1
|
Tamarindo GH, Ribeiro CF, Rodrigues S, Góes RM, Loda M. DHA suppresses hormone-sensitive and castration-resistant prostate cancer growth by decreasing de novo lipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2025:159634. [PMID: 40383250 DOI: 10.1016/j.bbalip.2025.159634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
OBJECTIVE De novo lipogenesis (DNL) is associated with prostate cancer (PCa) progression, while fatty acid synthase (FASN) overexpression is a hallmark of DNL. Palmitate, its main product, is a saturated fatty acid that supports PCa growth. Polyunsaturated fatty acids (PUFAs), which can be acquired from the microenvironment, undergo peroxidation more readily and affect membrane fluidity. Docosahexaenoic acid (DHA) is a prototype PUFA omega-3 produced inefficiently in human cells. Its levels are low in PCa cells compared to normal cells. We hypothesize that excess DHA may reprogram lipid metabolism and induce cell growth suppression. METHODS Androgen-responsive LNCaP, castration-resistant cells C4-2 and 22Rv1, human PCa castration-resistant organoids, and prostate cancer xenografts were exposed to DHA. RESULTS DHA accumulated into lipid droplets as triacylglycerols and cholesterol esters, led to increased phospholipid acyl chain unsaturation and altered phospholipid ratio, a known trigger of endoplasmic reticulum (ER) stress. DHA caused a decrease in sterol regulatory element-binding protein (SREBP) transcriptional program, which, in turn, led to decreased expression of FASN. The subsequent reduction in DNL caused downregulation of the androgen receptor (AR) and its splice variant AR-V7. In addition, β-oxidation was enhanced, and DHA was preferentially oxidized over palmitate. Glucose oxidation also increased in the presence of DHA. Finally, DHA led to ROS overproduction, oxidative damage, and ER stress. CONCLUSIONS DHA reduces the growth of hormone-sensitive and castration-resistant PCa both in vitro and in vivo via deregulation of lipid metabolism.
Collapse
Affiliation(s)
- G H Tamarindo
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São Paulo, Brazil
| | - C F Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, United States of America
| | - S Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, United States of America
| | - R M Góes
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São Paulo, Brazil
| | - M Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, United States of America; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America; Nuffield Department of Surgical Sciences, Lincoln College, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Fidelito G, Todorovski I, Cluse L, Vervoort SJ, Taylor RA, Watt MJ. Lipid-metabolism-focused CRISPR screens identify enzymes of the mevalonate pathway as essential for prostate cancer growth. Cell Rep 2025; 44:115470. [PMID: 40146774 DOI: 10.1016/j.celrep.2025.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/22/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Dysregulated lipid metabolism plays an important role in prostate cancer, although the understanding of the essential regulatory processes in tumorigenesis is incomplete. We employ a CRISPR-Cas9 screen using a custom human lipid metabolism knockout library to identify essential genes for prostate cancer survival. Screening in three prostate cancer cell lines reveals 63 shared dependencies, with enrichment in terpenoid backbone synthesis and N-glycan biosynthesis. Independent knockout of key genes of the mevalonate pathway reduces cell proliferation. Further investigation focuses on NUS1, a subunit of cis-prenyltransferase required for dolichol synthesis. NUS1 knockout decreases tumor growth in vivo and viability in patient-derived xenograft (PDX)-derived organoids. Mechanistic studies reveal that loss of NUS1 promotes oxidative stress, lipid peroxidation and ferroptosis sensitivity, endoplasmic reticulum (ER) stress, and G1 cell-cycle arrest, and it dampens androgen receptor (AR) signaling, collectively leading to growth arrest. This study highlights the critical role of the mevalonate-dolichol-N-glycan biosynthesis pathway, particularly NUS1, in prostate cancer survival and growth.
Collapse
Affiliation(s)
- Gio Fidelito
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Izabela Todorovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Leonie Cluse
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephin J Vervoort
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Melbourne Urological Research Alliance (MURAL), Monash University, Clayton, VIC 3168, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia.
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
3
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
4
|
Akasaka Y, Hasei S, Ohata Y, Kanna M, Nakatsu Y, Sakoda H, Fujishiro M, Kushiyama A, Ono H, Matsubara A, Hinata N, Asano T, Yamamotoya T. Auraptene Enhances AMP-Activated Protein Kinase Phosphorylation and Thereby Inhibits the Proliferation, Migration and Expression of Androgen Receptors and Prostate-Specific Antigens in Prostate Cancer Cells. Int J Mol Sci 2023; 24:16011. [PMID: 37958994 PMCID: PMC10650886 DOI: 10.3390/ijms242116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Citrus hassaku extract reportedly activates AMPK. Because this extract contains an abundance of auraptene, we investigated whether pure auraptene activates AMPK and inhibits proliferation using prostate cancer cell lines. Indeed, auraptene inhibited the proliferation and migration of LNCaP cells and induced phosphorylation of AMPK or its downstream ACC in LNCaP, PC3, and HEK-293 cells, but not in DU145 cells not expressing LKB1. In addition, the mTOR-S6K pathway, located downstream from activated AMPK, was also markedly suppressed by auraptene treatment. Importantly, it was shown that auraptene reduced androgen receptor (AR) and prostate-specific antigen (PSA) expressions at both the protein and the mRNA level. This auraptene-induced downregulation of PSA was partially but significantly reversed by treatment with AMPK siRNA or the AMPK inhibitor compound C, suggesting AMPK activation to, at least partially, be causative. Finally, in DU145 cells lacking the LKB1 gene, exogenously induced LKB1 expression restored AMPK phosphorylation by auraptene, indicating the essential role of LKB1. In summary, auraptene is a potent AMPK activator that acts by elevating the AMP/ATP ratio, thereby potentially suppressing prostate cancer progression, via at least three molecular mechanisms, including suppression of the mTOR-S6K pathway, reduced lipid synthesis, and AR downregulation caused by AMPK activation.
Collapse
Affiliation(s)
- Yasuyuki Akasaka
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shun Hasei
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yukino Ohata
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Machi Kanna
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yusuke Nakatsu
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hideyuki Sakoda
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Midori Fujishiro
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Hiraku Ono
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Akio Matsubara
- Department of Urology, JA Hiroshima General Hospital, Hatsukaichi 738-8503, Japan
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomoichiro Asano
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takeshi Yamamotoya
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
5
|
Zhou M, Huang J, Zhou J, Zhi C, Bai Y, Che Q, Cao H, Guo J, Su Z. Anti-Obesity Effect and Mechanism of Chitooligosaccharides Were Revealed Based on Lipidomics in Diet-Induced Obese Mice. Molecules 2023; 28:5595. [PMID: 37513467 PMCID: PMC10384603 DOI: 10.3390/molecules28145595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chitooligosaccharide (COS) is a natural product from the ocean, and while many studies have reported its important role in metabolic diseases, no study has systematically elaborated the anti-obesity effect and mechanism of COS. Herein, COSM (MW ≤ 3000 Da) was administered to diet-induced obese mice by oral gavage once daily for eight weeks. The results show that COSM administration reduced body weight; slowed weight gain; reduced serum Glu, insulin, NEFA, TC, TG, and LDL-C levels; increased serum HSL and HDL-C levels; improved inflammation; and reduced lipid droplet size in adipose tissue. Further lipidomic analysis of adipose tissue revealed that 31 lipid species are considered to be underlying lipid biomarkers in COS therapy. These lipids are mainly enriched in pathways involving insulin resistance, thermogenesis, cholesterol metabolism, glyceride metabolism and cyclic adenosine monophosphate (cAMP), which sheds light on the weight loss mechanism of COS. The Western blot assay demonstrated that COSM intervention can improve insulin resistance, inhibit de novo synthesis, and promote thermogenesis and β-oxidation in mitochondria by the AMPK pathway, thereby alleviating high-fat diet-induced obesity. In short, our study can provide a more comprehensive direction for the application of COS in obesity based on molecular markers.
Collapse
Affiliation(s)
- Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingqing Huang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiting Zhi
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Talebi A, de Laat V, Spotbeen X, Dehairs J, Rambow F, Rogiers A, Vanderhoydonc F, Rizotto L, Planque M, Doglioni G, Motamedi S, Nittner D, Roskams T, Agostinis P, Bechter O, Boecxstaens V, Garmyn M, O'Farrell M, Wagman A, Kemble G, Leucci E, Fendt SM, Marine JC, Swinnen JV. Pharmacological induction of membrane lipid poly-unsaturation sensitizes melanoma to ROS inducers and overcomes acquired resistance to targeted therapy. J Exp Clin Cancer Res 2023; 42:92. [PMID: 37072838 PMCID: PMC10114329 DOI: 10.1186/s13046-023-02664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND One of the key limitations of targeted cancer therapies is the rapid onset of therapy resistance. Taking BRAF-mutant melanoma as paradigm, we previously identified the lipogenic regulator SREBP-1 as a central mediator of resistance to MAPK-targeted therapy. Reasoning that lipogenesis-mediated alterations in membrane lipid poly-unsaturation lie at the basis of therapy resistance, we targeted fatty acid synthase (FASN) as key player in this pathway to evoke an exquisite vulnerability to clinical inducers of reactive oxygen species (ROS), thereby rationalizing a novel clinically actionable combination therapy to overcome therapy resistance. METHODS Using gene expression analysis and mass spectrometry-based lipidomics of BRAF-mutant melanoma cell lines, melanoma PDX and clinical data sets, we explored the association of FASN expression with membrane lipid poly-unsaturation and therapy-resistance. Next, we treated therapy-resistant models with a preclinical FASN inhibitor TVB-3664 and a panel of ROS inducers and performed ROS analysis, lipid peroxidation tests and real-time cell proliferation assays. Finally, we explored the combination of MAPK inhibitors, TVB-3664 and arsenic trioxide (ATO, as a clinically used ROS-inducer) in Mel006 BRAF mutant PDX as a gold model of therapy resistance and assessed the effect on tumor growth, survival and systemic toxicity. RESULTS We found that FASN expression is consistently increased upon the onset of therapy resistance in clinical melanoma samples, in cell lines and in Mel006 PDX and is associated with decreased lipid poly-unsaturation. Forcing lipid poly-unsaturation in therapy-resistant models by combining MAPK inhibition with FASN inhibition attenuated cell proliferation and rendered cells exquisitely sensitive to a host of ROS inducers. In particular, the triple combination of MAPK inhibition, FASN inhibition, and the clinical ROS-inducing compound ATO dramatically increased survival of Mel006 PDX models from 15 to 72% with no associated signs of toxicity. CONCLUSIONS We conclude that under MAPK inhibition the direct pharmacological inhibition of FASN evokes an exquisite vulnerability to inducers of ROS by increasing membrane lipid poly-unsaturation. The exploitation of this vulnerability by combining MAPK and/or FASN inhibitors with inducers of ROS greatly delays the onset of therapy resistance and increases survival. Our work identifies a clinically actionable combinatorial treatment for therapy-resistant cancer.
Collapse
Affiliation(s)
- Ali Talebi
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI, KU Leuven, 3000, Leuven, Belgium
| | - Vincent de Laat
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI, KU Leuven, 3000, Leuven, Belgium
| | - Xander Spotbeen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI, KU Leuven, 3000, Leuven, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI, KU Leuven, 3000, Leuven, Belgium
| | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany
- University of Duisburg-Essen, Essen, Germany
| | - Aljosja Rogiers
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000, Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, KU Leuven, 3000, Leuven, Belgium
| | - Frank Vanderhoydonc
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI, KU Leuven, 3000, Leuven, Belgium
| | - Lara Rizotto
- Department of Oncology, Laboratory for RNA Cancer Biology, LKI, KU Leuven, Leuven, Belgium
- Department of Oncology, Trace PDX Platform, LKI, KU Leuven, Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, 3000, Leuven, Belgium
- Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, LKI, KU Leuven, 3000, Leuven, Belgium
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, 3000, Leuven, Belgium
- Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, LKI, KU Leuven, 3000, Leuven, Belgium
| | - Sahar Motamedi
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI, KU Leuven, 3000, Leuven, Belgium
| | - David Nittner
- Histopathology Expertise Center, VIB-KU Leuven Center for Cancer Biology, 3000, Leuven, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, VIB-KU Leuven Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Oliver Bechter
- LKI, Department of General Medical Oncology, Department of Oncology, University Hospitals Leuven, KU, Leuven, Belgium
| | - Veerle Boecxstaens
- Department of Oncology, KU Leuven and Department of Surgical Oncology, UZ Leuven, Leuven, Belgium
| | - Marjan Garmyn
- Department of Oncology and Dermatology, Laboratory of Dermatology, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Marie O'Farrell
- Sagimet Biosciences, 155 Bovet Rd, San Mateo, CA, 94402, USA
| | - Alan Wagman
- 3-V Biosciences, Inc, 3715 Haven Ave, Menlo Park, CA, 94025, USA
| | - George Kemble
- Sagimet Biosciences, 155 Bovet Rd, San Mateo, CA, 94402, USA
| | - Eleonora Leucci
- Department of Oncology, Laboratory for RNA Cancer Biology, LKI, KU Leuven, Leuven, Belgium
- Department of Oncology, Trace PDX Platform, LKI, KU Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, 3000, Leuven, Belgium
- Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, LKI, KU Leuven, 3000, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000, Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, KU Leuven, 3000, Leuven, Belgium
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Li Y, Wu S, Zhao X, Hao S, Li F, Wang Y, Liu B, Zhang D, Wang Y, Zhou H. Key events in cancer: Dysregulation of SREBPs. Front Pharmacol 2023; 14:1130747. [PMID: 36969840 PMCID: PMC10030587 DOI: 10.3389/fphar.2023.1130747] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Lipid metabolism reprogramming is an important hallmark of tumor progression. Cancer cells require high levels of lipid synthesis and uptake not only to support their continued replication, invasion, metastasis, and survival but also to participate in the formation of biological membranes and signaling molecules. Sterol regulatory element binding proteins (SREBPs) are core transcription factors that control lipid metabolism and the expression of important genes for lipid synthesis and uptake. A growing number of studies have shown that SREBPs are significantly upregulated in human cancers and serve as intermediaries providing a mechanistic link between lipid metabolism reprogramming and malignancy. Different subcellular localizations, including endoplasmic reticulum, Golgi, and nucleus, play an indispensable role in regulating the cleavage maturation and activity of SREBPs. In this review, we focus on the relationship between aberrant regulation of SREBPs activity in three organelles and tumor progression. Because blocking the regulation of lipid synthesis by SREBPs has gradually become an important part of tumor therapy, this review also summarizes and analyzes several current mainstream strategies.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shiming Hao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| |
Collapse
|
8
|
Preclinical models of prostate cancer - modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nat Rev Urol 2023:10.1038/s41585-023-00726-1. [PMID: 36788359 DOI: 10.1038/s41585-023-00726-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Prostate cancer is well known to be dependent on the androgen receptor (AR) for growth and survival. Thus, AR is the main pharmacological target to treat this disease. However, after an initially positive response to AR-targeting therapies, prostate cancer will eventually evolve to castration-resistant prostate cancer, which is often lethal. Tumour growth was initially thought to become androgen-independent following treatments; however, results from molecular studies have shown that most resistance mechanisms involve the reactivation of AR. Consequently, tumour cells become resistant to castration - the blockade of testicular androgens - and not independent of AR per se. However, confusion still remains on how to properly define preclinical models of prostate cancer, including cell lines. Most cell lines were isolated from patients for cell culture after evolution of the tumour to castration-resistant prostate cancer, but not all of these cell lines are described as castration resistant. Moreover, castration refers to the blockade of testosterone production by the testes; thus, even the concept of "castration" in vitro is questionable. To ensure maximal transfer of knowledge from scientific research to the clinic, understanding the limitations and advantages of preclinical models, as well as how these models recapitulate cancer cell androgen dependency and can be used to study castration resistance mechanisms, is essential.
Collapse
|
9
|
Scheinberg T, Mak B, Butler L, Selth L, Horvath LG. Targeting lipid metabolism in metastatic prostate cancer. Ther Adv Med Oncol 2023; 15:17588359231152839. [PMID: 36743527 PMCID: PMC9893394 DOI: 10.1177/17588359231152839] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Despite key advances in the treatment of prostate cancer (PCa), a proportion of men have de novo resistance, and all will develop resistance to current therapeutics over time. Aberrant lipid metabolism has long been associated with prostate carcinogenesis and progression, but more recently there has been an explosion of preclinical and clinical data which is informing new clinical trials. This review explores the epidemiological links between obesity and metabolic syndrome and PCa, the evidence for altered circulating lipids in PCa and their potential role as biomarkers, as well as novel therapeutic strategies for targeting lipids in men with PCa, including therapies widely used in cardiovascular disease such as statins, metformin and lifestyle modification, as well as novel targeted agents such as sphingosine kinase inhibitors, DES1 inhibitors and agents targeting FASN and beta oxidation.
Collapse
Affiliation(s)
- Tahlia Scheinberg
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown NSW, Australia,Advanced Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,University of Sydney, Camperdown, NSW, Australia
| | - Blossom Mak
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown NSW, Australia,Advanced Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,University of Sydney, Camperdown, NSW, Australia
| | - Lisa Butler
- Prostate Cancer Research Group, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia,South Australian Immunogenomics Cancer Institute and Freemason’s Centre for Male Health and Wellbeing, University of Adelaide, South Australia, Australia
| | - Luke Selth
- South Australian Immunogenomics Cancer Institute and Freemason’s Centre for Male Health and Wellbeing, University of Adelaide, South Australia, Australia,Dame Roma Mitchell Cancer Research Labs, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia,Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia
| | | |
Collapse
|
10
|
Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Murali R, Dey A, Vellingiri B, Ganesan R. Role of Metabolism and Metabolic Pathways in Prostate Cancer. Metabolites 2023; 13:183. [PMID: 36837801 PMCID: PMC9962346 DOI: 10.3390/metabo13020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer (PCa) is the common cause of death in men. The pathophysiological factors contributing to PCa are not well known. PCa cells gain a protective mechanism via abnormal lipid signaling and metabolism. PCa cells modify their metabolism in response to an excessive intake of nutrients to facilitate advancement. Metabolic syndrome (MetS) is inextricably linked to the carcinogenic progression of PCa, which heightens the severity of the disease. It is hypothesized that changes in the metabolism of the mitochondria contribute to the onset of PCa. The studies of particular alterations in the progress of PCa are best accomplished by examining the metabolome of prostate tissue. Due to the inconsistent findings written initially, additional epidemiological research is required to identify whether or not MetS is an aspect of PCa. There is a correlation between several risk factors and the progression of PCa, one of which is MetS. The metabolic symbiosis between PCa cells and the tumor milieu and how this type of crosstalk may aid in the development of PCa is portrayed in this work. This review focuses on in-depth analysis and evaluation of the metabolic changes that occur within PCa, and also aims to assess the effect of metabolic abnormalities on the aggressiveness status and metabolism of PCa.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
11
|
Zeković M, Bumbaširević U, Živković M, Pejčić T. Alteration of Lipid Metabolism in Prostate Cancer: Multifaceted Oncologic Implications. Int J Mol Sci 2023; 24:ijms24021391. [PMID: 36674910 PMCID: PMC9863986 DOI: 10.3390/ijms24021391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Cancer is increasingly recognized as an extraordinarily heterogeneous disease featuring an intricate mutational landscape and vast intra- and intertumor variability on both genetic and phenotypic levels. Prostate cancer (PCa) is the second most prevalent malignant disease among men worldwide. A single metabolic program cannot epitomize the perplexing reprogramming of tumor metabolism needed to sustain the stemness of neoplastic cells and their prominent energy-consuming functional properties, such as intensive proliferation, uncontrolled growth, migration, and invasion. In cancerous tissue, lipids provide the structural integrity of biological membranes, supply energy, influence the regulation of redox homeostasis, contribute to plasticity, angiogenesis and microenvironment reshaping, mediate the modulation of the inflammatory response, and operate as signaling messengers, i.e., lipid mediators affecting myriad processes relevant for the development of the neoplasia. Comprehensive elucidation of the lipid metabolism alterations in PCa, the underlying regulatory mechanisms, and their implications in tumorigenesis and the progression of the disease are gaining growing research interest in the contemporary urologic oncology. Delineation of the unique metabolic signature of the PCa featuring major aberrant pathways including de novo lipogenesis, lipid uptake, storage and compositional reprogramming may provide novel, exciting, and promising avenues for improving diagnosis, risk stratification, and clinical management of such a complex and heterogeneous pathology.
Collapse
Affiliation(s)
- Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Uros Bumbaširević
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Živković
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Tomislav Pejčić
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
12
|
Alberto M, Yim A, Lawrentschuk N, Bolton D. Dysfunctional Lipid Metabolism-The Basis for How Genetic Abnormalities Express the Phenotype of Aggressive Prostate Cancer. Cancers (Basel) 2023; 15:cancers15020341. [PMID: 36672291 PMCID: PMC9857232 DOI: 10.3390/cancers15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is the second most frequent cancer in men, with increasing prevalence due to an ageing population. Advanced prostate cancer is diagnosed in up to 20% of patients, and, therefore, it is important to understand evolving mechanisms of progression. Significant morbidity and mortality can occur in advanced prostate cancer where treatment options are intrinsically related to lipid metabolism. Dysfunctional lipid metabolism has long been known to have a relationship to prostate cancer development; however, only recently have studies attempted to elucidate the exact mechanism relating genetic abnormalities and lipid metabolic pathways. Contemporary research has established the pathways leading to prostate cancer development, including dysregulated lipid metabolism-associated de novo lipogenesis through steroid hormone biogenesis and β-oxidation of fatty acids. These pathways, in relation to treatment, have formed potential novel targets for management of advanced prostate cancer via androgen deprivation. We review basic lipid metabolism pathways and their relation to hypogonadism, and further explore prostate cancer development with a cellular emphasis.
Collapse
Affiliation(s)
- Matthew Alberto
- Department of Urology, Austin Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Arthur Yim
- Department of Urology, Austin Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nathan Lawrentschuk
- Department of Urology, Royal Melbourne Hospital, Melbourne, VIC 3010, Australia
| | - Damien Bolton
- Department of Urology, Austin Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
13
|
Dai X, Thompson EW, Ostrikov K(K. Receptor-Mediated Redox Imbalance: An Emerging Clinical Avenue against Aggressive Cancers. Biomolecules 2022; 12:biom12121880. [PMID: 36551308 PMCID: PMC9775490 DOI: 10.3390/biom12121880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer cells are more vulnerable to abnormal redox fluctuations due to their imbalanced antioxidant system, where cell surface receptors sense stress and trigger intracellular signal relay. As canonical targets of many targeted therapies, cell receptors sensitize the cells to specific drugs. On the other hand, cell target mutations are commonly associated with drug resistance. Thus, exploring effective therapeutics targeting diverse cell receptors may open new clinical avenues against aggressive cancers. This paper uses focused case studies to reveal the intrinsic relationship between the cell receptors of different categories and the primary cancer hallmarks that are associated with the responses to external or internal redox perturbations. Cold atmospheric plasma (CAP) is examined as a promising redox modulation medium and highly selective anti-cancer therapeutic modality featuring dynamically varying receptor targets and minimized drug resistance against aggressive cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Erik W. Thompson
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics and Center for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
14
|
Pan H, Huang T, Yu L, Wang P, Su S, Wu T, Bai Y, Teng Y, Wei Y, Zhou L, Li Y. Transcriptome Analysis of the Adipose Tissue of Luchuan and Duroc Pigs. Animals (Basel) 2022; 12:2258. [PMID: 36077979 PMCID: PMC9454924 DOI: 10.3390/ani12172258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Fat deposition is a crucial element in pig production that affects production efficiency, quality and consumer choices. In this study, Duroc pigs, a Western, famous lean pig breed, and Luchuan pigs, a Chinese, native obese pig breed, were used as animal materials. Transcriptome sequencing was used to compare the back adipose tissue of Duroc and Luchuan pigs, to explore the key genes regulating fat deposition. The results showed that 418 genes were highly expressed in the Duroc pig, and 441 genes were highly expressed in the Luchuan pig. In addition, the function enrichment analysis disclosed that the DEGs had been primarily enriched in lipid metabolism, storage and transport pathways. Furthermore, significant differences in the metabolic pathways of alpha-linolenic acid, linoleic acid and arachidonic acid explained the differences in the flavor of the two kinds of pork. Finally, the gene set enrichment analysis (GSEA) exposed that the difference in fat deposition between Duroc and Luchuan pigs may be due to the differential regulation of the metabolism pathway of fatty acid. Therefore, this study described the differential expression transcriptional map of adipose tissue of Duroc pig and Luchuan pig, identified the functional genes regulating pig fat deposition, and provided new hypotheses and references for further study of fat development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Lu X, Fong KW, Gritsina G, Wang F, Baca SC, Brea LT, Berchuck JE, Spisak S, Ross J, Morrissey C, Corey E, Chandel NS, Catalona WJ, Yang X, Freedman ML, Zhao JC, Yu J. HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nat Genet 2022; 54:670-683. [PMID: 35468964 PMCID: PMC9117466 DOI: 10.1038/s41588-022-01045-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/28/2022] [Indexed: 01/16/2023]
Abstract
HOXB13, a homeodomain transcription factor, critically regulates androgen receptor (AR) activities and androgen-dependent prostate cancer (PCa) growth. However, its functions in AR-independent contexts remain elusive. Here we report HOXB13 interaction with histone deacetylase HDAC3, which is disrupted by the HOXB13 G84E mutation that has been associated with early-onset PCa. Independently of AR, HOXB13 recruits HDAC3 to lipogenic enhancers to catalyze histone deacetylation and suppress lipogenic regulators such as fatty acid synthase. Analysis of human tissues reveals that the HOXB13 gene is hypermethylated and downregulated in approximately 30% of metastatic castration-resistant PCa. HOXB13 loss or G84E mutation leads to lipid accumulation in PCa cells, thereby promoting cell motility and xenograft tumor metastasis, which is mitigated by pharmaceutical inhibition of fatty acid synthase. In summary, we present evidence that HOXB13 recruits HDAC3 to suppress de novo lipogenesis and inhibit tumor metastasis and that lipogenic pathway inhibitors may be useful to treat HOXB13-low PCa.
Collapse
Affiliation(s)
- Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ka-wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Galina Gritsina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fang Wang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sylvan C. Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lourdes T. Brea
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jacob E. Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jenny Ross
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, USA
| | - Navdeep S. Chandel
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA,Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University, Chicago, IL, USA,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - William J. Catalona
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA,Department of Urology, Northwestern University, Chicago, IL, USA
| | - Ximing Yang
- Department of Pathology, Northwestern University, Chicago, IL, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan C. Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Co-Corresponding Authors: Jindan Yu, M.D., Ph.D. , Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine; Jonathan C. Zhao,
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA,Co-Corresponding Authors: Jindan Yu, M.D., Ph.D. , Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine; Jonathan C. Zhao,
| |
Collapse
|
16
|
Wang Y, Yu W, Li S, Guo D, He J, Wang Y. Acetyl-CoA Carboxylases and Diseases. Front Oncol 2022; 12:836058. [PMID: 35359351 PMCID: PMC8963101 DOI: 10.3389/fonc.2022.836058] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Acetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-CoA to produce malonyl-CoA. In mammals, ACC1 and ACC2 are two members of ACCs. ACC1 localizes in the cytosol and acts as the first and rate-limiting enzyme in the de novo fatty acid synthesis pathway. ACC2 localizes on the outer membrane of mitochondria and produces malonyl-CoA to regulate the activity of carnitine palmitoyltransferase 1 (CPT1) that involves in the β-oxidation of fatty acid. Fatty acid synthesis is central in a myriad of physiological and pathological conditions. ACC1 is the major member of ACCs in mammalian, mountains of documents record the roles of ACC1 in various diseases, such as cancer, diabetes, obesity. Besides, acetyl-CoA and malonyl-CoA are cofactors in protein acetylation and malonylation, respectively, so that the manipulation of acetyl-CoA and malonyl-CoA by ACC1 can also markedly influence the profile of protein post-translational modifications, resulting in alternated biological processes in mammalian cells. In the review, we summarize our understandings of ACCs, including their structural features, regulatory mechanisms, and roles in diseases. ACC1 has emerged as a promising target for diseases treatment, so that the specific inhibitors of ACC1 for diseases treatment are also discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Weixing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Sha Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Dingyuan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Jie He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yugang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yugang Wang,
| |
Collapse
|
17
|
Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer 2021; 21:753-766. [PMID: 34417571 DOI: 10.1038/s41568-021-00388-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Fatty acid metabolism is known to support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage and catabolism. More recently, the role of membrane fatty acid composition, for example, ratios of saturated, monounsaturated and polyunsaturated fatty acids, in promoting cell survival while limiting lipotoxicity and ferroptosis has been increasingly appreciated. Alongside these insights, it has become clear that tumour cells exhibit plasticity with respect to fatty acid metabolism, responding to extratumoural and systemic metabolic signals, such as obesity and cancer therapeutics, to promote the development of aggressive, treatment-resistant disease. Here, we describe cellular fatty acid metabolic changes that are connected to therapy resistance and contextualize obesity-associated changes in host fatty acid metabolism that likely influence the local tumour microenvironment to further modify cancer cell behaviour while simultaneously creating potential new vulnerabilities.
Collapse
Affiliation(s)
- Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Sena LA, Denmeade SR. Fatty Acid Synthesis in Prostate Cancer: Vulnerability or Epiphenomenon? Cancer Res 2021; 81:4385-4393. [PMID: 34145040 PMCID: PMC8416800 DOI: 10.1158/0008-5472.can-21-1392] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Tumor metabolism supports the energetic and biosynthetic needs of rapidly proliferating cancer cells and modifies intra- and intercellular signaling to enhance cancer cell invasion, metastasis, and immune evasion. Prostate cancer exhibits unique metabolism with high rates of de novo fatty acid synthesis driven by activation of the androgen receptor (AR). Increasing evidence suggests that activation of this pathway is functionally important to promote prostate cancer aggressiveness. However, the mechanisms by which fatty acid synthesis are beneficial to prostate cancer have not been well defined. In this review, we summarize evidence indicating that fatty acid synthesis drives progression of prostate cancer. We also explore explanations for this phenomenon and discuss future directions for targeting this pathway for patient benefit.
Collapse
Affiliation(s)
- Laura A Sena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Butler LM, Mah CY, Machiels J, Vincent AD, Irani S, Mutuku SM, Spotbeen X, Bagadi M, Waltregny D, Moldovan M, Dehairs J, Vanderhoydonc F, Bloch K, Das R, Stahl J, Kench JG, Gevaert T, Derua R, Waelkens E, Nassar ZD, Selth LA, Trim PJ, Snel MF, Lynn DJ, Tilley WD, Horvath LG, Centenera MM, Swinnen JV. Lipidomic profiling of clinical prostate cancer reveals targetable alterations in membrane lipid composition. Cancer Res 2021; 81:4981-4993. [PMID: 34362796 DOI: 10.1158/0008-5472.can-20-3863] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/07/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Dysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by androgen receptor (AR) signaling. Here we used quantitative mass spectrometry to define the "lipidome" in prostate tumors with matched benign tissues (n=21), independent unmatched tissues (n=47), and primary prostate explants cultured with the clinical AR antagonist enzalutamide (n=43). Significant differences in lipid composition were detected and spatially visualized in tumors compared to matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and phosphatidylserine lipids. Significant associations between lipid profile and malignancy were validated in unmatched samples, and phospholipid composition was characteristically altered in patient tissues that responded to AR inhibition. Importantly, targeting tumor-related lipid features via inhibition of acetyl-CoA carboxylase 1 significantly reduced cellular proliferation and induced apoptosis in tissue explants. This first characterization of the prostate cancer lipidome in clinical tissues reveals enhanced fatty acid synthesis, elongation, and desaturation as tumor-defining features, with potential for therapeutic targeting.
Collapse
Affiliation(s)
- Lisa M Butler
- South Australian Health and Medical Research Institute, University of Adelaide, School of Medicine and Freemasons Foundation Centre for Men's Health
| | - Chui Yan Mah
- South Australian Health and Medical Research Institute, University of Adelaide, Freemasons Foundation Centre for Men's Health and Adelaide Medical School
| | | | | | - Swati Irani
- South Australian Health and Medical Research Institute, University of Adelaide, School of Medicine and Freemasons Foundation Centre for Men's Health
| | - Shadrack M Mutuku
- South Australian Health and Medical Research Institute, University of Adelaide, School of Medicine and Freemasons Foundation Centre for Men's Health
| | | | | | | | - Max Moldovan
- Registry of Older Australians, South Australian Health and Medical Research Institute
| | - Jonas Dehairs
- Department of Oncology, KU Leuven - University of Leuven
| | | | - Katarzyna Bloch
- Department of Hematology and Oncology, Familial Cancer Program, Dartmouth–Hitchcock Medical Center
| | | | | | - James G Kench
- Tissue Pathology & Diagnostic Oncology, Royal Prince Alfred Hospital
| | | | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven
| | | | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University
| | - Paul J Trim
- Proteomics, Metabolomics and MS Imaging Core Facility, South Australian Health & Medical Research Institute
| | - Marten F Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health & Medical Research Institute
| | - David J Lynn
- Precision Medicine, South Australian Health and Medical Research Institute
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide
| | - Lisa G Horvath
- Cancer Research Program, Garvan Institute of Medical Research
| | | | | |
Collapse
|
20
|
Scaglia N, Frontini-López YR, Zadra G. Prostate Cancer Progression: as a Matter of Fats. Front Oncol 2021; 11:719865. [PMID: 34386430 PMCID: PMC8353450 DOI: 10.3389/fonc.2021.719865] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Advanced prostate cancer (PCa) represents the fifth cause of cancer death worldwide. Although survival has improved with second-generation androgen signaling and Parp inhibitors, the benefits are not long-lasting, and new therapeutic approaches are sorely needed. Lipids and their metabolism have recently reached the spotlight with accumulating evidence for their role as promoters of PCa development, progression, and metastasis. As a result, interest in targeting enzymes/transporters involved in lipid metabolism is rapidly growing. Moreover, the use of lipogenic signatures to predict prognosis and resistance to therapy has been recently explored with promising results. Despite the well-known association between obesity with PCa lethality, the underlying mechanistic role of diet/obesity-derived metabolites has only lately been unveiled. Furthermore, the role of lipids as energy source, building blocks, and signaling molecules in cancer cells has now been revisited and expanded in the context of the tumor microenvironment (TME), which is heavily influenced by the external environment and nutrient availability. Here, we describe how lipids, their enzymes, transporters, and modulators can promote PCa development and progression, and we emphasize the role of lipids in shaping TME. In a therapeutic perspective, we describe the ongoing efforts in targeting lipogenic hubs. Finally, we highlight studies supporting dietary modulation in the adjuvant setting with the purpose of achieving greater efficacy of the standard of care and of synthetic lethality. PCa progression is "a matter of fats", and the more we understand about the role of lipids as key players in this process, the better we can develop approaches to counteract their tumor promoter activity while preserving their beneficial properties.
Collapse
Affiliation(s)
- Natalia Scaglia
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), National University of La Plata/National Council of Scientific and Technical Research of Argentina, La Plata, Argentina
| | - Yesica Romina Frontini-López
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), National University of La Plata/National Council of Scientific and Technical Research of Argentina, La Plata, Argentina
| | - Giorgia Zadra
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| |
Collapse
|
21
|
Seidu T, McWhorter P, Myer J, Alamgir R, Eregha N, Bogle D, Lofton T, Ecelbarger C, Andrisse S. DHT causes liver steatosis via transcriptional regulation of SCAP in normal weight female mice. J Endocrinol 2021; 250:49-65. [PMID: 34060475 PMCID: PMC8240729 DOI: 10.1530/joe-21-0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Hyperandrogenemia (HA) is a hallmark of polycystic ovary syndrome (PCOS) and is an integral element of non-alcoholic fatty liver disease (NALFD) in females. Administering low-dose dihydrotestosterone (DHT) induced a normal weight PCOS-like female mouse model displaying NAFLD. The molecular mechanism of HA-induced NAFLD has not been fully determined. We hypothesized that DHT would regulate hepatic lipid metabolism via increased SREBP1 expression leading to NAFLD. We extracted liver from control and low-dose DHT female mice; and performed histological and biochemical lipid profiles, Western blot, immunoprecipitation, chromatin immunoprecipitation, and real-time quantitative PCR analyses. DHT lowered the 65 kD form of cytosolic SREBP1 in the liver compared to controls. However, DHT did not alter the levels of SREBP2 in the liver. DHT mice displayed increased SCAP protein expression and SCAP-SREBP1 binding compared to controls. DHT mice exhibited increased AR binding to intron-8 of SCAP leading to increased SCAP mRNA compared to controls. FAS mRNA and protein expression was increased in the liver of DHT mice compared to controls. p-ACC levels were unaltered in the liver. Other lipid metabolism pathways were examined in the liver, but no changes were observed. Our findings support evidence that DHT increased de novo lipogenic proteins resulting in increased hepatic lipid content via regulation of SREBP1 in the liver. We show that in the presence of DHT, the SCAP-SREBP1 interaction was elevated leading to increased nuclear SREBP1 resulting in increased de novo lipogenesis. We propose that the mechanism of action may be increased AR binding to an ARE in SCAP intron-8.
Collapse
Affiliation(s)
- Tina Seidu
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Patrick McWhorter
- Department of Chemistry, Youngstown State University, Youngstown, Ohio, USA
| | - Jessie Myer
- Department of Biology, University of Missouri, Columbia, Missouri, USA
| | - Rabita Alamgir
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Nicole Eregha
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Dilip Bogle
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Taylor Lofton
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Carolyn Ecelbarger
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Stanley Andrisse
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Correspondence should be addressed to S Andrisse:
| |
Collapse
|
22
|
Vitamin C Deficiency Inhibits Nonalcoholic Fatty Liver Disease Progression through Impaired de Novo Lipogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1550-1563. [PMID: 34126083 DOI: 10.1016/j.ajpath.2021.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/09/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Despite the increasing clinical importance of nonalcoholic fatty liver disease (NAFLD), little is known about its underlying pathogenesis or specific treatment. The senescence marker protein 30 (SMP30), which regulates the biosynthesis of vitamin C (VC) in many mammals, except primates and humans, was recently recognized as a gluconolactonase. However, the precise relation between VC and lipid metabolism in NAFLD is not completely understood. Therefore, this study aimed to clearly reveal the role of VC in NAFLD progression. SMP30 knockout (KO) mice were used as a VC-deficient mouse model. To investigate the precise role of VC on lipid metabolism, 13- to 15-week-old SMP30 KO mice and wild-type mice fed a 60% high-fat diet were exposed to tap water or VC-containing water (1.5 g/L) ad libitum for 11 weeks. Primary mouse hepatocytes isolated from the SMP30 KO and wild-type mice were used to demonstrate the relation between VC and lipid metabolism in hepatocytes. Long-term VC deficiency significantly suppressed the progression of simple steatosis. The high-fat diet-fed VC-deficient SMP30 KO mice exhibited impaired sterol regulatory element-binding protein-1c activation because of excessive cholesterol accumulation in hepatocytes. Long-term VC deficiency inhibits de novo lipogenesis through impaired sterol regulatory element-binding protein-1c activation.
Collapse
|
23
|
Dłubek J, Rysz J, Jabłonowski Z, Gluba-Brzózka A, Franczyk B. The Correlation between Lipid Metabolism Disorders and Prostate Cancer. Curr Med Chem 2021; 28:2048-2061. [PMID: 32767911 DOI: 10.2174/0929867327666200806103744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
Prostate cancer is the second most common cancer affecting the male population all over the world. The existence of a correlation between lipid metabolism disorders and cancer of the prostate gland has been widely known for a long time. According to hypotheses, cholesterol may contribute to prostate cancer progression as a result of its participation as a signaling molecule in prostate growth and differentiation via numerous biologic mechanisms including Akt signaling and de novo steroidogenesis. The results of some studies suggest that increased cholesterol levels may be associated with a higher risk of a more aggressive course of the disease. The aforementioned alterations in the synthesis of fatty acids are a unique feature of cancer and, therefore, constitute an attractive target for therapeutic intervention in the treatment of prostate cancer. Pharmacological or gene therapy aims to reduce the activity of enzymes involved in de novo synthesis of fatty acids, FASN, ACLY (ATP citrate lyase) or SCD-1 (Stearoyl-CoA Desaturase) in particular, that may result in cells growth arrest. Nevertheless, not all cancers are unequivocally associated with hypocholesterolaemia. It cannot be ruled out that the relationship between prostate cancer and lipid disorders is not a direct quantitative correlation between carcinogenesis and the amount of circulating cholesterol. Perhaps the correspondence is more sophisticated and connected to the distribution of cholesterol fractions or even sub-fractions of e.g. HDL cholesterol.
Collapse
Affiliation(s)
- Justyna Dłubek
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Zbigniew Jabłonowski
- Department of Urology, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
24
|
Hu Z, Cheng C, Wang Y, Chen T, Tu J, Niu C, Xing R, Wang Y, Xu Y. Synergistic Effect of Statins and Abiraterone Acetate on the Growth Inhibition of Neuroblastoma via Targeting Androgen Receptor. Front Oncol 2021; 11:595285. [PMID: 34041015 PMCID: PMC8141582 DOI: 10.3389/fonc.2021.595285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma is the most common extracranial neuroendocrine tumor in childhood. Although many studies have tried to find effective treatments, there are still numerous limitations in current clinical targeted therapy. So, it is important to find new therapeutic targets and strategies from a new perspective. Our previous study reported that the androgen receptor (AR) promotes the growth of neuroblastoma in vitro and in vivo. Based on documentary investigation, we postulated that the AR–SCAP–SREBPs-CYP17/HMGCR axis may regulate cholesterol and androgens synthesis and form a positive enhancement loop promoting NB progression. Clinical samples and Oncomine database analysis proved the activation of AR–SCAP–SREBPs-CYP17/HMGCR axis in neuroblastoma. The combination of inhibitors of HMGCR (statins) and CYP17A1 (abiraterone acetate) showed synergistic effect that significantly inhibited the proliferation and migration with decreased expression of related genes detected in vitro and in vivo suggesting the dual-targeted therapy had the potential to inhibit the progression of neuroblastoma in spite of its MYCN status. This study provides new ideas for clinical treatment of neuroblastoma with efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Zengchun Hu
- Dalian Medical University, Dalian, China.,Department of Neurosurgery, 2nd Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chuandong Cheng
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Division of Life Sciences and Medicine, Department of Neurosurgery, 1st Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yue Wang
- Dalian Medical University, Dalian, China.,Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tianrui Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junhong Tu
- Dalian Medical University, Dalian, China.,Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chaoshi Niu
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Division of Life Sciences and Medicine, Department of Neurosurgery, 1st Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Rong Xing
- Dalian Medical University, Dalian, China.,Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yang Wang
- Dalian Medical University, Dalian, China.,Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yinghui Xu
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Fatty Acid Synthase Confers Tamoxifen Resistance to ER+/HER2+ Breast Cancer. Cancers (Basel) 2021; 13:cancers13051132. [PMID: 33800852 PMCID: PMC7961649 DOI: 10.3390/cancers13051132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Overactivation of the human epidermal growth factor receptor 2 (HER2) is one of the main drivers of tamoxifen resistance in estrogen receptor (ER)-positive breast cancer patients. Combined targeting of HER2 and ER, however, has yielded disappointing results in the clinical setting. Therefore, other potential mechanisms for tamoxifen resistance would not be overcome by solely blocking the cross-talk between ER and HER2 at the receptor(s) level. Using cell lines, animal models, and clinical data, we provide evidence to support a critical role of fatty acid synthase (FASN)—the major site for endogenous fat synthesis—in HER2-driven tamoxifen resistance. Importantly, treatment with a FASN inhibitor impeded the estrogen-like tumor-promoting effects of tamoxifen and fully restored the anti-estrogenic activity of tamoxifen in ER+/HER2-overexpressing breast cancer xenografts. We postulate FASN as a biological determinant of HER2-driven tamoxifen resistance and FASN inhibition as a novel therapeutic approach to restore tamoxifen sensitivity in endocrine-resistant breast cancer. Abstract The identification of clinically important molecular mechanisms driving endocrine resistance is a priority in estrogen receptor-positive (ER+) breast cancer. Although both genomic and non-genomic cross-talk between the ER and growth factor receptors such as human epidermal growth factor receptor 2 (HER2) has frequently been associated with both experimental and clinical endocrine therapy resistance, combined targeting of ER and HER2 has failed to improve overall survival in endocrine non-responsive disease. Herein, we questioned the role of fatty acid synthase (FASN), a lipogenic enzyme linked to HER2-driven breast cancer aggressiveness, in the development and maintenance of hormone-independent growth and resistance to anti-estrogens in ER/HER2-positive (ER+/HER2+) breast cancer. The stimulatory effects of estradiol on FASN gene promoter activity and protein expression were blunted by anti-estrogens in endocrine-responsive breast cancer cells. Conversely, an AKT/MAPK-related constitutive hyperactivation of FASN gene promoter activity was unaltered in response to estradiol in non-endocrine responsive ER+/HER2+ breast cancer cells, and could be further enhanced by tamoxifen. Pharmacological blockade with structurally and mechanistically unrelated FASN inhibitors fully impeded the strong stimulatory activity of tamoxifen on the soft-agar colony forming capacity—an in vitro metric of tumorigenicity—of ER+/HER2+ breast cancer cells. In vivo treatment with a FASN inhibitor completely prevented the agonistic tumor-promoting activity of tamoxifen and fully restored its estrogen antagonist properties against ER/HER2-positive xenograft tumors in mice. Functional cancer proteomic data from The Cancer Proteome Atlas (TCPA) revealed that the ER+/HER2+ subtype was the highest FASN protein expressor compared to basal-like, HER2-enriched, and ER+/HER2-negative breast cancer groups. FASN is a biological determinant of HER2-driven endocrine resistance in ER+ breast cancer. Next-generation, clinical-grade FASN inhibitors may be therapeutically relevant to countering resistance to tamoxifen in FASN-overexpressing ER+/HER2+ breast carcinomas.
Collapse
|
26
|
The Postnatal Offspring of Finasteride-Treated Male Rats Shows Hyperglycaemia, Elevated Hepatic Glycogen Storage and Altered GLUT2, IR, and AR Expression in the Liver. Int J Mol Sci 2021; 22:ijms22031242. [PMID: 33513940 PMCID: PMC7865973 DOI: 10.3390/ijms22031242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background: A growing body of data indicates that the physiology of the liver is sex-hormone dependent, with some types of liver failure occurring more frequently in males, and some in females. In males, in physiological conditions, testosterone acts via androgen receptors (AR) to increase insulin receptor (IR) expression and glycogen synthesis, and to decrease glucose uptake controlled by liver-specific glucose transporter 2 (GLUT-2). Our previous study indicated that this mechanism may be impaired by finasteride, a popular drug used in urology and dermatology, inhibiting 5α-reductase 2, which converts testosterone (T) into dihydrotestosterone (DHT). Our research has also shown that the offspring of rats exposed to finasteride have an altered T–DHT ratio and show changes in their testes and epididymides. Therefore, the goal of this study was to assess whether the administration of finasteride had an trans-generational effect on (i) GLUT-2 dependent accumulation of glycogen in the liver, (ii) IR and AR expression in the hepatocytes of male rat offspring, (iii) a relation between serum T and DHT levels and the expression of GLUT2, IR, and AR mRNAs, (iv) a serum glucose level and it correlation with GLUT-2 mRNA. Methods: The study was conducted on the liver (an androgen-dependent organ) from 7, 14, 21, 28, and 90-day old Wistar male rats (F1:Fin) born by females fertilized by finasteride-treated rats. The control group was the offspring (F1:Control) of untreated Wistar parents. In the histological sections of liver the Periodic Acid Schiff (PAS) staining (to visualize glycogen) and IHC (to detect GLUT-2, IR, and AR) were performed. The liver homogenates were used in qRT-PCR to assess GLUT2, IR, and AR mRNA expression. The percentage of PAS-positive glycogen areas were correlated with the immunoexpression of GLUT-2, serum levels of T and DHT were correlated with GLUT-2, IR, and AR transcript levels, and serum glucose concentration was correlated with the age of animals and with the GLUT-2 mRNA by Spearman’s rank correlation coefficients. Results: In each age group of F1:Fin rats, the accumulation of glycogen was elevated but did not correlate with changes in GLUT-2 expression. The levels of GLUT-2, IR, and AR transcripts and their immunoreactivity statistically significantly decreased in F1:Fin animals. In F1:Fin rats the serum levels of T and DHT negatively correlated with androgen receptor mRNA. The animals from F1:Fin group have statistically elevated level of glucose. Additionally, in adult F1:Fin rats, steatosis was observed in the liver (see Appendix A). Conclusions: It seems that treating male adult rats with finasteride causes changes in the carbohydrate metabolism in the liver of their offspring. This can lead to improper hepatic energy homeostasis or even hyperglycaemia, insulin resistance, as well as some symptoms of metabolic syndrome and liver steatosis.
Collapse
|
27
|
Ohishi T, Fukutomi R, Shoji Y, Goto S, Isemura M. The Beneficial Effects of Principal Polyphenols from Green Tea, Coffee, Wine, and Curry on Obesity. Molecules 2021; 26:molecules26020453. [PMID: 33467101 PMCID: PMC7830344 DOI: 10.3390/molecules26020453] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Several epidemiological studies and clinical trials have reported the beneficial effects of green tea, coffee, wine, and curry on human health, with its anti-obesity, anti-cancer, anti-diabetic, and neuroprotective properties. These effects, which have been supported using cell-based and animal studies, are mainly attributed to epigallocatechin gallate found in green tea, chlorogenic acid in coffee, resveratrol in wine, and curcumin in curry. Polyphenols are proposed to function via various mechanisms, the most important of which is related to reactive oxygen species (ROS). These polyphenols exert conflicting dual actions as anti- and pro-oxidants. Their anti-oxidative actions help scavenge ROS and downregulate nuclear factor-κB to produce favorable anti-inflammatory effects. Meanwhile, pro-oxidant actions appear to promote ROS generation leading to the activation of 5′-AMP-activated protein kinase, which modulates different enzymes and factors with health beneficial roles. Currently, it remains unclear how these polyphenols exert either pro- or anti-oxidant effects. Similarly, several human studies showed no beneficial effects of these foods, and, by extension polyphenols, on obesity. These inconsistencies may be attributed to different confounding study factors. Thus, this review provides a state-of-the-art update on these foods and their principal polyphenol components, with an assumption that it prevents obesity.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Correspondence: ; Tel.: +81-55-924-0601
| | - Ryuuta Fukutomi
- Quality Management Div. Higuchi Inc., Minato-ku, Tokyo 108-0075, Japan;
| | - Yutaka Shoji
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| | - Shingo Goto
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shimizu, Shizuoka 424-0292, Japan;
| | - Mamoru Isemura
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| |
Collapse
|
28
|
Testosterone stimulates cholesterol clearance from human macrophages by activating LXRα. Life Sci 2021; 269:119040. [PMID: 33453241 DOI: 10.1016/j.lfs.2021.119040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/04/2023]
Abstract
AIMS Low testosterone in men is associated with increased cardiovascular events and mortality. Testosterone has beneficial effects on several cardiovascular risk factors including cholesterol, endothelial dysfunction and inflammation as key mediators of atherosclerosis. Although evidence suggests testosterone is anti-atherogenic, its mechanism of action is unknown. The present study investigates whether testosterone exerts anti-atherogenic effects by stimulating cholesterol clearance from macrophages via activation of liver X receptor (LXRα), a nuclear master regulator of cellular cholesterol homeostasis, lipid regulation, and inflammation. MAIN METHODS Using human monocyte THP-1 cells differentiated into macrophages, the effect of testosterone (1-10 nM) treatment (24-72 h) on the expression of LXRα and LXR- targets apolipoprotein E (APOE), ATP-binding cassette transporter A1 (ABCA1), sterol regulatory element-binding transcription factor 1 (SREBF1) and fatty acid synthase (FAS), was investigated via qPCR and western blotting, with or without androgen receptor blockade with flutamide or LXR antagonism with CPPSS-50. Cholesterol clearance was measured by monitoring fluorescent dehydroergosterol (DHE) cellular clearance and ABCA1 cellular translocation was observed via immunocytochemistry in testosterone treated macrophages. KEY FINDINGS Testosterone increased mRNA and protein expression of LXRα, APOE, ABCA1, SREBF1 and FAS. These effects were blocked by flutamide and independently by LXR antagonism with CPPSS-50. Furthermore testosterone stimulated cholesterol clearance from the macrophages and promoted the translocation of ABCA1 toward the cell membrane. SIGNIFICANCE Testosterone acts via androgen receptor-dependent pathways to stimulate LXRα and downstream targets to induce cholesterol clearance in human macrophages. This may, in part, explain the anti-atherogenic effects of testosterone frequently seen clinically.
Collapse
|
29
|
Menendez JA, Peirce SK, Papadimitropoulou A, Cuyàs E, Steen TV, Verdura S, Vellon L, Chen WY, Lupu R. Progesterone receptor isoform-dependent cross-talk between prolactin and fatty acid synthase in breast cancer. Aging (Albany NY) 2020; 12:24671-24692. [PMID: 33335078 PMCID: PMC7803566 DOI: 10.18632/aging.202289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 04/13/2023]
Abstract
Progesterone receptor (PR) isoforms can drive unique phenotypes in luminal breast cancer (BC). Here, we hypothesized that PR-B and PR-A isoforms differentially modify the cross-talk between prolactin and fatty acid synthase (FASN) in BC. We profiled the responsiveness of the FASN gene promoter to prolactin in T47Dco BC cells constitutively expressing PR-A and PR-B, in the PR-null variant T47D-Y cell line, and in PR-null T47D-Y cells engineered to stably re-express PR-A (T47D-YA) or PR-B (T47D-YB). The capacity of prolactin to up-regulate FASN gene promoter activity in T47Dco cells was lost in T47D-Y and TD47-YA cells. Constitutively up-regulated FASN gene expression in T47-YB cells and its further stimulation by prolactin were both suppressed by the prolactin receptor antagonist hPRL-G129R. The ability of the FASN inhibitor C75 to decrease prolactin secretion was more conspicuous in T47-YB cells. In T47D-Y cells, which secreted notably less prolactin and downregulated prolactin receptor expression relative to T47Dco cells, FASN blockade resulted in an augmented secretion of prolactin and up-regulation of prolactin receptor expression. Our data reveal unforeseen PR-B isoform-specific regulatory actions in the cross-talk between prolactin and FASN signaling in BC. These findings might provide new PR-B/FASN-centered predictive and therapeutic modalities in luminal intrinsic BC subtypes.
Collapse
MESH Headings
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/pharmacology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- Databases, Genetic
- Fatty Acid Synthase, Type I/antagonists & inhibitors
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Humans
- Interleukin-6/metabolism
- Prolactin/metabolism
- Prolactin/pharmacology
- Promoter Regions, Genetic
- Protein Isoforms
- RNA, Messenger/metabolism
- Receptor Cross-Talk
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Prolactin/antagonists & inhibitors
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | | | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Travis Vander Steen
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luciano Vellon
- Stem Cells Laboratory, Institute of Biology and Experimental Medicine (IBYME-CONICET), Buenos Aires, Argentina
| | - Wen Y. Chen
- Department of Biological Sciences, Clemson University, Greenville, SC 29634, USA
| | - Ruth Lupu
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
- Mayo Clinic Minnesota, Department of Biochemistry and Molecular Biology Laboratory, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020; 82:94-119. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.
Collapse
|
31
|
Cardoso HJ, Carvalho TMA, Fonseca LRS, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Med Res Rev 2020; 41:1499-1538. [PMID: 33274768 DOI: 10.1002/med.21766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa), one of the most commonly diagnosed cancers worldwide, still presents important unmet clinical needs concerning treatment. In the last years, the metabolic reprogramming and the specificities of tumor cells emerged as an exciting field for cancer therapy. The unique features of PCa cells metabolism, and the activation of specific metabolic pathways, propelled the use of metabolic inhibitors for treatment. The present work revises the knowledge of PCa metabolism and the metabolic alterations that underlie the development and progression of the disease. A focus is given to the role of bioenergetic sources, namely, glucose, lipids, and glutamine sustaining PCa cell survival and growth. Moreover, it is described as the action of oncogenes/tumor suppressors and sex steroid hormones in the metabolic reprogramming of PCa. Finally, the status of PCa treatment based on the inhibition of metabolic pathways is presented. Globally, this review updates the landscape of PCa metabolism, highlighting the critical metabolic alterations that could have a clinical and therapeutic interest.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
32
|
Fatty acid synthesis and cancer: Aberrant expression of the ACACA and ACACB genes increases the risk for cancer. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100798] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
33
|
Fatty Acid Synthase Is a Key Enabler for Endocrine Resistance in Heregulin-Overexpressing Luminal B-Like Breast Cancer. Int J Mol Sci 2020; 21:ijms21207661. [PMID: 33081219 PMCID: PMC7588883 DOI: 10.3390/ijms21207661] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
HER2 transactivation by the HER3 ligand heregulin (HRG) promotes an endocrine-resistant phenotype in the estrogen receptor-positive (ER+) luminal-B subtype of breast cancer. The underlying biological mechanisms that link them are, however, incompletely understood. Here, we evaluated the putative role of the lipogenic enzyme fatty acid synthase (FASN) as a major cause of HRG-driven endocrine resistance in ER+/HER2-negative breast cancer cells. MCF-7 cells engineered to stably overexpress HRG (MCF-7/HRG), an in vitro model of tamoxifen/fulvestrant-resistant luminal B-like breast cancer, showed a pronounced up-regulation of FASN gene/FASN protein expression. Autocrine HRG up-regulated FASN expression via HER2 transactivation and downstream activation of PI-3K/AKT and MAPK-ERK1/2 signaling pathways. The HRG-driven FASN-overexpressing phenotype was fully prevented in MCF-7 cells expressing a structural deletion mutant of HRG that is sequestered in a cellular compartment and lacks the ability to promote endocrine-resistance in an autocrine manner. Pharmacological inhibition of FASN activity blocked the estradiol-independent and tamoxifen/fulvestrant-refractory ability of MCF-7/HRG cells to anchorage-independently grow in soft-agar. In vivo treatment with a FASN inhibitor restored the anti-tumor activity of tamoxifen and fulvestrant against fast-growing, hormone-resistant MCF-7/HRG xenograft tumors in mice. Overall, these findings implicate FASN as a key enabler for endocrine resistance in HRG+/HER2- breast cancer and highlight the therapeutic potential of FASN inhibitors for the treatment of endocrine therapy-resistant luminal-B breast cancer.
Collapse
|
34
|
Xue L, Qi H, Zhang H, Ding L, Huang Q, Zhao D, Wu BJ, Li X. Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Front Oncol 2020; 10:1510. [PMID: 32974183 PMCID: PMC7472741 DOI: 10.3389/fonc.2020.01510] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, targeting metabolic reprogramming has emerged as a potential therapeutic approach for fighting cancer. Sterol regulatory element binding protein-2 (SREBP-2), a basic helix-loop-helix leucine zipper transcription factor, mainly regulates genes involved in cholesterol biosynthesis and homeostasis. SREBP-2 binds to the sterol regulatory elements (SREs) in the promoters of its target genes and activates the transcription of mevalonate pathway genes, such as HMG-CoA reductase (HMGCR), mevalonate kinase and other key enzymes. In this review, we first summarized the structure of SREBP-2 and its activation and regulation by multiple signaling pathways. We then found that SREBP-2 and its regulated enzymes, including HMGCR, FPPS, SQS, and DHCR4 from the mevalonate pathway, participate in the progression of various cancers, including prostate, breast, lung, and hepatocellular cancer, as potential targets. Importantly, preclinical and clinical research demonstrated that fatostatin, statins, and N-BPs targeting SREBP-2, HMGCR, and FPPS, respectively, alone or in combination with other drugs, have been used for the treatment of different cancers. This review summarizes new insights into the critical role of the SREBP-2-regulated mevalonate pathway for cancer and its potential for targeted cancer therapy.
Collapse
Affiliation(s)
- Linyuan Xue
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
35
|
Montesdeoca N, López M, Ariza X, Herrero L, Makowski K. Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB J 2020; 34:11355-11381. [PMID: 32761847 DOI: 10.1096/fj.202000705r] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 01/05/2023]
Abstract
Cancer cells rely on several metabolic pathways such as lipid metabolism to meet the increase in energy demand, cell division, and growth and successfully adapt to challenging environments. Fatty acid synthesis is therefore commonly enhanced in many cancer cell lines. Thus, relevant efforts are being made by the scientific community to inhibit the enzymes involved in lipid metabolism to disrupt cancer cell proliferation. We review the rapidly expanding body of inhibitors that target lipid metabolism, their side effects, and current status in clinical trials as potential therapeutic approaches against cancer. We focus on their molecular, biochemical and structural properties, selectivity and effectiveness and discuss their potential role as antitumor drugs.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Marta López
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Xavier Ariza
- Department of Inorganic and Organic Chemistry, School of Chemistry, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Kamil Makowski
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
36
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
37
|
Huang H, Liu R, Huang Y, Feng Y, Fu Y, Chen L, Chen Z, Cai Y, Zhang Y, Chen Y. Acetylation-mediated degradation of HSD17B4 regulates the progression of prostate cancer. Aging (Albany NY) 2020; 12:14699-14717. [PMID: 32678070 PMCID: PMC7425433 DOI: 10.18632/aging.103530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/27/2020] [Indexed: 01/09/2023]
Abstract
Steroidogenic enzymes are crucial in prostate cancer (PCa) progression. 17β-Hydroxysteroid dehydrogenase type 4 (HSD17B4), encoded by HSD17B4, lacks catalytic capacity in androgen metabolism. Now the detailed role and molecular mechanism of PCa development are largely unknown. Here we showed that the expression of HSD17B4 was increased in PCa tissues compared to paired paratumor tissues. HSD17B4 knockdown in PCa cells significantly suppressed its proliferation, migration and invasion, while overexpressing HSD17B4 had opposite effects. Mechanistically, we found that the protein level of HSD17B4 was regulated by its acetylation at lysine 669(K669). Dihydroxytestosterone (DHT) treatment increased HSD17B4 acetylation and then promoted its degradation via chaperone-mediated autophagy (CMA). SIRT3 directly interacted with HSD17B4 to inhibit its acetylation and enhance its stability. In addition, we identified CREBBP as a regulator of the K669 acetylation and degradation of HSD17B4, affecting PC cell proliferation, migration and invasion. Notably, in PCa tissues and paired paratumor tissues, the level of HSD17B4 was negatively correlated with its K669 acetylation. Taken together, this study identified a novel role of HSD17B4 in PCa progression and suggested that HSD17B4 and its upstream regulators may be potential therapeutic targets for PCa intervention.
Collapse
Affiliation(s)
- Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Ruijie Liu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China.,Department of Pathology, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Yahui Huang
- Department of Pathology, XuChang Central Hospital, XuChang 461670, China
| | - Yilu Feng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Lin Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Yi Cai
- Department of Urology, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
38
|
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res 2020; 79:101033. [DOI: 10.1016/j.plipres.2020.101033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
39
|
Cheng Y, Wang D, Jiang J, Huang W, Li D, Luo J, Gu W, Mo W, Wang C, Li Y, Gu S, Xu Y. Integrative analysis of AR-mediated transcriptional regulatory network reveals IRF1 as an inhibitor of prostate cancer progression. Prostate 2020; 80:640-652. [PMID: 32282098 DOI: 10.1002/pros.23976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Androgen receptor (AR) is crucial for prostate cancer (PCa) initiation and malignant progression. Only half of androgen-responsive genes have been identified as having androgen-responsive elements, suggesting that AR regulates downstream genes through other transcriptional factors. However, whether and how AR regulates the progression via regulating these androgen-responsive genes remains unclear. METHODS Androgen-responsive and activity-changed (AC) transcriptional factors (TFs) were identified based on the time-course gene-expression array and gene promoter regions analysis. The intersection of androgen-responsive and AC TFs was selected the core TFs, which were used to construct the core transcriptional regulatory network. GO enrichment analysis, cell proliferation assays, glycolysis experiments, and reverse transcription polymerase chain reaction analysis were used to analyze and validate the functions of the network. As one of the core TFs, the function and mechanism of IRF1 have been further explored. RESULTS We devised a new integrated approach to select core TFs and construct core transcriptional regulatory network in PCa. The 24 core TFs and core transcriptional regulatory network participate in regulating PCa cell proliferation, RNA splicing, and cancer metabolism. Further validations showed that AR signaling could promote glycolysis via inducing glycolytic enzymes in PCa cells. IRF1, a novel target of AR, served as a tumor suppressor by inhibiting PCa proliferation, cell cycle, and glycolysis. CONCLUSIONS It is the first time to demonstrate the regulating role of the AR-mediated transcriptional regulatory network in a series of important biological processes in PCa cells. IRF1, an AR-regulated TF, acts as tumor suppressor in this core transcriptional regulatory network, which highlights the therapeutic potential of targeting this regulatory network for PCa.
Collapse
Affiliation(s)
- Yihang Cheng
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Dan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Wenhua Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Dujian Li
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wei Gu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wenjuan Mo
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Yaoting Xu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
41
|
Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat Rev Urol 2020; 17:214-231. [PMID: 32112053 DOI: 10.1038/s41585-020-0288-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Anabolic metabolism mediated by aberrant growth factor signalling fuels tumour growth and progression. The first biochemical descriptions of the altered metabolic nature of solid tumours were reported by Otto Warburg almost a century ago. Now, the study of tumour metabolism is being redefined by the development of new molecular tools, tumour modelling systems and precise instrumentation together with important advances in genetics, cell biology and spectroscopy. In contrast to Warburg's original hypothesis, accumulating evidence demonstrates a critical role for mitochondrial metabolism and substantial variation in the way in which different tumours metabolize nutrients to generate biomass. Furthermore, computational and experimental approaches suggest a dominant influence of the tissue-of-origin in shaping the metabolic reprogramming that enables tumour growth. For example, the unique metabolic properties of prostate adenocarcinoma are likely to stem from the distinct metabolism of the prostatic epithelium from which it emerges. Normal prostatic epithelium employs comparatively glycolytic metabolism to sustain physiological citrate secretion, whereas prostate adenocarcinoma consumes citrate to power oxidative phosphorylation and fuel lipogenesis, enabling tumour progression through metabolic reprogramming. Current data suggest that the distinct metabolic aberrations in prostate adenocarcinoma are driven by the androgen receptor, providing opportunities for functional metabolic imaging and novel therapeutic interventions that will be complementary to existing diagnostic and treatment options.
Collapse
Affiliation(s)
- David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Coates HW, Chua NK, Brown AJ. Consulting prostate cancer cohort data uncovers transcriptional control: Regulation of the MARCH6 gene. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1656-1668. [PMID: 31422115 DOI: 10.1016/j.bbalip.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022]
Abstract
Cholesterol accumulation is a hallmark of prostate cancer (PCa) enabled by the upregulation of its synthesis, which presents a potential therapeutic target. This pathway is suppressed by the E3 ubiquitin ligase membrane-associated RING-CH-type finger 6 (MARCH6); however, little is known of MARCH6 regulation, particularly at the transcriptional level. Here, we consulted large transcriptomic PCa datasets to investigate transcription factors and DNA sequence elements that regulate the MARCH6 gene. Amongst 498 primary PCa tissues of The Cancer Genome Atlas, we identified a striking positive correlation between MARCH6 and androgen receptor (AR) gene expression (r = 0.81, p < 1 × 10-117) that held in other primary tumour datasets. Two putative androgen response elements were identified in the MARCH6 gene using motif prediction and mining of publicly accessible chromatin immunoprecipitation-sequencing data. However, MARCH6 expression was not androgen-responsive in luciferase reporter and qRT-PCR assays. Instead, we established that the MARCH6-AR correlation in primary PCa is due to common regulation by the transcription factor Sp1. We located a region 100 bp downstream of the MARCH6 transcriptional start site that contains three Sp1 binding sites and strongly upregulates promoter activity. The functionality of this region, and Sp1-mediated upregulation of MARCH6, was confirmed using pharmacological and genetic inhibition of Sp1. Moreover, modulation of Sp1 activity affected the stability of squalene monooxygenase, a cholesterol biosynthesis enzyme and MARCH6 substrate. We thus establish Sp1 as the first known regulator of the MARCH6 gene and demonstrate that interrogation of transcriptomic datasets can assist in the de novo inference of transcriptional regulation.
Collapse
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Ngee Kiat Chua
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
43
|
Dang Q, Chen YA, Hsieh JT. The dysfunctional lipids in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:273-280. [PMID: 31511833 PMCID: PMC6734041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Prostate cancer (PCa) is well-recognized as a lipid-enriched tumor. Lipids represent a diverse array of molecules essential to the cellular structure, defense, energy, and communication. Lipid metabolism can often become dysregulated during tumor development. The increasing body of knowledge on the biological actions of steroid hormone-androgens in PCa has led to the development of several targeted therapies that still represent the standard of care for cancer patients to this day. Sequencing technologies for functional analyses of androgen receptors (ARs) have revealed that AR is also a master regulator of cellular energy metabolism such as fatty acid ß-oxidation, and de novo lipid synthesis. In addition, bioactive lipids are also used as physiological signaling molecules, which have been shown to be involved in PCa progression. This review discusses the potent player(s) in altered lipid metabolism of PCa and describes how lipids and their interactions with proteins can be used for therapeutic advantage. We also discuss the possibility that the altered bioactive lipid mediators affect intracellular signaling pathway and the related transcriptional regulation be of therapeutic interest.
Collapse
Affiliation(s)
- Qiang Dang
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, China
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| |
Collapse
|
44
|
Gonthier K, Poluri RTK, Audet-Walsh É. Functional genomic studies reveal the androgen receptor as a master regulator of cellular energy metabolism in prostate cancer. J Steroid Biochem Mol Biol 2019; 191:105367. [PMID: 31051242 DOI: 10.1016/j.jsbmb.2019.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Sex-steroid hormones have been investigated for decades for their oncogenic properties in hormone-dependent cancers. The increasing body of knowledge on the biological actions of androgens in prostate cancer has led to the development of several targeted therapies that still represent the standard of care for cancer patients to this day. In the prostate, androgens promote cellular differentiation and proper tissue development. These hormones also promote the aberrant proliferation and survival of prostate cancer cells. Over the past few years, sequencing technologies for functional genomic analyses have rapidly expanded, revealing novel functions of sex-steroid hormone receptors other than their classic roles. In this article, we will focus on transcriptomic- and genomic-based evidence that demonstrates the importance of the androgen receptor signaling in the regulation of prostate cancer cell metabolism. This is significant because the reprogramming of cell metabolism is a hallmark of cancer. In fact, it is clear now that the androgen receptor contributes to the reprogramming of specific cellular metabolic pathways that promote tumor growth and disease progression, including aerobic glycolysis, mitochondrial respiration, fatty acid ß-oxidation, and de novo lipid synthesis. Overall, beyond regulating development, differentiation, and proliferation, the androgen receptor is also a master regulator of cellular energy metabolism.
Collapse
Affiliation(s)
- Kevin Gonthier
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada
| | - Raghavendra Tejo Karthik Poluri
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada.
| |
Collapse
|
45
|
Zhang P, Schatz A, Adeyemi B, Kozminski D, Welsh J, Tenniswood M, Wang WLW. Vitamin D and testosterone co-ordinately modulate intracellular zinc levels and energy metabolism in prostate cancer cells. J Steroid Biochem Mol Biol 2019; 189:248-258. [PMID: 30664926 DOI: 10.1016/j.jsbmb.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 12/21/2022]
Abstract
Vitamin D3 and its receptor are responsible for controlling energy expenditure in adipocytes and have direct roles in the transcriptional regulation of energy metabolic pathways. This phenomenon also has a significant impact on the etiology of prostate cancer (PCa). Using several in vitro models, the roles of vitamin D3 on energy metabolism and its implication in primary, early, and late invasive PCa were investigated. BODIPY staining and qPCR analyses show that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) up-regulates de novo lipogenesis in PCa cells by orchestrating transcriptional regulation that affects cholesterol and lipid metabolic pathways. This lipogenic effect is highly dependent on the interaction of several nuclear receptors and their corresponding ligands, including androgen receptor (AR), vitamin D receptor (VDR), and retinoid X receptor (RXR). In contrast, inhibition of peroxisome proliferator-activated receptor alpha (PPARα) signaling blocks the induction of the lipogenic phenotype induced by these receptors. Furthermore, 1,25(OH)2D3, T, and 9 cis-retinoic acid (9-cis RA) together redirect cytosolic citrate metabolism toward fatty acid synthesis by restoring normal prostatic zinc homeostasis that functions to truncate TCA cycle metabolism. 1,25(OH)2D3, T, and 9-cis RA also exert additional control of TCA cycle metabolism by down-regulating SLC25A19, which limits the availability of the co-factor thiamine pyrophosphate (TPP) that is required for enzymatic catalyzation of citrate oxidation. This extensive metabolic reprogramming mediated by 1,25(OH)2D3, T, and 9-cis RA is preserved in all in vitro cell lines investigated. These data suggest that 1,25(OH)2D3 and T are important regulators of normal prostatic energy metabolism. Based on the close association between energy metabolism and cancer progression, supplementation of vitamin D3 and testosterone can restrict the energy production that is required to drive PCa progression by maintaining proper zinc homeostasis and inhibiting TCA cycle activity in PCa cells.
Collapse
Affiliation(s)
- Polly Zhang
- Department of Biochemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Adam Schatz
- Department of Urology, Albany Medical College, Albany, NY, 12208, United States
| | - Babatunde Adeyemi
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, Albany, NY, 12222, United States
| | - David Kozminski
- Department of Urology, Albany Medical College, Albany, NY, 12208, United States
| | - JoEllen Welsh
- Department of Environmental Health Sciences, Cancer Research Center, School of Public Health, University at Albany, Rensselaer, NY 12144, United States; Department of Biomedical Sciences, Cancer Research Center, School of Public Health, University at Albany, Rensselaer, NY, 12144, United States
| | - Martin Tenniswood
- Department of Biomedical Sciences, Cancer Research Center, School of Public Health, University at Albany, Rensselaer, NY, 12144, United States
| | - Wei-Lin Winnie Wang
- Department of Biomedical Sciences, Cancer Research Center, School of Public Health, University at Albany, Rensselaer, NY, 12144, United States.
| |
Collapse
|
46
|
Long Z, Li Y, Gan Y, Zhao D, Wang G, Xie N, Lovnicki JM, Fazli L, Cao Q, Chen K, Dong X. Roles of the HOXA10 gene during castrate-resistant prostate cancer progression. Endocr Relat Cancer 2019; 26:279-292. [PMID: 30667363 DOI: 10.1530/erc-18-0465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Homeobox A10 (HOXA10) is an important transcription factor that regulates the development of the prostate gland. However, it remains unknown whether it modulates prostate cancer (PCa) progression into castrate-resistant stages. In this study, we have applied RNA in situ hybridization assays to demonstrate that downregulation of HOXA10 expression is associated with castrate-resistant PCa. These findings are supported by public RNA-seq data showing that reduced HOXA10 expression is correlated with poor patient survival. We show that HOXA10 suppresses PCa cell proliferation, anchorage colony formation and xenograft growth independent to androgens. Using AmpliSeq transcriptome sequencing, we have found that gene groups associated with lipid metabolism and androgen receptor (AR) signaling are enriched in the HOXA10 transcriptome. Furthermore, we demonstrate that HOXA10 suppresses the transcription of the fatty acid synthase (FASN) gene by forming a protein complex with AR and prevents AR recruitment to the FASN gene promoter. These results lead us to conclude that downregulation of HOXA10 gene expression may enhance lipogenesis to promote PCa cell growth and tumor progression to castrate-resistant stage.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation
- Disease Progression
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Homeobox A10 Proteins/genetics
- Homeobox A10 Proteins/metabolism
- Humans
- Lipid Metabolism/genetics
- Male
- Mice
- Mice, Nude
- Promoter Regions, Genetic
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/mortality
- Prostatic Neoplasms, Castration-Resistant/physiopathology
- Protein Binding
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction/genetics
- Survival Analysis
Collapse
Affiliation(s)
- Zhi Long
- Department of Urology, Third Xiangya Hospital, Institute of Prostate Disease, Central South University, Changsha, China
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yinan Li
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu Gan
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urology Xiangya Hospital, Central South University, Changsha, China
| | - Dongyu Zhao
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Ning Xie
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica M Lovnicki
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Urology and Robert H. Lurie Comprehensive Cancer Cancer, Northwestern University Reinberg School of Medicine, Chicago, Illinois, USA
| | - Kaifu Chen
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Xuesen Dong
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Tousignant KD, Rockstroh A, Taherian Fard A, Lehman ML, Wang C, McPherson SJ, Philp LK, Bartonicek N, Dinger ME, Nelson CC, Sadowski MC. Lipid Uptake Is an Androgen-Enhanced Lipid Supply Pathway Associated with Prostate Cancer Disease Progression and Bone Metastasis. Mol Cancer Res 2019; 17:1166-1179. [PMID: 30808729 DOI: 10.1158/1541-7786.mcr-18-1147] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
Abstract
De novo lipogenesis is a well-described androgen receptor (AR)-regulated metabolic pathway that supports prostate cancer tumor growth by providing fuel, membrane material, and steroid hormone precursor. In contrast, our current understanding of lipid supply from uptake of exogenous lipids and its regulation by AR is limited, and exogenous lipids may play a much more significant role in prostate cancer and disease progression than previously thought. By applying advanced automated quantitative fluorescence microscopy, we provide the most comprehensive functional analysis of lipid uptake in cancer cells to date and demonstrate that treatment of AR-positive prostate cancer cell lines with androgens results in significantly increased cellular uptake of fatty acids, cholesterol, and low-density lipoprotein particles. Consistent with a direct, regulatory role of AR in this process, androgen-enhanced lipid uptake can be blocked by the AR-antagonist enzalutamide, but is independent of proliferation and cell-cycle progression. This work for the first time comprehensively delineates the lipid transporter landscape in prostate cancer cell lines and patient samples by analysis of transcriptomics and proteomics data, including the plasma membrane proteome. We show that androgen exposure or deprivation regulates the expression of multiple lipid transporters in prostate cancer cell lines and tumor xenografts and that mRNA and protein expression of lipid transporters is enhanced in bone metastatic disease when compared with primary, localized prostate cancer. Our findings provide a strong rationale to investigate lipid uptake as a therapeutic cotarget in the fight against advanced prostate cancer in combination with inhibitors of lipogenesis to delay disease progression and metastasis. IMPLICATIONS: Prostate cancer exhibits metabolic plasticity in acquiring lipids from uptake and lipogenesis at different disease stages, indicating potential therapeutic benefit by cotargeting lipid supply.
Collapse
Affiliation(s)
- Kaylyn D Tousignant
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Atefeh Taherian Fard
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Melanie L Lehman
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Chenwei Wang
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Stephen J McPherson
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Lisa K Philp
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Nenad Bartonicek
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
48
|
Lin C, Salzillo TC, Bader DA, Wilkenfeld SR, Awad D, Pulliam TL, Dutta P, Pudakalakatti S, Titus M, McGuire SE, Bhattacharya PK, Frigo DE. Prostate Cancer Energetics and Biosynthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:185-237. [PMID: 31900911 PMCID: PMC8096614 DOI: 10.1007/978-3-030-32656-2_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.
Collapse
Affiliation(s)
- Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
49
|
Jung MY, Kang JH, Hernandez DM, Yin X, Andrianifahanana M, Wang Y, Gonzalez-Guerrico A, Limper AH, Lupu R, Leof EB. Fatty acid synthase is required for profibrotic TGF-β signaling. FASEB J 2018; 32:3803-3815. [PMID: 29475397 PMCID: PMC5998981 DOI: 10.1096/fj.201701187r] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
Evidence is provided that the fibroproliferative actions of TGF-β are dependent on a metabolic adaptation that sustains pathologic growth. Specifically, profibrotic TGF-β signaling is shown to require fatty acid synthase (FASN), an essential anabolic enzyme responsible for the de novo synthesis of fatty acids. With the use of pharmacologic and genetic approaches, we show that TGF-β-stimulated FASN expression is independent of Smad2/3 and is mediated via mammalian target of rapamycin complex 1. In the absence of FASN activity or protein, TGF-β-driven fibrogenic processes are reduced with no apparent toxicity. Furthermore, as increased FASN expression was also observed to correlate with the degree of lung fibrosis in bleomycin-treated mice, inhibition of FASN was examined in a murine-treatment model of pulmonary fibrosis. Remarkably, inhibition of FASN not only decreased expression of profibrotic targets, but lung function was also stabilized/improved, as assessed by peripheral blood oxygenation.-Jung, M.-Y., Kang, J.-H., Hernandez, D. M., Yin, X., Andrianifahanana, M., Wang, Y., Gonzalez-Guerrico, A., Limper, A. H., Lupu, R., Leof, E. B. Fatty acid synthase is required for profibrotic TGF-β signaling.
Collapse
Affiliation(s)
- Mi-Yeon Jung
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jeong-Han Kang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Danielle M. Hernandez
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Xueqian Yin
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Mahefatiana Andrianifahanana
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Youli Wang
- Division of Nephrology, Augusta University, Augusta, Georgia, USA; and
| | - Anatilde Gonzalez-Guerrico
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Edward B. Leof
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
50
|
Audet-Walsh É, Vernier M, Yee T, Laflamme C, Li S, Chen Y, Giguère V. SREBF1 Activity Is Regulated by an AR/mTOR Nuclear Axis in Prostate Cancer. Mol Cancer Res 2018; 16:1396-1405. [PMID: 29784665 DOI: 10.1158/1541-7786.mcr-17-0410] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/21/2017] [Accepted: 05/09/2018] [Indexed: 11/16/2022]
Abstract
Reprogramming of cellular metabolism is an important feature of prostate cancer, including altered lipid metabolism. Recently, it was observed that the nuclear fraction of mTOR is essential for the androgen-mediated metabolic reprogramming of prostate cancer cells. Herein, it is demonstrated that the androgen receptor (AR) and mTOR bind to regulatory regions of sterol regulatory element-binding transcription factor 1 (SREBF1) to control its expression, whereas dual activation of these signaling pathways also promotes SREBF1 cleavage and its translocation to the nucleus. Consequently, SREBF1 recruitment to regulatory regions of its target genes is induced upon treatment with the synthetic androgen R1881, an effect abrogated upon inhibition of the mTOR signaling pathway. In turn, pharmacologic and genetic inhibition of SREBF1 activity impairs the androgen-mediated induction of the key lipogenic genes fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD1). Consistent with these observations, the expression of the SREBF1, FASN, and SCD1 genes is significantly correlated in human prostate cancer tumor clinical specimens. Functionally, blockade of SREBF1 activity reduces the androgen-driven lipid accumulation. Interestingly, decreased triglyceride accumulation observed upon SREBF1 inhibition is paralleled by an increase in mitochondrial respiration, indicating a potential rewiring of citrate metabolism in prostate cancer cells. Altogether, these data define an AR/mTOR nuclear axis, in the context of prostate cancer, as a novel pathway regulating SREBF1 activity and citrate metabolism.Implications: The finding that an AR/mTOR complex promotes SREBF1 expression and activity enhances our understanding of the metabolic adaptation necessary for prostate cancer cell growth and suggests novel therapeutic approaches to target metabolic vulnerabilities in tumors. Mol Cancer Res; 16(9); 1396-405. ©2018 AACR.
Collapse
Affiliation(s)
| | - Mathieu Vernier
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Tracey Yee
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Chloé Laflamme
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Susan Li
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada. .,Departments of Medicine and Oncology, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|