1
|
Chen W, Su G, Chai M, An Y, Song J, Zhang Z. Astrogliosis and glial scar in ischemic stroke - focused on mechanism and treatment. Exp Neurol 2025; 385:115131. [PMID: 39733853 DOI: 10.1016/j.expneurol.2024.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Ischemic stroke is a kind of neurological dysfunction caused by cerebral ischemia. Astrocytes, as the most abundant type of glial cells in the central nervous system, are activated into reactive astrocytes after cerebral ischemia, and this process involves the activation or change of a series of cell surface receptors, ion channels and ion transporters, GTPases, signaling pathways, and so on. The role of reactive astrocytes in the development of ischemic stroke is time-dependent. In the early stage of ischemia, reactive astrocytes proliferate moderately and surround the ischemic tissue to prevent the spread of the lesion. At the same time, reactive astrocytes release neuroprotective factors, ultimately relieving brain injury. In the late stage of ischemia, reactive astrocytes excessively proliferate and migrate to form dense glial scar tissue, which hinders the repair of damaged tissue. At the same time, reactive astrocytes in the glial scar release a large number of neurotoxic factors, ultimately aggravating ischemic stroke. In this paper, we focus on the molecular mechanism of astrogliosis and glial scar formation after cerebral ischemia, and explore the relevant studies using glial scar as a therapeutic target, providing a reference for the selection of therapeutic strategies for ischemic stroke and further research directions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730030, Gansu, China.
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yang An
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jinyang Song
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
2
|
Dawe HR, Di Meglio P. The Aryl Hydrocarbon Receptor (AHR): Peacekeeper of the Skin. Int J Mol Sci 2025; 26:1618. [PMID: 40004095 PMCID: PMC11855870 DOI: 10.3390/ijms26041618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
In the last decade, the aryl hydrocarbon receptor (AHR) has emerged as a critical peacekeeper for the maintenance of healthy skin. The evolutionary conservation of AHR implied physiological functions for this receptor, beyond the detoxification of man-made compounds, a notion further supported by the existence of physiological AHR ligands, notably derivates of tryptophan by the host and host microbiome. The UV light-derived ligand, 6-formylindolo[3,2-b]carbazole (FICZ), anticipated a role for AHR in skin, a UV light-exposed organ, where physiological AHR activation promotes a healthy skin barrier and constrains inflammation. The clinical development of tapinarof, the first topical AHR modulating drug for inflammatory skin disease, approved by the FDA for mild-to-moderate psoriasis and poised for approval in atopic dermatitis, supports the therapeutic targeting of the AHR pathway to harness its beneficial effect in skin inflammation. Here, we describe how a tightly controlled, physiological activation of the AHR pathway maintains skin homeostasis, and discuss how the pathway is dysregulated in psoriasis and atopic dermatitis, identifying areas offering opportunities for alternative therapeutic approaches, for further investigation.
Collapse
Affiliation(s)
- Hannah R. Dawe
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK;
- KHP Centre for Translational Medicine, London SE1 9RT, UK
| | - Paola Di Meglio
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK;
- KHP Centre for Translational Medicine, London SE1 9RT, UK
| |
Collapse
|
3
|
Liu J, Shi J, Hu Y, Su Y, Zhang Y, Wu X. Flumethrin exposure perturbs gut microbiota structure and intestinal metabolism in honeybees (Apis mellifera). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135886. [PMID: 39298952 DOI: 10.1016/j.jhazmat.2024.135886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Flumethrin mitigates Varroa's harm to honeybee colonies; however, its residues in colonies threaten the fitness of honeybee hosts and gut microbiota. Our previous research has shown that flumethrin induces significant physiological effects on honeybee larvae; but the effects of flumethrin on the gut microbiota and metabolism of adult honeybees are still unknown. In this study, 1-day-old honeybees were exposed to 0, 0.01, 0.1, and 1 mg/L flumethrin for 14 days and the impacts of flumethrin on the intestinal system were evaluated. The results showed that exposure to 1 mg/L flumethrin significantly reduced honeybee survival and the activities of antioxidative enzymes (superoxide dismutase and catalase) and detoxification enzymes (glutathione S-transferase) in honeybee heads. Moreover, exposure to 0.01, 0.1, and 1 mg/L flumethrin significantly decreased the diversity of the honeybee gut microbiota. Results from untargeted metabolomics showed that long-term exposure to 0.01, 0.1, and 1 mg/L flumethrin caused changes in the metabolic pathways of honeybee gut microbes. Furthermore, increased metabolism of phenylalanine, tyrosine, and tryptophan derivatives was observed in honeybee gut microbes. These findings underscore the importance of careful consideration in using pesticides in apiculture and provide a basis for safeguarding honeybees from pollutants, considering the effects on gut microbes.
Collapse
Affiliation(s)
- Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Yueyang Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yuchen Su
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
4
|
Johnson H, Dubiel J, Collins CH, Eriksson ANM, Lu Z, Doering JA, Wiseman S. Assessing the Toxicity of Benzotriazole Ultraviolet Stabilizers to Fishes: Insights into Aryl Hydrocarbon Receptor-Mediated Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:110-120. [PMID: 38112502 PMCID: PMC10785820 DOI: 10.1021/acs.est.3c06117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are chemicals used to mitigate UV-induced damage to manufactured goods. Their presence in aquatic environments and biota raises concerns, as certain BUVSs activate the aryl hydrocarbon receptor (AhR), which is linked to adverse effects in fish. However, potencies of BUVSs as AhR agonists and species sensitivities to AhR activation are poorly understood. This study evaluated the toxicity of three BUVSs using embryotoxicity assays. Zebrafish (Danio rerio) embryos exposed to BUVSs by microinjection suffered dose-dependent increases in mortality, with LD50 values of 4772, 11 608, and 56 292 ng/g-egg for UV-P, UV-9, and UV-090, respectively. The potencies and species sensitivities to AhR2 activation by BUVSs were assessed using a luciferase reporter gene assay with COS-7 cells transfected with the AhR2 of zebrafish and eight other fishes. The rank order of potency for activation of the AhR2 from all nine species was UV-P > UV-9 > UV-090. However, AhR2s among species differed in sensitivities to activation by up to 100-fold. An approximate reversed rank order of species sensitivity was observed compared to the rank order of sensitivity to 2,3,7,8-tetrachlorodibenzo[p]dioxin, the prototypical AhR agonist. Despite this, a pre-existing quantitative adverse outcome pathway linking AhR activation to embryo lethality could predict embryotoxicities of BUVSs in zebrafish.
Collapse
Affiliation(s)
- Hunter
M. Johnson
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Justin Dubiel
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cameron H. Collins
- Department
of Environmental Sciences, College of the Coast and Environmental, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Andreas N. M. Eriksson
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Zhe Lu
- Institut
des Sciences de la Mer de Rimouski, Université du Québec
à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Jon A. Doering
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Department
of Environmental Sciences, College of the Coast and Environmental, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Steve Wiseman
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
5
|
Liu J, Mu D, Xu J, Liu Y, Zhang G, Tang Y, Wang D, Wang F, Liang D, Hou Y. Inhibition of TLR4 Signaling by Isorhapontigenin Targeting of the AHR Alleviates Cerebral Ischemia/Reperfusion Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13270-13283. [PMID: 37624928 DOI: 10.1021/acs.jafc.3c00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Ischemic stroke is a major risk factor in human health, yet there are no drugs to cure cerebral ischemia/reperfusion injury (CIRI). Inflammation plays a fundamental role in the consequences of CIRI. Isorhapontigenin (ISOR) exhibits great anti-inflammatory activity; however, it is unclear whether ISOR can treat ischemic stroke through an anti-inflammation effect. Here, middle cerebral artery occlusion/reperfusion (MCAO/R) was used to investigate the effects of ISOR on CIRI. The in vitro activity was measured in BV-2 cells exposed to oxygen-glucose deprivation/reperfusion. As measured by neurological scores, brain water content, and infarction, neurological dysfunction was improved in the ISOR group. The neuronal death and microglial activation in the ipsilateral cortex were reduced by ISOR. TLR4 signaling was significantly inhibited by ISOR in vivo and in vitro. By reverse molecular docking, cellular thermal shift, and drug affinity-responsive target stability assays, an aryl hydrocarbon receptor (AHR) was found to be a target of ISOR. Furthermore, AHR knockdown blocked the effect of ISOR on TLR4 signaling, suggesting that ISOR may regulate TLR4-mediated inflammation through AHR, thereby protecting neurons from CIRI. This study demonstrated that ISOR is a promising drug candidate for the treatment of ischemic stroke and provided a theoretical basis for the development of the medicinal value of ISOR-derived foods, such as grapes.
Collapse
Affiliation(s)
- Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Jikai Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guijie Zhang
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Yue Tang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
| | - Dequan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
| | - Feng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| |
Collapse
|
6
|
Guerra-Ojeda S, Suarez A, Valls A, Verdú D, Pereda J, Ortiz-Zapater E, Carretero J, Mauricio MD, Serna E. The Role of Aryl Hydrocarbon Receptor in the Endothelium: A Systematic Review. Int J Mol Sci 2023; 24:13537. [PMID: 37686342 PMCID: PMC10488274 DOI: 10.3390/ijms241713537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) has been shown to be important in physiological processes other than detoxification, including vascular homeostasis. Although AhR is highly expressed in the endothelium, its function has been poorly studied. This systematic review aims to summarise current knowledge on the AhR role in the endothelium and its cardiovascular implications. We focus on endogenous AhR agonists, such as some uremic toxins and other agonists unrelated to environmental pollutants, as well as studies using AhR knockout models. We conclude that AhR activation leads to vascular oxidative stress and endothelial dysfunction and that blocking AhR signalling could provide a new target for the treatment of vascular disorders such as cardiovascular complications in patients with chronic kidney disease or pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Andrea Suarez
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Alicia Valls
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - David Verdú
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - Javier Pereda
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - Elena Ortiz-Zapater
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
| | - Julián Carretero
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - Maria D. Mauricio
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Eva Serna
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
7
|
Winge MCG, Kellman LN, Guo K, Tang JY, Swetter SM, Aasi SZ, Sarin KY, Chang ALS, Khavari PA. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer 2023:10.1038/s41568-023-00583-5. [PMID: 37286893 DOI: 10.1038/s41568-023-00583-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/09/2023]
Abstract
Human malignancies arise predominantly in tissues of epithelial origin, where the stepwise transformation from healthy epithelium to premalignant dysplasia to invasive neoplasia involves sequential dysregulation of biological networks that govern essential functions of epithelial homeostasis. Cutaneous squamous cell carcinoma (cSCC) is a prototype epithelial malignancy, often with a high tumour mutational burden. A plethora of risk genes, dominated by UV-induced sun damage, drive disease progression in conjunction with stromal interactions and local immunomodulation, enabling continuous tumour growth. Recent studies have identified subpopulations of SCC cells that specifically interact with the tumour microenvironment. These advances, along with increased knowledge of the impact of germline genetics and somatic mutations on cSCC development, have led to a greater appreciation of the complexity of skin cancer pathogenesis and have enabled progress in neoadjuvant immunotherapy, which has improved pathological complete response rates. Although measures for the prevention and therapeutic management of cSCC are associated with clinical benefit, the prognosis remains poor for advanced disease. Elucidating how the genetic mechanisms that drive cSCC interact with the tumour microenvironment is a current focus in efforts to understand, prevent and treat cSCC.
Collapse
Affiliation(s)
- Mårten C G Winge
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Laura N Kellman
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Konnie Guo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Susan M Swetter
- Department of Dermatology, Stanford University, Redwood City, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Department of Dermatology, Stanford University, Redwood City, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Hanieh H, Bani Ismail M, Alfwuaires MA, Ibrahim HIM, Farhan M. Aryl Hydrocarbon Receptor as an Anticancer Target: An Overview of Ten Years Odyssey. Molecules 2023; 28:molecules28103978. [PMID: 37241719 DOI: 10.3390/molecules28103978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor belonging to the basic helix-loop-helix (bHLH)/per-Arnt-sim (PAS) superfamily, is traditionally known to mediate xenobiotic metabolism. It is activated by structurally diverse agonistic ligands and regulates complicated transcriptional processes through its canonical and non-canonical pathways in normal and malignant cells. Different classes of AhR ligands have been evaluated as anticancer agents in different cancer cells and exhibit efficiency, which has thrust AhR into the limelight as a promising molecular target. There is strong evidence demonstrating the anticancer potential of exogenous AhR agonists including synthetic, pharmaceutical, and natural compounds. In contrast, several reports have indicated inhibition of AhR activity by antagonistic ligands as a potential therapeutic strategy. Interestingly, similar AhR ligands exert variable anticancer or cancer-promoting potential in a cell- and tissue-specific mode of action. Recently, ligand-mediated modulation of AhR signaling pathways and the associated tumor microenvironment is emerging as a potential approach for developing cancer immunotherapeutic drugs. This article reviews advances of AhR in cancer research covering publication from 2012 to early 2023. It summarizes the therapeutic potential of various AhR ligands with an emphasis on exogenous ligands. It also sheds light on recent immunotherapeutic strategies involving AhR.
Collapse
Affiliation(s)
- Hamza Hanieh
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan
- International Medical Research Center (iMReC), Aqaba 77110, Jordan
| | - Mohammad Bani Ismail
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan
| | - Manal A Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Hairul-Islam M Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Mahdi Farhan
- International Medical Research Center (iMReC), Aqaba 77110, Jordan
- Department of Drug Development, UniTechPharma, 1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Wirgin I, Chambers RC, Waldman JR, Roy NK, Witting DA, Mattson MT. Effects of Hudson River Stressors on Atlantic Tomcod: Contaminants and a Warming Environment. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2023; 31:342-371. [PMID: 37621745 PMCID: PMC10446889 DOI: 10.1080/23308249.2023.2189483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The Hudson River (HR) Estuary has a long history of pollution with a variety of contaminants including PCBs, and dioxins. In fact, 200 miles of the mainstem HR is designated a U.S. federal Superfund site, the largest in the nation, because of PCB contamination. The tidal HR hosts the southernmost spawning population of Atlantic tomcod, and studies revealed a correlation between exposure of juveniles to warm water temperature during summer to abundance of spawning adults of the same cohort in the following winter. Further, a battery of mechanistically linked biomarkers, ranging from the molecular to the population levels, were significantly impacted from contaminant exposures of the HR tomcod population. In response to xenobiotic insult, the HR tomcod population developed resistance to PCB sand TCDD toxicity resulting from a deletion in the aryl hydrocarbon receptor2 (AHR2) gene. Furthermore, RNA-Seq analysis of global gene expression demonstrated that effects of the AHR2 polymorphism were far more pervasive than anticipated. The most highly PCB-contaminated sediments in the upper HR were dredged between 2009 and 2015 with the objective of lowering PCB concentrations in fishes in the lower HR. Success of the remediation project has been controversial. These observations suggest that tomcod provides an informative model to evaluate the efficacy of HR PCB remediation efforts on downriver fish populations and possible interactive effects between contaminant exposure and a warming environment.
Collapse
Affiliation(s)
- Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | | | | | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | | | | |
Collapse
|
10
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
11
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
12
|
From Nucleus to Organs: Insights of Aryl Hydrocarbon Receptor Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232314919. [PMID: 36499247 PMCID: PMC9738205 DOI: 10.3390/ijms232314919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.
Collapse
|
13
|
Sayed TS, Maayah ZH, Zeidan HA, Agouni A, Korashy HM. Insight into the physiological and pathological roles of the aryl hydrocarbon receptor pathway in glucose homeostasis, insulin resistance, and diabetes development. Cell Mol Biol Lett 2022; 27:103. [PMID: 36418969 PMCID: PMC9682773 DOI: 10.1186/s11658-022-00397-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor that mediates the toxicities of several environmental pollutants. Decades of research have been carried out to understand the role of AhR as a novel mechanism for disease development. Its involvement in the pathogenesis of cancer, cardiovascular diseases, rheumatoid arthritis, and systemic lupus erythematosus have long been known. One of the current hot research topics is investigating the role of AhR activation by environmental pollutants on glucose homeostasis and insulin secretion, and hence the pathogenesis of diabetes mellitus. To date, epidemiological studies have suggested that persistent exposure to environmental contaminants such as dioxins, with subsequent AhR activation increases the risk of specific comorbidities such as obesity and diabetes. The importance of AhR signaling in various molecular pathways highlights that the role of this receptor is far beyond just xenobiotic metabolism. The present review aims at providing significant insight into the physiological and pathological role of AhR and its regulated enzymes, such as cytochrome P450 1A1 (CYP1A1) and CYP1B1 in both types of diabetes. It also provides a comprehensive summary of the current findings of recent research studies investigating the role of the AhR/CYP1A1 pathway in insulin secretion and glucose hemostasis in the pancreas, liver, and adipose tissues. This review further highlights the molecular mechanisms involved, such as gluconeogenesis, hypoxia-inducible factor (HIF), oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Tahseen S. Sayed
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Zaid H. Maayah
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Heba A. Zeidan
- grid.498552.70000 0004 0409 8340American School of Doha, Doha, Qatar
| | - Abdelali Agouni
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Hesham M. Korashy
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
14
|
Menees KB, Otero BA, Tansey MG. Microbiome influences on neuro-immune interactions in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:25-57. [PMID: 36427957 DOI: 10.1016/bs.irn.2022.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mounting evidence points to a role for the gut microbiome in a wide range of central nervous system diseases and disorders including depression, multiple sclerosis, Alzheimer's disease, Parkinson's disease, and autism spectrum disorder. Moreover, immune system involvement has also been implicated in these diseases, specifically with inflammation being central to their pathogenesis. In addition to the reported changes in gut microbiome composition and altered immune states in many neurological diseases, how the microbiome and the immune system interact to influence disease onset and progression has recently garnered much attention. This chapter provides a review of the literature related to gut microbiome influences on neuro-immune interactions with a particular focus on neurological diseases. Gut microbiome-derived mediators, including short-chain fatty acids and other metabolites, lipopolysaccharide, and neurotransmitters, and their impact on neuro-immune interactions as well as routes by which these interactions may occur are also discussed.
Collapse
Affiliation(s)
- Kelly B Menees
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brittney A Otero
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States; Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States.
| |
Collapse
|
15
|
Naoun AA, Raphael I, Forsthuber TG. Immunoregulation via Cell Density and Quorum Sensing-like Mechanisms: An Underexplored Emerging Field with Potential Translational Implications. Cells 2022; 11:cells11152442. [PMID: 35954285 PMCID: PMC9368058 DOI: 10.3390/cells11152442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) was historically described as a mechanism by which bacteria detect and optimize their population density via gene regulation based on dynamic environmental cues. Recently, it was proposed that QS or similar mechanisms may have broader applications across different species and cell types. Indeed, emerging evidence shows that the mammalian immune system can also elicit coordinated responses on a population level to regulate cell density and function, thus suggesting that QS-like mechanisms may also be a beneficial trait of the immune system. In this review, we explore and discuss potential QS-like mechanisms deployed by the immune system to coordinate cellular-level responses, such as T cell responses mediated via the common gamma chain (γc) receptor cytokines and the aryl hydrocarbon receptors (AhRs). We present evidence regarding a novel role of QS as a multifunctional mechanism coordinating CD4+ and CD8+ T cell behavior during steady state and in response to infection, inflammatory diseases, and cancer. Successful clinical therapies such as adoptive cell transfer for cancer treatment may be re-evaluated to harness the effects of the QS mechanism(s) and enhance treatment responsiveness. Moreover, we discuss how signaling threshold perturbations through QS-like mediators may result in disturbances of the complex crosstalk between immune cell populations, undesired T cell responses, and induction of autoimmune pathology. Finally, we discuss the potential therapeutic role of modulating immune-system-related QS as a promising avenue to treat human diseases.
Collapse
Affiliation(s)
- Adrian A. Naoun
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Itay Raphael
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15217, USA
- Correspondence: (I.R.); (T.G.F.)
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (I.R.); (T.G.F.)
| |
Collapse
|
16
|
Gao H, Wang B, Chen R, Jin Z, Ren L, Yang J, Wang W, Zheng N, Lin R. Effects of hydrogen peroxide on endothelial function in three-dimensional hydrogel vascular model and regulation mechanism of polar protein Par3. Biomed Mater 2022; 17. [PMID: 35901804 DOI: 10.1088/1748-605x/ac8538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional (3D) cell cultures better reflect the function of endothelial cells (ECs) than two-dimensional (2D) cultures. In recent years, studies have found that ECs cultured in a 3D luminal structure can mimic the biological characteristics and phenotypes of vascular ECs, thus making it more suitable for endothelial dysfunction research. In this study, we used a 3D model and 2D tissue culture polystyrene (TCP) to investigate the effects of cell polarity on hydrogen peroxide (H2O2)-induced endothelial dysfunction and its related mechanisms. We observed the cell morphology, oxidative stress, and barrier and endothelial function of human umbilical vein endothelial cells (HUVECs) in 3D and 2D cultures. We then used Illumina to detect the differentially expressed genes in the 3D-cultured HUVEC with and without H2O2 stimulation, using ClusterProfiler for Gene Ontology (GO) function enrichment analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially expressed genes. Finally, we explored the role and mechanism of polar protein partitioning defective protein 3 (Par3) in the regulation of ECs. ECs were inoculated into the 3D hydrogel channel; after stimulation with H2O2, the morphology of HUVECs changed, the boundary was blurred, the expression of intercellular junction proteins decreased, and the barrier function of the EC layer was damaged. 3D culture increased the oxidative stress response of cells stimulated by H2O2 compared to 2D TCPs. The polarity-related protein Par3 and cell division control protein 42 (CDC42) were screened using bioinformatics analysis, and western blotting was used to verify the results. Par3 knockdown significantly suppressed claudin1 (CLDN1) and vascular endothelial cadherin (VE-cadherin). These results suggest that the polar protein Par3 can protect H2O2-induced vascular ECs from damage by regulating CLDN1 and VE-cadherin.
Collapse
Affiliation(s)
- Hongqian Gao
- Xi'an Jiaotong University, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, Shaanxi, 710061, CHINA
| | - Bo Wang
- Xi'an Jiaotong University, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, Shaanxi, 710061, CHINA
| | - Ruomeng Chen
- Mechanical and electrical engineering department, Tangshan university, Mechanical and electrical engineering department, Tangshan university, Tang Shan 063000, Hebei, P. R. China, Tangshan, 063000, CHINA
| | - Zhen Jin
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, 710061, CHINA
| | - Lingxuan Ren
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, 710061, CHINA
| | - Jianjun Yang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, 710061, CHINA
| | - Weirong Wang
- Xi'an Jiaotong University, Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China, Xi'an, Shaanxi, 710061, CHINA
| | - Nanbo Zheng
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, Shaanxi, 710061, CHINA
| | - Rong Lin
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061,Shaanxi, P. R. China, Xi'an, 710061, CHINA
| |
Collapse
|
17
|
Zhang Z, Mu X, Cao Q, Shi Y, Hu X, Zheng H. Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nat Commun 2022; 13:2037. [PMID: 35440638 PMCID: PMC9018956 DOI: 10.1038/s41467-022-29760-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Honeybees are highly social insects with a rich behavioral repertoire and are a versatile model for neurobiological research. Their gut microbiota comprises a limited number of host-restricted bacterial phylotypes that are important for honeybee health. However, it remains unclear how specific gut members affect honeybee behaviors. Here, we find that antibiotic exposure disturbs the gut community and influences honeybee phenotypes under field conditions. Using laboratory-generated gnotobiotic bees, we show that a normal gut microbiota is required for olfactory learning and memory abilities. Brain transcriptomic profiling reveals distinct brain gene expression patterns between microbiota-free and conventional bees. Subsequent metabolomic analyses of both hemolymph and gut samples show that the microbiota mainly regulates tryptophan metabolism. Our results indicate that host-specific Lactobacillus strains promote memory behavior by transforming tryptophan to indole derivatives that activate the host aryl hydrocarbon receptor. Our findings highlight the contributions of specific gut members to honeybee neurological processes, thus providing a promising model to understand host-microbe interactions.
Collapse
Affiliation(s)
- Zijing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Qina Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Yao Shi
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China.
| |
Collapse
|
18
|
Brinkmann V, Romeo M, Larigot L, Hemmers A, Tschage L, Kleinjohann J, Schiavi A, Steinwachs S, Esser C, Menzel R, Giani Tagliabue S, Bonati L, Cox F, Ale-Agha N, Jakobs P, Altschmied J, Haendeler J, Coumoul X, Ventura N. Aryl Hydrocarbon Receptor-Dependent and -Independent Pathways Mediate Curcumin Anti-Aging Effects. Antioxidants (Basel) 2022; 11:613. [PMID: 35453298 PMCID: PMC9024831 DOI: 10.3390/antiox11040613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Margherita Romeo
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lucie Larigot
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Anne Hemmers
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lisa Tschage
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Jennifer Kleinjohann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Swantje Steinwachs
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Charlotte Esser
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Ralph Menzel
- Institute of Biology, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany;
| | - Sara Giani Tagliabue
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Fiona Cox
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- Institute of Clinical Pharmacology and Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Philipp Jakobs
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Joachim Altschmied
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Judith Haendeler
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Xavier Coumoul
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| |
Collapse
|
19
|
King J, Woolner VH, Keyzers RA, Rosengren RJ. Characterization of marine-derived halogenated indoles as ligands of the aryl hydrocarbon receptor. Toxicol Rep 2022; 9:1198-1203. [DOI: 10.1016/j.toxrep.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022] Open
|
20
|
Yang Y, Chang J, Wang D, Ma H, Li Y, Zheng Y. Thifluzamide exposure induced neuro-endocrine disrupting effects in zebrafish (Danio rerio). Arch Toxicol 2021; 95:3777-3786. [PMID: 34635929 DOI: 10.1007/s00204-021-03158-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Thifluzamide is widely used fungicide and frequently detected in aquatic system. In this study, the toxicity of fungicide thifluzamide to non-targeted aquatic organisms was investigated for neuroendocrine disruption potentials. Here, zebrafish embryos were exposed to a series of concentrations of thifluzamide for 6 days. The results showed that both the development of embryos/larvae and the behavior of hatched larvae were significantly affected by thifluzamide. Importantly, the decreased activity of acetylcholinesterase (AchE) and the increased contents of neurotransmitters such as serotonin (5-HT) and norepinephrine (NE), along with transcriptional changes of nervous system related genes were observed following 4 days exposure to thifluzamide. Besides, the decreased contents of triiodothyronine (T3) and thyroxine (T4) in whole body, as well as significant expression alteration in hypothalamic-pituitary-thyroid (HPT) axis associated genes were discovered in zebrafish embryos after 4 days of exposure to thifluzamide. Our results clearly demonstrated that zebrafish embryos exposed to thifluzamide could disrupt neuroendocrine, compromise behavior and induce developmental abnormality, suggesting impact of this fungicide on developmental programming in zebrafish.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jinhe Chang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Donghui Wang
- The State Key Laboratory of Protein and Plant Gene Research, National Teaching Center for Experimental Biology, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hao Ma
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
21
|
Grifka-Walk HM, Jenkins BR, Kominsky DJ. Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Front Immunol 2021; 12:653208. [PMID: 34149693 PMCID: PMC8213022 DOI: 10.3389/fimmu.2021.653208] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptophan (Trp) is an essential amino acid primarily derived from the diet for use by the host for protein synthesis. The intestinal tract is lined with cells, both host and microbial, that uptake and metabolize Trp to also generate important signaling molecules. Serotonin (5-HT), kynurenine and its downstream metabolites, and to a lesser extent other neurotransmitters are generated by the host to signal onto host receptors and elicit physiological effects. 5-HT production by neurons in the CNS regulates sleep, mood, and appetite; 5-HT production in the intestinal tract by enterochromaffin cells regulates gastric motility and inflammation in the periphery. Kynurenine can signal onto the aryl hydrocarbon receptor (AHR) to elicit pleiotropic responses from several cell types including epithelial and immune cells, or can be further metabolized into bioactive molecules to influence neurodegenerative disease. There is a remarkable amount of cross-talk with the microbiome with regard to tryptophan metabolites as well. The gut microbiome can regulate the production of host tryptophan metabolites and can use dietary or recycled trp to generate bioactive metabolites themselves. Trp derivatives like indole are able to signal onto xenobiotic receptors, including AHR, to elicit tolerogenic effects. Here, we review studies that demonstrate that tryptophan represents a key intra-kingdom signaling molecule.
Collapse
Affiliation(s)
| | | | - Douglas J. Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
22
|
Trajectory Shifts in Interdisciplinary Research of the Aryl Hydrocarbon Receptor-A Personal Perspective on Thymus and Skin. Int J Mol Sci 2021; 22:ijms22041844. [PMID: 33673338 PMCID: PMC7918350 DOI: 10.3390/ijms22041844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying historical trajectories is a useful exercise in research, as it helps clarify important, perhaps even “paradigmatic”, shifts in thinking and moving forward in science. In this review, the development of research regarding the role of the transcription factor “aryl hydrocarbon receptor” (AHR) as a mediator of the toxicity of environmental pollution towards a link between the environment and a healthy adaptive response of the immune system and the skin is discussed. From this fascinating development, the opportunities for targeting the AHR in the therapy of many diseases become clear.
Collapse
|
23
|
Barroso A, Mahler JV, Fonseca-Castro PH, Quintana FJ. The aryl hydrocarbon receptor and the gut-brain axis. Cell Mol Immunol 2021; 18:259-268. [PMID: 33408340 PMCID: PMC8027889 DOI: 10.1038/s41423-020-00585-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor initially identified as the receptor for dioxin. Almost half a century after its discovery, AHR is now recognized as a receptor for multiple physiological ligands, with important roles in health and disease. In this review, we discuss the role of AHR in the gut-brain axis and its potential value as a therapeutic target for immune-mediated diseases.
Collapse
Affiliation(s)
- Andreia Barroso
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - João Vitor Mahler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro Henrique Fonseca-Castro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
24
|
Abstract
Millions of tons of oil are spilled in aquatic environments every decade, and this oil has the potential to greatly impact fish populations. Here, we review available information on the physiological effects of oil and polycyclic aromatic hydrocarbons on fish. Oil toxicity affects multiple biological systems, including cardiac function, cholesterol biosynthesis, peripheral and central nervous system function, the stress response, and osmoregulatory and acid-base balance processes. We propose that cholesterol depletion may be a significant contributor to impacts on cardiac, neuronal, and synaptic function as well as reduced cortisol production and release. Furthermore, it is possible that intracellular calcium homeostasis-a part of cardiotoxic and neuronal function that is affected by oil exposure-may be related to cholesterol depletion. A detailed understanding of oil impacts and affected physiological processes is emerging, but knowledge of their combined effects on fish in natural habitats is largely lacking. We identify key areas deserving attention in future research.
Collapse
Affiliation(s)
- Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| | - Christina Pasparakis
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| |
Collapse
|
25
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
26
|
Kazzaz SA, Giani Tagliabue S, Franks DG, Denison MS, Hahn ME, Bonati L, Powell WH. An aryl hydrocarbon receptor from the caecilian Gymnopis multiplicata suggests low dioxin affinity in the ancestor of all three amphibian orders. Gen Comp Endocrinol 2020; 299:113592. [PMID: 32858041 PMCID: PMC7771225 DOI: 10.1016/j.ygcen.2020.113592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022]
Abstract
The aryl hydrocarbon receptor (AHR) plays pleiotropic roles in the development and physiology of vertebrates in conjunction with xenobiotic and endogenous ligands. It is best known for mediating the toxic effects of dioxin-like pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While most vertebrates possess at least one AHR that binds TCDD tightly, amphibian AHRs bind TCDD with very low affinity. Previous analyses of AHRs from Xenopus laevis (a frog; order Anura) and Ambystoma mexicanum (a salamander; order Caudata) identified three amino acid residues in the ligand-binding domain (LBD) that underlie low-affinity binding. In X. laevis AHR1β, these are A354, A370, and N325. Here we extend the analysis of amphibian AHRs to the caecilian Gymnopis multiplicata, representing the remaining extant amphibian order, Gymnophiona. G. multiplicata AHR groups with the monophyletic vertebrate AHR/AHR1 clade. The LBD includes all three signature residues of low TCDD affinity, and a structural homology model suggests that its architecture closely resembles those of other amphibians. In transactivation assays, the EC50 for reporter gene induction by TCDD was 17.17 nM, comparable to X. laevis AhR1β (26.23 nM) and Ambystoma AHR (34.09 nM) and dramatically higher than mouse AhR (0.13 nM), a trend generally reflected in direct measures of TCDD binding. These shared properties distinguish amphibian AHRs from the high-affinity proteins typical of both vertebrate groups that diverged earlier (teleost fish) and those that appeared more recently (other tetrapods). These findings suggest the hypothesis that AHRs with low TCDD affinity represent a characteristic that evolved in a common ancestor of all three extant amphibian groups.
Collapse
Affiliation(s)
- Sarah A Kazzaz
- Biology Department, Kenyon College, Gambier, OH 43022, USA
| | - Sara Giani Tagliabue
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Diana G Franks
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Michael S Denison
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA
| | - Mark E Hahn
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Wade H Powell
- Biology Department, Kenyon College, Gambier, OH 43022, USA.
| |
Collapse
|
27
|
Wallace SJ, de Solla SR, Head JA, Hodson PV, Parrott JL, Thomas PJ, Berthiaume A, Langlois VS. Polycyclic aromatic compounds (PACs) in the Canadian environment: Exposure and effects on wildlife. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114863. [PMID: 32599329 DOI: 10.1016/j.envpol.2020.114863] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 05/05/2023]
Abstract
Polycyclic aromatic compounds (PACs) are ubiquitous in the environment. Wildlife (including fish) are chronically exposed to PACs through air, water, sediment, soil, and/or dietary routes. Exposures are highest near industrial or urban sites, such as aluminum smelters and oil sands mines, or near natural sources such as forest fires. This review assesses the exposure and toxicity of PACs to wildlife, with a focus on the Canadian environment. Most published field studies measured PAC concentrations in tissues of invertebrates, fish, and birds, with fewer studies of amphibians and mammals. In general, PAC concentrations measured in Canadian wildlife tissues were under the benzo[a]pyrene (BaP) guideline for human consumption. Health effects of PAC exposure include embryotoxicity, deformities, cardiotoxicity, DNA damage, changes to DNA methylation, oxidative stress, endocrine disruption, and impaired reproduction. Much of the toxicity of PACs can be attributed to their bioavailability, and the extent to which certain PACs are transformed into more toxic metabolites by cytochrome P450 enzymes. As most mechanistic studies are limited to individual polycyclic aromatic hydrocarbons (PAHs), particularly BaP, research on other PACs and PAC-containing complex mixtures is required to understand the environmental significance of PAC exposure and toxicity. Additional work on responses to PACs in amphibians, reptiles, and semi-aquatic mammals, and development of molecular markers for early detection of biological responses to PACs would provide a stronger biological and ecological justification for regulating PAC emissions to protect Canadian wildlife.
Collapse
Affiliation(s)
- S J Wallace
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada
| | - S R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - J A Head
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada
| | - P V Hodson
- School of Environmental Studies, Queen's University, Kingston, ON, Canada
| | - J L Parrott
- Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - P J Thomas
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - A Berthiaume
- Science and Risk Assessment Directorate, Environment and Climate Change Canada, Gatineau, QC, Canada
| | - V S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada.
| |
Collapse
|
28
|
Souder JP, Gorelick DA. ahr2, But Not ahr1a or ahr1b, Is Required for Craniofacial and Fin Development and TCDD-dependent Cardiotoxicity in Zebrafish. Toxicol Sci 2020; 170:25-44. [PMID: 30907958 DOI: 10.1093/toxsci/kfz075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds environmental toxicants and regulates gene expression. AHR also regulates developmental processes, like craniofacial development and hematopoiesis, in the absence of environmental exposures. Zebrafish have 3 paralogs of AHR: ahr1a, ahr1b, and ahr2. Adult zebrafish with mutations in ahr2 exhibited craniofacial and fin defects. However, the degree to which ahr1a and ahr1b influence ahr2 signaling and contribute to fin and craniofacial development are not known. We compared morphology of adult ahr2 mutants and ahr1a;ahr1b single and double mutant zebrafish. We found that ahr1a;ahr1b single and double mutants were morphologically normal whereas ahr2 mutant zebrafish demonstrated fin and craniofacial malformations. At 5 days post fertilization, both ahr1a;ahr1b and ahr2 mutant larvae were normal, suggesting that adult phenotypes are due to defects in maturation or maintenance. Next, we analyzed the function of zebrafish AHRs activated by environmental ligands. The prototypical AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces toxicity in humans and rodents via AHR and causes cardiotoxicity in zebrafish embryos. It has been shown that embryos with mutations in ahr2 are resistant to TCDD toxicity, yet it is unclear whether ahr1 receptors are required. Furthermore, though AHR was shown to interact with estrogen receptor alpha following TCDD treatment, it is not known whether this interaction is constitutive or context-dependent. To determine whether estrogen receptors are constitutive cofactors for AHR signaling, we used genetic and pharmacologic techniques to analyze TCDD-dependent toxicity in estrogen receptor and ahr mutant embryos. We found that embryos with mutations in ahr1a;ahr1b or estrogen receptor genes are susceptible to TCDD toxicity whereas ahr2 mutant embryos are TCDD-resistant. Moreover, pharmacologic blockade of nuclear estrogen receptors failed to prevent TCDD toxicity. These findings suggest that ahr1 genes do not have overlapping functions with ahr2 in fin and craniofacial development or TCDD-dependent toxicity, and that estrogen receptors are not constitutive partners of ahr2.
Collapse
Affiliation(s)
- Jaclyn P Souder
- Medical Scientist Training Program & Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, 35294.,Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, 77030
| | - Daniel A Gorelick
- Medical Scientist Training Program & Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, 35294.,Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
29
|
Aryl Hydrocarbon Receptor Connects Inflammation to Breast Cancer. Int J Mol Sci 2020; 21:ijms21155264. [PMID: 32722276 PMCID: PMC7432832 DOI: 10.3390/ijms21155264] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR), an evolutionary conserved transcription factor, is a pleiotropic signal transductor. Thanks to its promiscuous ligand binding domain, during the evolution of eukaryotic cells its developmental functions were integrated with biosensor functions. Its activation by a multitude of endogenous and exogenous molecules stimulates its participation in several pathways, some of which are linked to inflammation and breast cancer (BC). Over time, the study of this malignancy has led to the identification of several therapeutic targets in cancer cells. An intense area of study is dedicated to BC phenotypes lacking adequate targets. In this context, due to its high constitutive activation in BC, AhR is currently gaining more and more attention. In this review, I have considered its interactions with: 1. the immune system, whose dysregulation is a renowned cancer hallmark; 2. interleukin 6 (IL6) which is a pivotal inflammatory marker and is closely correlated to breast cancer risk; 3. NF-kB, another evolutionary conserved transcription factor, which plays a key role in immunoregulatory functions, inflammatory response and breast carcinogenesis; 4. kynurenine, a tryptophan-derived ligand that activates and bridges AhR to chronic inflammation and breast carcinogenesis. Overall, the data here presented form an interesting framework where AhR is an interesting connector between inflammation and BC.
Collapse
|
30
|
Avilla MN, Malecki KMC, Hahn ME, Wilson RH, Bradfield CA. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem Res Toxicol 2020; 33:860-879. [PMID: 32259433 PMCID: PMC7175458 DOI: 10.1021/acs.chemrestox.9b00476] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
Collapse
Affiliation(s)
- Mele N. Avilla
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Kristen M. C. Malecki
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Mark E. Hahn
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Rachel H. Wilson
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
- McArdle
Laboratory for Cancer Research, University of Wisconsin School of Medicine
and Public Health, Madison, Wisconsin 53705-227, United States
| |
Collapse
|
31
|
Mahringer A, Bernd A, Miller DS, Fricker G. Aryl hydrocarbon receptor ligands increase ABC transporter activity and protein expression in killifish (Fundulus heteroclitus) renal proximal tubules. Biol Chem 2020; 400:1335-1345. [PMID: 30913027 DOI: 10.1515/hsz-2018-0425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
Abstract
Many widespread and persistent organic pollutants, for example, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and some polychlorinated biphenyls, activate the aryl hydrocarbon receptor (AhR) causing it to translocate to the cell nucleus where it transactivates target genes, increasing expression of a number of xenobiotic metabolizing enzymes as well as some transporters. AhR's ability to target transporters within the kidney is essentially unexplored. We show here that exposing isolated killifish (Fundulus heteroclitus) renal proximal tubules to micromolar β-naphthoflavone (BNF) or nanomolar TCDD roughly doubled the transport activity of Multidrug resistance-associated proteins Mrp2 and Mrp4, P-glycoprotein (P-gp) and Breast cancer resistance protein (Bcrp), all ATP-driven xenobiotic efflux pumps and critical determinants of renal xenobiotic excretion. These effects were abolished by actinomycin D and cycloheximide and by the AhR antagonist, α-naphthoflavone, indicating that increased transport activity was dependent on transcription and translation as well as ligand binding to AhR. Quantitative immunostaining of renal tubules exposed to BNF and TCDD showed increased luminal membrane expression of Mrp2, Mrp4, P-gp and Bcrp. Thus, in these renal tubules, the four ABC transporters are targets of AhR action.
Collapse
Affiliation(s)
- Anne Mahringer
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, D-69120 Heidelberg, Germany.,Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, ME 04672, USA
| | - Alexandra Bernd
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, D-69120 Heidelberg, Germany.,Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, ME 04672, USA
| | - David S Miller
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, ME 04672, USA.,Laboratory of Toxicology and Pharmacology and Chemistry, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, D-69120 Heidelberg, Germany.,Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
32
|
Alber A, Morris KM, Bryson KJ, Sutton KM, Monson MS, Chintoan-Uta C, Borowska D, Lamont SJ, Schouler C, Kaiser P, Stevens MP, Vervelde L. Avian Pathogenic Escherichia coli (APEC) Strain-Dependent Immunomodulation of Respiratory Granulocytes and Mononuclear Phagocytes in CSF1R-Reporter Transgenic Chickens. Front Immunol 2020; 10:3055. [PMID: 31998322 PMCID: PMC6967599 DOI: 10.3389/fimmu.2019.03055] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) cause severe respiratory and systemic disease in chickens, commonly termed colibacillosis. Early immune responses after initial infection are highly important for the outcome of the infection. In this study, the early interactions between GFP-expressing APEC strains of serotypes O1:K1:H7 and O2:K1:H5 and phagocytic cells in the lung of CSF1R-reporter transgenic chickens were investigated. CSF1R-reporter transgenic chickens express fluorescent protein under the control of elements of the CSF1R promoter and enhancer, such that cells of the myeloid lineage can be visualized in situ and sorted. Chickens were separately inoculated with APEC strains expressing GFP and culled 6 h post-infection. Flow cytometric analysis was performed to phenotype and sort the cells that harbored bacteria in the lung, and the response of the sorted cells was defined by transcriptomic analysis. Both APEC strains were mainly detected in CSF1R-transgeneneg (CSF1R-tgneg) and CSF1R-tglow MHC IIneg MRC1L-Bneg cells and low numbers of APEC were detected in CSF1R-tghigh MHC IIpos MRC1L-Bpos cells. Transcriptomic and flow cytometric analysis identified the APECpos CSF1R-tgneg and CSF1R-tglow cells as heterophils and the APECpos CSF1R-tghigh cells as macrophages and dendritic cells. Both APEC strains induced strong inflammatory responses, however in both CSF1R-tgneg/low and CSF1R-tghigh cells, many immune related pathways were repressed to a greater extent or less activated in birds inoculated with APEC O2-GFP compared to APEC O1-GFP inoculated birds. Comparison of the immune pathways revealed the aryl hydrocarbon receptor (AhR) pathway, IL17 and STAT3 signaling, heterophil recruitment pathways and the acute phase response, are modulated particularly post-APEC O2-GFP inoculation. In contrast to in vivo data, APEC O2-GFP was more invasive in CSF1R-tghigh cells in vitro than APEC O1-GFP and had higher survival rates for up to 6 h post-infection. Our data indicate significant differences in the responses induced by APEC strains of prevalent serotypes, with important implications for the design and interpretation of future studies. Moreover, we show that bacterial invasion and survival in phagocyte populations in vitro is not predictive of events in the chicken lung.
Collapse
Affiliation(s)
- Andreas Alber
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Katrina M Morris
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen J Bryson
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kate M Sutton
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Cosmin Chintoan-Uta
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominika Borowska
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Catherine Schouler
- Infectiologie Santé Publique, Institut National de la Recherche Agronomique, Université de Tours, Nouzilly, France
| | - Pete Kaiser
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark P Stevens
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
The Aryl Hydrocarbon Receptor Is Expressed in Thyroid Carcinoma and Appears to Mediate Epithelial-Mesenchymal-Transition. Cancers (Basel) 2020; 12:cancers12010145. [PMID: 31936153 PMCID: PMC7016998 DOI: 10.3390/cancers12010145] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/22/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is expected to promote initiation, progression and invasion of cancer cells regulating proliferation, differentiation, gene expression, inflammation, cell motility and migration. Furthermore, an immunosuppressant function of AhR has been recognized. This study evaluated AhR expression and its role in thyroid cancer progression. AhR expression was assessed by qPCR in 107 thyroid cancer samples (90 PTCs, 11 MTCs, 6 ATCs), and by immunohistochemistry in 41 PTCs. To estimate receptor activation, the expression of target genes CYP1A1 and CYP1B1 was measured. AhR functional effects were evaluated in kynurenine-stimulated FTC-133 and BcPap cell lines by analyzing the expression of genes involved in EMT and cell motility. AhR mRNA expression resulted significantly higher in all the analyzed thyroid cancer samples compared to normal thyroid and a statistically significant correlation with CYP1B1 was detected. Kynurenine-stimulated FTC-133 and BcPap showed the activation of a specific AhR-driven EMT program characterized by E-cadherin decrease and SLUG, N-cadherin and fibronectin increase, resulting in boost of cell motility and invasion. This study confirmed the importance of the IDO1-Kyn-AhR pathway in thyroid cancer tumorigenesis, suggesting an AhR pivotal role in mediating an immunosuppressive microenvironment and favoring the acquisition of a mesenchymal phenotype that could promote invasiveness and metastasis.
Collapse
|
34
|
Yang F, Li G, Sang N. Embryonic exposure to soil samples from a gangue stacking area induces thyroid hormone disruption in zebrafish. CHEMOSPHERE 2019; 236:124337. [PMID: 31330433 DOI: 10.1016/j.chemosphere.2019.07.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The total accumulative stockpiles of gangue from long-term coal mining exceed 1 billion tons and occupy 182 square kilometers, and 50 million tons of additional gangue are generated per year in Shanxi, a major energy province in China. The objective of this study was to examine whether exposure to village soils affected by gangue stacking would disrupt thyroid hormone system homeostasis and eventually affect endocrine system and development, using zebrafish (Danio rerio) as a model organism. The zebrafish embryos were exposed to village soil leachates at 0, 1:9, 1:3 and 1:1 from 1 to 120 h postfertilization (hpf), and the sample caused a dose-dependent increase in the mortality and malformation rate, and decrease in the heart rate, hatching rate and body length of zebrafish larvae. Importantly, the soil leachate alleviated the whole-body triiodothyronine (T3) and thyroxine (T4) levels at higher concentrations, and altered the expression of the hypothalamic-pituitary-thyroid (HPT) axis-regulating genes crh, trh, tshβ, nis, tg, nkx2.1, pax8, hhex, ttr, dio1, dio2, ugt1ab, trα, and trβ and the PAH exposure-related genes ahr2 and cyp1a. These findings highlight the potential risk of thyroid hormone disruption and developmental toxicity from soil samples around coal gangue stacking areas.
Collapse
Affiliation(s)
- Fenglong Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
35
|
Meyer-Alert H, Larsson M, Hollert H, Keiter SH. Benzo[a]pyrene and 2,3-benzofuran induce divergent temporal patterns of AhR-regulated responses in zebrafish embryos (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109505. [PMID: 31394372 DOI: 10.1016/j.ecoenv.2019.109505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Biotests like the fish embryo toxicity test have become increasingly popular in risk assessment and evaluation of chemicals found in the environment. The large range of possible endpoints is a big advantage when researching on the mode of action of a certain substance. Here, we utilized the frequently used model organism zebrafish (Danio rerio) to examine regulative mechanisms in the pathway of the aryl-hydrocarbon receptor (AHR) in early development. We exposed embryos to representatives of two chemical classes known to elicit dioxin-like activity: benzo[a]pyrene for polycyclic aromatic hydrocarbons (PAHs) and 2,3-benzofuran for polar O-substituted heterocycles as a member of heterocyclic compounds in general (N-, S-, O-heterocycles; NSO-hets). We measured gene transcription of the induced P450 cytochromes (cyp1), their formation of protein and biotransformation activity throughout the whole embryonic development until 5 days after fertilization. The results show a very specific time course of transcription depending on the chemical properties (e.g. halogenation, planarity, Kow), the physical decay and the biodegradability of the tested compound. However, although this temporal pattern was not precisely transferable onto the protein level, significant regulation in enzymatic activity over time could be detected. We conclude, that a careful choice of time and end point as well as consideration of the chemical properties of a substance are fairly important when planning, conducting and especially evaluating biotests.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| |
Collapse
|
36
|
Chen WC, Chang LH, Huang SS, Huang YJ, Chih CL, Kuo HC, Lee YH, Lee IH. Aryl hydrocarbon receptor modulates stroke-induced astrogliosis and neurogenesis in the adult mouse brain. J Neuroinflammation 2019; 16:187. [PMID: 31606043 PMCID: PMC6790016 DOI: 10.1186/s12974-019-1572-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/29/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor activated by environmental agonists and dietary tryptophan metabolites for the immune response and cell cycle regulation. Emerging evidence suggests that AHR activation after acute stroke may play a role in brain ischemic injury. However, whether AHR activation alters poststroke astrogliosis and neurogenesis remains unknown. METHODS We adopted conditional knockout of AHR from nestin-expressing neural stem/progenitor cells (AHRcKO) and wild-type (WT) mice in the permanent middle cerebral artery occlusion (MCAO) model. WT mice were treated with either vehicle or the AHR antagonist 6,2',4'-trimethoxyflavone (TMF, 5 mg/kg/day) intraperitoneally. The animals were examined at 2 and 7 days after MCAO. RESULTS The AHR signaling pathway was significantly upregulated after stroke. Both TMF-treated WT and AHRcKO mice showed significantly decreased infarct volume, improved sensorimotor, and nonspatial working memory functions compared with their respective controls. AHR immunoreactivities were increased predominantly in activated microglia and astrocytes after MCAO compared with the normal WT controls. The TMF-treated WT and AHRcKO mice demonstrated significant amelioration of astrogliosis and microgliosis. Interestingly, these mice also showed augmentation of neural progenitor cell proliferation at the ipsilesional neurogenic subventricular zone (SVZ) and the hippocampal subgranular zone. At the peri-infarct cortex, the ipsilesional SVZ/striatum, and the hippocampus, both the TMF-treated and AHRcKO mice demonstrated downregulated IL-1β, IL-6, IFN-γ, CXCL1, and S100β, and concomitantly upregulated Neurogenin 2 and Neurogenin 1. CONCLUSION Neural cell-specific AHR activation following acute ischemic stroke increased astrogliosis and suppressed neurogenesis in adult mice. AHR inhibition in acute stroke may potentially benefit functional outcomes likely through reducing proinflammatory gliosis and preserving neurogenesis.
Collapse
Affiliation(s)
- Wan-Ci Chen
- Department and Institute of Physiology, National Yang-Ming University, No.155, Sec. 2, Linong Street, Beitou District, Taipei, 11217, Taiwan
| | - Li-Hsin Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology, Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Yu-Jie Huang
- Department and Institute of Physiology, National Yang-Ming University, No.155, Sec. 2, Linong Street, Beitou District, Taipei, 11217, Taiwan
| | | | - Hung-Chih Kuo
- Stem Cell Program, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, National Yang-Ming University, No.155, Sec. 2, Linong Street, Beitou District, Taipei, 11217, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| | - I-Hui Lee
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, 11217, Taiwan.
| |
Collapse
|
37
|
Comparative toxicoproteogenomics of mouse and rat liver identifies TCDD-resistance genes. Arch Toxicol 2019; 93:2961-2978. [DOI: 10.1007/s00204-019-02560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
|
38
|
Hidaka T, Fujimura T, Aiba S. Aryl Hydrocarbon Receptor Modulates Carcinogenesis and Maintenance of Skin Cancers. Front Med (Lausanne) 2019; 6:194. [PMID: 31552251 PMCID: PMC6736988 DOI: 10.3389/fmed.2019.00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that responds to a wide range of chemicals, including chemical carcinogens such as dioxins and carcinogenic polyaromatic hydrocarbons, and induces a battery of genes associated with detoxification, proliferation, and immune regulation. Recent reports suggest that AHR plays an important role in carcinogenesis and maintenance of various types of skin cancers. Indeed, AHR is a susceptibility gene for squamous cell carcinoma and a prognostic factor for melanoma and Merkel cell carcinoma. In addition, the carcinogenic effects of ultraviolet (UV) and chemical carcinogens, both of which are major environmental carcinogenetic factors of skin, are at least partly mediated by AHR, which regulates UV-induced inflammation and apoptosis, the DNA repair system, and metabolic activation of chemical carcinogens. Furthermore, AHR modulates the efficacy of key therapeutic agents in melanoma. AHR activation induces the expression of resistance genes against the inhibitors of V600E mutated B-Raf proto-oncogene, serine/threonine kinase (BRAF) in melanoma and upregulation of programmed cell death protein 1 (PD-1) in tumor-infiltrating T cells surrounding melanoma. Taken together, these findings underscore the importance of AHR in the biology of skin cancers. Development of therapeutic agents that modulate AHR activity is a promising strategy to advance chemoprevention and chemotherapy for skin cancers.
Collapse
Affiliation(s)
- Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
39
|
The Henna pigment Lawsone activates the Aryl Hydrocarbon Receptor and impacts skin homeostasis. Sci Rep 2019; 9:10878. [PMID: 31350436 PMCID: PMC6659674 DOI: 10.1038/s41598-019-47350-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
As a first host barrier, the skin is constantly exposed to environmental insults that perturb its integrity. Tight regulation of skin homeostasis is largely controlled by the aryl hydrocarbon receptor (AhR). Here, we demonstrate that Henna and its major pigment, the naphthoquinone Lawsone activate AhR, both in vitro and in vivo. In human keratinocytes and epidermis equivalents, Lawsone exposure enhances the production of late epidermal proteins, impacts keratinocyte differentiation and proliferation, and regulates skin inflammation. To determine the potential use of Lawsone for therapeutic application, we harnessed human, murine and zebrafish models. In skin regeneration models, Lawsone interferes with physiological tissue regeneration and inhibits wound healing. Conversely, in a human acute dermatitis model, topical application of a Lawsone-containing cream ameliorates skin irritation. Altogether, our study reveals how a widely used natural plant pigment is sensed by the host receptor AhR, and how the physiopathological context determines beneficial and detrimental outcomes.
Collapse
|
40
|
Roy NK, DellaTorre M, Candelmo A, Chambers RC, Habeck E, Wirgin I. Characterization of AHR1 and its functional activity in Atlantic sturgeon and shortnose sturgeon. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:25-35. [PMID: 30312899 PMCID: PMC6246806 DOI: 10.1016/j.aquatox.2018.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 06/02/2023]
Abstract
Sturgeon species are imperiled world-wide by a variety of anthropogenic stressors including chemical contaminants. Atlantic sturgeon, Acipenser oxyrinchus, and shortnose sturgeon, Acipenser brevirostrum, are largely sympatric acipenserids whose young life-stages are often exposed to high levels of benthic-borne PCBs and PCDD/Fs in large estuaries along the Atlantic Coast of North America. In previous laboratory studies, we demonstrated that both sturgeon species are sensitive to early life-stage toxicities from exposure to environmentally relevant concentrations of coplanar PCBs and TCDD. The sensitivity of young life-stages of fishes to these contaminants varies among species by three orders of magnitude and often is due to variation in the structure and function of the aryl hydrocarbon receptor (AHR) pathway. Unlike mammals, fishes have two forms of AHR (AHR1 and AHR2) with AHR2 usually being more highly expressed across tissues and functional in mediating toxicities. Based on previous studies in white sturgeon, A. transmontanus, we hypothesized that sturgeon taxa are unusually sensitive to these contaminants because of higher levels of expression and functional activity of AHR1 than in other fish taxa. To address this possibility, we characterized AHR1 in both Atlantic Coast sturgeon species, evaluated its' in vivo expression in young life-stages and in multiple tissues of shortnose sturgeon, and tested its ability to drive reporter gene expression in AHR-deficient cells treated with graded doses of PCB126 and TCDD. Similar to white sturgeon and lake sturgeon, AHR1 amino acid sequences in Atlantic sturgeon and shortnose sturgeon were more similar to mammalian AHRs and avian AHR1s than to AHR1 in other fishes, suggesting their greater functionality in sturgeon species than in other fishes. Exposure to graded doses of coplanar PCBs and TCDD usually failed to significantly induce AHR1 expression in young life-stages or most tissues of shortnose sturgeon. However, in reporter gene assays, AHR1 drove higher levels of gene expression than AHR2 alone, but their binary combination failed to drive higher levels of expression than either AHR alone. In total, our results suggest that AHR1 may be more functional in sturgeon species than in other fishes, but probably does not explain their heightened sensitivity to these contaminants.
Collapse
Affiliation(s)
- Nirmal K Roy
- Department of Environmental Medicine, NYU School of Medicine, United States
| | - Melissa DellaTorre
- Department of Environmental Medicine, NYU School of Medicine, United States
| | - Allison Candelmo
- Department of Environmental Medicine, NYU School of Medicine, United States; Northeast Fisheries Science Center, NOAA Fisheries, United States
| | | | - Ehren Habeck
- Northeast Fisheries Science Center, NOAA Fisheries, United States
| | - Isaac Wirgin
- Department of Environmental Medicine, NYU School of Medicine, United States.
| |
Collapse
|
41
|
Meyer-Alert H, Ladermann K, Larsson M, Schiwy S, Hollert H, Keiter SH. A temporal high-resolution investigation of the Ah-receptor pathway during early development of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:117-129. [PMID: 30245344 DOI: 10.1016/j.aquatox.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
In order to contribute to a comprehensive understanding of the regulating mechanisms of the aryl-hydrocarbon-receptor (AHR) in zebrafish embryos, we aimed to elucidate the interaction of proteins taking part in this signaling pathway during early development of the zebrafish (Danio rerio) after chemical exposure. We managed to illustrate initial transcription processes of the implemented proteins after exposure to two environmentally relevant chemicals: polychlorinated biphenyl 126 (PCB126) and β-Naphthoflavone (BNF). Using qPCR, we quantified mRNA every 4 h until 118 h post fertilization and found the expression of biotransformation enzymes (cyp1 family) and the repressor of the AHR (ahr-r) to be dependent on the duration of chemical exposure and the biodegradability of the compounds. PCB126 induced persistently increased amounts of transcripts as it is not metabolized, whereas activation by BNF was limited to the initial period of exposure. We did not find a clear relation between the amount of transcripts and activity of the induced CYP-proteins, so posttranscriptional mechanisms are likely to regulate biotransformation of BNF. With regard to zebrafish embryos and their application in risk assessment of hazardous chemicals, our examination of the AHR pathway especially supports the relevance of the time point or period of exposure that is used for bioanalytical investigations and consideration of chemical properties determining biodegradability.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Kim Ladermann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| |
Collapse
|
42
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
43
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
44
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol 2018; 11:1024-1038. [PMID: 29626198 DOI: 10.1038/s41385-018-0019-2] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 02/04/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.
Collapse
Affiliation(s)
- Bruno Lamas
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France.,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Jane M Natividad
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Harry Sokol
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France. .,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France.
| |
Collapse
|
46
|
Towards Resolving the Pro- and Anti-Tumor Effects of the Aryl Hydrocarbon Receptor. Int J Mol Sci 2018; 19:ijms19051388. [PMID: 29735912 PMCID: PMC5983651 DOI: 10.3390/ijms19051388] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
We have postulated that the aryl hydrocarbon receptor (AHR) drives the later, more lethal stages of some cancers when chronically activated by endogenous ligands. However, other studies have suggested that, under some circumstances, the AHR can oppose tumor aggression. Resolving this apparent contradiction is critical to the design of AHR-targeted cancer therapeutics. Molecular (siRNA, shRNA, AHR repressor, CRISPR-Cas9) and pharmacological (AHR inhibitors) approaches were used to confirm the hypothesis that AHR inhibition reduces human cancer cell invasion (irregular colony growth in 3D Matrigel cultures and Boyden chambers), migration (scratch wound assay) and metastasis (human cancer cell xenografts in zebrafish). Furthermore, these assays were used for a head-to-head comparison between AHR antagonists and agonists. AHR inhibition or knockdown/knockout consistently reduced human ER−/PR−/Her2− and inflammatory breast cancer cell invasion, migration, and metastasis. This was associated with a decrease in invasion-associated genes (e.g., Fibronectin, VCAM1, Thrombospondin, MMP1) and an increase in CDH1/E-cadherin, previously associated with decreased tumor aggression. Paradoxically, AHR agonists (2,3,7,8-tetrachlorodibenzo-p-dioxin and/or 3,3′-diindolylmethane) similarly inhibited irregular colony formation in Matrigel and blocked metastasis in vivo but accelerated migration. These data demonstrate the complexity of modulating AHR activity in cancer while suggesting that AHR inhibitors, and, under some circumstances, AHR agonists, may be useful as cancer therapeutics.
Collapse
|
47
|
Roy NK, Candelmo A, DellaTorre M, Chambers RC, Nádas A, Wirgin I. Characterization of AHR2 and CYP1A expression in Atlantic sturgeon and shortnose sturgeon treated with coplanar PCBs and TCDD. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:19-31. [PMID: 29427830 PMCID: PMC5855079 DOI: 10.1016/j.aquatox.2018.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 05/25/2023]
Abstract
Atlantic sturgeon and shortnose sturgeon co-occur in many estuaries along the Atlantic Coast of North America. Both species are protected under the U.S. Endangered Species Act and internationally on the IUCN Red list and by CITES. Early life-stages of both sturgeons may be exposed to persistent aromatic hydrocarbon contaminants such as PCBs and PCDD/Fs which are at high levels in the sediments of impacted spawning rivers. Our objective was to compare the PCBs and TCDD sensitivities of both species with those of other fishes and to determine if environmental concentrations of these contaminants approach those that induce toxicity to their young life-stages under controlled laboratory conditions. Because our previous studies suggested that young life-stages of North American sturgeons are among the more sensitive of fishes to coplanar PCB and TCDD-induced toxicities, we were interested in identifying the molecular bases of this vulnerability. It is known that activation of the aryl hydrocarbon receptor 2 (AHR2) in fishes mediates most toxicities to these contaminants and transcriptional activation of xenobiotic metabolizing enzymes such as cytochrome P4501A (CYP1A). Previous studies demonstrated that structural and functional variations in AHRs are the bases for differing sensitivities of several vertebrate taxa to aromatic hydrocarbons. Therefore, in this study we characterized AHR2 and its expression in both sturgeons as an initial step in understanding the mechanistic bases of their sensitivities to these contaminants. We also used CYP1A expression as an endpoint to develop Toxicity Equivalency Factors (TEFs) for these sturgeons. We found that critical amino acid residues in the ligand binding domain of AHR2 in both sturgeons were identical to those of the aromatic hydrocarbon-sensitive white sturgeon, and differed from the less sensitive lake sturgeon. AHR2 expression was induced by TCDD (up to 6-fold) and by three of four tested coplanar PCB congeners (3-5-fold) in Atlantic sturgeon, but less so in shortnose sturgeon. We found that expression of AHR2 and CYP1A mRNA significantly covaried after exposure to TCDD and PCB77, PCB81, PCB126, but not PCB169 in both sturgeons. We also determined TEFs for the four coplanar PCBs in shortnose sturgeon based on comparison of CYP1A mRNA expression across all doses. Surprisingly, the TEFs for all four coplanar PCBs in shortnose sturgeon were much higher (6.4-162 times) than previously adopted for fishes by the WHO.
Collapse
Affiliation(s)
- Nirmal K Roy
- Department of Environmental Medicine, NYU School of Medicine, United States
| | - Allison Candelmo
- Department of Environmental Medicine, NYU School of Medicine, United States; Northeast Fisheries Science Center, NOAA Fisheries, United States
| | - Melissa DellaTorre
- Department of Environmental Medicine, NYU School of Medicine, United States
| | | | - Arthur Nádas
- Department of Environmental Medicine, NYU School of Medicine, United States
| | - Isaac Wirgin
- Department of Environmental Medicine, NYU School of Medicine, United States.
| |
Collapse
|
48
|
Rojas-Pirela M, Rigden DJ, Michels PA, Cáceres AJ, Concepción JL, Quiñones W. Structure and function of Per-ARNT-Sim domains and their possible role in the life-cycle biology of Trypanosoma cruzi. Mol Biochem Parasitol 2017; 219:52-66. [PMID: 29133150 DOI: 10.1016/j.molbiopara.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
Per-ARNT-Sim (PAS) domains of proteins play important roles as modules for signalling and cellular regulation processes in widely diverse organisms such as Archaea, Bacteria, protists, plants, yeasts, insects and vertebrates. These domains are present in many proteins where they are used as sensors of stimuli and modules for protein interactions. Characteristically, they can bind a broad spectrum of molecules. Such binding causes the domain to trigger a specific cellular response or to make the protein containing the domain susceptible to responding to additional physical or chemical signals. Different PAS proteins have the ability to sense redox potential, light, oxygen, energy levels, carboxylic acids, fatty acids and several other stimuli. Such proteins have been found to be involved in cellular processes such as development, virulence, sporulation, adaptation to hypoxia, circadian cycle, metabolism and gene regulation and expression. Our analysis of the genome of different kinetoplastid species revealed the presence of PAS domains also in different predicted kinases from these protists. Open-reading frames coding for these PAS-kinases are unusually large. In addition, the products of these genes appear to contain in their structure combinations of domains uncommon in other eukaryotes. The physiological significance of PAS domains in these parasites, specifically in Trypanosoma cruzi, is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, Scotland, United Kingdom
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| |
Collapse
|
49
|
Brown SM, Heguy A, Zappile P, Chen H, Goradia A, Wang Y, Hao Y, Roy NK, Vitale K, Chambers RC, Wirgin I. A Dramatic Difference in Global Gene Expression between TCDD-Treated Atlantic Tomcod Larvae from the Resistant Hudson River and a Nearby Sensitive Population. Genome Biol Evol 2017. [PMCID: PMC5604119 DOI: 10.1093/gbe/evx159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atlantic tomcod in the Hudson River Estuary bioaccumulate high hepatic burdens of
environmental toxicants. Previously, we demonstrated that Hudson River tomcod developed
resistance to TCDD and PCB toxicity probably through strong natural selection during their
early life-stages for a variant of the Aryl Hydrocarbon Receptor2 (AHR2). Here, we
evaluated the genomic consequences of the resistant genotype by comparing global gene
expression in larval tomcod from the Hudson River with expression in larvae from a nearby
sensitive population (Shinnecock Bay). We developed an annotated draft tomcod genome to
explore the effects of multigenerational exposure to toxicants and a functionally impaired
AHR2 on the transcriptome. We used the tomcod genome as a reference in RNA-Seq to compare
global gene expression in tomcod larvae from the Hudson River and Shinnecock Bay after
experimental exposure of larvae to graded doses of TCDD. We found dramatic differences
between offspring from the two populations in the number of genes that were differentially
expressed at all doses (0.01, 0.1, and 1 ppb) and even in the vehicle controls. At the two
lowest TCDD doses, 250 and 1,141 genes were differentially expressed in Shinnecock Bay
larvae compared with 14 and 12, respectively, in Hudson River larvae. At the highest dose
(1.0 ppb), 934 genes were differentially expressed in Shinnecock Bay larvae and 173 in
Hudson River larvae, but only 28 (16%) of affected genes were shared among both
populations. Given the large difference between the two populations in the number and
identity of differentially expressed genes, it is likely that the AHR2 pathway interacts
directly or indirectly with many genes beyond those known in the AHR2 battery and that
other regulatory systems may also respond to TCDD exposure. The effects of chronic
multi-generational exposure to environmental toxicants on the genome of Hudson River
tomcod are much greater than previously expected.
Collapse
Affiliation(s)
- Stuart M Brown
- Department of Cell Biology, NYU School of Medicine
- Center for Health Informatics and Bioinformatics, NYU School of
Medicine
| | - Adriana Heguy
- Genome Technology Center, NYU School of Medicine
- Department of Pathology, NYU School of Medicine
| | - Paul Zappile
- Genome Technology Center, NYU School of Medicine
- Department of Pathology, NYU School of Medicine
| | - Hao Chen
- Department of Cell Biology, NYU School of Medicine
| | | | - Yilan Wang
- Department of Cell Biology, NYU School of Medicine
| | - Yuhan Hao
- Department of Cell Biology, NYU School of Medicine
- Center for Health Informatics and Bioinformatics, NYU School of
Medicine
| | - Nirmal K Roy
- Department of Environmental Medicine, NYU School of Medicine
| | - Kristy Vitale
- Department of Environmental Medicine, NYU School of Medicine
| | - R Christopher Chambers
- Howard Marine Sciences Laboratory, Northeast Fisheries Science Center,
National Marine Fisheries Service, National Oceanographic and Atmospheric Administration,
Highlands, New Jersey
| | - Isaac Wirgin
- Department of Environmental Medicine, NYU School of Medicine
- Corresponding author: E-mail:
| |
Collapse
|
50
|
Genetic dissection of endothelial transcriptional activity of zebrafish aryl hydrocarbon receptors (AHRs). PLoS One 2017; 12:e0183433. [PMID: 28817646 PMCID: PMC5560736 DOI: 10.1371/journal.pone.0183433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor conserved across phyla from flies to humans. Activated by a number of endogenous ligands and environmental toxins, studies on AHR function and gene regulation have largely focused on a toxicological perspective relating to aromatic hydrocarbons generated by human activities and the often-deleterious effects of exposure on vertebrates mediated by AHR activation. A growing body of work has highlighted the importance of AHR in physiologic processes, including immune cell differentiation and vascular patterning. Here we dissect the contribution of the 3 zebrafish AHRs, ahr1a, ahr1b and ahr2, to endothelial cyp1a1/b1 gene regulation under physiologic conditions and upon exposure to the AHR ligand Beta-naphthoflavone. We show that in fish multiple AHRs are functional in the vasculature, with vessel-specific differences in the ability of ahr1b to compensate for the loss of ahr2 to maintain AHR signaling. We further provide evidence that AHR can regulate the expression of the chemokine receptor cxcr4a in endothelial cells, a regulatory mechanism that may provide insight into AHR function in the endothelium.
Collapse
|