1
|
Guan L, Vaidhyanathan S, Grigoriev A. rRFtargetDB: a database of Ago1-mediated targets of ribosomal RNA fragments. RNA (NEW YORK, N.Y.) 2025; 31:486-496. [PMID: 39788736 PMCID: PMC11912905 DOI: 10.1261/rna.080285.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
rRNA-derived fragments (rRFs) are a class of emerging posttranscriptional regulators of gene expression likely binding to the transcripts of target genes. However, the lack of knowledge about such targets hinders our understanding of rRF functions or binding mechanisms. The paucity of resources supporting the identification of the targets of rRFs creates a bottleneck in the fast-developing field. We have previously analyzed chimeric reads in cross-linked Argonaute1-RNA complexes to help infer the guide-target pairs and binding mechanisms of multiple rRFs based on experimental data in human HEK293 cells. To efficiently disseminate these results to the research community, we designed a web-based database rRFtargetDB that preserves most of the experimental results after the removal of noise and has a user-friendly interface with flexible query options and filters allowing users to obtain comprehensive information on rRFs (or targets) of interest. rRFtargetDB is populated by ∼163,000 experimentally determined unique rRF-mRNA pairs (∼60,000 supported by ≥2 reads). Almost 30,000 rRF isoforms produced >385,000 (>156,000 with ≥2 reads) chimeras with all types of RNA targets (mRNAs and noncoding RNAs). Further analyses suggested hypothetical modes of interactions, supported by secondary structures of potential guide-target hybrids and binding motifs, essential for understanding the targeting mechanisms of rRFs. All these results (ranging from the weakest to the strongest experimental support) are presented in rRFtargetDB, whose goal is to provide a resource for building users' hypotheses on the potential roles of rRFs for experimental validation. Further, we illustrate the value/application of the database in several examples.rRFtargetDB is freely accessible at https://grigoriev-lab.camden.rutgers.edu/tardb.
Collapse
Affiliation(s)
- Lingyu Guan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, USA
| | - Sathyanarayanan Vaidhyanathan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, USA
| |
Collapse
|
2
|
Guo FX, Yang RX, Yang X, Liu J, Wang YZ. Application of an Efficient Enhancer in Gene Function Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:3120. [PMID: 39599329 PMCID: PMC11597595 DOI: 10.3390/plants13223120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Although great progress has been made in transgenic technology, increasing the expression level and thus promising the expected phenotypes of exogenous genes in transgenic plants is still a crucial task for genetic transformation and crop engineering. Here, we conducted a comparative study of the enhancing efficiency of three putative translational enhancers, including Ω (natural leader from a plant virus), OsADH 5' (natural leader from a plant gene), and ARC (active ribosomal RNA complementary), using the transient gene expression systems of Nicotiana benthamiana and Chirita pumila. We demonstrate that three tandem repeats of ARC (3 × ARC) are more efficient than other enhancers in expression. The enhancing efficiency of 6 × ARC is further increased, up to 130 times the expression level without the insertion of enhancers. We further evaluated the enhancing efficiency of 6 × ARC under agrobacterium-mediated transformation systems. In C. pumila, 6 × ARC significantly amplifies the phenotypic effect of CpCYC1 and CpCYC2 in repressing stamen development and yellow pigmentation. In Arabidopsis thaliana, 6 × ARC and the AtAP1 promoter work together to promote the accumulation of anthocyanin pigments in vegetative and reproductive organs. Most significantly, the fusion of 6 × ARC in a CpCYC1/2 transgenic system in C. pumila fully reveals that these genes have the complete function of repressing the yellow spots, displaying an advantage in manifesting the function of exogenous genes. This study highlights the application potential of the enhancer 6 × ARC in gene function research in plants.
Collapse
Affiliation(s)
- Feng-Xian Guo
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (F.-X.G.); (R.-X.Y.); (X.Y.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Xue Yang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (F.-X.G.); (R.-X.Y.); (X.Y.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Yang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (F.-X.G.); (R.-X.Y.); (X.Y.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
| | - Jing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (F.-X.G.); (R.-X.Y.); (X.Y.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
| | - Yin-Zheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (F.-X.G.); (R.-X.Y.); (X.Y.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Shaffer JF, Gupta A, Kharkwal G, Linares EE, Holmes AD, Swartz JR, Katzman S, Sharma U. Epididymis-specific RNase A family genes regulate fertility and small RNA processing. J Biol Chem 2024; 300:107933. [PMID: 39476961 DOI: 10.1016/j.jbc.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Sperm small RNAs are implicated in intergenerational transmission of paternal environmental effects. Small RNAs generated by the cleavage of tRNAs, known as tRNA fragments (tRFs) or tRNA-derived RNAs (tDRs or tsRNAs), are an abundant class of RNAs in mature sperm and can be modulated by environmental conditions. The biogenesis of tRFs in the male reproductive tract remains poorly understood. Angiogenin, a member of the ribonuclease A superfamily (RNase A), cleaves tRNAs to generate tRFs in response to cellular stress. Four paralogs of Angiogenin, namely Rnase9, Rnase10, Rnase11, and Rnase12, are specifically expressed in the epididymis-a long, convoluted tubule where sperm mature and acquire fertility and motility. Here, by generating mice deleted for all four genes (Rnase9-12-/-, termed "KO" for Knock Out), we report that these genes regulate fertility and small RNA levels. KO male mice are sterile; KO sperm fertilized oocytes in vitro but failed to efficiently fertilize oocytes in vivo due to an inability of sperm to pass through the utero-tubular junction. Intriguingly, there were decreased levels of tRFs and rRNAs (rRNA-derived small RNAs or rsRNAs) in the KO epididymis and epididymal luminal fluid, although RNases 9-12 did not show ribonucleolytic activity in vitro. Importantly, KO sperm showed a dramatic decrease in the levels of tRFs, demonstrating a role of epididymis-specific Rnase9-12 genes in regulating sperm small RNA composition. Together, our results reveal an unexpected role of four epididymis-specific noncanonical ribonuclease A family genes in regulating fertility and small RNA processing.
Collapse
Affiliation(s)
- Joshua F Shaffer
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Alka Gupta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | | | - Edgardo E Linares
- University of Colorado Anshutz Medical Campus, Aurora, Colorado, USA
| | - Andrew D Holmes
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Julian R Swartz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, California, USA
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA.
| |
Collapse
|
4
|
Tetzlaff S, Hillebrand A, Drakoulis N, Gluhic Z, Maschmann S, Lyko P, Wicke S, Schmitz-Linneweber C. Small RNAs from mitochondrial genome recombination sites are incorporated into T. gondii mitoribosomes. eLife 2024; 13:e95407. [PMID: 38363119 PMCID: PMC10948144 DOI: 10.7554/elife.95407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The mitochondrial genomes of apicomplexans comprise merely three protein-coding genes, alongside a set of thirty to forty genes encoding small RNAs (sRNAs), many of which exhibit homologies to rRNA from E. coli. The expression status and integration of these short RNAs into ribosomes remains unclear and direct evidence for active ribosomes within apicomplexan mitochondria is still lacking. In this study, we conducted small RNA sequencing on the apicomplexan Toxoplasma gondii to investigate the occurrence and function of mitochondrial sRNAs. To enhance the analysis of sRNA sequencing outcomes, we also re-sequenced the T. gondii mitochondrial genome using an improved organelle enrichment protocol and Nanopore sequencing. It has been established previously that the T. gondii genome comprises 21 sequence blocks that undergo recombination among themselves but that their order is not entirely random. The enhanced coverage of the mitochondrial genome allowed us to characterize block combinations at increased resolution. Employing this refined genome for sRNA mapping, we find that many small RNAs originated from the junction sites between protein-coding blocks and rRNA sequence blocks. Surprisingly, such block border sRNAs were incorporated into polysomes together with canonical rRNA fragments and mRNAs. In conclusion, apicomplexan ribosomes are active within polysomes and are indeed assembled through the integration of sRNAs, including previously undetected sRNAs with merged mRNA-rRNA sequences. Our findings lead to the hypothesis that T. gondii's block-based genome organization enables the dual utilization of mitochondrial sequences as both messenger RNAs and ribosomal RNAs, potentially establishing a link between the regulation of rRNA and mRNA expression.
Collapse
Affiliation(s)
| | | | | | - Zala Gluhic
- Molecular Genetics, Humboldt University BerlinBerlinGermany
| | | | - Peter Lyko
- Biodiversity and Evolution, Humboldt University BerlinBerlinGermany
| | - Susann Wicke
- Biodiversity and Evolution, Humboldt University BerlinBerlinGermany
| | | |
Collapse
|
5
|
Deng ZL, Münch PC, Mreches R, McHardy AC. Rapid and accurate identification of ribosomal RNA sequences via deep learning. Nucleic Acids Res 2022; 50:e60. [PMID: 35188571 PMCID: PMC9177968 DOI: 10.1093/nar/gkac112] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/14/2022] Open
Abstract
Advances in transcriptomic and translatomic techniques enable in-depth studies of RNA activity profiles and RNA-based regulatory mechanisms. Ribosomal RNA (rRNA) sequences are highly abundant among cellular RNA, but if the target sequences do not include polyadenylation, these cannot be easily removed in library preparation, requiring their post-hoc removal with computational techniques to accelerate and improve downstream analyses. Here, we describe RiboDetector, a novel software based on a Bi-directional Long Short-Term Memory (BiLSTM) neural network, which rapidly and accurately identifies rRNA reads from transcriptomic, metagenomic, metatranscriptomic, noncoding RNA, and ribosome profiling sequence data. Compared with state-of-the-art approaches, RiboDetector produced at least six times fewer misclassifications on the benchmark datasets. Importantly, the few false positives of RiboDetector were not enriched in certain Gene Ontology (GO) terms, suggesting a low bias for downstream functional profiling. RiboDetector also demonstrated a remarkable generalizability for detecting novel rRNA sequences that are divergent from the training data with sequence identities of <90%. On a personal computer, RiboDetector processed 40M reads in less than 6 min, which was ∼50 times faster in GPU mode and ∼15 times in CPU mode than other methods. RiboDetector is available under a GPL v3.0 license at https://github.com/hzi-bifo/RiboDetector.
Collapse
Affiliation(s)
- Zhi-Luo Deng
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Philipp C Münch
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - René Mreches
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Alice C McHardy
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Ramírez M, Martínez A, Molina F. New Insights into the Genome Organization of Yeast Double-Stranded RNA LBC Viruses. Microorganisms 2022; 10:173. [PMID: 35056622 PMCID: PMC8780742 DOI: 10.3390/microorganisms10010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
The yeasts Torulaspora delbrueckii (Td) and Saccharomyces cerevisiae (Sc) may show a killer phenotype that is encoded in dsRNA M viruses (V-M), which require the helper activity of another dsRNA virus (V-LA or V-LBC) for replication. Recently, two TdV-LBCbarr genomes, which share sequence identity with ScV-LBC counterparts, were characterized by high-throughput sequencing (HTS). They also share some similar characteristics with Sc-LA viruses. This may explain why TdV-LBCbarr has helper capability to maintain M viruses, whereas ScV-LBC does not. We here analyze two stretches with low sequence identity (LIS I and LIS II) that were found in TdV-LBCbarr Gag-Pol proteins when comparing with the homologous regions of ScV-LBC. These stretches may result from successive nucleotide insertions or deletions (indels) that allow compensatory frameshift events required to maintain specific functions of the RNA-polymerase, while modifying other functions such as the ability to bind V-M (+)RNA for packaging. The presence of an additional frameshifting site in LIS I may ensure the synthesis of a certain amount of RNA-polymerase until the new compensatory indel appears. Additional 5'- and 3'-extra sequences were found beyond V-LBC canonical genomes. Most extra sequences showed high identity to some stretches of the canonical genomes and can form stem-loop structures. Further, the 3'-extra sequence of two ScV-LBC genomes contains rRNA stretches. The origin and possible functions of these extra sequences are here discussed.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Felipe Molina
- Departamento de Bioquímica, Biología Molecular y Genética (Área de Genética), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
7
|
Guan L, Grigoriev A. Computational meta-analysis of ribosomal RNA fragments: potential targets and interaction mechanisms. Nucleic Acids Res 2021; 49:4085-4103. [PMID: 33772581 PMCID: PMC8053083 DOI: 10.1093/nar/gkab190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The most abundant cellular RNA species, ribosomal RNA (rRNA), appears to be a source of massive amounts of non-randomly generated fragments. We found rRNA fragments (rRFs) in immunoprecipitated Argonaute (Ago-IP) complexes in human and mouse cells and in small RNA sequencing datasets. In human Ago1-IP, guanine-rich rRFs were preferentially cut in single-stranded regions of mature rRNAs between pyrimidines and adenosine, and non-randomly paired with cellular transcripts in crosslinked chimeras. Numerous identical rRFs were found in the cytoplasm and nucleus in mouse Ago2-IP. We report specific interaction motifs enriched in rRF-target pairs. Locations of such motifs on rRFs were compatible with the Ago structural features and patterns of the Ago-RNA crosslinking in both species. Strikingly, many of these motifs may bind to double-stranded regions on target RNAs, suggesting a potential pathway for regulating translation by unwinding mRNAs. Occurring on either end of rRFs and matching intronic, untranslated or coding regions in targets, such interaction sites extend the concept of microRNA seed regions. Targeting both borders of certain short introns, rRFs may be involved in their biogenesis or function, facilitated by Ago. Frequently dismissed as noise, rRFs are poised to greatly enrich the known functional spectrum of small RNA regulation.
Collapse
Affiliation(s)
- Lingyu Guan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| |
Collapse
|
8
|
Ramírez M, Velázquez R, Maqueda M, Martínez A. Genome Organization of a New Double-Stranded RNA LA Helper Virus From Wine Torulaspora delbrueckii Killer Yeast as Compared With Its Saccharomyces Counterparts. Front Microbiol 2020; 11:593846. [PMID: 33324373 PMCID: PMC7721687 DOI: 10.3389/fmicb.2020.593846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022] Open
Abstract
Wine killer yeasts such as killer strains of Torulaspora delbrueckii and Saccharomyces cerevisiae contain helper large-size (4.6 kb) dsRNA viruses (V-LA) required for the stable maintenance and replication of killer medium-size dsRNA viruses (V-M) which bear the genes that encode for the killer toxin. The genome of the new V-LA dsRNA from the T. delbrueckii Kbarr1 killer yeast (TdV-LAbarr1) was characterized by high-throughput sequencing (HTS). The canonical genome of TdV-LAbarr1 shares a high sequence identity and similar genome organization with its Saccharomyces counterparts. It contains all the known conserved motifs predicted to be necessary for virus translation, packaging, and replication. Similarly, the Gag-Pol amino-acid sequence of this virus contains all the features required for cap-snatching and RNA polymerase activity, as well as the expected regional variables previously found in other LA viruses. Sequence comparison showed that two main clusters (99.2-100% and 96.3-98.8% identity) include most LA viruses from Saccharomyces, with TdV-LAbarr1 being the most distant from all these viruses (61.5-62.5% identity). Viral co-evolution and cross transmission between different yeast species are discussed based on this sequence comparison. Additional 5' and 3' sequences were found in the TdV-LAbarr1 genome as well as in some newly sequenced V-LA genomes from S. cerevisiae. A stretch involving the 5' extra sequence of TdV-LAbarr1 is identical to a homologous stretch close to the 5' end of the canonical sequence of the same virus (self-identity). Our modeling suggests that these stretches can form single-strand stem loops, whose unpaired nucleotides could anneal to create an intramolecular kissing complex. Similar stem loops are also found in the 3' extra sequence of the same virus as well as in the extra sequences of some LA viruses from S. cerevisiae. A possible origin of these extra sequences as well as their function in obviating ssRNA degradation and allowing RNA transcription and replication are discussed.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
9
|
The Ribosome as a Missing Link in Prebiotic Evolution III: Over-Representation of tRNA- and rRNA-Like Sequences and Plieofunctionality of Ribosome-Related Molecules Argues for the Evolution of Primitive Genomes from Ribosomal RNA Modules. Int J Mol Sci 2019; 20:ijms20010140. [PMID: 30609737 PMCID: PMC6337102 DOI: 10.3390/ijms20010140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/18/2022] Open
Abstract
We propose that ribosomal RNA (rRNA) formed the basis of the first cellular genomes, and provide evidence from a review of relevant literature and proteonomic tests. We have proposed previously that the ribosome may represent the vestige of the first self-replicating entity in which rRNAs also functioned as genes that were transcribed into functional messenger RNAs (mRNAs) encoding ribosomal proteins. rRNAs also encoded polymerases to replicate itself and a full complement of the transfer RNAs (tRNAs) required to translate its genes. We explore here a further prediction of our “ribosome-first” theory: the ribosomal genome provided the basis for the first cellular genomes. Modern genomes should therefore contain an unexpectedly large percentage of tRNA- and rRNA-like modules derived from both sense and antisense reading frames, and these should encode non-ribosomal proteins, as well as ribosomal ones with key cell functions. Ribosomal proteins should also have been co-opted by cellular evolution to play extra-ribosomal functions. We review existing literature supporting these predictions. We provide additional, new data demonstrating that rRNA-like sequences occur at significantly higher frequencies than predicted on the basis of mRNA duplications or randomized RNA sequences. These data support our “ribosome-first” theory of cellular evolution.
Collapse
|
10
|
Juba AN, Chaput JC, Wellensiek BP. Exploring the Role of AUG Triplets in Human Cap-Independent Translation Enhancing Elements. Biochemistry 2018; 57:6308-6318. [PMID: 30371061 PMCID: PMC6222554 DOI: 10.1021/acs.biochem.8b00785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Cap-independent
translation is believed to play an important role
in eukaryotic protein synthesis, but the mechanisms of ribosomal recruitment
and translation initiation remain largely unknown. Messenger RNA display
was previously used to profile the human genome for RNA leader sequences
that can enhance cap-independent translation. Surprisingly, many of
the isolated sequences contain AUG triplets, suggesting a possible
functional role for these motifs during translation initiation. Herein,
we examine the sequence determinants of AUG triplets within a set
of human translation enhancing elements (TEEs). Functional analyses
performed in vitro and in cultured cells indicate
that AUGs have the capacity to modulate mRNA translation either by
serving as part of a larger ribosomal recruitment site or by directing
the ribosome to defined initiation sites. These observations help
constrain the functional role of AUG triplets in human TEEs and advance
our understanding of this specific mechanism of cap-independent translation
initiation.
Collapse
Affiliation(s)
- Amber N Juba
- Biomedical Sciences Program, College of Graduate Studies , Midwestern University , Glendale , Arizona 85308 , United States
| | | | - Brian P Wellensiek
- Biomedical Sciences Program, College of Graduate Studies , Midwestern University , Glendale , Arizona 85308 , United States
| |
Collapse
|
11
|
Singh A, Mishra A, Khosravi A, Khandelwal G, Jayaram B. Physico-chemical fingerprinting of RNA genes. Nucleic Acids Res 2017; 45:e47. [PMID: 27932456 PMCID: PMC5397174 DOI: 10.1093/nar/gkw1236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
We advance here a novel concept for characterizing different classes of RNA genes on the basis of physico-chemical properties of DNA sequences. As knowledge-based approaches could yield unsatisfactory outcomes due to limitations of training on available experimental data sets, alternative approaches that utilize properties intrinsic to DNA are needed to supplement training based methods and to eventually provide molecular insights into genome organization. Based on a comprehensive series of molecular dynamics simulations of Ascona B-DNA consortium, we extracted hydrogen bonding, stacking and solvation energies of all combinations of DNA sequences at the dinucleotide level and calculated these properties for different types of RNA genes. Considering ∼7.3 million mRNA, 255 524 tRNA, 40 649 rRNA (different subunits) and 5250 miRNA, 3747 snRNA, gene sequences from 9282 complete genome chromosomes of all prokaryotes and eukaryotes available at NCBI, we observed that physico-chemical properties of different functional units on genomic DNA differ in their signatures.
Collapse
Affiliation(s)
- Ankita Singh
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Akhilesh Mishra
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Ali Khosravi
- Ale-Taha Institute of Higher Education, Tehran, Iran
| | - Garima Khandelwal
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.,Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| |
Collapse
|
12
|
Pánek J, Kolář M, Herrmannová A, Valášek LS. A systematic computational analysis of the rRNA-3' UTR sequence complementarity suggests a regulatory mechanism influencing post-termination events in metazoan translation. RNA (NEW YORK, N.Y.) 2016; 22:957-967. [PMID: 27190231 PMCID: PMC4911919 DOI: 10.1261/rna.056119.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
Nucleic acid sequence complementarity underlies many fundamental biological processes. Although first noticed a long time ago, sequence complementarity between mRNAs and ribosomal RNAs still lacks a meaningful biological interpretation. Here we used statistical analysis of large-scale sequence data sets and high-throughput computing to explore complementarity between 18S and 28S rRNAs and mRNA 3' UTR sequences. By the analysis of 27,646 full-length 3' UTR sequences from 14 species covering both protozoans and metazoans, we show that the computed 18S rRNA complementarity creates an evolutionarily conserved localization pattern centered around the ribosomal mRNA entry channel, suggesting its biological relevance and functionality. Based on this specific pattern and earlier data showing that post-termination 80S ribosomes are not stably anchored at the stop codon and can migrate in both directions to codons that are cognate to the P-site deacylated tRNA, we propose that the 18S rRNA-mRNA complementarity selectively stabilizes post-termination ribosomal complexes to facilitate ribosome recycling. We thus demonstrate that the complementarity between 18S rRNA and 3' UTRs has a non-random nature and very likely carries information with a regulatory potential for translational control.
Collapse
Affiliation(s)
- Josef Pánek
- Laboratory of Bioinformatics, Institute of Microbiology of the Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| |
Collapse
|
13
|
From Compositional Chemical Ecologies to Self-replicating Ribosomes and on to Functional Trait Ecological Networks. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Mauro VP, Matsuda D. Translation regulation by ribosomes: Increased complexity and expanded scope. RNA Biol 2015; 13:748-55. [PMID: 26513496 DOI: 10.1080/15476286.2015.1107701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The primary function of ribosomes is to decode mRNAs into polypeptide chains; however, this description is overly simplistic. Accumulating evidence shows that ribosomes themselves can affect the relative efficiency with which various mRNAs are translated and indicates that these effects can be modulated by ribosome heterogeneity. The notion that ribosomes have regulatory capabilities was elaborated more than a decade ago in the ribosome filter hypothesis. Various lines of evidence support this idea and have shown that the translation of some mRNAs is affected by discrete binding interactions with rRNA or ribosomal proteins. Recent work from our laboratory has demonstrated that base-pairing of the Hepatitis C Virus (HCV) internal ribosome entry site (IRES) to 18S rRNA is required for IRES function, but only in the context of more complex ribosomal interactions. The HCV IRES provides an example of the ribosome filter that involves multiple binding interactions between mRNAs and ribosomal subunits.
Collapse
Affiliation(s)
- Vincent P Mauro
- a Promosome, LLC , San Diego , CA , USA.,b The Scripps Research Institute , La Jolla , CA , USA
| | - Daiki Matsuda
- b The Scripps Research Institute , La Jolla , CA , USA
| |
Collapse
|
15
|
Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo. Proc Natl Acad Sci U S A 2014; 111:15385-9. [PMID: 25313046 DOI: 10.1073/pnas.1413472111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Degeneracy in eukaryotic translation initiation is evident in the initiation strategies of various viruses. Hepatitis C virus (HCV) provides an exceptional example--translation of the HCV RNA is facilitated by an internal ribosome entry site (IRES) that can autonomously bind a 40S ribosomal subunit and accurately position it at the initiation codon. This binding involves both ribosomal protein and 18S ribosomal RNA (rRNA) interactions. In this study, we evaluate the functional significance of the rRNA interaction and show that HCV IRES activity requires a 3-nt Watson-Crick base-pairing interaction between the apical loop of subdomain IIId in the IRES and helix 26 in 18S rRNA. Mutations of these nucleotides in either RNA dramatically disrupted IRES activity. The activities of the mutated HCV IRESs could be restored by compensatory mutations in the 18S rRNA. The effects of the 18S rRNA mutations appeared to be specific inasmuch as ribosomes containing these mutations did not support translation mediated by the wild-type HCV IRES, but did not block translation mediated by the cap structure or other viral IRESs. The present study provides, to our knowledge, the first functional demonstration of mRNA-rRNA base pairing in mammalian cells. By contrast with other rRNA-binding sites in mRNAs that can enhance translation as independent elements, e.g., the Shine-Dalgarno sequence in prokaryotes, the rRNA-binding site in the HCV IRES functions as an essential component of a more complex interaction.
Collapse
|
16
|
Pánek J, Kolár M, Vohradský J, Shivaya Valásek L. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5' UTRs and its implications for eukaryotic gene translation regulation. Nucleic Acids Res 2013; 41:7625-34. [PMID: 23804757 PMCID: PMC3763539 DOI: 10.1093/nar/gkt548] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA–rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5′ untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5′ UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5′ UTRs of mRNAs.
Collapse
Affiliation(s)
- Josef Pánek
- Laboratory of Bioinformatics, Institute of Microbiology, Academy of Sciences of Czech Republic, v.v.i., 14220 Prague, Videnska 1083, Czech Republic, Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of Czech Republic, v.v.i., 14220 Prague, Videnska 1083, Czech Republic and Laboratory of Regulation of Gene Expression, Institute of Microbiology, Academy of Sciences of Czech Republic, v.v.i., 14220 Prague, Videnska 1083, Czech Republic
| | | | | | | |
Collapse
|
17
|
Shabalina SA, Spiridonov NA, Kashina A. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res 2013; 41:2073-94. [PMID: 23293005 PMCID: PMC3575835 DOI: 10.1093/nar/gks1205] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Messenger RNA is a key component of an intricate regulatory network of its own. It accommodates numerous nucleotide signals that overlap protein coding sequences and are responsible for multiple levels of regulation and generation of biological complexity. A wealth of structural and regulatory information, which mRNA carries in addition to the encoded amino acid sequence, raises the question of how these signals and overlapping codes are delineated along non-synonymous and synonymous positions in protein coding regions, especially in eukaryotes. Silent or synonymous codon positions, which do not determine amino acid sequences of the encoded proteins, define mRNA secondary structure and stability and affect the rate of translation, folding and post-translational modifications of nascent polypeptides. The RNA level selection is acting on synonymous sites in both prokaryotes and eukaryotes and is more common than previously thought. Selection pressure on the coding gene regions follows three-nucleotide periodic pattern of nucleotide base-pairing in mRNA, which is imposed by the genetic code. Synonymous positions of the coding regions have a higher level of hybridization potential relative to non-synonymous positions, and are multifunctional in their regulatory and structural roles. Recent experimental evidence and analysis of mRNA structure and interspecies conservation suggest that there is an evolutionary tradeoff between selective pressure acting at the RNA and protein levels. Here we provide a comprehensive overview of the studies that define the role of silent positions in regulating RNA structure and processing that exert downstream effects on proteins and their functions.
Collapse
Affiliation(s)
- Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20984, USA.
| | | | | |
Collapse
|
18
|
Tripp HJ, Hewson I, Boyarsky S, Stuart JM, Zehr JP. Misannotations of rRNA can now generate 90% false positive protein matches in metatranscriptomic studies. Nucleic Acids Res 2011; 39:8792-802. [PMID: 21771858 PMCID: PMC3203614 DOI: 10.1093/nar/gkr576] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the course of analyzing 9,522,746 pyrosequencing reads from 23 stations in the Southwestern Pacific and equatorial Atlantic oceans, it came to our attention that misannotations of rRNA as proteins is now so widespread that false positive matching of rRNA pyrosequencing reads to the National Center for Biotechnology Information (NCBI) non-redundant protein database approaches 90%. One conserved portion of 23S rRNA was consistently misannotated often enough to prompt curators at Pfam to create a spurious protein family. Detailed examination of the annotation history of each seed sequence in the spurious Pfam protein family (PF10695, 'Cw-hydrolase') uncovered issues in the standard operating procedures and quality assurance programs of major sequencing centers, and other issues relating to the curation practices of those managing public databases such as GenBank and SwissProt. We offer recommendations for all these issues, and recommend as well that workers in the field of metatranscriptomics take extra care to avoid including false positive matches in their datasets.
Collapse
Affiliation(s)
- H James Tripp
- Department of Ocean Sciences, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
19
|
Tu WY, Huang YC, Liu LF, Chang LH, Tam MF. Rpl12p affects the transcription of the PHO pathway high-affinity inorganic phosphate transporters and repressible phosphatases. Yeast 2011; 28:481-93. [DOI: 10.1002/yea.1852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/22/2011] [Indexed: 11/08/2022] Open
|
20
|
Kong Q, Stockinger MP, Chang Y, Tashiro H, Lin CLG. The presence of rRNA sequences in polyadenylated RNA and its potential functions. Biotechnol J 2008; 3:1041-6. [PMID: 18683164 DOI: 10.1002/biot.200800122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accumulating evidence has shown that various lengths of ribosomal RNA (rRNA) sequences are widely present in polyadenylated RNA. This review article will discuss these polyadenylated rRNA containing transcripts (PART). PART are highly abundant and widely expressed in various tissues. It appears that there may be two types of PART. One type, type I, contains the rRNA segments (from approximately 10 nucleotides up to several hundred nucleotides) located within the transcripts. It has been demonstrated that short rRNA sequences within type I PART may function as cis-regulatory elements that regulate translational efficiency. The other type, type II, contains large portions or almost entire sequences of rRNA with a cap at the 5' end and poly(A) at 3' end. Recent work has shown that some type II PART have functional significance for some neurodegenerative disease processes and may play an important role in the pathogenesis of diseases. Further investigation in this area is critical to understanding the basic biology of PART and the potential role of PART in diseases.
Collapse
Affiliation(s)
- Qiongman Kong
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
21
|
Panopoulos P, Mauro VP. Antisense masking reveals contributions of mRNA-rRNA base pairing to translation of Gtx and FGF2 mRNAs. J Biol Chem 2008; 283:33087-93. [PMID: 18832380 DOI: 10.1074/jbc.m804904200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that a 9-nucleotide sequence from the 5' leader of the Gtx homeodomain mRNA facilitates translation initiation by base pairing to 18S rRNA. These earlier studies tested the Gtx element in isolation; we now assess the physiological relevance of this element in the context of two natural mRNAs that contain this sequence in their 5' leaders, Gtx itself and FGF2 (fibroblast growth factor 2). 2'-O-Methyl-modified RNA oligonucleotides were employed to block mRNA-rRNA base pairing by targeting either the Gtx-binding site in 18S rRNA or Gtx elements in recombinant mRNAs containing the Gtx or FGF2 5' leaders linked to a reporter cistron. Studies in cell-free lysates and transfected COS-7 cells showed that translation of mRNAs containing the Gtx or FGF2 5' leaders was decreased by > 50% when oligonucleotides targeting either the rRNA or mRNA were used. Specificity was demonstrated by showing that translation of the recombinant mRNAs was unaffected by control oligonucleotides. In addition, the specific oligonucleotides did not affect the translation of recombinant mRNAs in which the Gtx elements were mutated. Experiments performed using constructs containing Gtx and FGF2 5' leader and coding sequences ruled out possible effects of the reporter cistron. Furthermore, two-dimensional gel electrophoresis revealed that the oligonucleotides used in this study had little overall effect on the proteomes of cells transfected with these oligonucleotides. This study demonstrates that mRNA-rRNA base pairing affects the expression of two cellular mRNAs and describes a new approach for investigating putative mRNA-rRNA base pairing interactions in mammalian cells.
Collapse
Affiliation(s)
- Panagiotis Panopoulos
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
22
|
Chang Y, Stockinger MP, Tashiro H, Glenn Lin C. A novel noncoding RNA rescues mutant SOD1‐mediated cell death. FASEB J 2007; 22:691-702. [DOI: 10.1096/fj.07-9532com] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yueming Chang
- Department of NeuroscienceThe Ohio State UniversityColumbusOhioUSA
- Ohio State Biochemistry ProgramThe Ohio State UniversityColumbusOhioUSA
| | | | - Hirofumi Tashiro
- Department of NeuroscienceThe Ohio State UniversityColumbusOhioUSA
| | - Chien‐liang Glenn Lin
- Department of NeuroscienceThe Ohio State UniversityColumbusOhioUSA
- Ohio State Biochemistry ProgramThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
23
|
Abstract
The ribosome filter hypothesis postulates that ribosomes are not simply translation machines but also function as regulatory elements that differentially affect or filter the translation of particular mRNAs. On the basis of new information, we take the opportunity here to review the ribosome filter hypothesis, suggest specific mechanisms of action, and discuss recent examples from the literature that support it.
Collapse
|
24
|
Zhou X, Tarver MR, Scharf ME. Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect. Development 2007; 134:601-10. [PMID: 17215309 DOI: 10.1242/dev.02755] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Worker termites of the genus Reticulitermes are temporally-arrested juvenile forms that can terminally differentiate into adultsoldier- or reproductive-caste phenotypes. Soldier-caste differentiation is a developmental transition that is induced by high juvenile hormone (JH) titers. Recently, a status quo hexamerin mechanism was identified, which reduces JH efficacy and maximizes colony fitness via the maintenance of high worker-caste proportions. Our goal in these studies was to investigate more thoroughly the influences of the hexamerins on JH-dependent gene expression in termite workers. Our approach involved RNA interference (RNAi), bioassays and quantification of gene expression. We first investigated the expression of 17 morphogenesis-associated genes in response to RNAi-based hexamerin silencing. Hexamerin silencing resulted in significant downstream impacts on 15 out of the 17 genes, suggesting that these genes are members of a JH-responsive genomic network. Next, we compared gene-expression profiles in workers after RNAi-based hexamerin silencing to that of (i) untreated workers that were held away from the colony; and (ii) workers that were also held away from the colony, but with ectopic JH. Here, although there was no correlation between hexamerin silencing and colony-release effects, we observed a significant correlation between hexamerin silencing and JH-treatment effects. These findings provide further evidence supporting the hypothesis that the hexamerins modulate JH availability, thus limiting the impacts of JH on termite caste polyphenism. Results are discussed in a context relative to outstanding questions on termite developmental biology, particularly on regulatory gene networks that respond to JH-, colony- and environmental-cues.
Collapse
Affiliation(s)
- Xuguo Zhou
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611-0620, USA
| | | | | |
Collapse
|
25
|
Chappell SA, Dresios J, Edelman GM, Mauro VP. Ribosomal shunting mediated by a translational enhancer element that base pairs to 18S rRNA. Proc Natl Acad Sci U S A 2006; 103:9488-93. [PMID: 16769881 PMCID: PMC1480434 DOI: 10.1073/pnas.0603597103] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, 40S ribosomal subunits move from their recruitment site on the mRNA to the initiation codon by an as yet poorly understood process. One postulated mechanism involves ribosomal shunting, in which ribosomal subunits completely bypass regions of the 5' leader. For some mRNAs, shunting has been shown to require various mRNA elements, some of which are thought to base pair to 18S rRNA; however, the role of base pairing has not yet been tested directly. In earlier studies, we demonstrated that a short mRNA element in the 5' leader of the Gtx homeodomain mRNA functioned as a ribosomal recruitment site by base pairing to the 18S rRNA. Using a model system to assess translation in transfected cells, we now show that this intermolecular interaction also facilitates ribosomal shunting across two types of obstacles: an upstream AUG codon in excellent context or a stable hairpin structure. Highly efficient shunting occurred when multiple Gtx elements were present upstream of the obstacles, and a single Gtx element was present downstream. Shunting was less efficient, however, when the multiple Gtx elements were present only upstream of the obstacles. In addition, control experiments with mRNAs lacking the upstream elements showed that these results could not be attributed to recruitment by the single downstream element. Experiments in yeast in which the mRNA elements and 18S rRNA sequences were both mutated indicated that shunting required an intact complementary match. The data obtained by this model system provide direct evidence that ribosomal shunting can be mediated by mRNA-rRNA base pairing, a finding that may have general implications for mechanisms of ribosome movement.
Collapse
Affiliation(s)
- Stephen A. Chappell
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - John Dresios
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Gerald M. Edelman
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
- *To whom correspondence may be addressed. E-mail:
or
| | - Vincent P. Mauro
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
26
|
Vanderhaeghen R, De Clercq R, Karimi M, Van Montagu M, Hilson P, Van Lijsebettens M. Leader sequence of a plant ribosomal protein gene with complementarity to the 18S rRNA triggers in vitro cap-independent translation. FEBS Lett 2006; 580:2630-6. [PMID: 16650410 DOI: 10.1016/j.febslet.2006.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 04/03/2006] [Accepted: 04/07/2006] [Indexed: 11/25/2022]
Abstract
Cap-independent translation (CIT) occurs at the leader sequences of uncapped plant viral RNAs, but also at a number of normally capped cellular mRNAs and has been correlated with sequence complementarity to 18S rRNA. The ribosomal protein S18 (RPS18) is a component of the small ribosomal subunit and is encoded by three gene copies (A, B, and C) in the Arabidopsis thaliana genome. The RPS18C mRNA was most abundant and contained a short 5' untranslated region of 84 bp that is complementary to a novel putative interaction site at the 3' end of the 18S rRNA. The RPS18C leader mediated CIT as demonstrated by dicistronic constructs consisting of luciferase and chloramphenicol acetyl transferase reporter genes in an in vitro wheat germ extract system. CIT was rapidly inhibited upon addition of an oligonucleotide that competed for the 18S rRNA site complementary to the RPS18C leader and interfered with polysome assembly at the transcript.
Collapse
Affiliation(s)
- Rudy Vanderhaeghen
- Department Plant Systems Biology, Flanders Interuniversitary Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Osada Y, Saito R, Tomita M. Comparative analysis of base correlations in 5' untranslated regions of various species. Gene 2006; 375:80-6. [PMID: 16618531 DOI: 10.1016/j.gene.2006.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/16/2006] [Indexed: 11/29/2022]
Abstract
Translational initiation signals, such as Shine-Dalgarno (SD) sequences in bacteria and Kozak consensus sequences in vertebrates, direct ribosomes to initiate protein synthesis from mRNAs. Investigating sequence characteristics of these signals is important, particularly to infer translational initiation mechanisms. Although various statistical analyses of translational initiation signals have been done, few have focused on base correlations that assess base dependencies in the signal sequences. We used relative entropy and mutual information to analyze base conservation and correlation, respectively, in the 5' UTRs of various species. In eukaryotes, we found peaks of relative entropy at -3 from the translational start site but no peak of mutual information at that position, indicating that the base at that position (known as the core base of the Kozak sequence) is well conserved but not correlated with neighboring bases and thus functions as a single base. We observed unexpected peaks of mutual information between positions -2 and -1 in most eukaryotes. Surprisingly these base correlation also occurred in some bacteria and archaea, although there were no base preferences at neither position. Various dinucleotide patterns existed at these positions, and the correlation between bases at -2 and -1 may be relevant to the context of translational initiation. Because dinucleotide patterns of correlated pairs of nucleotides at -2 and -1 were not unique within respective organisms, the correlation could not be found when analyzing single-nucleotide conservation. Therefore, mutual information allowed us to discover signals that were not found by simply analyzing base conservation.
Collapse
Affiliation(s)
- Yuko Osada
- Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa, 252-8520, Japan
| | | | | |
Collapse
|
28
|
Dresios J, Chappell SA, Zhou W, Mauro VP. An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes. Nat Struct Mol Biol 2005; 13:30-4. [PMID: 16341227 DOI: 10.1038/nsmb1031] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 11/01/2005] [Indexed: 11/08/2022]
Abstract
Base-pairing of messenger RNA to ribosomal RNA is a mechanism of translation initiation in prokaryotes. Although analogous base-pairing has been suggested to affect the translation of various eukaryotic mRNAs, direct evidence has been lacking. To test such base-pairing, we developed a yeast system that uses ribosomes containing a mouse-yeast hybrid 18S rRNA. Using this system, we demonstrate that a 9-nucleotide element found in the mouse Gtx homeodomain mRNA facilitates translation initiation by base-pairing to 18S rRNA. Various point mutations in the Gtx element and in either the hybrid or wild-type yeast 18S rRNAs confirmed the requirement for an intact complementary match. The presence of the Gtx element in various mRNAs suggests that this element affects the translation of groups of mRNAs. We discuss the possibility that other mRNA elements affect translation by base-pairing to different sites in the 18S rRNA.
Collapse
Affiliation(s)
- John Dresios
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
29
|
Flück M, Däpp C, Schmutz S, Wit E, Hoppeler H. Transcriptional profiling of tissue plasticity: role of shifts in gene expression and technical limitations. J Appl Physiol (1985) 2005; 99:397-413. [PMID: 16020435 DOI: 10.1152/japplphysiol.00050.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Reprogramming of gene expression has been recognized as a main instructive modality for the adjustments of tissues to various kinds of stress. The recent application of gene expression profiling has provided a powerful tool to elucidate the molecular pathways underlying such tissue remodeling. However, the biological interpretations of expression profiling results critically depend on normalization of transcript signals to mRNA standards before statistical evaluation. A hypothesis is proposed whereby the “fluctuating nature” of gene expression represents an inherent limitation of the test system used to quantify RNA levels. Misinterpretation of gene expression data occurs when RNA quantities are normalized to a subset of mRNAs that are subject to strong regulation. The contention of contradictory biological outcomes using different RNA-normalization schemes is demonstrated in two models of skeletal muscle plasticity with data from custom-designed microarrays and biochemical and ultrastructural evidence for correspondingly altered RNA content and nucleolar activity. The prevalence of these biological constraints is underlined by a literature survey in different models of tissue plasticity with emphasis on the unique malleability of skeletal muscle. Finally, recommendations on the optimal experimental layout are given to control biological and technical variability in microarray and RT-PCR studies. It is proposed to approach normalization of transcript signals by measuring total RNA and DNA content per sample weight and by correcting for concurrently estimated endogenous standards such as major ribosomal RNAs and spiked RNA and DNA species. This allows for later conversion to diverse tissue-relevant references and should improve the physiological interpretations of phenotypic plasticity.
Collapse
Affiliation(s)
- Martin Flück
- Dept. of Anatomy, Baltzerstrasse 2, 3000 Bern 9, Switzerland.
| | | | | | | | | |
Collapse
|
30
|
Zhou W, Edelman GM, Mauro VP. A positive feedback vector for identification of nucleotide sequences that enhance translation. Proc Natl Acad Sci U S A 2005; 102:6273-8. [PMID: 15845766 PMCID: PMC1088366 DOI: 10.1073/pnas.0409892102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In earlier studies, we identified short (6- to 22-nt) sequences that functioned as internal ribosome entry sites (IRESes) and enhanced translation. The size of these IRES elements suggested that they might be prevalent within the messenger population and that individual elements might affect the translation of different groups of mRNAs. To begin to assess the number of different IRES elements in mammalian cells, we have developed a powerful method that uses a positive feedback mechanism to amplify the activities of individual IRES elements. This method uses a vector that encodes a dicistronic mRNA with a reporter gene (Renilla luciferase or the EGFP) as the first cistron and the yeast Gal4/viral protein 16 (VP16) transcription factor as the second cistron. Transcription of this mRNA is driven by a minimal promoter containing four copies of the Gal4 upstream activation sequence. In this method, the presence of an IRES in the intercistronic region facilitates the translation of Gal4/VP16, which binds to the upstream activation sequences and triggers a positive feedback loop that escalates the production of dicistronic mRNA and Gal4/VP16. A corresponding increase in the translation of the first cistron (luciferase or EGFP) is monitored either by measuring luciferase activity or by using FACS. The latter enables IRES-positive cells to be isolated. We present tests of the feedback mechanism by using an IRES module from Gtx homeodomain mRNA and an IRES from hepatitis C virus and demonstrate the utility of this vector system for the screening, identification, and analysis of IRES elements.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
31
|
Scharf ME, Wu-Scharf D, Zhou X, Pittendrigh BR, Bennett GW. Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. INSECT MOLECULAR BIOLOGY 2005; 14:31-44. [PMID: 15663773 DOI: 10.1111/j.1365-2583.2004.00527.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Array-based genomic studies were conducted with the goal of identifying immature (i.e. nymph) and adult reproductive caste-biased gene expression in the termite Reticulitermes flavipes. Using cDNA macro-arrays, we identified thirty-four nymph-biased genes falling into eight ontogenic categories. Based on gene expression profiles among diverse castes and developmental stages (determined by quantitative PCR), several important trends emerged. These findings highlight the importance of several developmental and survival-based factors among immature and adult termite reproductives, including: vitellogenesis, nutrient storage, juvenile hormone sequestration, ribosomal translational and filtering mechanisms, fatty acid biosynthesis, apoptosis inhibition, and both endogenous and symbiont cellulase-assisted nutrition. These findings are highly significant as they are the first to elucidate the molecular biology underlying termite reproductive caste differentiation and reproductive caste-specific biology. Other gene expression results are in agreement with previous findings that suggest roles for vitellogenin-like haemolymph proteins in soldier caste differentiation.
Collapse
Affiliation(s)
- M E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN, USA.
| | | | | | | | | |
Collapse
|
32
|
Zajakina A, Kozlovska T, Bruvere R, Aleksejeva J, Pumpens P, Garoff H. Translation of hepatitis B virus (HBV) surface proteins from the HBV pregenome and precore RNAs in Semliki Forest virus-driven expression. J Gen Virol 2004; 85:3343-3351. [PMID: 15483250 DOI: 10.1099/vir.0.80388-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis B virus (HBV) pregenome RNA (pgRNA) serves as a translation template for the HBV core (HBc) protein and viral polymerase (Pol). HBV precore RNA (pcRNA) directs the synthesis of the precore (preC) protein, a precursor of the hepatitis B e antigen (HBeAg). pgRNA and pcRNA were expressed in the Semliki Forest virus (SFV) expression system. Besides the HBc and preC proteins, there was revealed the synthesis of all three forms of HBV surface (HBs) proteins: long (LHBs), middle (MHBs) and short (SHBs), the start codons of which are located more than 1000 nt downstream of the HBc and preC start codons. Moreover, other HBV templates, such as 3′-truncated pgRNA lacking 3′ direct repeat and Pol mRNA, both carrying internally the HBs sequences, provided the synthesis of three HBs protein forms in the SFV-driven expression system. Maximal production of the HBs was provided by Pol mRNA, while HBc- and preC-producing templates showed relatively low internal translation of the HBs. These data allow the proposal of a ribosome leaky scanning model of internal translation initiation for HBs proteins. The putative functional role of such exceptional synthesis of the HBs proteins from the pgRNA and pcRNA templates in the natural HBV infection process needs further evaluation.
Collapse
Affiliation(s)
- Anna Zajakina
- Department of Protein Engineering, Biomedical Research and Study Centre, University of Latvia, Ratsupites Str., 1, LV-1067 Riga, Latvia
| | - Tatyana Kozlovska
- Department of Protein Engineering, Biomedical Research and Study Centre, University of Latvia, Ratsupites Str., 1, LV-1067 Riga, Latvia
| | - Ruta Bruvere
- Department of Protein Engineering, Biomedical Research and Study Centre, University of Latvia, Ratsupites Str., 1, LV-1067 Riga, Latvia
| | - Jekaterina Aleksejeva
- Department of Protein Engineering, Biomedical Research and Study Centre, University of Latvia, Ratsupites Str., 1, LV-1067 Riga, Latvia
| | - Paul Pumpens
- Department of Protein Engineering, Biomedical Research and Study Centre, University of Latvia, Ratsupites Str., 1, LV-1067 Riga, Latvia
| | - Henrik Garoff
- Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden
| |
Collapse
|
33
|
Chappell SA, Edelman GM, Mauro VP. Biochemical and functional analysis of a 9-nt RNA sequence that affects translation efficiency in eukaryotic cells. Proc Natl Acad Sci U S A 2004; 101:9590-4. [PMID: 15210968 PMCID: PMC470719 DOI: 10.1073/pnas.0308759101] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We previously identified an internal ribosome entry site (IRES) within the 5' leader of the mRNA encoding the Gtx homeodomain protein and showed that shorter nonoverlapping segments of this 5' leader could enhance the translation of a second cistron in a dicistronic mRNA. One of these segments was 9 nt in length, and when multiple copies of this IRES module were linked together, IRES activity was greatly enhanced. To further expand the potential uses of these synthetic constructs and facilitate analyses of the mechanism by which they affect translation, we show here that an IRES containing five linked copies of the 9-nt sequence can also enhance translation in the 5' leader of a monocistronic mRNA. Moreover, a search for interactions of the IRES module with cellular factors revealed specific binding to 40S ribosomal subunits but not to other cellular components. Based on the results of earlier studies suggesting that this sequence could bind to a complementary segment of 18S rRNA, we tested various sequences for possible links between the length of the complementary match, their binding to ribosomes, and their influence on translational efficiency. We found that the length of the complementary match was directly correlated with the ability of RNA probes to bind to ribosomes. In addition, translation was maximally enhanced ( approximately 8-fold) by a 7-nt segment of the 9-nt element; the enhancement declined progressively as the complementary stretches became progressively longer or shorter. The results suggest that the Gtx 9-nt sequence affects translation efficiency by a mechanism that involves base pairing to 18S rRNA.
Collapse
Affiliation(s)
- Stephen A Chappell
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
34
|
Akbergenov RZ, Zhanybekova SS, Kryldakov RV, Zhigailov A, Polimbetova NS, Hohn T, Iskakov BK. ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs. Nucleic Acids Res 2004; 32:239-47. [PMID: 14718549 PMCID: PMC373286 DOI: 10.1093/nar/gkh176] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sequences of different plant viral leaders with known translation enhancer ability show partial complementarity to the central region of 18S rRNA. Such complementarity might serve as a means to attract 40S ribosomal subunits and explain in part the translation-enhancing property of these sequences. To verify this notion, we designed beta-glucuronidase (GUS) mRNAs differing only in the nature of 10 nt inserts in the center of their 41 base leaders. These were complementary to consecutive domains of plant 18S rRNA. Sucrose gradient analysis revealed that leaders with inserts complementary to regions 1105-1114 and 1115-1124 ('ARC-1') of plant 18S rRNA bound most efficiently to the 40S ribosomal subunit after dissociation from 80S ribosomes under conditions of high ionic strength, a treatment known to remove translation initiation factors. Using wheat germ cell-free extracts, we could demonstrate that mRNAs with these leaders were translated more than three times more efficiently than a control lacking such a complementarity. Three linked copies of the insert enhanced translation of reporter mRNA to levels comparable with those directed by the natural translation enhancing leaders of tobacco mosaic virus and potato virus Y RNAs. Moreover, inserting the same leaders as intercistronic sequences in dicistronic mRNAs substantially increased translation of the second cistron, thereby revealing internal ribosome entry site activity. Thus, for plant systems, the complementary interaction between mRNA leader and the central region of 18S rRNA allows cap-independent binding of mRNA to the 43S pre-initiation complex without assistance of translation initiation factors.
Collapse
Affiliation(s)
- R Zh Akbergenov
- Institute of Molecular Biology and Biochemistry, 86, Dosmukhamedov Str., 480012, Almaty, Kazakhstan, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Chappell SA, Mauro VP. The internal ribosome entry site (IRES) contained within the RNA-binding motif protein 3 (Rbm3) mRNA is composed of functionally distinct elements. J Biol Chem 2003; 278:33793-800. [PMID: 12824175 DOI: 10.1074/jbc.m303495200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the internal ribosome entry sites (IRESes) of viral mRNAs are highly structured and comprise several hundred nucleotides, there is a variety of evidence indicating that very short nucleotide sequences, both naturally occurring and synthetic, can similarly mediate internal initiation of translation. In this study, we performed deletion and mutational analyses of an IRES contained within the 720-nucleotide (nt) 5' leader of the Rbm3 mRNA and demonstrated that this IRES is highly modular, with at least 9 discrete cis-acting sequences. These cis-acting sequences include a 22-nt IRES module, a 10-nt enhancer, and 2 inhibitory sequences. The 22-nt sequence was shown to function as an IRES when tested in isolation, and we demonstrated that it did not enhance translation by functioning as a transcriptional promoter, enhancer, or splice site. The activities of all 4 cis-acting sequences were further confirmed by their mutation in the context of the full IRES. Interestingly, one of the inhibitory cis-acting sequences is contained within an upstream open reading frame (uORF), and its activity seems to be masked by translation of this uORF. Binding studies revealed that all 4 cis-acting sequences could bind specifically to distinct cytoplasmic proteins. In addition, the 22-nt IRES module was shown to bind specifically to 40 S ribosomal subunits. The results demonstrate that different types of cis-acting sequences mediate or modulate translation of the Rbm3 mRNA and suggest that one of the IRES modules contained within the 5' leader facilitates translation initiation by binding directly to 40 S ribosomal subunits.
Collapse
Affiliation(s)
- Stephen A Chappell
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
| | | |
Collapse
|
36
|
Zhou W, Edelman GM, Mauro VP. Isolation and identification of short nucleotide sequences that affect translation initiation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2003; 100:4457-62. [PMID: 12679518 PMCID: PMC153577 DOI: 10.1073/pnas.0437993100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2002] [Indexed: 01/17/2023] Open
Abstract
In previous studies, we demonstrated the sufficiency of short nucleotide sequences to facilitate internal initiation of translation in mammalian cells. By using a selection methodology, we have now identified comparable sequences in Saccharomyces cerevisiae. For these studies, a library of constructs expressing dicistronic mRNAs with the HIS3 gene as the second cistron and 18 random nucleotides in the intercistronic region was introduced into a yeast strain in which the endogenous HIS3 gene was deleted. Untransformed cells or those containing the parent construct failed to grow on medium lacking histidine. Intercistronic sequences recovered from cells that did grow were evaluated by using various criteria. Fifty-six of the 18-nt sequences (approximately 1/400,000) functioned as synthetic internal ribosome entry sites (IRESes). The 14 most active sequences allowed growth in the presence of 0.1-0.6 mM 3-amino-1,2,4-triazole, a competitive inhibitor of the HIS3 gene product. In addition, eight sequences were identified that were not IRESes, but that enhanced HIS3 expression by an alternative mechanism that depended on the 5' end of the mRNA and appeared to involve either shunting or reinitiation. Comparisons among the 56 selected IRESes identified eight significant sequence matches containing up to 10 nucleotides. Many of the selected sequences also contained extensive complementary matches to yeast 18S rRNA, some at overlapping sites. The identification of cis sequences that facilitate translation initiation in yeast enables detailed biochemical and genetic analyses of underlying mechanisms and may have practical applications for bioengineering.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
37
|
Abstract
A variety of posttranscriptional mechanisms affects the processing, subcellular localization, and translation of messenger RNAs (mRNAs). Translational control appears to occur primarily at the initiation rather than the elongation stage. It has been suggested that translation is mediated largely by means of a cap-binding/scanning mechanism. On the basis of recent findings, we propose here that differential binding of particular mRNAs to eukaryotic 40S ribosomal subunits before translation may also selectively affect rates of polypeptide chain production. In this view, ribosomal subunits themselves are considered to be regulatory elements or filters that mediate interactions between particular mRNAs and components of the translation machinery. Differences in these interactions affect how efficiently individual mRNAs compete for ribosomal subunits. These competitive interactions would depend in part on the complementarity between sequences in mRNA and rRNA, as well as on structural differences among ribosomes in different cell types. By these means, translation may either be enhanced through increased recruitment of ribosomes or inhibited through strong interactions that sequester mRNAs. We propose that ribosomal filters may be important in cell differentiation and describe experimental tests for the filter hypothesis.
Collapse
Affiliation(s)
- Vincent P Mauro
- Department of Neurobiology, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
38
|
Raponi M, Arndt GM. Dominant genetic screen for cofactors that enhance antisense RNA-mediated gene silencing in fission yeast. Nucleic Acids Res 2002; 30:2546-54. [PMID: 12034844 PMCID: PMC117174 DOI: 10.1093/nar/30.11.2546] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Specific gene silencing has been demonstrated in a number of organisms by the introduction of antisense RNA. Mutagenesis of host-encoded factors has begun to unravel the mechanism of several forms of RNA-mediated gene silencing and has suggested that it may have been conserved through evolution. This has led to the identification of certain host genes, which, when mutated, abrogate this phenomenon. Conversely, the identification of other factors that, when co-expressed or overexpressed, can enhance gene inhibition is equally important for both elucidating the mechanism of this process and enhancing gene silencing in recalcitrant systems. We have taken such a dominant genetic approach to identify several host-encoded factors that dramatically enhance target gene silencing when co-expressed with antisense RNA in fission yeast. The transcription factor thi1 and, surprisingly, the ATP-dependent RNA helicase ded1 were initially shown to enhance gene silencing in this system. Additionally, screening of a Schizosaccharomyces pombe cDNA library identified four novel antisense-enhancing sequences (aes factors) all of which are homologous to genes encoding proteins with natural affinities for nucleic acids. These findings demonstrate the utility of this strategy in identifying host-encoded factors that can modulate gene silencing when co-expressed with antisense RNA and possibly other forms of gene-silencing activators.
Collapse
Affiliation(s)
- Mitch Raponi
- Department of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
39
|
Dorokhov YL, Skulachev MV, Ivanov PA, Zvereva SD, Tjulkina LG, Merits A, Gleba YY, Hohn T, Atabekov JG. Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc Natl Acad Sci U S A 2002; 99:5301-6. [PMID: 11959981 PMCID: PMC122764 DOI: 10.1073/pnas.082107599] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2001] [Accepted: 02/22/2002] [Indexed: 11/18/2022] Open
Abstract
The internal ribosome entry sites (IRES), IRES(CP,148)(CR) and IRES(MP,75)(CR), precede the coat protein (CP) and movement protein (MP) genes of crucifer-infecting tobamovirus (crTMV), respectively. In the present work, we analyzed the activity of these elements in transgenic plants and other organisms. Comparison of the relative activities of the crTMV IRES elements and the IRES from an animal virus--encephalomyocarditis virus--in plant, yeast, and HeLa cells identified the 148-nt IRES(CP,148)(CR) as the strongest element that also displayed IRES activity across all kingdoms. Deletion analysis suggested that the polypurine (A)-rich sequences (PARSs) contained in IRES(CP,148)(CR) are responsible for these features. On the basis of those findings, we designed artificial PARS-containing elements and showed that they, too, promote internal translation from dicistronic transcripts in vitro, in tobacco protoplasts and in HeLa cells. The maximum IRES activity was obtained from multiple copies of either (A)(4)G(A)(2)(G)(2) or G(A)(2-5) as contained in IRES(CP,148)(CR). Remarkably, even homopolymeric poly(A) was moderately active, whereas a poly(G) homopolymer was not active. Furthermore, a database search for existing PARS sequences in 5'-untranslated regions (5'UTR) of genes in tobacco genome allowed the easy identification of a number of IRES candidates, in particular in the 5'UTR of the gene encoding Nicotiana tabacum heat-shock factor 1 (NtHSF1). Consistent with our prediction, the 5'UTR of NtHSF1 turned out to be an IRES element active in vitro, in plant protoplasts and HeLa cells. We predict that PARS elements, when found in other mRNAs, will show a similar activity.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Koh DCY, Liu DX, Wong SM. A six-nucleotide segment within the 3' untranslated region of hibiscus chlorotic ringspot virus plays an essential role in translational enhancement. J Virol 2002; 76:1144-53. [PMID: 11773390 PMCID: PMC135814 DOI: 10.1128/jvi.76.3.1144-1153.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA plant viruses use various translational regulatory mechanisms to control their gene expression. Translational enhancement of viral mRNAs that leads to higher levels of protein synthesis from specific genes may be essential for the virus to successfully compete for cellular translational machinery. The control elements have yet to be analyzed for members of the genus Carmovirus, a small group of plant viruses with positive-sense RNA genomes. In this study, we examined the 3' untranslated region (UTR) of hibiscus chlorotic ringspot virus (HCRSV) genomic RNA (gRNA) and subgenomic RNA (sgRNA) for its role in the translational regulation of viral gene expression. The results showed that the 3' UTR of HCRSV significantly enhanced the translation of several open reading frames on gRNA and sgRNA and a viral gene in a bicistronic construct with an inserted internal ribosome entry site. Through deletion and mutagenesis studies of both the bicistronic construct and full-length gRNA, we demonstrated that a six-nucleotide sequence, GGGCAG, that is complementary to the 3' region of the 18S rRNA and a minimal length of 180 nucleotides are required for the enhancement of translation induced by the 3' UTR.
Collapse
Affiliation(s)
- Dora Chin-Yen Koh
- Department of Biological Sciences, The National University of Singapore, Singapore 117543, Republic of Singapore
| | | | | |
Collapse
|
41
|
Kermekchiev M, Ivanova L. Ribin, a protein encoded by a message complementary to rRNA, modulates ribosomal transcription and cell proliferation. Mol Cell Biol 2001; 21:8255-63. [PMID: 11713263 PMCID: PMC99991 DOI: 10.1128/mcb.21.24.8255-8263.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The control of rRNA transcription, tightly coupled to the cell cycle and growth state of the cell, is a key process for understanding the mechanisms that drive cell proliferation. Here we describe a novel protein, ribin, found in rodents, that binds to the rRNA promoter and stimulates its activity. The protein also interacts with the basal rRNA transcription factor UBF. The open reading frame encoding ribin is 96% complementary to a central region of the large rRNA. This demonstrates that ribosomal DNA-related sequences in higher eukaryotes can be expressed as protein-coding messages. Ribin contains two predicted nuclear localization sequence elements, and green fluorescent protein-ribin fusion proteins localize in the nucleus. Cell lines overexpressing ribin exhibit enhanced rRNA transcription and faster growth. Furthermore, these cells significantly overcome the suppression of rRNA synthesis caused by serum deprivation. On the other hand, the endogenous ribin level correlates positively with the amount of serum in the medium. The data show that ribin is a limiting stimulatory factor for rRNA synthesis in vivo and suggest its involvement in the pathway that adapts ribosomal transcription and cell proliferation to physiological changes.
Collapse
Affiliation(s)
- M Kermekchiev
- Department of Biochemistry and Molecular Biophysics, Washington University, 660 South Euclid, St. Louis, MO 63110, USA.
| | | |
Collapse
|
42
|
Mezquita B, Mezquita J, Durfort M, Mezquita C. Constitutive and heat-shock induced expression of Hsp70 mRNA during chicken testicular development and regression. J Cell Biochem 2001; 82:480-90. [PMID: 11500924 DOI: 10.1002/jcb.1183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The constitutive and heat shock induced expression of Hsp70 mRNA was investigated in normal adult chicken testis and in adult testis after testicular regression induced by diethylstilbestrol (DES) treatment. In addition to the canonical form of Hsp70 mRNA, we have detected transcripts with an extended 5'UTR and transcripts containing, in the 5'UTR, sequences of the 18S ribosomal RNA. Hsp70 was expressed in unstressed male gonads in adult and regressed testis, being the expression much lower in regressed testis. Upon heat shock at 44 degrees C or 46 degrees C, Hsp70 was highly induced in both tissues. However, when testicular seminiferous tubules were incubated at the chicken internal temperature of 39 degrees C, no induction of Hsp70 was observed in mature testis, while the expression markedly increased in regressed testis. Induction at 39 degrees C was completely inhibited in the presence of 6 mM aspirin. Aspirin in the range 3-10 mM decreases the expression of Hsp70 in unstressed and stressed testicular cells, in striking contrast with the effect observed in other tissues as liver. These data suggest that the expression of Hsp70 is regulated in a specific manner in chicken testis and particularly in the male gonad undergoing regression.
Collapse
Affiliation(s)
- B Mezquita
- Laboratori de Genètica Molecular, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
43
|
Chappell SA, Owens GC, Mauro VP. A 5' Leader of Rbm3, a Cold Stress-induced mRNA, Mediates Internal Initiation of Translation with Increased Efficiency under Conditions of Mild Hypothermia. J Biol Chem 2001; 276:36917-22. [PMID: 11470798 DOI: 10.1074/jbc.m106008200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although mild hypothermia generally reduces protein synthesis in mammalian cells, the expression of a small number of proteins, including Rbm3, is induced under these conditions. In this study, we identify an Rbm3 mRNA with a complex 5' leader sequence containing multiple upstream open reading frames. Although these are potentially inhibitory to translation, monocistronic reporter mRNAs containing this leader were translated relatively efficiently. In addition, when tested in the intercistronic region of dicistronic mRNAs, this leader dramatically enhanced second cistron translation, both in transfected cells and in cell-free lysates, suggesting that the Rbm3 leader mediates cap-independent translation via an internal ribosome entry site (IRES). Inasmuch as Rbm3 mRNA and protein levels are both increased in cells exposed to mild hypothermia, the activity of this IRES was evaluated at a cooler temperature. Compared to 37 degrees C, IRES activity at 33 degrees C was enhanced up to 5-fold depending on the cell line. Moderate enhancements also occurred with constructs containing other viral and cellular IRESes. These effects of mild hypothermia on translation were not caused by decreased cell growth, as similar effects were not observed when cells were serum starved. The results suggest that cap-independent mechanisms may facilitate the translation of particular mRNAs during mild hypothermia.
Collapse
Affiliation(s)
- S A Chappell
- Department of Neurobiology, Scripps Research Institute and the Skaggs Institute for Chemical Biology, La Jolla, California 92037 and the Neurosciences Institute, San Diego, California 92121
| | | | | |
Collapse
|
44
|
Affiliation(s)
- C U Hellen
- Department of Microbiology and Immunology, Morse Institute for Molecular Genetics, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA.
| | | |
Collapse
|
45
|
Garlapati S, Chou J, Wang CC. Specific secondary structures in the capsid-coding region of giardiavirus transcript are required for its translation in Giardia lamblia. J Mol Biol 2001; 308:623-38. [PMID: 11350165 DOI: 10.1006/jmbi.2001.4568] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enhanced translation of giardiavirus (GLV)-luciferase chimeric mRNA in Giardia lamblia requires the presence of the initial 264 nucleotides of the viral capsid-coding region. A 13 nt downstream box (DB) sequence within this region, complementary to a 15 nt sequence near the 3' end of G. lamblia 16 S-like ribosomal RNA (rRNA), was found to be essential for the enhanced translation. However, DB is located 64-78 nt downstream of the initiation codon, whereas an exponential increase of translation efficiency depends on a further increment of the coding region from nucleotides 111 to 264. Thus, there could be additional structural requirements for translation enhancement in the region downstream from DB. Four major stem-loop structures, designated I to IV, were identified in the MFOLD-predicted secondary structure of the 264 nt capsid-coding region with an estimated minimum free energy (DeltaG degrees ) of -77.16 kcal x mol(-1). Our chemical probing analysis of the free 264 nt RNA molecule in solution supports the predicted presence of stem-loops I, II and III, but casts doubts on stem-loop IV. It suggests, instead, the presence of a stem-loop IVA at a nearby location in the molecule. Site-directed mutagenesis designed to disrupt stem-loop structures I, II, III or IVA resulted in drastic reduction of translation efficiency, which was restored by compensatory sequence changes to regenerate individual stem-loop structures. Mutations disrupting the originally designated stem-loop IV did not exert any detectable effect on translation. However, alterations of the sequence UCUCC between nucleotides 216 and 220 in the flexible loop region of the revised secondary structure led to a precipitous drop in translation. Another stem-loop predicted by MFOLD that consists of a major portion of the DB sequence was examined by chemical probing but found little experimental support. Changes of the DB sequence without affecting the postulated stem structure led to drastic losses of translation efficiency. Thus, a simple structural basis for the enhanced translation could be that stem-loops I, II, III and IVA and the UCUCC sequence may facilitate the interaction between DB and the anti-DB in 16 S-like rRNA in initiating translation of GLV mRNA in G. lamblia.
Collapse
Affiliation(s)
- S Garlapati
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA
| | | | | |
Collapse
|
46
|
Zhou W, Edelman GM, Mauro VP. Transcript leader regions of two Saccharomyces cerevisiae mRNAs contain internal ribosome entry sites that function in living cells. Proc Natl Acad Sci U S A 2001; 98:1531-6. [PMID: 11171985 PMCID: PMC29291 DOI: 10.1073/pnas.98.4.1531] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In higher eukaryotes, translation of some mRNAs occurs by internal initiation. It is not known, however, whether this mechanism is used to initiate the translation of any yeast mRNAs. In this report, we identify naturally occurring nucleotide sequences that function as internal ribosome entry sites (IRESes) within the 5' leader sequences of Saccharomyces cerevisiae YAP1 and p150 mRNAs. When tested in the 5' untranslated regions of monocistronic reporter genes, both leader sequences enhanced translation efficiency in vegetatively growing yeast cells. Moreover, when tested in the intercistronic region of dicistronic mRNAs, both sequences were shown to contain IRESes that functioned in living cells. The activity of the p150 leader was much greater than that of the YAP1 leader. The second cistron was not expressed in control dicistronic constructs that lacked these sequences or contained the 5' leader sequence of the CLN3 mRNA in the intercistronic region. Further analyses of the p150 IRES revealed that it contained several nonoverlapping segments that were able independently to mediate internal initiation. These results suggested a modular composition for the p150 IRES that resembled the composition of IRESes contained within some cellular mRNAs of higher eukaryotes. Both YAP1 and p150 leaders contain several complementary sequence matches to yeast 18S rRNA. The findings are discussed in terms of our understanding of internal initiation in higher eukaryotes.
Collapse
Affiliation(s)
- W Zhou
- Department of Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
47
|
Owens GC, Chappell SA, Mauro VP, Edelman GM. Identification of two short internal ribosome entry sites selected from libraries of random oligonucleotides. Proc Natl Acad Sci U S A 2001; 98:1471-6. [PMID: 11171975 PMCID: PMC29281 DOI: 10.1073/pnas.98.4.1471] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sequences that control translation of mRNA may play critical roles in regulating protein levels. One such element is the internal ribosome entry site (IRES). We previously showed that a 9-nt segment in the 5' leader sequence of the mRNA encoding Gtx homeodomain protein could function as an IRES. To identify other short sequences with similar properties, we designed a selection procedure that uses a retroviral vector to express dicistronic mRNAs encoding enhanced green and cyan fluorescent proteins as the first and second cistrons, respectively. Expression of the second cistron was dependent upon the intercistronic sequences and was indicative of IRES activity. B104 cells were infected with two retroviral libraries that contained random sequences of 9 or 18 nt in the intercistronic region. Cells expressing both cistrons were sorted, and sequences recovered from selected cells were reassayed for IRES activity in a dual luciferase dicistronic mRNA. Two novel IRESes were identified by this procedure, and both contained segments with complementarity to 18S rRNA. When multiple copies of either segment were linked together, IRES activities were dramatically enhanced. Moreover, these synthetic IRESes were differentially active in various cell types. These properties are similar to those of the previously identified 9-nt IRES module from Gtx mRNA. These results provide further evidence that short nucleotide sequences can function as IRESes and support the idea that some cellular IRESes may be composed of shorter functional modules. The ability to identify IRES modules with specific expression properties may be useful in the design of vectors for biotechnology and gene therapy.
Collapse
Affiliation(s)
- G C Owens
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
48
|
Verrier SB, Jean-Jean O. Complementarity between the mRNA 5' untranslated region and 18S ribosomal RNA can inhibit translation. RNA (NEW YORK, N.Y.) 2000; 6:584-97. [PMID: 10786849 PMCID: PMC1369939 DOI: 10.1017/s1355838200992239] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- Animals
- Base Pairing/genetics
- Base Sequence
- Cell Line
- Codon, Initiator/genetics
- Conserved Sequence/genetics
- Gene Expression Regulation/genetics
- Genes, Reporter/genetics
- Humans
- Mice
- Molecular Sequence Data
- Open Reading Frames/genetics
- Polyribosomes/chemistry
- Polyribosomes/genetics
- Protein Biosynthesis/genetics
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- Sequence Deletion/genetics
- Transfection
Collapse
Affiliation(s)
- S B Verrier
- Laboratoire de Génétique Moléculaire, Centre National de la Recherche Scientifique, UMR 8541, Ecole Normale Supérieure, Paris, France
| | | |
Collapse
|
49
|
Suzuki Y, Ishihara D, Sasaki M, Nakagawa H, Hata H, Tsunoda T, Watanabe M, Komatsu T, Ota T, Isogai T, Suyama A, Sugano S. Statistical analysis of the 5' untranslated region of human mRNA using "Oligo-Capped" cDNA libraries. Genomics 2000; 64:286-97. [PMID: 10756096 DOI: 10.1006/geno.2000.6076] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We constructed 34 types of human "full-length enriched" and "5'-end enriched" cDNA libraries based on the "Oligo-Capping" method. We randomly picked and sequenced 10,000 clones from these libraries. BLAST analysis showed that about 50% of the cDNAs were identical to known genes. Among them, we selected 954 species of cDNA that should represent the entire sequence from the mRNA start sites. Compared with previously reported sequences, they were on average 45 bp longer in the 5'-end. Using these cDNA data, we statistically analyzed the sequence features of the 5'UTR. The average length of the 5'UTR was 125 bp, and there was little correlation with the corresponding mRNA length (correlation coefficient = 0.26). Of the 954 species of 5'UTR, 459 contained no in-frame terminator codon, which is against the common belief. Two hundred seventy-eight species contained at least one ATG codon upstream of the initiator ATG codon. We identified 569 upstream ATGs, in total, 63% of which adequately satisfied Kozak's criteria. These findings are contrary to the typical translation initiation model, which states that translation is initiated from the "first" ATG codon.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Virology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chappell SA, Edelman GM, Mauro VP. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci U S A 2000; 97:1536-41. [PMID: 10677496 PMCID: PMC26470 DOI: 10.1073/pnas.97.4.1536] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This study addresses the properties of a newly identified internal ribosome entry site (IRES) contained within the mRNA of the homeodomain protein Gtx. Sequential deletions of the 5' untranslated region (UTR) from either end did not define distinct IRES boundaries; when five nonoverlapping UTR fragments were tested, four had IRES activity. These observations are consistent with other cellular IRES analyses suggesting that some cellular IRESes are composed of segments (IRES modules) that independently and combinatorially contribute to overall IRES activity. We characterize a 9-nt IRES module from the Gtx 5' UTR that is 100% complementary to the 18S rRNA at nucleotides 1132-1124. In previous work, we demonstrated that this mRNA segment could be crosslinked to its complement within intact 40S subunits. Here we show that increasing the number of copies of this IRES module in the intercistronic region of a dicistronic mRNA strongly enhances IRES activity in various cell lines. Ten linked copies increased IRES activity up to 570-fold in Neuro 2a cells. This level of IRES activity is up to 63-fold greater than that obtained by using the well characterized encephalomyocarditis virus IRES when tested in the same assay system. When the number of nucleotides between two of the 9-nt Gtx IRES modules was increased, the synergy between them decreased. In light of these findings, we discuss possible mechanisms of ribosome recruitment by cellular mRNAs, address the proposed role of higher order RNA structures on cellular IRES activity, and suggest parallels between IRES modules and transcriptional enhancer elements.
Collapse
Affiliation(s)
- S A Chappell
- Department of Neurobiology, Scripps Research Institute and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|