. Diminution in tumor necrosis factor alpha (TNF-α) and increase in the proresolving lipid mediator resolvin D1 were also observed in the I/R+citicoline group, in comparison with the I/R group. Oxidative/nitroxidative stress in hepatic mitochondria concurred with deregulation of oxidative phosphorylation, which was associated with the loss of complex III and complex IV activities. In conclusion, CDP-choline attenuates liver damage caused by ischemia and reperfusion by reducing oxidative stress and maintaining mitochondrial function. Liver Transplantation XX XX-XX 2018 AASLD.
Collapse
Affiliation(s)
| | | | | | | | - Héctor González-Pacheco
- Unidad de Cuidados Coronarios, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico
| | | | | | | | | | | | | | - Sonia Galvan Arzate
- Departamento de Neuroquimica, Instituto Nacional de Neurologia y Neurocirugia, Mexico City, Mexico
| | | |
Collapse
|
11
|
Clavien PA, Dutkowski P. Advances in hypothermic perfusion. Liver Transpl 2017; 23:S52-S55. [PMID: 28815993 DOI: 10.1002/lt.24844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Pierre-Alain Clavien
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Abstract
Primary hepatocytes form spheroids under some culture conditions. These spheroids exhibit many tissuelike ultrastructures and retain many liver-specific functions over a long period of time. They are attractive for many applications employing liver cells. The ability to maintain their viability and functions at a reduced temperature to allow for transportation to the site of their application will facilitate their use. Furthermore, with their structural and functional similarity, they could possibly be used as a model system for studying various liver ischemias. The effect of hypothermic treatment was assessed by oxygen consumption rate, ATP, H2O2, and caspase 8 content, as well as albumin and urea synthesis, during and posttreatment. No single outcome variable gives a superlative quantification of hypothermic damage. Taken together, the hypothermic treatment can be seen as increasingly damaging as the temperature decreases from 21°C to 15°C and 4°C. The addition of the chemical protectants glutathione, N-acetyl-L-cystein (NAC), and tauroursodeoxycholic acid (TUDCA) decreased the damaging effect of hypothermic treatment. This protection effect was even more profound when spheroids were preincubated with the protectant for 24 h, and was most prominent at 4°C. The viability of the hypothermically treated hepatocyte spheroids was confirmed by laser scanning confocal microscopy. The method reported provides a means of maintaining spheroids' viability and may allow for their distribution to application sites at a distance.
Collapse
Affiliation(s)
- Pamela H Lai
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132, USA
| | | | | | | |
Collapse
|
13
|
Yu J, Feng Z, Tan L, Pu L, Kong L. Interleukin-11 protects mouse liver from warm ischemia/reperfusion (WI/Rp) injury. Clin Res Hepatol Gastroenterol 2016; 40:562-570. [PMID: 27016892 DOI: 10.1016/j.clinre.2015.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND IL-11 is a multifunctional cytokine that belongs to the IL-6 family. Previous studies have demonstrated that IL-11 has underlying anti-inflammatory and anti-apoptotic properties. In this study, we evaluated the potential effects of IL-11 on mouse liver WI/Rp injury. METHODS For in vivo experiments, mice were randomly divided into four main experimental groups (n=5 each): (1) normal group - anesthesia; (2) sham group- laparotomy; (3) I/R group- liver WI/Rp; and (4) IL-11 pretreatment (500μg/kg, tail vein injection) group- administration of RhIL-11 2h before liver WI/Rp induced in the same manner as in group 3. For in vitro experiments, cells were divided into two groups: (1) H/R group- H/R; and (2) IL-11 pretreatment group- pretreatment with RhIL-11 (2μg/mL for 12h) before the induction of H/R. For both groups, three periods of reoxygenation were examined (2h, 6h, and 12h). RESULTS In the in vivo experiments, IL-11 protected mouse livers from WI/Rp by reducing liver enzyme levels and cellular degeneration. In the in vitro experiments, IL-11 significantly reduced hepatocyte apoptosis. In both the in vivo and in vitro experiments, IL-11 pre-treatment significantly reduced the expression of TNF-α and IL-1β. In addition, NF-κB, a target of IL-11, was suppressed in macrophages after IL-11 pre-treatment. CONCLUSIONS Pre-treatment with IL-11 protects mouse livers from WI/Rp injury by suppressing NF-kB activity.
Collapse
Affiliation(s)
- Jianjun Yu
- Laboratory of Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Zhiwen Feng
- Laboratory of Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Longwei Tan
- Laboratory of Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Liyong Pu
- Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, 210029 Nanjing, China
| | - Lianbao Kong
- Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, 210029 Nanjing, China.
| |
Collapse
|
14
|
Porschen A, Kadaba Srinivasan P, Iwasaki J, Afify M, Tolba RH. Optimal Timing for Venous Systemic Oxygen Persufflation Supplemented with Nitric Oxide Gas in Cold-Stored, Warm Ischemia-Damaged Experimental Liver Grafts. Eur Surg Res 2016; 57:100-10. [DOI: 10.1159/000445682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/21/2016] [Indexed: 11/19/2022]
Abstract
Background/Aim: Worldwide shortage of donor organs has increased the use of donation after cardiac death (DCD). The aim of this study was to analyze the best time point for venous systemic oxygen persufflation (VSOP) supplemented with nitric oxide (NO) gas during the 1st and 24th hour of cold storage (CS) in warm ischemia (WI)-damaged experimental liver grafts. Materials and Methods: Liver grafts (n = 5) were retrieved after 30 min of WI induced by cardiac arrest and CS in histidine-tryptophan-ketoglutarate solution at 4°C. The 1st hour group was immediately persufflated with a VSOP plus NO (VSOP+NO) mixture for 1 h followed by 23 h of static CS (DCD+NO 1st hour). The 24th hour group entailed CS for 23 h followed by 1 h of VSOP+NO persufflation (DCD+NO 24th hour). CS livers without WI but with VSOP served as controls. CS livers with WI represented the fourth group (DCD). Viability of the liver grafts was assessed by normothermic isolated reperfusion for 45 min with oxygenated Krebs-Henseleit buffer. Results: Data are presented as mean ± SEM (control vs. DCD vs. DCD+NO 1st hour vs. DCD+NO 24th hour). After 45 min of reperfusion, the DCD+NO 1st hour group showed significantly lower aspartate aminotransferase (13.4 ± 5.3, 63.2 ± 17.3, 25.6 ± 3.9, and 82.8 ± 27.3 U/l) and lactate dehydrogenase levels (289.4 ± 41.2, 2,139.4 ± 542.7, 577.2 ± 117.2, and 2,429 ± 221.6 U/l). Malondialdehyde levels were significantly abrogated (1.0 ± 0.3, 2.7 ± 1, 1.0 ± 0, and 3.9 ± 1.2 nmol/ml). Significantly higher levels of portal venous pressure were recorded in the DCD+NO 24th hour group (12.0 ± 1, 21.2 ± 3.1, 16.1 ± 1, and 23.2 ± 3.5 mm Hg). NO levels were recorded after 5 min of reperfusion (1.42 ± 0.17, 1.8 ± 0.2, 2.7 ± 0.2, and 2.6 ± 0.1 μmol/l). Bile production levels showed no statistical significance (23.2 ± 3.8, 27.3 ± 1.8, 43.5 ± 18, and 31 ± 2.5 μl/45 min). Conclusion: Our results present the beneficial effects of NO combined with VSOP during the 1st hour of CS of WI-damaged experimental liver grafts.
Collapse
|
15
|
Effect of Target Therapy on the Content of Transcription and Growth Factors, Protein Kinase TOR, and Activity of Intracellular Proteases in Patients with Metastatic Renal Cell Carcinoma. Bull Exp Biol Med 2016; 160:798-801. [PMID: 27165064 DOI: 10.1007/s10517-016-3313-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/20/2022]
Abstract
We analyzed the dynamics of the expression of transcription factors, VEGF and its receptor VEGFR2, serine-threonine protein kinase mTOR and activity of proteasome and calpain in patients with metastatic renal cancer during therapy with tyrosine kinase inhibitor Votrient and mTOR blocker Afinitor. The expression of hypoxic nuclear factor HIF-1α in the tumor tissue decreased during therapy with the target preparations. The decrease of VEGF and its receptor VEGFR2 was observed only in patients treated with mTOR inhibitor. The increase in calpain activity in the tumor tissue was observed in both groups. These findings extend our understanding of the mechanism of action of target anticancer preparations as allow considering the studied markers as predictors in choosing optimal therapy.
Collapse
|
16
|
Zhou H, Jiang C, Gu L, Liu YE, Sun L, Xu Q. Influence of melatonin on IL-1Ra gene and IL-1 expression in rats with liver ischemia reperfusion injury. Biomed Rep 2016; 4:667-672. [PMID: 27284404 PMCID: PMC4887919 DOI: 10.3892/br.2016.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to explore the influence of melatonin (MT) on rats with liver ischemia reperfusion injury (IRI) and its mechanism. A total of 66 male Sprague-Dawley rats were randomly divided into 3 groups: i) Normal control group, ii) ischemia reperfusion group (IR group) and iii) melatonin treatment group (MT group). Rats in the MT group were administered an intraperitoneal injection of MT (10 mg/kg, 1 ml) at 70 and 35 min before ischemia, early reperfusion, and 1 and 2 h after reperfusion, respectively. Blood was removed at the normal time-point (prior to any processes), 35 min before ischemia, 2, 4, 8 and 24 h after reperfusion. Subsequently the rats were sacrificed. The pathological changes of liver tissues, interleukin-1 receptor antagonist (IL-1Ra) gene and IL-1 expression levels were detected. There were no evident differences between the immediate reperfusion and 2 h IR group and MT group. The liver structure injury of the 4, 8 and 24 h MT groups were improved to various differences compared to the corresponding IR group; liver IL-1β of the MT group at 35 min after ischemia, and 2, 4, 8 and 24 h after reperfusion was evidently lower than that of the IR group (P<0.05); IL-1Ra mRNA expression in the 2 h MT group was higher compared to the 2 h IR group by 4.85-fold; and IL-1Ra mRNA expression in the 4 h MT group was higher compared to the 4 h IR group by 9.34-fold. Differences between two groups at other time-points were <2-fold. In conclusion, MT can upregulate IL-1Ra gene expression by reducing generation of IL-1 thus reducing IRI.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Y E Liu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Longci Sun
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Qing Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
17
|
Pais-Morales J, Betanzos A, García-Rivera G, Chávez-Munguía B, Shibayama M, Orozco E. Resveratrol Induces Apoptosis-Like Death and Prevents In Vitro and In Vivo Virulence of Entamoeba histolytica. PLoS One 2016; 11:e0146287. [PMID: 26731663 PMCID: PMC4701480 DOI: 10.1371/journal.pone.0146287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022] Open
Abstract
Entamoeba histolytica causes amoebiasis, an infection that kills 100,000 individuals each year. Metronidazole and its derivatives are currently used against this protozoan, but these drugs present adverse effects on human health. Here, we investigated the effect of resveratrol (a natural compound) on E. histolytica trophozoites viability, as well as its influence on the parasite virulence. Trophozoites growth was arrested by 72 μM resveratrol and the IC50 was determined as 220 μM at 48 h. Cells appeared smaller, rounded and in clusters, with debris-containing vacuoles and with abnormally condensed chromatin. Resveratrol triggered reactive oxygen species production. It caused lipid peroxidation and produced phosphatidylserine externalization and DNA fragmentation this latter evidenced by TUNEL assays. It also provoked an increase of intracellular Ca2+ concentration, activated calpain and decreased superoxide dismutase activity, indicating that an apoptosis-like event occurred; however, autophagy was not detected. Cytopathic activity, phagocytosis, encystment and in vivo virulence were diminished dramatically by pre-incubation of trophozoites with resveratrol, evidencing that resveratrol attenuated the trophozoite virulence in vitro. Interestingly, after the inoculation of virulent trophozoites, animals treated with the drug did not develop or developed very small abscesses. Our findings propose that resveratrol could be an alternative to contend amoebiasis.
Collapse
Affiliation(s)
- Jonnatan Pais-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
- * E-mail:
| |
Collapse
|
18
|
Monroy VS, Flores OM, García CG, Maya YC, Fernández TD, Pérez Ishiwara DG. Calpain-like: A Ca(2+) dependent cystein protease in Entamoeba histolytica cell death. Exp Parasitol 2015; 159:245-51. [PMID: 26496790 DOI: 10.1016/j.exppara.2015.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 09/08/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Entamoeba histolytica programmed cell death (PCD) induced by G418 is characterized by the release of important amounts of intracellular calcium from reservoirs. Nevertheless, no typical caspases have been detected in the parasite, the PCD phenotype is inhibited by the cysteine protease inhibitor E-64. These results strongly suggest that Ca(2+)-dependent proteases could be involved in PCD. In this study, we evaluate the expression and activity of a specific dependent Ca(2+) protease, the calpain-like protease, by real-time quantitative PCR (RTq-PCR), Western blot assays and a enzymatic method during the induction of PCD by G418. Alternatively, using cell viability and TUNEL assays, we also demonstrated that the Z-Leu-Leu-Leu-al calpain inhibitor reduced the rate of cell death. The results demonstrated 4.9-fold overexpression of calpain-like gene 1.5 h after G418 PCD induction, while calpain-like protein increased almost two-fold with respect to basal calpain-like expression after 3 h of induction, and calpain activity was found to be approximately three-fold higher 6 h after treatment compared with untreated trophozoites. Taken together, these results suggest that this Ca(2+)-dependent protease could be involved in the executory phase of PCD.
Collapse
Affiliation(s)
- Virginia Sánchez Monroy
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico; Laboratorio Multidisciplinario de Investigación, Escuela Militar de Graduados de Sanidad, UDEFA, Lomas de San Isidro, DF, CP 11620, Mexico
| | - Olivia Medel Flores
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico
| | - Consuelo Gómez García
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico
| | - Yesenia Chávez Maya
- Facultad de Estudios Superiores Cuautitlán Izcalli, UNAM, Cuautitlán Izcalli, Estado de México CP.54740, Mexico
| | - Tania Domínguez Fernández
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico
| | - D Guillermo Pérez Ishiwara
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico; Centro de Investigación en Ciencia Aplicada. Instituto Politécnico Nacional, Tepetitla de Lardizabal, Tlaxcala, Doctorado en Biotecnología, Red de Investigación en Biotecnología IPN, Mexico.
| |
Collapse
|
19
|
Kondakova IV, Iunusova NV, Spirina LV, Kolomiets LA, Villert AB. [Association of intracellular proteinase activities with the content of locomotor proteins in tissues of primary tumors and metastasis in ovarian cancer]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:735-42. [PMID: 25895370 DOI: 10.1134/s1068162014060089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ability to active movement in extracellular matrix wherein significant role plays remodeling of the cytoskeleton by actin-binding proteins may influence on the metastatic potential of tumor cells. We studied the expression of actin-binding proteins and β-catenin in connection with proteasome and calpain functioning in the tissues of primary tumors and metastases of ovarian cancer. The chymotrypsin-like proteasome activity and calpain activity were shown to be significantly higher in ovarian cancer than in normal tissues. Furthermore, the activity of the proteasome and calpain were significantly higher in the peritoneal metastases in comparison with primary tumors. Correlation analysis showed in the primary tumor tissue the presence of a positive relationship between the activity of calpain and chymotrypsin-like proteasome activity (r = 0.82; p = 0.0005), whereas in metastases this connection was not revealed. Contents of p45 Ser β-catenin and the actin-severing protein gelzolin were decreased in metastases relative to primary tumors. Level of cofilin, functionally similar to gelzolin protein, was significantly higher in metastases compared to primary ovarian tumor tissue. In ovarian cancer significant reduction in the number of the monomer binder protein thymosin-β4 was observed in primary tumors and metastases as compared to normal tissues, but significant differences between the primary tumor and metastases were not observed. In the tissues of primary tumors negative correlations were observed between the chymotrypsin-like activity of the proteasome and the amount of p45 Ser β-catenin and protein Arp3, a member of the Arp2/3 complex. In metastasis negative correlation were revealed between the activity of calpain and content Arp3, cofilin, thymosin. The data obtained suggest the existence of different mechanisms of proteolytic regulation of locomotor proteins in primary tumors and metastases in ovarian cancer.
Collapse
|
20
|
Yunusova NV, Spirina LV, Kondakova IV, Kolomiets LA, Villert AB, Shpileva OV. Expression and activity of proteases in metastasis of ovarian cancer. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014050136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Tolba RH, Fet N, Yonezawa K, Taura K, Nakajima A, Hata K, Okamura Y, Uchinami H, Klinge U, Minor T, Yamaoka Y, Yamamoto Y. Role of preferential cyclooxygenase-2 inhibition by meloxicam in ischemia/reperfusion injury of the rat liver. Eur Surg Res 2014; 53:11-24. [PMID: 24854565 DOI: 10.1159/000362411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia/reperfusion injury (IRI) is one of the major clinical problems in liver and transplant surgery. Livers subjected to warm ischemia in vivo often show a severe dysfunction and the release of numerous inflammatory cytokines and arachidonic acid metabolites. Cyclooxygenase (COX)-2 is the inducible isoform of an intracellular enzyme that converts arachidonic acid into prostaglandins. The aim of the study was to evaluate the effect of COX-2 inhibition and the role of Kupffer cells in IRI of the liver. METHODS Male Wistar rats [250- 280 g body weight (BW)] were anesthetized and subjected to 30-min warm ischemia of the liver (Pringle's maneuver) and 60-min reperfusion after median laparotomy. The I/R group received no additional treatment. In the COX-2 inhibitor (COX-2I) group, the animals received 1 mg/kg BW meloxicam prior to operation. Gadolinium chloride (GdCl3) (10 mg/kg BW) was given 24 h prior to operation in the GdCl3 and GdCl3 + COX-2I groups for the selective depletion of Kupffer cells. The GdCl3 + COX-2I group received both GdCl3 and meloxicam treatment prior to operation. Blood and liver samples were obtained at the end of the experiments for further investigations. RESULTS After 30 min of warm ischemia in vivo, severe hepatocellular damage was observed in the I/R group. These impairments could be significantly prevented by the selective COX-2 inhibition and the depletion of Kupffer cells. Alanine aminotransferase was significantly reduced upon meloxicam and GdCl3 treatment compared to the I/R group: I/R, 3,240 ± 1,262 U/l versus COX-2I, 973 ± 649 U/l, p < 0.001; I/R versus GdCl3, 1,611 ± 600 U/l, p < 0.05, and I/R versus GdCl3 + COX-2I, 1,511 ± 575 U/l, p < 0.01. Plasma levels of tumor necrosis factor alpha (TNF-α) were significantly reduced in the COX-2I treatment group compared to I/R (3.5 ± 1.5 vs. 16.3 ± 11.7 pg/ml, respectively; p < 0.05). Similarly, the amount of TxB2, a marker for COX-2 metabolism, was significantly reduced in the meloxicam treatment groups compared to the I/R group: I/R, 22,500 ± 5,210 pg/ml versus COX-2I, 1,822 ± 938 pg/ml, p < 0.001, and I/R versus GdCl3 + COX-2I, 1,530 ± 907 pg/ml, p < 0.001. All values are given as mean ± SD (n = 6). CONCLUSION These results suggest that the inhibition of COX-2 suppressed the initiation of an inflammatory cascade by attenuating the release of TNF-α, which is an initiator of the inflammatory reaction in hepatic IRI. Therefore, we conclude that preferential inhibition of COX-2 is a possible therapeutic approach against warm IRI of the liver.
Collapse
Affiliation(s)
- René H Tolba
- Division of Surgical Research, University Hospital Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
UW solution improved with high anti-apoptotic activity by S-nitrosated human serum albumin. Nitric Oxide 2013; 30:36-42. [DOI: 10.1016/j.niox.2013.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 11/18/2022]
|
23
|
Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando) 2012; 26:103-14. [PMID: 22459037 DOI: 10.1016/j.trre.2011.10.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion is a major component of injury in vascular occlusion both during liver surgery and during liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms including oxidant stress that contribute to various degrees to the overall organ damage. A large volume of recent research has focused on the use of antioxidants to ameliorate this injury, although results in experimental models have not translated well to the clinic. This review focuses on critical sources and mediators of oxidative stress during hepatic ischemia-reperfusion, the status of current antioxidant interventions, and emerging mechanisms of protection by preconditioning. While recent advances in regulation of antioxidant systems by Nrf2 provide interesting new potential therapeutic targets, an increased focus must be placed on more in-depth mechanistic investigations in hepatic ischemia-reperfusion injury and translational research in order to refine current strategies in disease management.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
24
|
Tian T, Lindell SL, Lam M, Mangino MJ. Ezrin functionality and hypothermic preservation injury in LLC-PK1 cells. Cryobiology 2012; 65:60-7. [PMID: 22554620 DOI: 10.1016/j.cryobiol.2012.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 02/06/2012] [Accepted: 04/12/2012] [Indexed: 12/21/2022]
Abstract
Renal epithelial cells from donor kidneys are susceptible to hypothermic preservation injury, which is attenuated when they over express the cytoskeletal linker protein ezrin. This study was designed to characterize the mechanisms of this protection. Renal epithelial cell lines were created from LLC-PK1 cells, which expressed mutant forms of ezrin with site directed alterations in membrane binding functionality. The study used cells expressing wild type ezrin, T567A, and T567D ezrin point mutants. The A and D mutants have constitutively inactive and active membrane binding conformations, respectively. Cells were cold stored (4 °C) for 6-24 h and reperfused for 1h to simulate transplant preservation injury. Preservation injury was assessed by mitochondrial activity (WST-1) and LDH release. Cells expressing the active ezrin mutant (T567D) showed significantly less preservation injury compared to wild type or the inactive mutant (T567A), while ezrin-specific siRNA knockdown and the inactive mutant potentiated preservation injury. Ezrin was extracted and identified from purified mitochondria. Furthermore, isolated mitochondria specifically bound anti-ezrin antibodies, which were reversed with the addition of exogenous recombinant ezrin. Recombinant wild type ezrin significantly reduced the sensitivity of the mitochondrial permeability transition pore (mPTP) to calcium, suggesting ezrin may modify mitochondrial function. In conclusion, the cytoskeletal linker protein ezrin plays a significant role in hypothermic preservation injury in renal epithelia. The mechanisms appear dependent on the molecule's open configuration (traditional linker functionality) and possibly a novel mitochondrial specific role, which may include modulation of mPTP function or calcium sensitivity.
Collapse
Affiliation(s)
- Tao Tian
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
25
|
Wakayama K, Fukai M, Yamashita K, Kimura T, Hirokata G, Shibasaki S, Fukumori D, Haga S, Sugawara M, Suzuki T, Taniguchi M, Shimamura T, Furukawa H, Ozaki M, Kamiyama T, Todo S. Successful transplantation of rat hearts subjected to extended cold preservation with a novel preservation solution. Transpl Int 2012; 25:696-706. [PMID: 22471391 DOI: 10.1111/j.1432-2277.2012.01469.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Since prolonged cold preservation of the heart deteriorates the outcome of heart transplantation, a more protective preservation solution is required. We therefore developed a new solution, named Dsol, and examined whether Dsol, in comparison to UW, could better inhibit myocardial injury resulting from prolonged cold preservation. Syngeneic heterotopic heart transplantation in Lewis rats was performed after cold preservation with UW or Dsol for 24 or 36 h. In addition to graft survival, myocardial injury, ATP content, and Ca(2+) -dependent proteases activity were assessed in the 24-h preservation group. The cytosolic Ca(2+) concentration of H9c2 cardiomyocytes after 24-h cold preservation was assessed. Dsol significantly improved 7-day graft survival after 36-h preservation. After 24-h preservation, Dsol was associated with significantly faster recovery of ATP content and less activation of calpain and caspase-3 after reperfusion. Dsol diminished graft injury significantly, as revealed by the lower levels of infarction, apoptosis, serum LDH and AST release, and graft fibrosis at 7-day. Dsol significantly inhibited Ca(2+) overload during cold preservation. Dsol inhibited myocardial injury and improved graft survival by suppressing Ca(2+) overload during the preservation and the activation of Ca(2+) -dependent proteases. Dsol is therefore considered a better alternative to UW to ameliorate the outcome of heart transplantation.
Collapse
Affiliation(s)
- Kenji Wakayama
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sergi C, Abdualmjid R, Abuetabh Y. Canine liver transplantation model and the intermediate filaments of the cytoskeleton of the hepatocytes. J Biomed Biotechnol 2012; 2012:131324. [PMID: 22536013 PMCID: PMC3321507 DOI: 10.1155/2012/131324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 01/27/2012] [Indexed: 01/26/2023] Open
Abstract
Liver transplantation has been a successful therapy for liver failure. However, a significant number of recipients suffer from graft dysfunction. Considerably, ischemia and reperfusion (I/R) injury is the most important factor leading to organ dysfunction, although the pathogenesis has not been fully described. I/R injury have several established features that are accompanied by and/or linked to bile duct loss or ductopenia, cholestasis, and biliary ductular proliferations in the posttransplant liver biopsy. However, biliary marker levels increase usually only 5-7 days after transplantation. Intermediate filaments are one of the three cytoskeletal proteins that have a major role in liver protection and maintaining both cellular structure and integrity of eukaryotic cells. We reviewed the canine liver transplantation model as I/R injury model to delineate the intermediate filaments of the cytoskeleton that are probably the determinants in changing the phenotype of hepatocytes to cholangiocytes. Remarkably, this interesting feature seems to occur earlier than frank cholestasis. We speculate that I/R liver injury through a phenotypical switch of the hepatocytes may contribute to the poor outcome of the liver graft.
Collapse
Affiliation(s)
- Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| | | | | |
Collapse
|
27
|
Srinivasan PK, Yagi S, Doorschodt B, Nagai K, Afify M, Uemoto S, Tolba R. Impact of venous systemic oxygen persufflation supplemented with nitric oxide gas on cold-stored, warm ischemia-damaged experimental liver grafts. Liver Transpl 2012; 18:219-25. [PMID: 21987402 DOI: 10.1002/lt.22442] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The increasing shortage of donor organs has led to the increasing use of organs from non-heart-beating donors. We aimed to assess the impact of venous systemic oxygen persufflation (VSOP) supplemented with nitric oxide (NO) gas during the cold storage (CS) of warm ischemia (WI)-damaged experimental liver grafts. Rat livers (n = 5 per group) were retrieved after 30 minutes of WI induced by cardiac arrest (the WI group) and were thereafter preserved for 24 hours by CS in histidine tryptophan ketoglutarate solution. During CS, gaseous oxygen was insufflated via the caval vein with 40 ppm NO (the VSOP-NO group) or without NO (the VSOP group). Cold-stored livers without WI served as controls. Liver viability was assessed after the preservation period by normothermic isolated reperfusion for 45 minutes with oxygenated Krebs-Henseleit buffer. After 45 minutes of reperfusion, the VSOP-NO-treated livers showed significantly lower alanine aminotransferase values than the WI-damaged livers (10.2 ± 0.2 versus 78.2 ± 14.6 IU/L), whereas the control livers showed no differences from the VSOP-NO-treated livers. The mitochondrial enzyme release was lower in the VSOP-NO group (4.0 ± 0.7 IU/L) versus the WI group (18.2 ± 4.9 IU/L). An increased portal vein pressure was observed throughout reperfusion (45 minutes) in the WI group (21.7 ± 0.2 mm Hg) versus the VSOP-NO group (12.2 ± 0.8 mm Hg) and the control group (19.9 ± 0.4 mm Hg). Furthermore, the NO concentration in the perfusate after 5 minutes of reperfusion was highest in the VSOP-NO group. The release of malondialdehyde into the perfusate was significantly reduced in the VSOP-NO group (0.9 ± 0.1 nmol/mL) versus the WI group (31.3 ± 5.3 nmol/mL). In conclusion, the resuscitation of livers after 30 minutes of WI to a level comparable to that of nonischemically damaged livers is possible with VSOP supplemented with NO gas. Moreover, the application of VSOP with NO minimizes the extent of injuries caused by oxygen free radicals during preservation.
Collapse
Affiliation(s)
- Pramod Kadaba Srinivasan
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Stoffels B, Yonezawa K, Yamamoto Y, Schäfer N, Overhaus M, Klinge U, Kalff JC, Minor T, Tolba RH. Meloxicam, a COX-2 inhibitor, ameliorates ischemia/reperfusion injury in non-heart-beating donor livers. ACTA ACUST UNITED AC 2011; 47:109-17. [PMID: 21757922 DOI: 10.1159/000329414] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/17/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND/AIMS Chronic organ donor shortage has led to the consideration to expand the donor pool with livers from non-heart-beating donors (NHBD), although a higher risk of graft dys- or nonfunction is associated with these livers. We examined the effects of selective cyclooxygenase-2 (COX-2) inhibition on hepatic warm ischemia (WI) reperfusion (I/R) injury of NHBD. METHODS Male Wistar rats were used as donors and meloxicam (5 mg/kg body weight) was administered into the preservation solution. Livers were excised after 60 min of WI in situ, flushed and preserved for 24 h at 4°C. Reperfusion was carried out in vitro at a constant flow for 45 min. During reperfusion (5, 15, 30 and 45 min), enzyme release of alanine aminotransferase and glutamate lactate dehydrogenase were measured as well as portal venous pressure, bile production and oxygen consumption. The production of malondialdehyde was quantified and TUNEL staining was performed. Quantitative PCR analyzed COX-2 mRNA. COX-2 immunohistochemistry and TxB(2) detection completed the measurements. RESULTS Meloxicam treatment led to better functional recovery concerning liver enzyme release, vascular resistance and metabolic activity over time in all animals. Oxidative stress and apoptosis were considerably reduced. CONCLUSION Cold storage using meloxicam resulted in significantly better integrity and function of livers retrieved from NHBD. Selective COX-2 inhibition is a new therapeutic approach achieving improved preservation of grafts from NHBD.
Collapse
Affiliation(s)
- B Stoffels
- Department of Gastroenterological Surgery, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fingas CD, Wu S, Gu Y, Wohlschlaeger J, Scherag A, Dahmen U, Paul A, de Groot H, Rauen U. Assessment of a chloride-poor versus a chloride-containing version of a modified histidine-tryptophan-ketoglutarate solution in a rat liver transplantation model. Liver Transpl 2011; 17:650-60. [PMID: 21618685 DOI: 10.1002/lt.22275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent in vitro studies of cold-induced cell injury have revealed the detrimental effects of extracellular chloride on cold-stored isolated rat hepatocytes; however, its influence on endothelial cells is beneficial. To determine which of these effects is predominant in vivo, we tested both a chloride-poor variant of a new histidine-tryptophan-ketoglutarate (HTK)-based preservation solution and a chloride-containing variant in a rat liver transplantation model. The study, which was carried out in a blinded fashion with 7 or 8 rats per group, was divided into 2 parts: (1) a comparison of survival in 3 series under different conditions [different microsurgeons, rat strains, cold ischemia times (3, 12, and 24 hours), and warm ischemia times] and (2) an assessment of the microcirculation (30-90 minutes after reperfusion), laboratory data, bile production, and histology. In each of the survival experiments, a (strong) tendency toward prolonged survival was observed with the new chloride-containing solution (50% versus 12.5%, 75% versus 37.5%, and 100% versus 71.4% [chloride-containing vs. chloride-poor], overall P < 0.05). Additionally, the sinusoidal perfusion rates (83.9% ± 4.0% versus 69.2% ± 10.8%, P < 0.01) and the red blood cell velocities in sinusoids (147.7 ± 26.7 versus 115.5 ± 26.0 μm/second, P < 0.05) and in postsinusoidal venules (332.4 ± 87.3 versus 205.5 ± 53.5 μm/second, P < 0.01) were clearly higher with chloride. Moreover, the serum activities of liver enzymes were slightly reduced (not significantly), and bile production was significantly increased. These results suggest an overall beneficial effect of chloride in HTK-based liver preservation solutions.
Collapse
Affiliation(s)
- Christian D Fingas
- Institute of Physiological Chemistry, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Junnarkar SP, Tapuria N, Mani A, Dijk S, Fuller B, Seifalian AM, Davidson BR. Attenuation of warm ischemia-reperfusion injury in the liver by bucillamine through decreased neutrophil activation and Bax/Bcl-2 modulation. J Gastroenterol Hepatol 2010; 25:1891-9. [PMID: 21092002 DOI: 10.1111/j.1440-1746.2010.06312.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIM Liver transplantation and resection surgery involve a period of ischemia and reperfusion to the liver, which initiates an inflammatory cascade resulting in liver and remote organ injury. Bucillamine is a low molecular weight thiol antioxidant that is capable of rapidly entering cells. We hypothesized that bucillamine acts by replenishing glutathione levels, thus reducing neutrophil activation, modulating Bax/Bcl-2 expression, and subsequently, attenuating the effects of warm ischemia-reperfusion injury (IRI) in the liver. METHODS The effect of bucillamine was studied in a rat model of liver IRI with 45 min of partial (70%) liver ischemia and 3 h of reperfusion. Liver injury was assessed by measuring serum transaminases (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and liver histology. Oxidative stress was quantified by measuring F(2) isoprostane and glutathione levels. Leukocyte adhesion was assessed by intravital microscopy, and inflammatory cytokine response was assessed by measuring serum cytokine-induced neutrophil chemoattractant-1 (CINC-1) levels. Bax and Bcl-2 expression was measured by reverse transcription-polymerase chain reaction. RESULTS The model produced significant liver injury with elevated transaminases and an acute inflammatory response. Bucillamine reduced the liver injury, as indicated by reduced AST (932 ± 200.8 vs 2072.5 ± 511.79, P < 0.05). Bucillamine reduced Bax expression, serum CINC-1 levels, and neutrophil adhesion, and upregulated Bcl-2. However, bucillamine did not affect tissue glutathione levels nor the levels of oxidative stress, as measured by plasma and hepatic F(2) isoprostane levels. CONCLUSIONS Bucillamine reduces warm ischemia-reperfusion in the liver by inhibiting neutrophil activation and modulating Bax/Bcl-2 expression.
Collapse
Affiliation(s)
- Sameer P Junnarkar
- Department of Surgery, Royal Free Hospital and University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
31
|
Nandi N, Sen A, Banerjee R, Kumar S, Kumar V, Ghosh AN, Das P. Hydrogen peroxide induces apoptosis-like death in Entamoeba histolytica trophozoites. Microbiology (Reading) 2010; 156:1926-1941. [DOI: 10.1099/mic.0.034066-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Programmed cell death (PCD) is an essential process in the growth and development of multicellular organisms. However, accumulating evidence indicates that unicellular eukaryotes can also undergo PCD with apoptosis-like features. This study demonstrates that after exposure to 0.8 mM H2O2 for 9 h Entamoeba histolytica presents morphological and biochemical evidence of apoptosis-like death. Morphological characteristics of apoptosis-like death including DNA fragmentation, increased vacuolization, nuclear condensation and cell rounding were observed for H2O2-exposed trophozoites with preservation of membrane integrity. Biochemical alteration in ion fluxes is also a key feature in PCD, and H2O2-exposed trophozoites showed overproduction of reactive oxygen species, increased cytosolic Ca2+ and decreased intracellular pH. Phosphatidylserine was also found to be expressed in the outer leaflet of the plasma membrane of the H2O2-treated trophozoites. Pretreatment with the cysteine protease inhibitor E-64d, the extracellular and intracellular Ca2+ chelators EGTA and BAPTA/AM, and the Ca2+ influx inhibitor verapamil prior to H2O2 exposure abolished DNA fragmentation. The oxidatively stressed trophozoites also showed an increased calpain activity, indicating involvement of Ca2+-dependent calpain-like cysteine proteases in PCD of E. histolytica. A homogeneous caspase assay showed no significant caspase activity, and administration of caspase 1 inhibitor also did not prevent the death phenotype for the oxidatively stressed trophozoites, indicating a caspase-independent apoptosis-like death. Our observations clearly demonstrate that there is a distinct calpain-dependent but caspase-independent pathway for apoptosis-like death in oxidatively stressed E. histolytica trophozoites.
Collapse
Affiliation(s)
- Nilay Nandi
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Abhik Sen
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Rajdeep Banerjee
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Sudeep Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Vikash Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Amar Nath Ghosh
- Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata-700010, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| |
Collapse
|
32
|
Hypothermic Preservation Up-Regulates Calpain Expression and Increases Ubiquitination in Cultured Vascular Endothelial Cells: Influence of Dopamine Pretreatment. J Surg Res 2010; 160:325-32. [DOI: 10.1016/j.jss.2008.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/01/2008] [Accepted: 12/17/2008] [Indexed: 01/10/2023]
|
33
|
Tolba RH, Schildberg FA, Schnurr C, Glatzel U, Decker D, Minor T. Reduced Liver Apoptosis After Venous Systemic Oxygen Persufflation in Non-Heart-Beating Donors. J INVEST SURG 2009; 19:219-27. [PMID: 16835136 DOI: 10.1080/08941930600778198] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Graft injury caused by warm ischemia in livers from non-heart-beating donors (NHBDs) strongly affects posttransplantation outcome and is associated with liver apoptosis, which is mediated by death receptors, such as Fas, a surface receptor of the tumor necrosis factor (TNF)-alpha family. The aim of this study was to test the ability of venous systemic oxygen persufflation (VSOP) to reduce apoptotic changes and Fas activation in the liver after warm ischemic insult in vivo. Livers of male Wistar rats were harvested 30 min after cardiac arrest from non-heart-beating donors (NHBD) with (NHBD + O2) or without (NHBD) application of gaseous oxygen during the cold storage period via the suprahepatic caval vein. After 24 h of storage in University of Wisconsin solution at 4 degrees C, viability of the livers was assessed upon isolated reperfusion in vitro. Conventional signs of tissue damage like enzyme release and bile production showed a significantly elevated nonspecific cell injury in the NHBD group. TUNEL staining revealed increased DNA fragmentation of sinusoidal endothelial cells in the NHBD group and more apoptotic hepatocytes than in the control group. All these alterations could be almost abrogated by the use of VSOP in the NHBD + O2 group. The immunohistochemical staining of Fas antigen expression showed a significantly elevated Fas receptor expression in the NHBD and NHBD + O2 groups, in accord with an eightfold increase of Fas receptor mRNA detected by real-time reverse-transcription polymerase chain reaction (RT-PCR). These results demonstrate that the postischemic apoptotic rate of sinusoidal endothelial cells in NHBD livers can be reduced by the use of VSOP. A significant improvement in liver integrity and viability was obtained with this technique, without influencing the expression of Fas expression.
Collapse
Affiliation(s)
- R H Tolba
- House for Experimental Therapy and Surgical Research Division, Department of Surgery, University of Bonn, Sigmund Freud Strasse 25, 53127 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Tian T, Lindell SL, Henderson SC, Mangino MJ. Protective effects of ezrin on cold storage preservation injury in the pig kidney proximal tubular epithelial cell line (LLC-PK1). Transplantation 2009; 87:1488-96. [PMID: 19461485 PMCID: PMC2745206 DOI: 10.1097/tp.0b013e3181a43f18] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Renal damage caused by cold preservation and warm reperfusion has been well documented and involves tissue edema, cell swelling, ATP depletion, calcium toxicity, and oxidative stress. However, more common proximal mechanisms have not been identified, which may limit the development of effective clinical treatment strategies. Previous work indicates that many cytoskeletal structures are affected by cold preservation and reperfusion, including membrane-rich ezrin-associated complexes. The aim of this study was to investigate whether the sublamellar cytoskeletal protein ezrin is causally involved in cold preservation injury in renal tubule epithelial cells. METHODS We created a stably transfected cell line (LLC-EZ) using the pig kidney proximal tubular epithelial cell line (LLC-PK1), which constitutively overexpresses wild-type ezrin. These cells were cold stored in University of Wisconsin Solution and reperfused in vitro to model renal tubule preservation injury, which was assessed by biochemical, metabolic, functional, and structural endpoints. RESULTS Overexpression of ezrin increased cell viability (lactate dehydrogenase release), mitochondrial activity (ATP synthesis, dehydrogenase activity, and inner mitochondrial membrane potential), and protected the structure of cell membrane microvilli and mitochondria after cold storage preservation injury. Reperfusion-induced apoptosis was also significantly reduced in LLC-EZ cells overexpressing ezrin. CONCLUSIONS Enhanced ezrin expression protects tubule epithelial cells from cold storage preservation injury, possibly by membrane or mitochondrial mechanisms.
Collapse
Affiliation(s)
- Tao Tian
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | - Susanne L. Lindell
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
- Department of Anesthesiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | - Scott C. Henderson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | - Martin J. Mangino
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
- Department of Anesthesiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
- Department of Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| |
Collapse
|
35
|
Hamelet J, Noll C, Ripoll C, Paul JL, Janel N, Delabar JM. Effect of hyperhomocysteinemia on the protein kinase DYRK1A in liver of mice. Biochem Biophys Res Commun 2009; 378:673-7. [PMID: 19059382 DOI: 10.1016/j.bbrc.2008.11.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
Hyperhomocysteinemia due to cystathionine beta synthase (CBS)-deficiency confers diverse clinical manifestations, notably liver diseases. Even if hyperhomocysteinemia in liver of CBS-deficient mice, a murine model of hyperhomocysteinemia, promotes mitochondrial oxidative stress and pro-apoptotic signals, protective signals may counteract these pro-apoptotic signals, leading to chronic inflammation. As DYRK1A, a serine/threonine kinase, has been described as a candidate antiapoptotic factor, we have analyzed the expression of DYRK1A in liver of CBS-deficient mice. We found that DYRK1A protein level was reduced in liver of CBS-deficient mice, which was not observed at the gene expression level. Moreover, the use of primary hepatocytes/Kupffer cells co-culture showed that degradation of DYRK1A induced by hyperhomocysteinemia requires calpain activation. Our results demonstrate a deleterious effect of hyperhomocysteinemia on DYRK1A protein expression, and emphasize the role of hyperhomocysteinemia on calpain activation.
Collapse
Affiliation(s)
- Julien Hamelet
- EA 3508 - case 7104, Univ Paris Diderot, 75205 Paris cedex 13, France
| | | | | | | | | | | |
Collapse
|
36
|
Blockade of the Fas/Fas ligand interaction suppresses hepatocyte apoptosis in ischemia-reperfusion rat liver. Apoptosis 2008; 13:1013-21. [PMID: 18561025 DOI: 10.1007/s10495-008-0234-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatic ischemia-reperfusion injury remains a significant problem for liver surgery, including transplantation, and apoptosis has been implicated in this type of hepatic injury. Here we found that through the Fas/Fas ligand interaction apoptosis is involved in the late phase of hepatic ischemia-reperfusion injury. The appearance of apoptotic hepatocytes increases significantly after reperfusion, reaching a maximum 12 h after reperfusion. The transcription levels of Fas and Fas ligand are increased after reperfusion. Fas is expressed on hepatocytes, while Fas ligand is expressed on infiltrating immune cells. A close spatial and temporal association of Fas expression and apoptotic cells is demonstrated in the histological observation. These results suggest that infiltrating cells induce apoptosis of hepatocytes through the Fas/Fas ligand interaction, leading to hepatocyte injury. Furthermore, an injection of anti-Fas antibody or neutralizing anti-Fas ligand antibody results in a dramatic decrease in the occurrence of hepatocyte apoptosis and hepatic infiltration of macrophages and natural killer cells as well as liver injury. Our results suggest that blockage of the Fas/Fas ligand interaction is a promising strategy for suppression of hepatic ischemia-reperfusion injury.
Collapse
|
37
|
|
38
|
Baskin-Bey ES, Washburn K, Feng S, Oltersdorf T, Shapiro D, Huyghe M, Burgart L, Garrity-Park M, van Vilsteren FGI, Oliver LK, Rosen CB, Gores GJ. Clinical Trial of the Pan-Caspase Inhibitor, IDN-6556, in Human Liver Preservation Injury. Am J Transplant 2007; 7:218-25. [PMID: 17227570 DOI: 10.1111/j.1600-6143.2006.01595.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cold ischemia/warm reperfusion (CI/WR) injury remains a problem in liver transplantation. The aim of the current study was to assess the utility of the pan-caspase inhibitor IDN-6556 on CI/WR injury during human liver transplantation. This report is a post hoc analysis of a Phase II, multi-center, randomized, placebo-controlled, double-blinded, parallel group study. Subjects were assigned to four treatment groups: Group 1 (Organ storage/flush: Placebo-Recipient: Placebo); Group 2 (Organ storage/flush: 15 microg/mL-Recipient: Placebo); Group 3 (Organ storage/flush: 5 microg/mL-Recipient: 0.5 mg/kg); and Group 4 (Organ storage/flush: 15 microg/mL-Recipient: 0.5 mg/kg). Liver cell apoptosis was assessed by serum concentrations of the apoptosis-associated CK18Asp396 ('M30') neo-epitope, TUNEL assay and caspase 3/7 immunohistochemistry. Liver injury was assessed by serum AST/ALT determinations. Serum markers of liver cell apoptosis were reduced in all groups receiving drug as compared to placebo. However, TUNEL, caspase 3/7 positive cells and serum AST/ALT levels were only consistently reduced in Group 2 (drug exposed to organ only). This reduction in serum transaminases was significant and observed across the study. In conclusion, IDN-6556 when administered in cold storage and flush solutions during liver transplantation offers local therapeutic protection against CI/WR-mediated apoptosis and injury. However, larger studies are required to confirm these observations.
Collapse
Affiliation(s)
- E S Baskin-Bey
- William J. von Liebig Transplant Center, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fettucciari K, Fetriconi I, Mannucci R, Nicoletti I, Bartoli A, Coaccioli S, Marconi P. Group B Streptococcus induces macrophage apoptosis by calpain activation. THE JOURNAL OF IMMUNOLOGY 2006; 176:7542-56. [PMID: 16751401 DOI: 10.4049/jimmunol.176.12.7542] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Group B Streptococcus (GBS) has developed several strategies to evade immune defenses. We show that GBS induces macrophage (Mphi) membrane permeability defects and apoptosis, prevented by inhibition of calcium influx but not caspases. We analyze the molecular mechanisms of GBS-induced murine Mphi apoptosis. GBS causes a massive intracellular calcium increase, strictly correlated to membrane permeability defects and apoptosis onset. Calcium increase was associated with activation of calcium-dependent protease calpain, demonstrated by casein zymography, alpha-spectrin cleavage to a calpain-specific fragment, fluorogenic calpain-substrate cleavage, and inhibition of these proteolyses by calpain inhibitors targeting the calcium-binding, 3-(4-Iodophenyl)-2-mercapto-(Z)-2-propenoic acid, or active site (four different inhibitors), by calpain small-interfering-RNA (siRNA) and EGTA. GBS-induced Mphi apoptosis was inhibited by all micro- and m-calpain inhibitors used and m-calpain siRNA, but not 3-(5-Fluoro-3-indolyl)-2-mercapto-(Z)-2-propenoic acid (micro-calpain inhibitor) and micro-calpain siRNA indicating that m-calpain plays a central role in apoptosis. Calpain activation is followed by Bax and Bid cleavage, cytochrome c, apoptosis-inducing factor, and endonuclease G release from mitochondria. In GBS-induced apoptosis, cytochrome c did not induce caspase-3 and -7 activation because they and APAF-1 were degraded by calpains. Therefore, apoptosis-inducing factor and endonuclease G seem the main mediators of the calpain-dependent but caspase-independent pathway of GBS-induced apoptosis. Proapoptotic mediator degradations do not occur with nonhemolytic GBS, not inducing Mphi apoptosis. Apoptosis was reduced by Bax siRNA and Bid siRNA suggesting Bax and Bid degradation is apoptosis correlated. This signaling pathway, different from that of most pathogens, could represent a GBS strategy to evade immune defenses.
Collapse
Affiliation(s)
- Katia Fettucciari
- Department of Clinical and Experimental Medicine, General Pathology and Immunology Section, S. Maria Hospital, Didactic and Scientific Division of Terni, Perugia University, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Borozan I, Chen L, Sun J, Tannis LL, Guindi M, Rotstein OD, Heathcote J, Edwards AM, Grant D, McGilvray ID. Gene expression profiling of acute liver stress during living donor liver transplantation. Am J Transplant 2006; 6:806-24. [PMID: 16539639 DOI: 10.1111/j.1600-6143.2006.01254.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During liver transplantation, the donor graft is subjected to a number of acute stresses whose molecular basis is not well-understood. The effects of surgical stress, preservation and reperfusion injury were studied in 24 consecutive living donor liver transplant (LDLT) operations. Liver biopsies were taken early in the donor operation (OPENING), after transection of the donor liver (PRECLAMP) and following implantation of the graft (post hepatic artery, [PHA]); these were evaluated for histology, tissue glutathione content and gene expression using a 19K-human cDNA microarray. LDLT was associated with an ischemia/reperfusion injury, with accumulation of small numbers of neutrophils and decreased glutathione in the PHA biopsies. Following reperfusion, the expression of 129 genes increased and 106 genes decreased when compared to OPENING levels (> or <2-fold, p < 0.01). By real-time PCR a subset of 25 genes was verified (15 increased, 10 decreased). These genes were similarly altered in another condition of acute liver stress (the response to brain-death), but not in three chronic liver disease states (HCV, HBV and PBC). This study has identified a set of genes whose expression is altered in acute, but not chronic, liver stress, likely to play a central role in the pathogenesis of acute liver injury of liver transplantation.
Collapse
Affiliation(s)
- I Borozan
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barrier A, Olaya N, Chiappini F, Roser F, Scatton O, Artus C, Franc B, Dudoit S, Flahault A, Debuire B, Azoulay D, Lemoine A. Ischemic preconditioning modulates the expression of several genes, leading to the overproduction of IL-1Ra, iNOS, and Bcl-2 in a human model of liver ischemia-reperfusion. FASEB J 2006; 19:1617-26. [PMID: 16195370 DOI: 10.1096/fj.04-3445com] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ischemia triggers an inflammatory response that precipitates cell death during reperfusion. Several studies have shown that tissues are protected by ischemic preconditioning (IP) consisting of 10 min of ischemia followed by 10 min of reperfusion just before ischemia. The molecular basis of this protective effect is poorly understood. We used cDNA arrays (20K) to compare global gene expression in liver biopsies from living human liver donors who underwent IP (n=7) or not (n=7) just before liver devascularization. Microarray data were analyzed using pairedt test with a type I error rate fixed at alpha = 2.5 10(6) (Bonferroni correction). We found that 60 genes were differentially expressed (36 over- and 24 underexpressed in preconditioning group). After IP, the most significantly overexpressed gene was IL-1Ra. This was confirmed by immunoblotting. Differentially expressed were genes involved in apoptosis (NOD2, ephrin-A1, and calpain) and in the carbohydrate metabolism. A significant increase in the amount of the anti-apoptotic protein Bcl-2 in preconditioned livers but no change in the cleavage of procaspase-3, -8, and -9 was observed. We also observed an increase in the amount in the inducible nitric oxide synthase. Therefore, the benefits of IP may be associated with the overproduction of IL-1Ra, Bcl-2, and NO countering the proinflammatory and proapoptotic effects generated during ischemia-reperfusion.
Collapse
Affiliation(s)
- Alain Barrier
- Inserm 602; Service de Biochimie et Biologie Moléculaire; Hôpital Universitaire Paul Brousse; Université Paris-Sud/XI, Villejuif Cedex; Assistance Publique-Hôpitaux de Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Robilotto A, Baust J, Buskirk RV, Baust J. Involvement of the Cysteine Protease Calpain Family in Cell Death After Cryopreservation. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/cpt.2006.4.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- A.T. Robilotto
- Institute of Biomedical Technologies, State University of New York, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - J.M. Baust
- Institute of Biomedical Technologies, State University of New York, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - R. Van Buskirk
- Institute of Biomedical Technologies, State University of New York, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - J.G. Baust
- Institute of Biomedical Technologies, State University of New York, Binghamton, New York
- Biolife Solutions, Inc., Owego, New York
| |
Collapse
|
43
|
Matzno S, Yasuda S, Kitada Y, Akiyoshi T, Tanaka N, Juman S, Shinozuka K, Nakabayashi T, Matsuyama K. Clofibrate-induced apoptosis is mediated by Ca2+-dependent caspase-12 activation. Life Sci 2006; 78:1892-9. [PMID: 16236330 DOI: 10.1016/j.lfs.2005.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Accepted: 08/27/2005] [Indexed: 11/16/2022]
Abstract
The mechanism of fibrate-induced myopathy was investigated in this report. When clofibrate (30 to 300 microM) was applied to L6 rat skeletal myoblasts, dose-dependently apoptosis was observed within 24 h. In the apoptotic myoblasts, a caspase-12 cleavage was observed at 2 h and with following caspases-9 and -3-related cascade activation. In contrast, the neutral protease calpain, that is a key enzyme in ER stress-related apoptosis via caspase-12 activation, was significantly decreased during apoptosis. Next, the authors evaluated a role of calcium-dependent signal(s). When clofibrate was added into medium, cytosolic calcium concentration was rapidly and persistently increased. On the other hand, an addition of 10 mM EGTA depressed sustained calcium phase, and concurrent myoblasts apoptosis was completely inhibited. Taken together, our findings indicate that the clofibrate-induced myopathy is triggered by Ca2+ influx, then activated cytosolic caspase-12 through calpain-independent cascade, and consequently caused apoptotic DNA fragmentation.
Collapse
Affiliation(s)
- Sumio Matzno
- First Department of Biochemistry, School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien, Nishinomiya, Hyogo 663-8179, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang B, Jain S, Pawluczyk IZA, Imtiaz S, Bowley L, Ashra SY, Nicholson ML. Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int 2005; 68:2050-67. [PMID: 16221205 DOI: 10.1111/j.1523-1755.2005.00662.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have previously shown the long-term influence of renal ischemia/reperfusion (I/R) injury and immunosuppression on fibrotic genes and apoptosis in a rat model. For the first time, we have now investigated the effects of I/R and immunosuppression on inflammation and caspase activation. METHODS I/R injury was induced in the right kidney and the left was removed. Cyclosporin (CsA) (10 mg/kg), tacrolimus (0.2 mg/kg), rapamycin (1 mg/kg), or mycophenolate mofetil (MMF) (10 mg/kg) was then administered for 16 weeks. The effects of I/R and immunosuppressants on interstitial inflammation, interleukin (IL)-1beta expression, caspase-1 and caspase-3 activation, tubulointerstitial damage, and fibrosis were evaluated. RESULTS ED-1+ (a specific rat monocyte/macrophage marker) cells were mainly localized in the tubulointerstitium and periglomerular areas and increased in I/R group compared to controls (P < 0.01). This was further increased by CsA, but decreased by tacrolimus, rapamycin, or MMF (P < 0.05). The 17 kD active IL-1beta remained unchanged, but 35 kD IL-1beta precursor was decreased by rapamycin in comparison with I/R group (P < 0.05). The 45 kD or 20 kD caspase-1 was increased by I/R or CsA, respectively, and decreased by rapamycin (P < 0.05). The 24 kD caspase-3, which proved to be an active caspase-3 subunit, was increased in I/R and CsA groups and deceased by tacrolimus, rapamycin, or MMF (P < 0.05), but not 32 kD precursor or 17 kD active caspase-3. The activity data of caspase-1 and caspase-3 exhibited the same trend as Western blotting data. The staining of active caspase-3 was scattered in kidneys, mainly in tubular and interstitial areas, which was consistent with that of ED-1+ cells. There was a strong positive correlation between interstitial inflammation and 24 kD caspase-3 expression or caspase-3 activity (r = 0.814 or 0.484), all of which were also closely related with urinary protein (r = 0.537, 0.529, or 0.517), serum creatinine (r = 0.463, 0.573, or 0.539), tubulointerstitial damage (r = 0.794, 0.618, or 0.712) and fibrosis (r = 0.651, 0.567, or 0.469), all P < 0.01. CONCLUSION This study shows that the mechanisms of long-term I/R injury and immunosuppressants treatment include interstitial inflammation and caspase activation, most clearly demonstrated by the 24 kD active caspase-3.
Collapse
Affiliation(s)
- Bin Yang
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester General Hospital, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Inhibitors of calpain activation (PD150606 and E-64) and renal ischemia-reperfusion injury. Biochem Pharmacol 2005; 69:1121-31. [PMID: 15763548 DOI: 10.1016/j.bcp.2005.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 01/04/2005] [Indexed: 12/13/2022]
Abstract
Calpain activation has been implicated in the development of ischemia-reperfusion (I-R) injury. Here we investigate the effects of two inhibitors of calpain activity, PD150606 and E-64, on the renal dysfunction and injury caused by I-R of rat kidneys in vivo. Male Wistar rats were administered PD150606 or E-64 (3mg/kg i.p.) or vehicle (10%, v/v, DMSO) 30min prior to I-R. Rats were subjected to bilateral renal ischemia (45min) followed by reperfusion (6h). Serum and urinary biochemical indicators of renal dysfunction and injury were measured; serum creatinine (for glomerular dysfunction), fractional excretion of Na(+) (FE(Na), for tubular dysfunction) and urinary N-acetyl-beta-d-glucosaminidase (NAG, for tubular injury). Additionally, kidney tissues were used for histological analysis of renal injury, immunohistochemical analysis of intercellular adhesion molecule-1 (ICAM-1) expression and nitrotyrosine formation. Renal myeloperoxidase (MPO) activity (for polymorphonuclear leukocyte infiltration) and malondialdehyde (MDA) levels (for tissue lipid peroxidation) were determined. Both PD150606 and E-64 significantly reduced the increases in serum creatinine, FE(Na) and NAG caused by renal I-R, indicating attenuation of renal dysfunction and injury and reduced histological evidence of renal damage caused by I-R. Both PD150606 and E-64 markedly reduced the evidence of oxidative stress (ICAM-1 expression, MPO activity, MDA levels) and nitrosative stress (nitrotyrosine formation) in rat kidneys subjected to I-R. These findings provide the first evidence that calpain inhibitors can reduce the renal dysfunction and injury caused by I-R of the kidney and may be useful in enhancing the tolerance of the kidney against renal injury associated with aortovascular surgery or renal transplantation.
Collapse
|
46
|
Salahudeen AK. Cold ischemic injury of transplanted kidneys: new insights from experimental studies. Am J Physiol Renal Physiol 2004; 287:F181-7. [PMID: 15271685 DOI: 10.1152/ajprenal.00098.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Kidney transplantation is the preferred and definitive treatment for end-stage renal disease (ESRD), and kidneys from deceased donors are a major source for it. These kidneys are routinely cold stored to prolong viability, which, however, when prolonged can cause injury, resulting in reduced graft function and survival. Recent experimental studies have identified the release of iron and free radicals, activation of calpain, and formation of F2-isoprostanes as important components of cold ischemic injury, as are the swelling of mitochondria and activation of mitochondrial apoptotic pathways. Moreover, studies have also suggested that fortifying the storage solution with deferoxamine or preconditioning the donor kidneys with hemeoxygenase-1 may prove viable clinical strategies to limit cold ischemic injury. This review will summarize these and other new experimental data that have implications for reducing cold ischemic transplant injury, a step necessary to improve deceased-donor allograft survival.
Collapse
Affiliation(s)
- Abdulla K Salahudeen
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| |
Collapse
|
47
|
Jani A, Ljubanovic D, Faubel S, Kim J, Mischak R, Edelstein CL. Caspase inhibition prevents the increase in caspase-3, -2, -8 and -9 activity and apoptosis in the cold ischemic mouse kidney. Am J Transplant 2004; 4:1246-54. [PMID: 15268725 DOI: 10.1111/j.1600-6143.2004.00498.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Prolonged cold ischemic time is a risk factor for the development of delayed graft function. The adverse impact of cold ischemia may be associated with tubular cell death in the kidney. Caspase-3 is a major mediator of apoptotic cell death. We hypothesized that caspase inhibition would reduce apoptosis and other features of cold ischemia. Kidneys of C57BL/6 mice were perfused with cold University of Wisconsin solution containing a pancaspase inhibitor or vehicle via the left ventricle. The contralateral right kidney was used as a control. The left kidney was stored for 48 h at 4 degrees C to produce cold ischemia. Caspase-3 activity was massively (100-fold) increased in cold ischemic kidneys compared with controls. On immunoblot analysis, the processed form of caspase-3 was increased in cold ischemic kidneys compared with controls. The increase in caspase-3 was associated with significantly more renal tubular apoptosis and brush-border injury. In addition, caspase-2, -8 and -9 activities were increased in cold ischemic kidneys. The pancaspase inhibitor prevented the formation of the processed form of caspase-3 and the increase in caspase activity, and reduced apoptosis and brush-border injury. Caspase inhibition may prove useful in kidney preservation.
Collapse
Affiliation(s)
- Alkesh Jani
- University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
48
|
Rauen U, de Groot H. New Insights into the Cellular and Molecular Mechanisms of Cold Storage Injury. J Investig Med 2004. [DOI: 10.1177/108155890405200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Solid organ grafts, but also other biologic materials requiring storage for a few hours to a few days, are usually stored under hypothermic conditions. To decrease graft injury during cold storage, organ preservation solutions were developed many years ago. However, since then, modern biochemical and cell biologic methods have allowed further insights into the molecular and cellular mechanisms of cold storage injury, including further insights into alterations of the cellular ion homeostasis, the occurrence of a mitochondrial permeability transition, and the occurrence of free–radical-mediated hypothermic injury and cold-induced apoptosis. These new aspects of cold storage injury, which are not covered by preservation solutions in current clinical use and offer the potential for improvement of organ and tissue preservation, are presented here.
Collapse
Affiliation(s)
- Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum, Essen, Germany
| | - Herbert de Groot
- Institut für Physiologische Chemie, Universitätsklinikum, Essen, Germany
| |
Collapse
|
49
|
Weber H, Jonas L, Hühns S, Schuff-Werner P. Dysregulation of the calpain-calpastatin system plays a role in the development of cerulein-induced acute pancreatitis in the rat. Am J Physiol Gastrointest Liver Physiol 2004; 286:G932-41. [PMID: 15132950 DOI: 10.1152/ajpgi.00406.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calpain, a calcium-dependent cytosolic cysteine protease, is implicated in a multitude of cellular functions but also plays a role in cell death. Recently, we have shown that two ubiquitous isoforms, termed micro-calpain and m-calpain, are expressed in rat pancreatic acinar cells and that calcium ionophore-induced calpain activation leads to acinar cell injury. On the basis of these observations, we have now investigated the role of both calpain forms and the endogenous calpain inhibitor calpastatin in acute pancreatitis. After treatment of rats either without or with calpain inhibitor Z-Val-Phe methyl ester (ZVP; 60 mg/kg i.p.), pancreatitis was induced by cerulein injections (10 microg/kg i.p.; 5 times at hourly intervals). Calpain activation and calpastatin expression in the pancreatic tissue were studied by Western blot analysis. Pancreatic injury was assessed by plasma amylase activity, pancreatic wet/dry weight ratio (edema), histological and electron-microscopic analyses, as well as fluorescence labeling of actin filaments. Cerulein caused an activation of both micro-calpain and m-calpain, accompanied by degradation of calpastatin. Prophylactic administration of ZVP reduced the cerulein-induced calpain activation but had no effect on calpastatin alterations. In correlation to the diminished calpain activity, the severity of pancreatitis decreased as indicated by a decline in amylase activity (P < 0.01), pancreatic edema formation (P < 0.05), histological score for eight parameters (P < 0.01), and actin filament alterations. Our findings support the hypothesis that dysregulation of the calpain-calpastatin system may play a role in the onset of acute pancreatitis.
Collapse
Affiliation(s)
- Heike Weber
- Institute of Clinical Chemistry and Pathobiochemistry, University of Rostock, Germany.
| | | | | | | |
Collapse
|
50
|
Abstract
Numerous lines of evidence demonstrate that calpains, a family of 14 Ca(2+)-activated neutral cysteine proteases, are involved in oncotic cell death in a variety of models. At this time, the biochemistry of most calpains and the specific roles of different calpains in physiology and pathology remain to be determined. A number of calpain substrates have been identified in cellular systems, including cytoskeletal proteins, and recent studies suggest that calpains mediate the increase in plasma membrane permeability to ions and the progressive breakdown of the plasma membrane observed in oncosis through the proteolysis of cystokeletal and plasma membrane proteins. Further, a number of reports provide evidence that the mitochondrial dysfunction observed in oncosis may be mediated by a mitochondrial calpain of unknown identity. Finally, a number of diverse calpain inhibitors have been developed that show cytoprotective properties in cellular systems and in vivo following diverse insults. It is suggested that future research be directed toward elucidation of the role(s) of specific calpain isozymes in physiological and pathological conditions; identifying and linking specific calpain substrates with altered cellular functions; and developing cell-permeable, potent, isozyme-selective calpain inhibitors.
Collapse
Affiliation(s)
- Xiuli Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|