1
|
Körsten C, Schäfer M. Experimental arboviral infection of mosquito larvae: A novel approach for vector competence studies. J Virol Methods 2025; 331:115061. [PMID: 39515662 DOI: 10.1016/j.jviromet.2024.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Vector competence studies in mosquitoes present valuable opportunities to explore arboviral transmission and virus-vector interactions. However, oral infection studies in mosquitoes can be challenging. An alternative approach is to infect mosquitoes during their aquatic larval stage, resulting in the emergence of infected adults. To investigate the potential of this method, Culex pipiens biotype molestus larvae were infected with Usutu virus (USUV, Orthoflavivirus usutuense). For this purpose, larvae were exposed to USUV-infected mammalian and mosquito cell cultures for 24 h before being reared to adults. Subsequent analysis via RT-qPCR revealed that the Culex larvae successfully acquired USUV from the infected cells and exhibited high susceptibility to infection. Immediately after emergence, 32.10 % (26/81) of male and 41.03 % (16/39) of female mosquitoes tested positive for USUV RNA. Notably, females that were incubated for 15 days post-emergence demonstrated even higher infection rates, reaching 100.00 % (23/23). In addition, viral RNA and infectious particles were detected in some saliva samples, indicating the potential for transmission. This experimental infection of mosquito larvae thus offers the opportunity to produce infected adult mosquitoes for studies enhancing our understanding of virus-vector interactions, co-infections, and transmission routes. Such research contributes to better public health strategies addressing arboviral diseases.
Collapse
Affiliation(s)
- Christin Körsten
- Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Institute of Infectology, Südufer 10, Greifswald, Insel Riems 17493, Germany.
| | - Mandy Schäfer
- Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Institute of Infectology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| |
Collapse
|
2
|
Tatsinkou Maffo CG, Sandeu MM, Tchoupo M, Dondji Kamga FM, Mugenzi LMJ, Njiokou F, Hughes GL, Wondji CS. Contrasting patterns of Asaia association with Plasmodium falciparum between field-collected Anopheles gambiae and Anopheles coluzzii from Cameroon. Microbiol Spectr 2024; 12:e0056724. [PMID: 39530680 PMCID: PMC11619320 DOI: 10.1128/spectrum.00567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
The widespread prevalence of Asaia in mosquitoes makes it a potential candidate for paratrangenic control in Anopheles. To better understand whether this bacterium could be used for malaria control, we quantified Asaia in An. gambiae s.l populations in malaria endemic regions examining co-infection with Plasmodium falciparum. Adult Anopheles mosquitoes were collected across two different eco-geographical localities in Cameroon, during both the dry and wet seasons. DNA was extracted from whole individual mosquitoes, and real time-qPCR amplification of the 16S ribosomal RNA was used to quantify Asaia in both An. gambiae and An. coluzzii samples. We also detected and quantified P. falciparum infection in the same mosquitoes. The density of Asaia was successfully quantified in a total of 864 field mosquitoes, comprising of 439 An. gambiae from Bankeng and 424 An. coluzii collected from Gounougou. Interestingly, a higher prevalence of Asaia in An. gambiae (88.3%) compared to An. coluzzii (80.9%) was observed. Moreover, the density of Asaia in both species was significantly affected by seasonal changes in the two localities. Furthermore, a significant difference between the infection densities of Asaia and the Plasmodium infection status in the two species was recorded. However, no correlation was observed between the number of Asaia and P. falciparum infections. This study provides evidence that naturally occurring Asaia infection is not correlated to P. falciparum development within An. gambiae and An. coluzzii. Nevertheless, further studies incorporating experimental infections are required to better investigate the correlation between Anopheles mosquitoes, Asaia, and Plasmodium.IMPORTANCEThe symbiont Asaia has emerged as a promising candidate for paratransgenic control of malaria, but further analysis of its biology and genetics across Africa is necessary. In this study, we investigated and quantified the influence of Asaia in naturally infected An. gambiae s.l. populations with the malaria parasite Plasmodium falciparum. Genomic DNA was extracted from whole individual mosquitoes collected from two localities, and Asaia was quantified using real-time qPCR by amplification of the 16S ribosomal RNA gene. We also detected and quantified Plasmodium falciparum infection in the same mosquitoes and established the correlation between Asaia and Plasmodium coinfection. This study provides evidence that naturally occurring Asaia infection is not correlated with P. falciparum development within An. gambiae and An. coluzzii mosquitoes.
Collapse
Affiliation(s)
- Claudine Grâce Tatsinkou Maffo
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Micareme Tchoupo
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
| | - Fleuriane Metissa Dondji Kamga
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
| | - Leon M. J. Mugenzi
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
| | - Flobert Njiokou
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
3
|
Vandana V, Dong S, Sheth T, Sun Q, Wen H, Maldonado A, Xi Z, Dimopoulos G. Wolbachia infection-responsive immune genes suppress Plasmodium falciparum infection in Anopheles stephensi. PLoS Pathog 2024; 20:e1012145. [PMID: 38598552 PMCID: PMC11034644 DOI: 10.1371/journal.ppat.1012145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Wolbachia, a maternally transmitted symbiotic bacterium of insects, can suppress a variety of human pathogens in mosquitoes, including malaria-causing Plasmodium in the Anopheles vector. However, the mechanistic basis of Wolbachia-mediated Plasmodium suppression in mosquitoes is not well understood. In this study, we compared the midgut and carcass transcriptomes of stably infected Anopheles stephensi with Wolbachia wAlbB to uninfected mosquitoes in order to discover Wolbachia infection-responsive immune genes that may play a role in Wolbachia-mediated anti-Plasmodium activity. We show that wAlbB infection upregulates 10 putative immune genes and downregulates 14 in midguts, while it upregulates 31 putative immune genes and downregulates 15 in carcasses at 24 h after blood-fed feeding, the time at which the Plasmodium ookinetes are traversing the midgut tissue. Only a few of these regulated immune genes were also significantly differentially expressed between Wolbachia-infected and non-infected midguts and carcasses of sugar-fed mosquitoes. Silencing of the Wolbachia infection-responsive immune genes TEP 4, TEP 15, lysozyme C2, CLIPB2, CLIPB4, PGRP-LD and two novel genes (a peritrophin-44-like gene and a macro domain-encoding gene) resulted in a significantly greater permissiveness to P. falciparum infection. These results indicate that Wolbachia infection modulates mosquito immunity and other processes that are likely to decrease Anopheles permissiveness to Plasmodium infection.
Collapse
Affiliation(s)
- Vandana Vandana
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tanaya Sheth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Qiang Sun
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Han Wen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Amanda Maldonado
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
5
|
Li M, Zhou Y, Cheng J, Wang Y, Lan C, Shen Y. Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors 2024; 17:69. [PMID: 38368353 PMCID: PMC10874582 DOI: 10.1186/s13071-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024] Open
Abstract
Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Manjin Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yang Zhou
- Nanjing Medical University, Nanjing, 211166, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yiqing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Cejie Lan
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
| | - Yuan Shen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Hernandez-Caballero I, Hellgren O, Garcia-Longoria Batanete L. Genomic advances in the study of the mosquito vector during avian malaria infection. Parasitology 2023; 150:1330-1339. [PMID: 37614176 PMCID: PMC10941221 DOI: 10.1017/s0031182023000756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Invertebrate host–parasite associations are one of the keystones in order to understand vector-borne diseases. The study of these specific interactions provides information not only about how the vector is affected by the parasite at the gene-expression level, but might also reveal mosquito strategies for blocking the transmission of the parasites. A very well-known vector for human malaria is Anopheles gambiae. This mosquito species has been the main focus for genomics studies determining essential key genes and pathways over the course of a malaria infection. However, to-date there is an important knowledge gap concerning other non-mammophilic mosquito species, for example some species from the Culex genera which may transmit avian malaria but also zoonotic pathogens such as West Nile virus. From an evolutionary perspective, these 2 mosquito genera diverged 170 million years ago, hence allowing studies in both species determining evolutionary conserved genes essential during malaria infections, which in turn might help to find key genes for blocking malaria cycle inside the mosquito. Here, we extensively review the current knowledge on key genes and pathways expressed in Anopheles over the course of malaria infections and highlight the importance of conducting genomic investigations for detecting pathways in Culex mosquitoes linked to infection of avian malaria. By pooling this information, we underline the need to increase genomic studies in mosquito–parasite associations, such as the one in Culex–Plasmodium, that can provide a better understanding of the infection dynamics in wildlife and reduce the negative impact on ecosystems.
Collapse
Affiliation(s)
- Irene Hernandez-Caballero
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, E-06071 Badajoz, Spain
| | - Olof Hellgren
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-22362, Sweden
| | | |
Collapse
|
7
|
Trzebny A, Jedut S, Nahimova O, Dabert M. Differences in the proliferation trend of 'Microsporidium' sp. PL03 in Culex pipiens and C. torrentium larvae. J Invertebr Pathol 2023; 201:107990. [PMID: 37690679 DOI: 10.1016/j.jip.2023.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Our study aimed to examine whether there are differences in the proliferation trend of microsporidia in mosquito larvae of the same genus (Culex spp.). DNA-barcoding and quantitative analyses were used to determine microsporidian rDNA copies in 'early' (L1 + L2) and 'late' (L3 + L4) Culex larvae in a natural population. In the study area, C. pipiens and C. torrentium larvae were infected by 'Microsporidium' sp. PL03 at similar levels. Infection by this microsporidian species probably elicits a notable immune response in C. pipiens, whereas in C. torrentium, it may evade or suppress the host immune response.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Sylwia Jedut
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Olena Nahimova
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland; Genetics and Cytology Department, School of Biology, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
8
|
Nattoh G, Onyango B, Makhulu EE, Omoke D, Ang’ang’o LM, Kamau L, Gesuge MM, Ochomo E, Herren JK. Microsporidia MB in the primary malaria vector Anopheles gambiae sensu stricto is avirulent and undergoes maternal and horizontal transmission. Parasit Vectors 2023; 16:335. [PMID: 37749577 PMCID: PMC10519057 DOI: 10.1186/s13071-023-05933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/15/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The demonstration that the recently discovered Anopheles symbiont Microsporidia MB blocks malaria transmission in Anopheles arabiensis and undergoes vertical and horizontal transmission suggests that it is a promising candidate for the development of a symbiont-based malaria transmission-blocking strategy. The infection prevalence and characteristics of Microsporidia MB in Anopheles gambiae sensu stricto (s.s.), another primary vector species of malaria in Kenya, were investigated. METHODS Field-collected females were confirmed to be Microsporidia MB-positive after oviposition. Egg counts of Microsporidia MB-infected and non-infected individuals were used to infer the effects of Microsporidia MB on fecundity. The time to pupation, adult sex ratio and survival were used to determine if Microsporidia MB infection has similar characteristics in the host mosquitoes An. gambiae and An. arabiensis. The intensity of Microsporidia MB infection in tissues of the midgut and gonads, and in carcasses, was determined by quantitative polymerase chain reaction. To investigate horizontal transmission, virgin males and females that were either Microsporidia MB-infected or non-infected were placed in standard cages for 48 h and allowed to mate; transmission was confirmed by quantitative polymerase chain reaction targeting Microsporidia MB genes. RESULTS Microsporidia MB was found to naturally occur at a low prevalence in An. gambiae s.s. collected in western Kenya. Microsporidia MB shortened the development time from larva to pupa, but other fitness parameters such as fecundity, sex ratio, and adult survival did not differ between Microsporidia MB-infected and non-infected hosts. Microsporidia MB intensities were high in the male gonadal tissues. Transmission experiments indicated that Microsporidia MB undergoes both maternal and horizontal transmission in An. gambiae s.s. CONCLUSIONS The findings that Microsporidia MB naturally infects, undergoes maternal and horizontal transmission, and is avirulent in An. gambiae s.s. indicate that many of the characteristics of its infection in An. arabiensis hold true for the former. The results of the present study indicate that Microsporidia MB could be developed as a tool for the transmission-blocking of malaria across different Anopheles species.
Collapse
Grants
- I-1-F-5852-1 The International Foundation for Science, Stockholm, Sweden
- Open Philanthropy (SYMBIOVECTOR Track A) and the Bill and Melinda Gates Foundation (INV0225840) International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- SMBV-FFT The Childrens' Investment Fund Foundation
- AV/AASS/006 The ANTi-VeC network
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
- Open Philanthropy (SYMBIOVECTOR Track A) and the Bill and Melinda Gates Foundation (INV0225840)
- The Childrens’ Investment Fund Foundation
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Nairobi, Kenya
Collapse
Affiliation(s)
- Godfrey Nattoh
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biological Sciences, Kaimosi Friends University, Kaimosi, Kenya
| | - Brenda Onyango
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Diana Omoke
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Lilian Mbaisi Ang’ang’o
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Luna Kamau
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Nairobi, Kenya
| | - Maxwell Machani Gesuge
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric Ochomo
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
9
|
Prado Sepulveda CC, Alencar RM, Santana RA, Belém de Souza I, D'Elia GMA, Godoy RSM, Duarte AP, Lopes SCP, de Lacerda MVG, Monteiro WM, Nacif-Pimenta R, Secundino NFC, Koerich LB, Pimenta PFP. Evolution and assembly of Anopheles aquasalis's immune genes: primary malaria vector of coastal Central and South America and the Caribbean Islands. Open Biol 2023; 13:230061. [PMID: 37433331 PMCID: PMC10335856 DOI: 10.1098/rsob.230061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Anophelines are vectors of malaria, the deadliest disease worldwide transmitted by mosquitoes. The availability of genomic data from various Anopheles species allowed evolutionary comparisons of the immune response genes in search of alternative vector control of the malarial parasites. Now, with the Anopheles aquasalis genome, it was possible to obtain more information about the evolution of the immune response genes. Anopheles aquasalis has 278 immune genes in 24 families or groups. Comparatively, the American anophelines possess fewer genes than Anopheles gambiae s. s., the most dangerous African vector. The most remarkable differences were found in the pathogen recognition and modulation families like FREPs, CLIP and C-type lectins. Even so, genes related to the modulation of the expression of effectors in response to pathogens and gene families that control the production of reactive oxygen species were more conserved. Overall, the results show a variable pattern of evolution in the immune response genes in the anopheline species. Environmental factors, such as exposure to different pathogens and differences in the microbiota composition, could shape the expression of this group of genes. The results presented here will contribute to a better knowledge of the Neotropical vector and open opportunities for malaria control in the endemic-affected areas of the New World.
Collapse
Affiliation(s)
- Cesar Camilo Prado Sepulveda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rodrigo Maciel Alencar
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rosa Amélia Santana
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Igor Belém de Souza
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Gigliola Mayra Ayres D'Elia
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Raquel Soares Maia Godoy
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| | - Ana Paula Duarte
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto de Pesquisas Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto de Pesquisas Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
- University of Texas Medical Branch, Galveston, TX, USA
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rafael Nacif-Pimenta
- Departament of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, USA
| | - Nágila Francinete Costa Secundino
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| | - Leonardo Barbosa Koerich
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| |
Collapse
|
10
|
Zhao BR, Wang XX, Liu PP, Wang XW. Complement-related proteins in crustacean immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104577. [PMID: 36265592 DOI: 10.1016/j.dci.2022.104577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
11
|
Morejon B, Michel K. A zone-of-inhibition assay to screen for humoral antimicrobial activity in mosquito hemolymph. Front Cell Infect Microbiol 2023; 13:891577. [PMID: 36779191 PMCID: PMC9908765 DOI: 10.3389/fcimb.2023.891577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
In insects, antibacterial immunity largely depends on the activation of downstream signaling and effector responses, leading to the synthesis and secretion of soluble effector molecules, such as antimicrobial peptides (AMPs). AMPs are acute infection response peptides secreted into the hemolymph upon bacterial stimulation. The transcription of innate immunity genes encoding for AMPs is highly dependent on several signaling cascade pathways, such as the Toll pathway. In the African malaria mosquito, Anopheles gambiae, AMPs hold a special interest as their upregulation have been shown to limit the growth of malaria parasites, bacteria, and fungi. Most of the current knowledge on the regulation of insect AMPs in microbial infection have been obtained from Drosophila. However, largely due to the lack of convenient assays, the regulation of antimicrobial activity in mosquito hemolymph is still not completely understood. In this study, we report a zone of inhibition assay to identify the contribution of AMPs and components of the Toll pathway to the antimicrobial activity of A. gambiae hemolymph. As a proof of principle, we demonstrate that Micrococcus luteus challenge induces antimicrobial activity in the adult female mosquito hemolymph, which is largely dependent on defensin 1. Moreover, by using RNAi to silence Cactus, REL1, and MyD88, we showed that Cactus kd induces antimicrobial activity in the mosquito hemolymph, whereas the antimicrobial activity in REL1 kd and MyD88 kd is reduced after challenge. Finally, while injection itself is not sufficient to induce antimicrobial activity, our results show that it primes the response to bacterial challenge. Our study provides information that increases our knowledge of the regulation of antimicrobial activity in response to microbial infections in mosquitoes. Furthermore, this assay represents an ex vivo medium throughput assay that can be used to determine the upstream regulatory elements of antimicrobial activity in A. gambiae hemolymph.
Collapse
Affiliation(s)
- Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
12
|
Immune defense mechanisms against a systemic bacterial infection in the cat flea (Ctenocephalides felis). J Invertebr Pathol 2022; 195:107850. [DOI: 10.1016/j.jip.2022.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
13
|
Akorli EA, Ubiaru PC, Pradhan S, Akorli J, Ranford-Cartwright L. Bio-products from Serratia marcescens isolated from Ghanaian Anopheles gambiae reduce Plasmodium falciparum burden in vector mosquitoes. FRONTIERS IN TROPICAL DISEASES 2022; 3:979615. [PMID: 36742111 PMCID: PMC7614139 DOI: 10.3389/fitd.2022.979615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel ideas for control of mosquito-borne disease include the use of bacterial symbionts to reduce transmission. Bacteria belonging to the family Enterobacteriaceae isolated from mosquito midgut have shown promise in limiting Plasmodium intensity in the Anopheles vector. However, the mechanism of interaction between bacteria and parasite remains unclear. This study aimed at screening bio-products of two bacteria candidates for their anti-Plasmodial effects on mosquito stages of P. falciparum. Enterobacter cloacae and Serratia marcescens were isolated from field-caught Anopheles gambiae s.l. Spent media from liquid cultures of these bacteria were filtered, lyophilized and dissolved in sterile phosphate buffered saline (PBS). The re-dissolved bacterial products were added to gametocytaemic blood meals and fed to An. gambiae mosquitoes via membrane feeders. Control groups were fed on infected blood with or without lyophilized LB medium. The effect of the products on the infection prevalence and intensity of P. falciparum in mosquitoes was assessed by dissecting mosquito midguts and counting oocysts 10-11 days post-infection. S. marcescens bio-products elicited significant reduction in the number of mosquitoes infected (P=4.02 x10-5) with P. falciparum and the oocyst intensity (P<2 x 10-16) than E. cloacae products (P>0.05 for both prevalence and intensity) compared to the control (lyophilized LB medium). These data support the use of bioproducts released by S. marcescens for malaria control based on transmission blocking in the vector.
Collapse
Affiliation(s)
- Esinam Abla Akorli
- Department of Parasitology, Noguchi Memorial Institute of Medical Research, University of Ghana, Legon Accra, Ghana,School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, United Kingdom
| | - Prince Chigozirim Ubiaru
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, United Kingdom
| | - Sabyasachi Pradhan
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, United Kingdom
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute of Medical Research, University of Ghana, Legon Accra, Ghana,CORRESPONDENCE: Jewelna Akorli, ; , Lisa Ranford-Cartwright,
| | - Lisa Ranford-Cartwright
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, United Kingdom,CORRESPONDENCE: Jewelna Akorli, ; , Lisa Ranford-Cartwright,
| |
Collapse
|
14
|
Lipopolysaccharide-Induced Immunological Tolerance in Monocyte-Derived Dendritic Cells. IMMUNO 2022. [DOI: 10.3390/immuno2030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS), also referred to as endotoxins, are major outer surface membrane components present on almost all Gram-negative bacteria and are major determinants of sepsis-related clinical complications including septic shock. LPS acts as a strong stimulator of innate or natural immunity in a wide variety of eukaryotic species ranging from insects to humans including specific effects on the adaptive immune system. However, following immune stimulation, lipopolysaccharide can induce tolerance which is an essential immune-homeostatic response that prevents overactivation of the inflammatory response. The tolerance induced by LPS is a state of reduced immune responsiveness due to persistent and repeated challenges, resulting in decreased expression of pro-inflammatory modulators and up-regulation of antimicrobials and other mediators that promote a reduction of inflammation. The presence of environmental-derived LPS may play a key role in decreasing autoimmune diseases and gut tolerance to the plethora of ingested antigens. The use of LPS may be an important immune adjuvant as demonstrated by the promotion of IDO1 increase when present in the fusion protein complex of CTB-INS (a chimera of the cholera toxin B subunit linked to proinsulin) that inhibits human monocyte-derived DC (moDC) activation, which may act through an IDO1-dependent pathway. The resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) which is almost always present in partially purified CTB-INS preparations. The approach to using an adjuvant with an autoantigen in immunotherapy promises effective treatment for devastating tissue-specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D).
Collapse
|
15
|
Krzywinska E, Ferretti L, Krzywinski J. Establishment and a comparative transcriptomic analysis of a male-specific cell line from the African malaria mosquito Anopheles gambiae. Sci Rep 2022; 12:6885. [PMID: 35477969 PMCID: PMC9046191 DOI: 10.1038/s41598-022-10686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Cell lines allow studying various biological processes that may not be easily tractable in whole organisms. Here, we have established the first male-specific cell line from the African malaria mosquito, Anopheles gambiae. The cells, named AgMM and derived from the sex-sorted neonate larvae, were able to undergo spontaneous contractions for a number of passages following establishment, indicating their myoblast origin. Comparison of their transcriptome to the transcriptome of an A. gambiae-derived Sua5.1 hemocyte cells revealed distinguishing molecular signatures of each cell line, including numerous muscle-related genes that were highly and uniquely expressed in the AgMM cells. Moreover, the AgMM cells express the primary sex determiner gene Yob and support male sex determination and dosage compensation pathways. Therefore, the AgMM cell line represents a valuable tool for molecular and biochemical in vitro studies of these male-specific processes. In a broader context, a rich transcriptomic data set generated in this study contributes to a better understanding of transcribed regions of the A. gambiae genome and sheds light on the biology of both cell types, facilitating their anticipated use for various cell-based assays.
Collapse
Affiliation(s)
| | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | | |
Collapse
|
16
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
17
|
Billingsley PF, George KI, Eappen AG, Harrell RA, Alford R, Li T, Chakravarty S, Sim BKL, Hoffman SL, O'Brochta DA. Transient knockdown of Anopheles stephensi LRIM1 using RNAi increases Plasmodium falciparum sporozoite salivary gland infections. Malar J 2021; 20:284. [PMID: 34174879 PMCID: PMC8235909 DOI: 10.1186/s12936-021-03818-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.
Collapse
Affiliation(s)
- Peter F Billingsley
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Kasim I George
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Qiagen Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Abraham G Eappen
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Robert A Harrell
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Robert Alford
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Tao Li
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Sumana Chakravarty
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
- Protein Potential, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| |
Collapse
|
18
|
Yang H, Ji T, Xiong H, Zhang Y, Wei W. A trypsin-like serine protease domain of masquerade gene in crayfish Procambarus clarkii could activate prophenoloxidase and inhibit bacterial growth. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103980. [PMID: 33340591 DOI: 10.1016/j.dci.2020.103980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Masquerade (Mas) is a secreted trypsin-like serine protease (SPs) and involved in immune response in some arthropods. However, according to previous studies, Mas presents different functional activities. In the present study, the functional mechanisms of Mas in crayfish Procambarus clarkii immune defense were studied. A fragment cDNA sequence of PcMas was identified and characterized. From the structural analysis, it contains a trypsin-like serine protease domain. The highest expression level of PcMas was detected in hepatopancreas. The infection of A. hydrophila could induce the expression of PcMas, while the WSSV infection did not cause changes in the expression of PcMas. Through the prokaryotic expression system, the PcMas protein was expressed in E. coli. It was verified that PcMas can bind to bacteria in vitro and inhibit the growth of the bacteria. By dsRNA interference with the expression of PcMas, the decrease expression of PcMas led to a decrease in the activity of phenoloxidase in hemolymph and an increase of mortality caused by A. hydrophila infection. The injection of recombinant protein can enhance the activity of phenoloxidase and reduce mortality caused by A. hydrophila infections. Therefore, the present study confirmed that PcMas could improve the body's immune response to eliminate bacterial pathogens by binding with bacteria and activating the prophenoloxidase system. The results will enrich the molecular mechanisms of crustaceans immune defense.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Tongwei Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
19
|
Ferreira PG, Tesla B, Horácio ECA, Nahum LA, Brindley MA, de Oliveira Mendes TA, Murdock CC. Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito-Zika Virus Interactions. Front Microbiol 2020; 11:901. [PMID: 32595607 PMCID: PMC7303344 DOI: 10.3389/fmicb.2020.00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquito-pathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28°C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20°C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.
Collapse
Affiliation(s)
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Elvira Cynthia Alves Horácio
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Promove College of Technology, Belo Horizonte, Brazil
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | - Courtney Cuinn Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Odum School of Ecology, University of Georgia, Athens, GA, United States.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States.,Center for Emerging and Global Tropical Diseases, University of Georgia, Athens, GA, United States.,River Basin Center, University of Georgia, Athens, GA, United States.,Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Herren JK, Mbaisi L, Mararo E, Makhulu EE, Mobegi VA, Butungi H, Mancini MV, Oundo JW, Teal ET, Pinaud S, Lawniczak MKN, Jabara J, Nattoh G, Sinkins SP. A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nat Commun 2020; 11:2187. [PMID: 32366903 PMCID: PMC7198529 DOI: 10.1038/s41467-020-16121-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/11/2020] [Indexed: 11/11/2022] Open
Abstract
A possible malaria control approach involves the dissemination in mosquitoes of inherited symbiotic microbes to block Plasmodium transmission. However, in the Anopheles gambiae complex, the primary African vectors of malaria, there are limited reports of inherited symbionts that impair transmission. We show that a vertically transmitted microsporidian symbiont (Microsporidia MB) in the An. gambiae complex can impair Plasmodium transmission. Microsporidia MB is present at moderate prevalence in geographically dispersed populations of An. arabiensis in Kenya, localized to the mosquito midgut and ovaries, and is not associated with significant reductions in adult host fecundity or survival. Field-collected Microsporidia MB infected An. arabiensis tested negative for P. falciparum gametocytes and, on experimental infection with P. falciparum, sporozoites aren't detected in Microsporidia MB infected mosquitoes. As a microbe that impairs Plasmodium transmission that is non-virulent and vertically transmitted, Microsporidia MB could be investigated as a strategy to limit malaria transmission.
Collapse
Affiliation(s)
- Jeremy K Herren
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya.
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK.
| | - Lilian Mbaisi
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
- Centre for Biotechnology and Bioinformatics (CEBIB), University of Nairobi, Nairobi, Kenya
| | - Enock Mararo
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Edward E Makhulu
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Victor A Mobegi
- Centre for Biotechnology and Bioinformatics (CEBIB), University of Nairobi, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
- University of the Witwaterstrand, Wits Research Institute for Malaria, Johannesburg, South Africa
| | - Maria Vittoria Mancini
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Joseph W Oundo
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Evan T Teal
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Silvain Pinaud
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Mara K N Lawniczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Jordan Jabara
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Godfrey Nattoh
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
- Pan African University Institute for Basic Sciences Technology & Innovation, Nairobi, Kenya
| | - Steven P Sinkins
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| |
Collapse
|
21
|
Dong S, Fu X, Dong Y, Simões ML, Zhu J, Dimopoulos G. Broad spectrum immunomodulatory effects of Anopheles gambiae microRNAs and their use for transgenic suppression of Plasmodium. PLoS Pathog 2020; 16:e1008453. [PMID: 32330198 PMCID: PMC7202664 DOI: 10.1371/journal.ppat.1008453] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 05/06/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022] Open
Abstract
Malaria, caused by the protozoan parasite Plasmodium and transmitted by Anopheles mosquitoes, represents a major threat to human health. Plasmodium’s infection cycle in the Anopheles vector is critical for transmission of the parasite between humans. The midgut-stage bottleneck of infection is largely imposed by the mosquito’s innate immune system. microRNAs (miRNAs, small noncoding RNAs that bind to target RNAs to regulate gene expression) are also involved in regulating immunity and the anti-Plasmodium defense in mosquitoes. Here, we characterized the mosquito’s miRNA responses to Plasmodium infection using an improved crosslinking and immunoprecipitation (CLIP) method, termed covalent ligation of endogenous Argonaute-bound RNAs (CLEAR)-CLIP. Three candidate miRNAs’ influence on P. falciparum infection and midgut microbiota was studied through transgenically expressed miRNA sponges (miR-SPs) in midgut and fat body tissues. MiR-SPs mediated conditional depletion of aga-miR-14 or aga-miR-305, but not aga-miR-8, increased mosquito resistance to both P. falciparum and P. berghei infection, and enhanced the mosquitoes’ antibacterial defenses. Transcriptome analysis revealed that depletion of aga-miR-14 or aga-miR-305 resulted in an increased expression of multiple immunity-related and anti-Plasmodium genes in mosquito midguts. The overall fitness cost of conditionally expressed miR-SPs was low, with only one of eight fitness parameters being adversely affected. Taken together, our results demonstrate that targeting mosquito miRNA by conditional expression of miR-SPs may have potential for the development of malaria control through genetically engineered mosquitoes. Malaria is caused by the Plasmodium parasite that is transmitted by Anopheles mosquitoes. The mosquito’s innate immune system plays an important role in controlling parasite infection. We have identified mosquito microRNAs (miRNAs) that are involved in regulating mosquito immunity to parasite infection. Transgenic mosquitoes that deplete the immunity-related miRNAs aga-miR-14 or aga-miR-305 through miRNA sponges, show increased resistance to both human and rodent parasite infection, and enhanced antibacterial defenses. Depletion of aga-miR-14 or aga-miR-305 resulted in an increased expression of multiple immunity-related and anti-Plasmodium genes, and the overall fitness cost of transgenic mosquitoes upon depletion of aga-miR-14 or aga-miR-305 was negligible. We show that targeting mosquito miRNA by transgenic expression of miRNA sponges may have potential for the development of malaria control through genetically engineered mosquitoes.
Collapse
Affiliation(s)
- Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Xiaonan Fu
- The Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Maria L. Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
22
|
Wang M, Zhang S, Shi Y, Yang Y, Wu Y. Global gene expression changes induced by knockout of a protease gene cluster in Helicoverpa armigera with CRISPR/Cas9. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104023. [PMID: 32061647 DOI: 10.1016/j.jinsphys.2020.104023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Helicoverpa armigera is one of the most serious agricultural insect pests of global importance. It is highly polyphagous and depends on digestive serine proteases to degrade proteins to peptides and to amino acids. H. armigera has evolved adaptive ability to compensate for the inhibition of plant defensive protease inhibitors (PIs) in its diet by overproduction of digestive enzymes. As far as we know, compensation for deletion of serine protease genes has not yet been studied in any herbivorous insect. In this study, we used CRISPR/Cas9 to knock out a cluster of 18 trypsin-like genes in H. armigera. Compared with the wild type SCD strain, activities of the total proteases, trypsins and chymotrypsins were not significantly changed in the gene cluster knockout strain (Tryp-KO). RNA-seq data showed 1492 upregulated and 461 downregulated DEGs in Try-KO. GO function classification and KEGG pathway analyses revealed these differentially expressed genes were enriched for terms related to binding, catalytic activity, metabolic process and signal transduction. In regard to serine protease genes, 35 were upregulated and 12 downregulated in Tryp-KO strain. Our study indicated that H. armigera can compensate for the deleted protease genes by overexpression of other trypsin and chymotrypsin genes in order to maintain its genetic and metabolic robustness. It also suggests that genetic perturbations created by genome editing tools can induce global gene expression changes.
Collapse
Affiliation(s)
- Meng Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuangshuang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
King JG. Developmental and comparative perspectives on mosquito immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103458. [PMID: 31377103 DOI: 10.1016/j.dci.2019.103458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Diseases spread by mosquitoes have killed more people than those spread by any other group of arthropod vectors and remain an important factor in determining global health and economic stability. The mosquito innate immune system can act to either modulate infection with human pathogens or fight off entomopathogens and increase the fitness and longevity of infected mosquitoes. While work remains towards understanding the larval immune system and the development of the mosquito immune system, it has recently become clearer that environmental factors heavily shape the developing mosquito immune system and continue to influence the adult immune system as well. The adult immune system has been well-studied and is known to involve multiple tissues and diverse molecular mechanisms. This review summarizes and synthesizes what is currently understood about the development of the mosquito immune system and includes comparisons of immune components unique to mosquitoes among the blood-feeding arthropods as well as important distinguishing factors between the anopheline and culicine mosquitoes. An explanation is included for how mosquito immunity factors into vector competence and vectorial capacity is presented along with a model for the interrelationships between nutrition, microbiome, pathogen interactions and behavior as they relate to mosquito development, immune status, adult female fitness and ultimately, vectorial capacity. Novel discoveries in the fields of mosquito ecoimmunology, neuroimmunology, and intracellular antiviral responses are highlighted.
Collapse
Affiliation(s)
- Jonas G King
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman Street, Dorman 402, Mississippi State, MS 39762, USA.
| |
Collapse
|
24
|
Prochazkova P, Roubalova R, Dvorak J, Navarro Pacheco NI, Bilej M. Pattern recognition receptors in annelids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103493. [PMID: 31499098 DOI: 10.1016/j.dci.2019.103493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The existence of pattern recognition receptors (PRRs) on immune cells was discussed in 1989 by Charles Janeway, Jr., who proposed a general concept of the ability of PRRs to recognize and bind conserved molecular structures of microorganisms known as pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, PRRs trigger intracellular signaling cascades resulting in the expression of various proinflammatory molecules. These recognition molecules represent an important and efficient innate immunity tool of all organisms. As invertebrates lack the instruments of the adaptive immune system, based on "true" lymphocytes and functional antibodies, the importance of PRRs are even more fundamental. In the present review, the structure, specificity, and expression profiles of PRRs characterized in annelids are discussed, and their role in innate defense is suggested.
Collapse
Affiliation(s)
- P Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic.
| | - R Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - J Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - N I Navarro Pacheco
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - M Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| |
Collapse
|
25
|
Scholefield JA, Shikano I, Lowenberger CA, Cory JS. The impact of baculovirus challenge on immunity: The effect of dose and time after infection. J Invertebr Pathol 2019; 167:107232. [DOI: 10.1016/j.jip.2019.107232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022]
|
26
|
Bai L, Wang L, Vega-Rodríguez J, Wang G, Wang S. A Gut Symbiotic Bacterium Serratia marcescens Renders Mosquito Resistance to Plasmodium Infection Through Activation of Mosquito Immune Responses. Front Microbiol 2019; 10:1580. [PMID: 31379768 PMCID: PMC6657657 DOI: 10.3389/fmicb.2019.01580] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/25/2019] [Indexed: 01/04/2023] Open
Abstract
The malaria development in the mosquito midgut is a complex process that results in considerable parasite losses. The mosquito gut microbiota influences the outcome of pathogen infection in mosquitoes, but the underlying mechanisms through which gut symbiotic bacteria affect vector competence remain elusive. Here, we identified two Serratia strains (Y1 and J1) isolated from field-caught female Anopheles sinensis from China and assessed their effect on Plasmodium development in An. stephensi. Colonization of An. stephensi midgut by Serratia Y1 significantly renders the mosquito resistant to Plasmodium berghei infection, while Serratia J1 has no impact on parasite development. Parasite inhibition by Serratia Y1 is induced by the activation of the mosquito immune system. Genome-wide transcriptomic analysis by RNA-seq shows a similar pattern of midgut gene expression in response to Serratia Y1 and J1 in sugar-fed mosquitoes. However, 24 h after blood ingestion, Serratia Y1 modulates more midgut genes than Serratia J1 including the c-type lectins (CTLs), CLIP serine proteases and other immune effectors. Furthermore, silencing of several Serratia Y1-induced anti-Plasmodium factors like the thioester-containing protein 1 (TEP1), fibrinogen immunolectin 9 (FBN9) or leucine-rich repeat protein LRRD7 can rescue parasite oocyst development in the presence of Serratia Y1, suggesting that these factors modulate the Serratia Y1-mediated anti-Plasmodium effect. This study enhances our understanding of how gut bacteria influence mosquito-Plasmodium interactions.
Collapse
Affiliation(s)
- Liang Bai
- School of Life Science and Technology, Tongji University, Shanghai, China.,CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
Zhao L, Alto BW, Jiang Y, Yu F, Zhang Y. Transcriptomic Analysis of Aedes aegypti Innate Immune System in Response to Ingestion of Chikungunya Virus. Int J Mol Sci 2019; 20:ijms20133133. [PMID: 31252518 PMCID: PMC6651163 DOI: 10.3390/ijms20133133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 01/07/2023] Open
Abstract
Aedes aegypti (L.) is the primary vector of emergent mosquito-borne viruses, including chikungunya, dengue, yellow fever, and Zika viruses. To understand how these viruses interact with their mosquito vectors, an analysis of the innate immune system response was conducted. The innate immune system is a conserved evolutionary defense strategy and is the dominant immune system response found in invertebrates and vertebrates, as well as plants. RNA-sequencing analysis was performed to compare target transcriptomes of two Florida Ae. aegypti strains in response to chikungunya virus infection. We analyzed a strain collected from a field population in Key West, Florida, and a laboratory strain originating from Orlando. A total of 1835 transcripts were significantly expressed at different levels between the two Florida strains of Ae. aegypti. Gene Ontology analysis placed these genes into 12 categories of biological processes, including 856 transcripts (up/down regulated) with more than 1.8-fold (p-adj (p-adjust value) ≤ 0.01). Transcriptomic analysis and q-PCR data indicated that the members of the AaeCECH genes are important for chikungunya infection response in Ae. aegypti. These immune-related enzymes that the chikungunya virus infection induces may inform molecular-based strategies for interruption of arbovirus transmission by mosquitoes.
Collapse
Affiliation(s)
- Liming Zhao
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street South East, Vero Beach, FL 32962, USA.
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street South East, Vero Beach, FL 32962, USA
| | - Yongxing Jiang
- Mosquito Control Services, City of Gainesville, 405 NW 39th Avenue Gainesville, FL 32609, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL 32611, USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL 32611, USA
| |
Collapse
|
28
|
Brown LD, Shapiro LLM, Thompson GA, Estévez‐Lao TY, Hillyer JF. Transstadial immune activation in a mosquito: Adults that emerge from infected larvae have stronger antibacterial activity in their hemocoel yet increased susceptibility to malaria infection. Ecol Evol 2019; 9:6082-6095. [PMID: 31161020 PMCID: PMC6540708 DOI: 10.1002/ece3.5192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/24/2023] Open
Abstract
Larval and adult mosquitoes mount immune responses against pathogens that invade their hemocoel. Although it has been suggested that a correlation exists between immune processes across insect life stages, the influence that an infection in the hemocoel of a larva has on the immune system of the eclosed adult remains unknown. Here, we used Anopheles gambiae to test whether a larval infection influences the adult response to a subsequent bacterial or malaria parasite infection. We found that for both female and male mosquitoes, a larval infection enhances the efficiency of bacterial clearance following a secondary infection in the hemocoel of adults. The adults that emerge from infected larvae have more hemocytes than adults that emerge from naive or injured larvae, and individual hemocytes have greater phagocytic activity. Furthermore, mRNA abundance of immune genes-such as cecropin A, Lysozyme C1, Stat-A, and Tep1-is higher in adults that emerge from infected larvae. A larval infection, however, does not have a meaningful effect on the probability that female adults will survive a systemic bacterial infection, and increases the susceptibility of females to Plasmodium yoelii, as measured by oocyst prevalence and intensity in the midgut. Finally, immune proficiency varies by sex; females exhibit increased bacterial killing, have twice as many hemocytes, and more highly express immune genes. Together, these results show that a larval hemocoelic infection induces transstadial immune activation-possibly via transstadial immune priming-but that it confers both costs and benefits to the emerged adults.
Collapse
Affiliation(s)
- Lisa D. Brown
- Department of Biological SciencesVanderbilt UniversityNashvilleTennessee
- Present address:
Department of BiologyGeorgia Southern UniversityStatesboroGeorgia
| | | | | | | | - Julián F. Hillyer
- Department of Biological SciencesVanderbilt UniversityNashvilleTennessee
| |
Collapse
|
29
|
Liu L, Zheng S. Transcriptional regulation of Yersinia pestis biofilm formation. Microb Pathog 2019; 131:212-217. [PMID: 30980880 DOI: 10.1016/j.micpath.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/08/2019] [Indexed: 01/27/2023]
Abstract
Yersinia pestis, the causative agent of plague, is transmitted primarily by infected fleas in nature. Y. pestis can produce biofilms that block flea's proventriculus and promote flea-borne transmission. Transcriptional regulation of Y. pestis biofilm formation plays an important role in the response to complex changes in environments, including temperature, pH, oxidative stress, and restrictive nutrition conditions, and contributes to Y. pestis growth, reproduction, transmission, and pathogenesis. A set of transcriptional regulators involved in Y. pestis biofilm production simultaneously controls a variety of biological functions and physiological pathways. Interactions between these regulators contribute to the development of Y. pestis gene regulatory networks, which are helpful for a quick response to complex environmental changes and better survival. The roles of crucial factors and regulators involved in response to complex environmental signals and Y. pestis biofilm formation as well as the precise gene regulatory networks are discussed in this review, which will give a better understanding of the complicated mechanisms of transcriptional regulation in Y. pestis biofilm formation.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shangen Zheng
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China.
| |
Collapse
|
30
|
Zeng Y. Cloning and Analysis of the Multiple Transcriptomes of Serine Protease Homologs in Crayfish (Procambarus clarkii). Immunol Invest 2019; 48:682-690. [DOI: 10.1080/08820139.2018.1509870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yong Zeng
- College of Life Sciences, Yantai University, Yantai, Shandong, PR China
| |
Collapse
|
31
|
Zumaya-Estrada FA, Rodríguez MC, Rodríguez MH. Pathogen-insect interaction candidate molecules for transmission-blocking control strategies of vector borne diseases. SALUD PUBLICA DE MEXICO 2018; 60:77-85. [PMID: 29689660 DOI: 10.21149/8140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/24/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To analyze the current knowledge of pathogen-insect interactions amenable for the design of molecular-based control strategies of vector-borne diseases. MATERIALS AND METHODS We examined malaria, dengue, and Chagas disease pathogens and insect molecules that participate in interactions during their vectors infection. RESULTS Pathogen molecules that participate in the insect intestine invasion and induced vector immune molecules are presented, and their inclusion in transmission blocking vaccines (TBV) and in genetically modify insect (GMI) vectors or symbiotic bacteria are discussed. CONCLUSIONS Disruption of processes by blocking vector-pathogen interactions provides several candidates for molecular control strategies, but TBV and GMI efficacies are still limited and other secondary effects of GMI (improving transmission of other pathogens, affectation of other organisms) should be discarded.
Collapse
Affiliation(s)
- Federico Alonso Zumaya-Estrada
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - María Carmen Rodríguez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Mario Henry Rodríguez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| |
Collapse
|
32
|
Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, Sunil S. Mosquito Innate Immunity. INSECTS 2018; 9:insects9030095. [PMID: 30096752 PMCID: PMC6165528 DOI: 10.3390/insects9030095] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022]
Abstract
Mosquitoes live under the endless threat of infections from different kinds of pathogens such as bacteria, parasites, and viruses. The mosquito defends itself by employing both physical and physiological barriers that resist the entry of the pathogen and the subsequent establishment of the pathogen within the mosquito. However, if the pathogen does gain entry into the insect, the insect mounts a vigorous innate cellular and humoral immune response against the pathogen, thereby limiting the pathogen's propagation to nonpathogenic levels. This happens through three major mechanisms: phagocytosis, melanization, and lysis. During these processes, various signaling pathways that engage intense mosquito⁻pathogen interactions are activated. A critical overview of the mosquito immune system and latest information about the interaction between mosquitoes and pathogens are provided in this review. The conserved, innate immune pathways and specific anti-pathogenic strategies in mosquito midgut, hemolymph, salivary gland, and neural tissues for the control of pathogen propagation are discussed in detail.
Collapse
Affiliation(s)
- Ankit Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Priyanshu Srivastava
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Pdnn Sirisena
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Sunil Kumar Dubey
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Ramesh Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Jatin Shrinet
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| |
Collapse
|
33
|
Wang YH, Chang MM, Wang XL, Zheng AH, Zou Z. The immune strategies of mosquito Aedes aegypti against microbial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:12-21. [PMID: 29217264 DOI: 10.1016/j.dci.2017.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
Yellow fever mosquito Aedes aegypti transmits many devastating arthropod-borne viruses (arboviruses), such as dengue virus, yellow fever virus, Chikungunya virus, and Zika virus, which cause great concern to human health. Mosquito control is an effective method to block the spread of infectious diseases. Ae. aegypti uses its innate immune system to fight against arboviruses, parasites, and fungi. In this review, we briefly summarize the recent findings in the immune response of Ae. aegypti against arboviral and entomopathogenic infections. This review enriches our understanding of the mosquito immune system and provides evidence to support the development of novel mosquito control strategies.
Collapse
Affiliation(s)
- Yan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Chang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ai-Hua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Sampath V. Bacterial endotoxin-lipopolysaccharide; structure, function and its role in immunity in vertebrates and invertebrates. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Song X, Wang M, Dong L, Zhu H, Wang J. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis. PLoS Pathog 2018; 14:e1006899. [PMID: 29489896 PMCID: PMC5831637 DOI: 10.1371/journal.ppat.1006899] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/23/2018] [Indexed: 12/02/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) and commensal microbes mediate pathogen infection outcomes in insect disease vectors. Although PGRP-LD is retained in multiple vectors, its role in host defense remains elusive. Here we report that Anopheles stephensi PGRP-LD protects the vector from malaria parasite infection by regulating gut homeostasis. Specifically, knock down of PGRP-LD (dsLD) increased susceptibility to Plasmodium berghei infection, decreased the abundance of gut microbiota and changed their spatial distribution. This outcome resulted from a change in the structural integrity of the peritrophic matrix (PM), which is a chitinous and proteinaceous barrier that lines the midgut lumen. Reduction of microbiota in dsLD mosquitoes due to the upregulation of immune effectors led to dysregulation of PM genes and PM fragmentation. Elimination of gut microbiota in antibiotic treated mosquitoes (Abx) led to PM loss and increased vectorial competence. Recolonization of Abx mosquitoes with indigenous Enterobacter sp. restored PM integrity and decreased mosquito vectorial capacity. Silencing PGRP-LD in mosquitoes without PM didn’t influence their vector competence. Our results indicate that PGPR-LD protects the gut microbiota by preventing hyper-immunity, which in turn promotes PM structurally integrity. The intact PM plays a key role in limiting P. berghei infection. Malaria parasites must overcome several obstacles to complete their development in mosquito. Understanding the interactions between parasites and mosquitoes will provide potential targets to control malaria transmission. PGRP-LD is a peptidoglycan recognition protein, of which limit information is available in insects. Here we show that A. stephensi PGRP-LD mediates malaria parasite infection outcomes by influencing homeostasis of the gut microbiota. Reduction of the gut microbiota density, resulting from upregulation of immune activities in PGRP-LD knock down mosquitoes, changes expression of PM genes and causes PM fragmentation. The compromised PM leads to increasing susceptibility to parasite infection. We also discovered that the PM is lost in mosquitoes in which the gut microbiota is removed by antibiotic treatment. Knock down of PGRP-LD in these mosquitoes doesn’t increase their vector competence. Altogether, these results indicate that capacity of Anopheles mosquito to transmit parasites is determined by a finely tuned balance between host immunity, gut microbiota and peritrophic matrix. PGRP-LD is a key mediator in regulating this balance. Our results expand knowledge on interactions between immune system, gut microbiota and Plasmodium, and will shed light on equivalent processes in other disease transmitting vectors.
Collapse
Affiliation(s)
- Xiumei Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Mengfei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Li Dong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Huaimin Zhu
- The 2nd Military Medical University, Shanghai, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
36
|
Muturi EJ, Ramirez JL, Rooney AP, Kim CH. Comparative Analysis of Gut Microbiota of Culex restuans (Diptera: Culicidae) Females From Different Parents. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:163-171. [PMID: 29045737 DOI: 10.1093/jme/tjx199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 06/07/2023]
Abstract
The potential for gut microbiota to impede or enhance pathogen transmission is well-documented but the factors that shape this microbiota in mosquito vectors are poorly understood. We characterized and compared the gut microbiota of adult females of Culex restuans (Theobald; Diptera: Culicidae) from different parents. Cx. restuans larvae from nine field-collected egg rafts were reared on a common diet and gut microbiota of newly emerged adult females characterized by MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Bacterial diversity and evenness in individuals from one egg raft were significantly lower compared to those of three of the other eight egg rafts. The gut microbiota of adult females reared from seven of the nine egg rafts clustered together suggesting that individuals from most egg rafts had similar profiles of gut microbiota. These findings suggest that the microbiota of adult females from the same parents do not differ appreciably from the microbiota of adult females from different parents. However, additional studies using mosquitoes separated by geographic distances greater than those studied here and estimating the genetic distances between populations from different egg rafts are needed to provide further insights into the influence of host genetics on gut microbiota. Also worthwhile are studies evaluating how individuals from different egg rafts and harboring different gut microbiota compare in relation to vector competence for different pathogens.
Collapse
Affiliation(s)
- Ephantus J Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL
| | - Jose L Ramirez
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL
| |
Collapse
|
37
|
Dieme C, Rotureau B, Mitri C. Microbial Pre-exposure and Vectorial Competence of Anopheles Mosquitoes. Front Cell Infect Microbiol 2017; 7:508. [PMID: 29376030 PMCID: PMC5770632 DOI: 10.3389/fcimb.2017.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022] Open
Abstract
Anopheles female mosquitoes can transmit Plasmodium, the malaria parasite. During their aquatic life, wild Anopheles mosquito larvae are exposed to a huge diversity of microbes present in their breeding sites. Later, adult females often take successive blood meals that might also carry different micro-organisms, including parasites, bacteria, and viruses. Therefore, prior to Plasmodium ingestion, the mosquito biology could be modulated at different life stages by a suite of microbes present in larval breeding sites, as well as in the adult environment. In this article, we highlight several naturally relevant scenarios of Anopheles microbial pre-exposure that we assume might impact mosquito vectorial competence for the malaria parasite: (i) larval microbial exposures; (ii) protist co-infections; (iii) virus co-infections; and (iv) pathogenic bacteria co-infections. In addition, significant behavioral changes in African Anopheles vectors have been associated with increasing insecticide resistance. We discuss how these ethological modifications may also increase the repertoire of microbes to which mosquitoes could be exposed, and that might also influence their vectorial competence. Studying Plasmodium–Anopheles interactions in natural microbial environments would efficiently contribute to refining the transmission risks.
Collapse
Affiliation(s)
- Constentin Dieme
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut National de la Santé et de la Recherche Médicale U1201 and Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| |
Collapse
|
38
|
Patrnogic J, Leclerc V. The serine protease homolog spheroide is involved in sensing of pathogenic Gram-positive bacteria. PLoS One 2017; 12:e0188339. [PMID: 29211760 PMCID: PMC5718610 DOI: 10.1371/journal.pone.0188339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
In Drosophila, recognition of pathogens such as Gram-positive bacteria and fungi triggers the activation of proteolytic cascades and the subsequent activation of the Toll pathway. This response can be achieved by either detection of pathogen associated molecular patterns or by sensing microbial proteolytic activities (“danger signals”). Previous data suggested that certain serine protease homologs (serine protease folds that lack an active catalytic triad) could be involved in the pathway. We generated a null mutant of the serine protease homolog spheroide (sphe). These mutant flies are susceptible to Enterococcus faecalis infection and unable to fully activate the Toll pathway. Sphe is required to activate the Toll pathway after challenge with pathogenic Gram-Positive bacteria. Sphe functions in the danger signal pathway, downstream or at the level of Persephone.
Collapse
Affiliation(s)
- Jelena Patrnogic
- UPR9022 du CNRS, Institut de Biologie Moleculaire et Cellulaire, Universite de Strasbourg, Strasbourg, France
| | - Vincent Leclerc
- UPR9022 du CNRS, Institut de Biologie Moleculaire et Cellulaire, Universite de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
39
|
Brown LD, Thompson GA, Hillyer JF. Transstadial transmission of larval hemocoelic infection negatively affects development and adult female longevity in the mosquito Anopheles gambiae. J Invertebr Pathol 2017; 151:21-31. [PMID: 29111355 DOI: 10.1016/j.jip.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/06/2017] [Accepted: 10/26/2017] [Indexed: 01/30/2023]
Abstract
During all life stages, mosquitoes are exposed to pathogens, and employ an immune system to resist or limit infection. Although much attention has been paid to how adult mosquitoes fight infection, little is known about how an infection during the larval stage affects the biology of the resultant adult. In this study, we investigated whether a bacterial infection in the hemocoel of the African malaria mosquito, Anopheles gambiae, is transstadially transmitted from larvae to adults (both females and males), and whether immune stimulation in the hemocoel as a larva alters development or biological traits of the adult. Specifically, larvae were injected in the hemocoel with either fluorescent microspheres or Escherichia coli, and the following traits were examined: transstadial transmission, larval development to adulthood, adult survival, and adult body size. Our results show that transstadial transmission of hemocoel contents occurs from larvae to pupae and from pupae to adults, but that bacterial prevalence and intensity varies with age. Injury, immune stimulation or infection decreases the proportion of larvae that undergo pupation and eclosion, infection decreases the longevity of adult females, and treatment has complex effects on the body size of the resultant adults. The present study adds larval hemocoelic infection to the known non-genetic factors that reduce overall fitness by negatively affecting development and adult biological traits that influence mosquito vector competence.
Collapse
Affiliation(s)
- Lisa D Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Grayson A Thompson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
40
|
Kumar M, Mohanty AK, Sreenivasamurthy SK, Dey G, Advani J, Pinto SM, Kumar A, Prasad TSK. Response to Blood Meal in the Fat Body of Anopheles stephensi Using Quantitative Proteomics: Toward New Vector Control Strategies Against Malaria. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:520-530. [PMID: 28873011 DOI: 10.1089/omi.2017.0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Malaria remains a grand challenge for disruptive innovation in global health therapeutics and diagnostics. Anopheles stephensi is one of the major vectors of malaria in Asia. Vector and transmission control are key focus areas in the fight against malaria, a field of postgenomics research where proteomics can play a substantive role. Moreover, to identify novel strategies to control the vector population, it is necessary to understand the vector life processes at a global and molecular scale. In this context, fat body is a vital organ required for vitellogenesis, vector immunity, vector physiology, and vector-parasite interaction. Given its central role in energy metabolism, vitellogenesis, and immune function, the proteome profile of the fat body and the impact of blood meal (BM) ingestion on the protein abundances of this vital organ have not been investigated so far. Therefore, using a proteomics approach, we identified the proteins expressed in the fat body of An. stephensi and their differential expression in response to BM ingestion. In all, we identified 3,218 proteins in the fat body using high-resolution mass spectrometry, of which 483 were found to be differentially expressed in response to the BM ingestion. Bioinformatics analysis of these proteins underscored their role in amino acid metabolism, vitellogenesis, lipid transport, signal peptide processing, mosquito immunity, and oxidation-reduction processes. Interestingly, we identified five novel genes, which were found to be differentially expressed upon BM ingestion. Proteins that exhibited altered expression in the present study are potential targets for vector control strategies and development of transmission blocking vaccines in the fight against malaria.
Collapse
Affiliation(s)
- Manish Kumar
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | | | | | - Gourav Dey
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | - Jayshree Advani
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | - Sneha M Pinto
- 4 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - Ashwani Kumar
- 3 National Institute of Malaria Research (ICMR) , Panjim, India
| | - Thottethodi Subrahmanya Keshava Prasad
- 1 Institute of Bioinformatics , Bangalore, India .,4 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India .,5 NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences , Bangalore, India
| |
Collapse
|
41
|
Cao X, Gulati M, Jiang H. Serine protease-related proteins in the malaria mosquito, Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 88:48-62. [PMID: 28780069 PMCID: PMC5586530 DOI: 10.1016/j.ibmb.2017.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 05/27/2023]
Abstract
Insect serine proteases (SPs) and serine protease homologs (SPHs) participate in digestion, defense, development, and other physiological processes. In mosquitoes, some clip-domain SPs and SPHs (i.e. CLIPs) have been investigated for possible roles in antiparasitic responses. In a recent test aimed at improving quality of gene models in the Anopheles gambiae genome using RNA-seq data, we observed various discrepancies between gene models in AgamP4.5 and corresponding sequences selected from those modeled by Cufflinks, Trinity and Bridger. Here we report a comparative analysis of the 337 SP-related proteins in A. gambiae by examining their domain structures, sequence diversity, chromosomal locations, and expression patterns. One hundred and ten CLIPs contain 1 to 5 clip domains in addition to their protease domains (PDs) or non-catalytic, protease-like domains (PLDs). They are divided into five subgroups: CLIPAs (22) are clip1-5-PLD; CLIPBs (29), CLIPCs (12) and CLIPDs (14) are mainly clip-PD; most CLIPEs (33) have a domain structure of PD/PLD-PLD-clip-PLD0-1. While expression of the CLIP genes in group-1 is generally low and detected in various tissue- and stage-specific RNA-seq libraries, some putative GPs/GPHs (i.e. single domain gut SPs/SPHs) in group-2 are highly expressed in midgut, whole larva or whole adult libraries. In comparison, 46 SPs, 26 SPHs, and 37 multi-domain SPs/SPHs (i.e. PD/PLD-PLD≥1) in group-3 do not seem to be specifically expressed in digestive tract. There are 16 SPs and 2 SPH containing other types of putative regulatory domains (e.g. LDLa, CUB, Gd). Of the 337 SP and SPH genes, 159 were sorted into 46 groups (2-8 members/group) based on similar phylogenetic tree position, chromosomal location, and expression profile. This information and analysis, including improved gene models and protein sequences, constitute a solid foundation for functional analysis of the SP-related proteins in A. gambiae.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mansi Gulati
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
42
|
League GP, Estévez-Lao TY, Yan Y, Garcia-Lopez VA, Hillyer JF. Anopheles gambiae larvae mount stronger immune responses against bacterial infection than adults: evidence of adaptive decoupling in mosquitoes. Parasit Vectors 2017; 10:367. [PMID: 28764812 PMCID: PMC5539753 DOI: 10.1186/s13071-017-2302-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/20/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The immune system of adult mosquitoes has received significant attention because of the ability of females to vector disease-causing pathogens while ingesting blood meals. However, few studies have focused on the immune system of larvae, which, we hypothesize, is highly robust due to the high density and diversity of microorganisms that larvae encounter in their aquatic environments and the strong selection pressures at work in the larval stage to ensure survival to reproductive maturity. Here, we surveyed a broad range of cellular and humoral immune parameters in larvae of the malaria mosquito, Anopheles gambiae, and compared their potency to that of newly-emerged adults and older adults. RESULTS We found that larvae kill bacteria in their hemocoel with equal or greater efficiency compared to newly-emerged adults, and that antibacterial ability declines further with adult age, indicative of senescence. This phenotype correlates with more circulating hemocytes and a differing spatial arrangement of sessile hemocytes in larvae relative to adults, as well as with the individual hemocytes of adults carrying a greater phagocytic burden. The hemolymph of larvae also possesses markedly stronger antibacterial lytic and melanization activity than the hemolymph of adults. Finally, infection induces a stronger transcriptional upregulation of immunity genes in larvae than in adults, including differences in the immunity genes that are regulated. CONCLUSIONS These results demonstrate that immunity is strongest in larvae and declines after metamorphosis and with adult age, and suggest that adaptive decoupling, or the independent evolution of larval and adult traits made possible by metamorphosis, has occurred in the mosquito lineage.
Collapse
Affiliation(s)
- Garrett P. League
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | | - Yan Yan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
43
|
Jenson LJ, Sun B, Bloomquist JR. Voltage-sensitive potassium channels expressed after 20-Hydroxyecdysone treatment of a mosquito cell line. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:75-80. [PMID: 28668511 DOI: 10.1016/j.ibmb.2017.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The goal of this research was to express receptors and ion channels in hormone-treated insect cell lines. Treatment of Anopheles gambiae Sua1B cells with 20-hydroxyecdysone showed an inhibition of cell growth over a time course of three days, with no change in cellular morphology. The effect of 20-hydroxyecdysone was enhanced in the presence of the potassium channel blocker 4-aminopyridine, but not tetraethylammonium. Concentration-response curves of 4-aminopyridine in the presence of 42 μM (1 mg/ml) 20-hydroxyecdysone showed similar IC50 values (6-10 μM) across 3 day exposures. Whole cell patch clamp confirmed the expression of delayed-rectifier (Kv2) potassium channels in hormone-supplemented Sua1B cells, whereas untreated Sua1B cells showed no evidence of Kv2 expression. The hormone-induced expression of Kv2 channels occurred in as little as 4 h after treatment, but were not observed after 24 h of exposure to 20-hydroxyecdysone, suggesting they played a role in cell death. The expressed channels had current-voltage relationships diagnostic for the Kv2 subtype, and were inhibited with an IC50 = 13 mM of tetraethylammonium. Overall, these parameters were similar to Anopheles gambiae Kv2 potassium channels expressed in HEK-293 cells. The induced presence of ion channels (and possibly receptors) in these cells has potential utility for high throughput screening and basic neuroscience research.
Collapse
Affiliation(s)
- Lacey J Jenson
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32601, USA; Bedoukian Research Inc., 21 Finance Drive, Danbury, CT, 06810, USA
| | - Baonan Sun
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32601, USA
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
44
|
Santiago PB, de Araújo CN, Motta FN, Praça YR, Charneau S, Bastos IMD, Santana JM. Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review. Parasit Vectors 2017; 10:79. [PMID: 28193252 PMCID: PMC5307778 DOI: 10.1186/s13071-017-2005-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/27/2017] [Indexed: 11/10/2022] Open
Abstract
Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Carla Nunes de Araújo
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275, Brasília, DF, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275, Brasília, DF, Brazil
| | - Yanna Reis Praça
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Sébastien Charneau
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Izabela M Dourado Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Jaime M Santana
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
45
|
Lee DJ, Lee JB, Jang HA, Ferrandon D, Lee BL. An antimicrobial protein of the Riptortus pedestris salivary gland was cleaved by a virulence factor of Serratia marcescens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:427-433. [PMID: 27555079 DOI: 10.1016/j.dci.2016.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Recently, our group demonstrated that the bean bug, Riptortus pedestris, is a good experimental symbiosis model to study the molecular cross-talk between the host insect and the gut symbiont. The Burkholderia symbiont is orally acquired by host nymphs from the environment in every generation. However, it is still unclear how Riptortus specifically interacts with entomopathogens that are abundant in the environmental soil. In preliminary experiments, we observed that a potent entomopathogen, Serratia marcescens, can colonize the midgut of Riptortus insects and was recovered from the midgut when Serratia cells were orally administered, suggesting that this pathogenic bacterium can escape host immune defenses in the salivary fluid. We examined how orally fed Serratia cells can survive in the presence of antimicrobial substances of the Riptortus salivary fluid. In this study, a 15 kDa trialysin-like protein from the salivary gland of R. pedestris and a potent virulence factor of Serratia cells, a serralysin metalloprotease, from the culture medium of S. marcescens were successfully purified to homogeneity. When the purified Riptortus trialysin (rip-trialysin) was incubated with purified serralysin, rip-trialysin was specifically hydrolyzed by serralysin, leading to the loss of antimicrobial activity. These results clearly demonstrated that a potent virulent metalloprotease of S. marcescens functions as a key player in the escape from the salivary fluid-mediated host immune response, resulting in successful colonization of S. marcescens in the host midgut.
Collapse
Affiliation(s)
- Dong Jung Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jun Beom Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Ho Am Jang
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Dominique Ferrandon
- Equipe Fondation Recherche Médicale, UPR 9022 du CNRS, Institut de Biologie Moleculaire et Cellulaire du CNRS, Strasbourg, France
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
46
|
Smartt CT, Shin D, Anderson SL. The Effect of West Nile Virus Infection on the Midgut Gene Expression of Culex pipiens quinquefasciatus Say (Diptera: Culicidae). INSECTS 2016; 7:insects7040076. [PMID: 27999244 PMCID: PMC5198224 DOI: 10.3390/insects7040076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/27/2016] [Accepted: 12/06/2016] [Indexed: 12/23/2022]
Abstract
The interaction of the mosquito and the invading virus is complex and can result in physiological and gene expression alterations in the insect. The association of West Nile virus (WNV) and Culex pipiens quinquefasciatus mosquitoes results in measurable changes in gene expression; 22 gene products were shown previously to have altered expression. Sequence analysis of one product, CQ G1A1, revealed 100% amino acid identity to gram negative bacteria binding proteins (CPQGBP) in Cx. p. quinquefasciatus, Aedes aegypti (70%) and Anopheles gambiae (63%) that function in pathogen recognition. CQ G1A1 also was differentially expressed following WNV infection in two populations of Cx. p. quinquefasciatus colonized from Florida with known differences in vector competence for WNV and showed spatial and temporal gene expression differences in midgut, thorax, and carcass tissues. These data suggest gene expression of CQ G1A1 is influenced by WNV infection and the WNV infection-controlled expression differs between populations and tissues.
Collapse
Affiliation(s)
- Chelsea T Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida-IFAS, 200 9th Street Southeast, Vero Beach, FL 32962, USA.
| | - Dongyoung Shin
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida-IFAS, 200 9th Street Southeast, Vero Beach, FL 32962, USA.
| | - Sheri L Anderson
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida-IFAS, 200 9th Street Southeast, Vero Beach, FL 32962, USA.
| |
Collapse
|
47
|
Delhaye J, Aletti C, Glaizot O, Christe P. Exposure of the mosquito vector Culex pipiens to the malaria parasite Plasmodium relictum: effect of infected blood intake on immune and antioxidant defences, fecundity and survival. Parasit Vectors 2016; 9:616. [PMID: 27899136 PMCID: PMC5129600 DOI: 10.1186/s13071-016-1905-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/22/2016] [Indexed: 12/28/2022] Open
Abstract
Background The intake of a Plasmodium-infected blood meal may affect mosquito physiology and a series of trade-offs may occur, in particular between immune defences, reproduction and self-maintenance. We evaluated the cost of exposure to Plasmodium in the mosquito vector by investigating the effect of exposure on fecundity and survival and the implication of immune and antioxidant defences in mediating this cost. Methods We used the natural Culex pipiens-Plasmodium relictum association. We exposed female mosquitoes to increasing levels of parasites by allowing them to feed either on uninfected canaries, Serinus canaria, (unexposed mosquitoes) or on infected canaries with low (low exposure) or high (high exposure) parasitaemia. We recorded blood meal size, fecundity (laying probability and clutch size) and survival. We quantified the expression of genes involved in immune and antioxidant defences (nitric oxide synthase, NOS; superoxide dismutase, SOD; glucose-6-phosphate dehydrogenase, G6PDH). Results We found that the laying probability of exposed females decreased with increasing exposure to the parasite and with increasing SOD expression. Clutch size of exposed females was higher compared to unexposed ones for similar blood meal size and was positively correlated to the NOS expression. We found no effect of exposure on survival. After blood meal intake, SOD increased in the three groups, NOS increased in exposed females and G6PDH increased in highly exposed females only. Conclusions Our results illustrated a trade-off between fight against the parasite and reproduction and a cost of exposure which might be mediated by the investment in immune and/or antioxidant defences. They also showed that this trade-off could lead to opposed outcome, potentially depending on the vector physiological status. Finally, they highlighted that the ingestion of a Plasmodium-infected blood meal may affect mosquito life history traits in a complex way. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1905-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Delhaye
- Department of Ecology and Evolution, Biophore Unil Sorge, University of Lausanne, Lausanne, CH-1015, Switzerland.
| | - Consolée Aletti
- Department of Ecology and Evolution, Biophore Unil Sorge, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Olivier Glaizot
- Museum of Zoology, Place de la Riponne 6, Lausanne, CH-1005, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, Biophore Unil Sorge, University of Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
48
|
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:53-64. [PMID: 26827888 DOI: 10.1016/j.dci.2016.01.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
49
|
Salgueiro P, Lopes AS, Mendes C, Charlwood JD, Arez AP, Pinto J, Silveira H. Molecular evolution and population genetics of a Gram-negative binding protein gene in the malaria vector Anopheles gambiae (sensu lato). Parasit Vectors 2016; 9:515. [PMID: 27658383 PMCID: PMC5034674 DOI: 10.1186/s13071-016-1800-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Clarifying the role of the innate immune system of the malaria vector Anopheles gambiae is a potential way to block the development of the Plasmodium parasites. Pathogen recognition is the first step of innate immune response, where pattern recognition proteins like GNBPs play a central role. RESULTS We analysed 70 sequences of the protein coding gene GNBPB2 from two species, Anopheles gambiae (s.s.) and An. coluzzii, collected in six African countries. We detected 135 segregating sites defining 63 distinct haplotypes and 30 proteins. Mean nucleotide diversity (π) was 0.014 for both species. We found no significant genetic differentiation between species, but a significant positive correlation between genetic differentiation and geographical distance among populations. CONCLUSIONS Species status seems to contribute less for the molecular differentiation in GNBPB2 than geographical region in the African continent (West and East). Purifying selection was found to be the most common form of selection, as in many other immunity-related genes. Diversifying selection may be also operating in the GNBPB2 gene.
Collapse
Affiliation(s)
- Patrícia Salgueiro
- Global Health and Tropical Medicine Centre (GHTM), Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Sofia Lopes
- Global Health and Tropical Medicine Centre (GHTM), Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Cristina Mendes
- Global Health and Tropical Medicine Centre (GHTM), Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jacques Derek Charlwood
- Global Health and Tropical Medicine Centre (GHTM), Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Lisboa, Portugal
- London School of Hygiene and Tropical Medicine, London, UK
| | - Ana Paula Arez
- Global Health and Tropical Medicine Centre (GHTM), Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Pinto
- Global Health and Tropical Medicine Centre (GHTM), Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Henrique Silveira
- Global Health and Tropical Medicine Centre (GHTM), Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
50
|
Smith RC, King JG, Tao D, Zeleznik OA, Brando C, Thallinger GG, Dinglasan RR. Molecular Profiling of Phagocytic Immune Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate Immunity. Mol Cell Proteomics 2016; 15:3373-3387. [PMID: 27624304 DOI: 10.1074/mcp.m116.060723] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
The innate immune response is highly conserved across all eukaryotes and has been studied in great detail in several model organisms. Hemocytes, the primary immune cell population in mosquitoes, are important components of the mosquito innate immune response, yet critical aspects of their biology have remained uncharacterized. Using a novel method of enrichment, we isolated phagocytic granulocytes and quantified their proteomes by mass spectrometry. The data demonstrate that phagocytosis, blood-feeding, and Plasmodium falciparum infection promote dramatic shifts in the proteomic profiles of An. gambiae granulocyte populations. Of interest, large numbers of immune proteins were induced in response to blood feeding alone, suggesting that granulocytes have an integral role in priming the mosquito immune system for pathogen challenge. In addition, we identify several granulocyte proteins with putative roles as membrane receptors, cell signaling, or immune components that when silenced, have either positive or negative effects on malaria parasite survival. Integrating existing hemocyte transcriptional profiles, we also compare differences in hemocyte transcript and protein expression to provide new insight into hemocyte gene regulation and discuss the potential that post-transcriptional regulation may be an important component of hemocyte gene expression. These data represent a significant advancement in mosquito hemocyte biology, providing the first comprehensive proteomic profiling of mosquito phagocytic granulocytes during homeostasis blood-feeding, and pathogen challenge. Together, these findings extend current knowledge to further illustrate the importance of hemocytes in shaping mosquito innate immunity and their principal role in defining malaria parasite survival in the mosquito host.
Collapse
Affiliation(s)
- Ryan C Smith
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,**Department of Entomology, Iowa State University, Ames, Iowa 50011
| | - Jonas G King
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,‡‡Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi 39762
| | - Dingyin Tao
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,§§Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Oana A Zeleznik
- §Bioinformatics, Institute for Knowledge Discovery, Graz University of Technology, 8010 Graz, Austria.,¶Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria.,‖BioTechMed OMICS Center Graz, 8010 Graz, Austria
| | - Clara Brando
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205
| | - Gerhard G Thallinger
- §Bioinformatics, Institute for Knowledge Discovery, Graz University of Technology, 8010 Graz, Austria.,¶Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria.,‖BioTechMed OMICS Center Graz, 8010 Graz, Austria
| | - Rhoel R Dinglasan
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205; .,¶¶Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|