1
|
Migliaccio AR. Erythropoietin: A Personal Alice in Wonderland Trip in the Shadow of the Giants. Biomolecules 2024; 14:408. [PMID: 38672425 PMCID: PMC11047939 DOI: 10.3390/biom14040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The identification of the hormone erythropoietin (EPO), which regulates red blood cell production, and its development into a pharmaceutical-grade product to treat anemia has been not only a herculean task but it has also been the first of its kind. As with all the successes, it had "winners" and "losers", but its history is mostly told by the winners who, over the years, have published excellent scientific and divulgate summaries on the subject, some of which are cited in this review. In addition, "success" is also due to the superb and dedicated work of numerous "crew" members, who often are under-represented and under-recognized when the story is told and often have several "dark sides" that are not told in the polished context of most reviews, but which raised the need for the development of the current legislation on biotherapeutics. Although I was marginally involved in the clinical development of erythropoietin, I have known on a personal basis most, if not all, the protagonists of the saga and had multiple opportunities to talk with them on the drive that supported their activities. Here, I will summarize the major steps in the development of erythropoietin as the first bioproduct to enter the clinic. Some of the "dark sides" will also be mentioned to emphasize what a beautiful achievement of humankind this process has been and how the various unforeseen challenges that emerged were progressively addressed in the interest of science and of the patient's wellbeing.
Collapse
|
2
|
Barisas DAG, Choi K. Extramedullary hematopoiesis in cancer. Exp Mol Med 2024; 56:549-558. [PMID: 38443597 PMCID: PMC10985111 DOI: 10.1038/s12276-024-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
Hematopoiesis can occur outside of the bone marrow during inflammatory stress to increase the production of primarily myeloid cells at extramedullary sites; this process is known as extramedullary hematopoiesis (EMH). As observed in a broad range of hematologic and nonhematologic diseases, EMH is now recognized for its important contributions to solid tumor pathology and prognosis. To initiate EMH, hematopoietic stem cells (HSCs) are mobilized from the bone marrow into the circulation and to extramedullary sites such as the spleen and liver. At these sites, HSCs primarily produce a pathological subset of myeloid cells that contributes to tumor pathology. The EMH HSC niche, which is distinct from the bone marrow HSC niche, is beginning to be characterized. The important cytokines that likely contribute to initiating and maintaining the EMH niche are KIT ligands, CXCL12, G-CSF, IL-1 family members, LIF, TNFα, and CXCR2. Further study of the role of EMH may offer valuable insights into emergency hematopoiesis and therapeutic approaches against cancer. Exciting future directions for the study of EMH include identifying common and distinct EMH mechanisms in cancer, infectious diseases, and chronic autoimmune diseases to control these conditions.
Collapse
Affiliation(s)
- Derek A G Barisas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Lee SJ, Jung C, Oh JE, Kim S, Lee S, Lee JY, Yoon YS. Generation of Red Blood Cells from Human Pluripotent Stem Cells-An Update. Cells 2023; 12:1554. [PMID: 37296674 PMCID: PMC10253210 DOI: 10.3390/cells12111554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of RBCs or erythrocytes holds great promise for transfusion medicine and novel cell-based therapies. While hematopoietic stem cells and progenitors derived from peripheral blood, cord blood, and bone marrow can give rise to erythrocytes, the use of human pluripotent stem cells (hPSCs) has also provided an important opportunity to obtain erythrocytes. These hPSCs include both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). As hESCs carry ethical and political controversies, hiPSCs can be a more universal source for RBC generation. In this review, we first discuss the key concepts and mechanisms of erythropoiesis. Thereafter, we summarize different methodologies to differentiate hPSCs into erythrocytes with an emphasis on the key features of human definitive erythroid lineage cells. Finally, we address the current limitations and future directions of clinical applications using hiPSC-derived erythrocytes.
Collapse
Affiliation(s)
- Shin-Jeong Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Cholomi Jung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jee Eun Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ji Yoon Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
| | - Young-sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
4
|
Chakraborty S, Andrieux G, Kastl P, Adlung L, Altamura S, Boehm ME, Schwarzmüller LE, Abdullah Y, Wagner MC, Helm B, Gröne HJ, Lehmann WD, Boerries M, Busch H, Muckenthaler MU, Schilling M, Klingmüller U. Erythropoietin-driven dynamic proteome adaptations during erythropoiesis prevent iron overload in the developing embryo. Cell Rep 2022; 40:111360. [PMID: 36130519 DOI: 10.1016/j.celrep.2022.111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Erythropoietin (Epo) ensures survival and proliferation of colony-forming unit erythroid (CFU-E) progenitor cells and their differentiation to hemoglobin-containing mature erythrocytes. A lack of Epo-induced responses causes embryonic lethality, but mechanisms regulating the dynamic communication of cellular alterations to the organismal level remain unresolved. By time-resolved transcriptomics and proteomics, we show that Epo induces in CFU-E cells a gradual transition from proliferation signature proteins to proteins indicative for differentiation, including heme-synthesis enzymes. In the absence of the Epo receptor (EpoR) in embryos, we observe a lack of hemoglobin in CFU-E cells and massive iron overload of the fetal liver pointing to a miscommunication between liver and placenta. A reduction of iron-sulfur cluster-containing proteins involved in oxidative phosphorylation in these embryos leads to a metabolic shift toward glycolysis. This link connecting erythropoiesis with the regulation of iron homeostasis and metabolic reprogramming suggests that balancing these interactions is crucial for protection from iron intoxication and for survival.
Collapse
Affiliation(s)
- Sajib Chakraborty
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Systems Cell-Signalling Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philipp Kastl
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lorenz Adlung
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Medicine & Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandro Altamura
- Center for Translational Biomedical Iron Research (CeTBI), Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin E Boehm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luisa E Schwarzmüller
- Division Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yomn Abdullah
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marie-Christine Wagner
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Barbara Helm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wolf D Lehmann
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, University of Freiburg, 79106 Freiburg im Breisgau, Germany.
| | - Hauke Busch
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany.
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research (CeTBI), Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany; German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Turnis ME, Kaminska E, Smith KH, Kartchner BJ, Vogel P, Laxton JD, Ashmun RA, Ney PA, Opferman JT. Requirement for antiapoptotic MCL-1 during early erythropoiesis. Blood 2021; 137:1945-1958. [PMID: 33512417 PMCID: PMC8033457 DOI: 10.1182/blood.2020006916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/22/2020] [Indexed: 01/24/2023] Open
Abstract
Although BCL-xL is critical to the survival of mature erythrocytes, it is still unclear whether other antiapoptotic molecules mediate survival during earlier stages of erythropoiesis. Here, we demonstrate that erythroid-specific Mcl1 deletion results in embryonic lethality beyond embryonic day 13.5 as a result of severe anemia caused by a lack of mature red blood cells (RBCs). Mcl1-deleted embryos exhibit stunted growth, ischemic necrosis, and decreased RBCs in the blood. Furthermore, we demonstrate that MCL-1 is only required during early definitive erythropoiesis; during later stages, developing erythrocytes become MCL-1 independent and upregulate the expression of BCL-xL. Functionally, MCL-1 relies upon its ability to prevent apoptosis to promote erythroid development because codeletion of the proapoptotic effectors Bax and Bak can overcome the requirement for MCL-1 expression. Furthermore, ectopic expression of human BCL2 in erythroid progenitors can compensate for Mcl1 deletion, indicating redundancy between these 2 antiapoptotic family members. These data clearly demonstrate a requirement for MCL-1 in promoting survival of early erythroid progenitors.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonathan D Laxton
- Flow Cytometry and Cell Sorting Shared Resource, St Jude Children's Research Hospital, Memphis, TN; and
| | - Richard A Ashmun
- Flow Cytometry and Cell Sorting Shared Resource, St Jude Children's Research Hospital, Memphis, TN; and
| | | | | |
Collapse
|
6
|
Karayel Ö, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi AF, Weiss MJ, Mann M. Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Mol Syst Biol 2020; 16:e9813. [PMID: 33259127 PMCID: PMC7706838 DOI: 10.15252/msb.20209813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. Our data reveal developmental regulation through drastic proteome remodeling across stages of erythroid maturation encompassing most protein classes. This includes various orchestrated changes in solute carriers indicating adjustments to altered metabolic requirements. To define the distinct proteome of each maturation stage, we developed a computational deconvolution approach which revealed stage-specific marker proteins. The dynamic phosphoproteomes combined with a kinome-targeted CRISPR/Cas9 screen uncovered coordinated networks of erythropoietic kinases and pinpointed downregulation of c-Kit/MAPK signaling axis as key driver of maturation. Our system-wide view establishes the functional dynamic of complex phosphosignaling networks and regulation through proteome remodeling in erythropoiesis.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Isabell Bludau
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Yu Yao
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Freitas Colaco Ana Rita
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Bhoopalan SV, Huang LJS, Weiss MJ. Erythropoietin regulation of red blood cell production: from bench to bedside and back. F1000Res 2020; 9:F1000 Faculty Rev-1153. [PMID: 32983414 PMCID: PMC7503180 DOI: 10.12688/f1000research.26648.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
More than 50 years of efforts to identify the major cytokine responsible for red blood cell (RBC) production (erythropoiesis) led to the identification of erythropoietin (EPO) in 1977 and its receptor (EPOR) in 1989, followed by three decades of rich scientific discovery. We now know that an elaborate oxygen-sensing mechanism regulates the production of EPO, which in turn promotes the maturation and survival of erythroid progenitors. Engagement of the EPOR by EPO activates three interconnected signaling pathways that drive RBC production via diverse downstream effectors and simultaneously trigger negative feedback loops to suppress signaling activity. Together, the finely tuned mechanisms that drive endogenous EPO production and facilitate its downstream activities have evolved to maintain RBC levels in a narrow physiological range and to respond rapidly to erythropoietic stresses such as hypoxia or blood loss. Examination of these pathways has elucidated the genetics of numerous inherited and acquired disorders associated with deficient or excessive RBC production and generated valuable drugs to treat anemia, including recombinant human EPO and more recently the prolyl hydroxylase inhibitors, which act partly by stimulating endogenous EPO synthesis. Ongoing structure-function studies of the EPOR and its essential partner, tyrosine kinase JAK2, suggest that it may be possible to generate new "designer" drugs that control selected subsets of cytokine receptor activities for therapeutic manipulation of hematopoiesis and treatment of blood cancers.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN, 38105, USA
| | - Lily Jun-shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN, 38105, USA
| |
Collapse
|
8
|
Sethumadhavan A, Mani M. Kit activates interleukin-4 receptor and effector signal transducer and activator of transcription 6 independent of its cognate ligand in mouse mast cells. Immunology 2020; 159:441-449. [PMID: 31957000 DOI: 10.1111/imm.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022] Open
Abstract
Signaling by Kit has been extensively studied in hematopoietic cells and is essential for the survival, proliferation and maintenance of hematopoietic stem and progenitor cells. In addition to the activation of intrinsic signaling pathways, Kit has been shown to interact with lineage-restricted type I cytokine receptors and produce cross signals, e.g. erythropoietin receptor, interleukin-7 receptor (IL-7R), IL-3R. Based on the earlier studies, we hypothesize that Kit activate other type I cytokine receptors in a cell-specific manner and execute cell-specific function. To investigate other Kit-activated receptors, we tested Kit and IL-4R cross-receptor activation in murine bone-marrow-derived mast cells, which express both Kit and IL-4R at the surface level. Kit upon activation by Kit ligand (KL), activated IL-4Rα, γC , and signal transducer and activator of transcription 6 independent of its cognate ligand IL-4. Though KL and IL-4 are individually mitogenic, combinations of KL and IL-4 synergistically promoted mast cell proliferation. Furthermore, inhibition of lipid raft formation by methyl-β-cyclodextrin resulted in loss of synergistic proliferation. Together the data suggest IL-4R as a novel Kit-activated receptor. Such cross-receptor activations are likely to be a universal mechanism of Kit signaling in hematopoiesis.
Collapse
Affiliation(s)
- Aiswarya Sethumadhavan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Maheswaran Mani
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
9
|
Wang B, Mehta H. Cytokine receptor splice variants in hematologic diseases. Cytokine 2019; 127:154919. [PMID: 31816579 DOI: 10.1016/j.cyto.2019.154919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Cytokine and cytokine receptors are important regulators of hematopoiesis. Hematopoietic stem cells (HSCs) and progenitors differentiate into the myeloid or lymphoid lineage in response to specific cytokines. Cell-type specific receptors are expressed on committed progenitors that bind to other late-acting cytokines that are involved in terminal differentiation of hematopoietic cells. In normal hematopoiesis, these receptors undergo alternative splicing and are developmentally regulated. Splicing changes can significantly affect the structure and function of the receptors resulting in alterations of either the extracellular ligand binding domain or the cytoplasmic signaling domain responsible for cellular growth and differentiation. Most alternatively spliced isoforms generally lose the ability to promote differentiation. Evidently, overexpression of naturally occurring cytokine receptor alternate isoforms are observed in multiple myeloid diseases such as myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and polycythemia vera (PV). The purpose of this review is to introduce the various isoforms of key cytokine receptors that play a crucial role in myeloid development and their potential role in myeloid diseases.
Collapse
Affiliation(s)
- Borwyn Wang
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Hrishikesh Mehta
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
10
|
Federici G, Varricchio L, Martelli F, Falchi M, Picconi O, Francescangeli F, Contavalli P, Girelli G, Tafuri A, Petricoin EF, Mazzarini M, Zeuner A, Migliaccio AR. Phosphoproteomic Landscaping Identifies Non-canonical cKIT Signaling in Polycythemia Vera Erythroid Progenitors. Front Oncol 2019; 9:1245. [PMID: 31824842 PMCID: PMC6883719 DOI: 10.3389/fonc.2019.01245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
Although stem cell factor (SCF)/cKIT interaction plays key functions in erythropoiesis, cKIT signaling in human erythroid cells is still poorly defined. To provide new insights into cKIT-mediated erythroid expansion in development and disease, we performed phosphoproteomic profiling of primary erythroid progenitors from adult blood (AB), cord blood (CB), and Polycythemia Vera (PV) at steady-state and upon SCF stimulation. While AB and CB, respectively, activated transient or sustained canonical cKIT-signaling, PV showed a non-canonical signaling including increased mTOR and ERK1 and decreased DEPTOR. Accordingly, screening of FDA-approved compounds showed increased PV sensitivity to JAK, cKIT, and MEK inhibitors. Moreover, differently from AB and CB, in PV the mature 145kDa-cKIT constitutively associated with the tetraspanin CD63 and was not endocytosed upon SCF stimulation, contributing to unrestrained cKIT signaling. These results identify a clinically exploitable variegation of cKIT signaling/metabolism that may contribute to the great erythroid output occurring during development and in PV.
Collapse
Affiliation(s)
| | - Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National HIV/AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paola Contavalli
- Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriella Girelli
- Immunohematology and Transfusion Medicine Unit, "La Sapienza" University of Rome, Rome, Italy
| | - Agostino Tafuri
- Sant'Andrea Hospital-La Sapienza, Department of Clinic and Molecular Medicine "La Sapienza" University of Rome, Rome, Italy
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Ann Zeuner
- Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Rita Migliaccio
- Myeloproliferative Neoplasm Research Consortium, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
11
|
Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF from Leptin Receptor+ Niche Cells in the Bone Marrow. Cell Stem Cell 2019; 24:477-486.e6. [PMID: 30661958 DOI: 10.1016/j.stem.2018.11.022] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) are maintained in a perivascular niche in bone marrow, in which leptin receptor+ (LepR) stromal cells and endothelial cells synthesize factors required for HSC maintenance, including stem cell factor (SCF). An important question is why LepR+ cells are one hundred times more frequent than HSCs. Here, we show that SCF from LepR+ cells is also necessary to maintain many c-kit+-restricted hematopoietic progenitors. Conditional deletion of Scf from LepR+ cells depleted common myeloid progenitors (CMPs), common lymphoid progenitors (CLPs), granulocyte-macrophage progenitors (GMPs), megakaryocyte-erythrocyte progenitors (MEPs), pre-megakaryocyte-erythrocyte progenitors (PreMegEs), and colony-forming units-erythroid (CFU-Es), as well as myeloid and erythroid blood cells. This was not caused by HSC depletion, as many other restricted progenitors were unaffected. Moreover, Scf deletion from endothelial cells depleted HSCs, but not progenitors. Early erythroid progenitors were closely associated with perisinusoidal LepR+ cells. This reveals cellular specialization within the niche: SCF from LepR+ cells is broadly required by HSCs and restricted progenitors while SCF from endothelial cells is required mainly by HSCs.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Malea M Murphy
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elise Jeffery
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, Lau WWY, Nestorowa S, Weinreb C, Wolock S, Hannah R, Diamanti E, Kent DG, Göttgens B, Wilson NK. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood 2018; 131:e1-e11. [PMID: 29588278 PMCID: PMC5969381 DOI: 10.1182/blood-2017-12-821413] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) maintain the adult blood system, and their dysregulation causes a multitude of diseases. However, the differentiation journeys toward specific hematopoietic lineages remain ill defined, and system-wide disease interpretation remains challenging. Here, we have profiled 44 802 mouse bone marrow HSPCs using single-cell RNA sequencing to provide a comprehensive transcriptional landscape with entry points to 8 different blood lineages (lymphoid, megakaryocyte, erythroid, neutrophil, monocyte, eosinophil, mast cell, and basophil progenitors). We identified a common basophil/mast cell bone marrow progenitor and characterized its molecular profile at the single-cell level. Transcriptional profiling of 13 815 HSPCs from the c-Kit mutant (W41/W41) mouse model revealed the absence of a distinct mast cell lineage entry point, together with global shifts in cell type abundance. Proliferative defects were accompanied by reduced Myc expression. Potential compensatory processes included upregulation of the integrated stress response pathway and downregulation of proapoptotic gene expression in erythroid progenitors, thus providing a template of how large-scale single-cell transcriptomic studies can bridge between molecular phenotypes and quantitative population changes.
Collapse
Affiliation(s)
- Joakim S Dahlin
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Fiona K Hamey
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Blanca Pijuan-Sala
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Mairi Shepherd
- Department of Haematology, University of Cambridge, Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom; and
| | - Winnie W Y Lau
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Sonia Nestorowa
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Caleb Weinreb
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Samuel Wolock
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Rebecca Hannah
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Evangelia Diamanti
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - David G Kent
- Department of Haematology, University of Cambridge, Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom; and
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| |
Collapse
|
13
|
Ostrowski D, Heinrich R. Alternative Erythropoietin Receptors in the Nervous System. J Clin Med 2018; 7:E24. [PMID: 29393890 PMCID: PMC5852440 DOI: 10.3390/jcm7020024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory responses and supports re-establishment of compromised functions by stimulating proliferation, migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and regenerative functions of Epo have been described in the nervous systems of both vertebrates and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However, identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives indicated the existence of other types of Epo receptors. In this review, we summarize evidence for potential Epo receptors that might mediate Epo's tissue-protective function in non-hematopoietic tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta receptor (βcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like factor 3 (CRLF3).
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biology, Truman State University, Kirksville, MO 63501, USA.
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
14
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:dev151423. [PMID: 29321181 PMCID: PMC5825862 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
15
|
|
16
|
McIver SC, Hewitt KJ, Gao X, Mehta C, Zhang J, Bresnick EH. Dissecting Regulatory Mechanisms Using Mouse Fetal Liver-Derived Erythroid Cells. Methods Mol Biol 2018; 1698:67-89. [PMID: 29076084 PMCID: PMC5842797 DOI: 10.1007/978-1-4939-7428-3_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multipotent hematopoietic stem cells differentiate into an ensemble of committed progenitor cells that produce the diverse blood cells essential for life. Physiological mechanisms governing hematopoiesis, and mechanistic aberrations underlying non-malignant and malignant hematologic disorders, are often very similar in mouse and man. Thus, mouse models provide powerful systems for unraveling mechanisms that control hematopoietic stem/progenitor cell (HSPC) function in their resident microenvironments in vivo. Ex vivo systems, involving the culture of HSPCs generated in vivo, allow one to dissociate microenvironment-based and cell intrinsic mechanisms, and therefore have considerable utility. Dissecting mechanisms controlling cellular proliferation and differentiation is facilitated by the use of primary cells, since mutations and chromosome aberrations in immortalized and cancer cell lines corrupt normal mechanisms. Primary erythroid precursor cells can be expanded or differentiated in culture to yield large numbers of progeny at discrete maturation stages. We described a robust method for isolation, culture, and analysis of primary mouse erythroid precursor cells and their progeny.
Collapse
Affiliation(s)
- Skye C McIver
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 4009 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 4009 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA
| | - Xin Gao
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 4009 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 4009 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA
| | - Jing Zhang
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, 53705, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 4009 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA.
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA.
| |
Collapse
|
17
|
He L, Steinocher H, Shelar A, Cohen EB, Heim EN, Kragelund BB, Grigoryan G, DiMaio D. Single methyl groups can act as toggle switches to specify transmembrane Protein-protein interactions. eLife 2017; 6:27701. [PMID: 28869036 PMCID: PMC5597333 DOI: 10.7554/elife.27701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/01/2017] [Indexed: 01/13/2023] Open
Abstract
Transmembrane domains (TMDs) engage in protein-protein interactions that regulate many cellular processes, but the rules governing the specificity of these interactions are poorly understood. To discover these principles, we analyzed 26-residue model transmembrane proteins consisting exclusively of leucine and isoleucine (called LIL traptamers) that specifically activate the erythropoietin receptor (EPOR) in mouse cells to confer growth factor independence. We discovered that the placement of a single side chain methyl group at specific positions in a traptamer determined whether it associated productively with the TMD of the human EPOR, the mouse EPOR, or both receptors. Association of the traptamers with the EPOR induced EPOR oligomerization in an orientation that stimulated receptor activity. These results highlight the high intrinsic specificity of TMD interactions, demonstrate that a single methyl group can dictate specificity, and define the minimal chemical difference that can modulate the specificity of TMD interactions and the activity of transmembrane proteins.
Collapse
Affiliation(s)
- Li He
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Helena Steinocher
- Department of Biology, Structural and NMR Laboratory, University of Copenhagen, Copenhagen, Denmark
| | - Ashish Shelar
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Emily B Cohen
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Erin N Heim
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Birthe B Kragelund
- Department of Biology, Structural and NMR Laboratory, University of Copenhagen, Copenhagen, Denmark
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, United States
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, United States.,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, United States.,Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, United States.,Yale Cancer Center, New Haven, United States
| |
Collapse
|
18
|
Abstract
Erythropoietin (EPO) is a hormone that is important for regulating red blood cell production. It is functional through binding to its receptor-EpoR. EpoR is a single-span membrane protein. It contains an extracellular region, a transmembrane domain, and a C-terminus. The extracellular region is important for binding to EPO, and its conformation is critical for signal transduction. The transmembrane domain contains 21 residues forming a helix which plays an important role in transferring ligand-induced conformational changes of the extracellular domain across the cell membrane. The C-terminal region contains the Janus kinase 2-binding sites and eight tyrosine residues that can be phosphorylated to become binding sites for transcription factors to active the downstream pathways. This chapter focuses on structural description of the domains of the EpoR. The recent progress in the structural determination of these domains is summarized, which will be useful for understanding their function in signal transduction.
Collapse
|
19
|
Dulmovits BM, Hom J, Narla A, Mohandas N, Blanc L. Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis. Curr Opin Hematol 2017; 24:159-166. [PMID: 28099275 PMCID: PMC5518670 DOI: 10.1097/moh.0000000000000328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The erythroid progenitors burst-forming unit-erythroid and colony-forming unit-erythroid have a critical role in erythropoiesis. These cells represent a heterogeneous and poorly characterized population with modifiable self-renewal, proliferation and differentiation capabilities. This review focuses on the current state of erythroid progenitor biology with regard to immunophenotypic identification and regulatory programs. In addition, we will discuss the therapeutic implications of using these erythroid progenitors as pharmacologic targets. RECENT FINDINGS Erythroid progenitors are classically characterized by the appearance of morphologically defined colonies in semisolid cultures. However, these prior systems preclude a more thorough understanding of the composite nature of progenitor populations. Recent studies employing novel flow cytometric and cell-based assays have helped to redefine hematopoiesis, and suggest that erythroid progenitors may arise from different levels of the hematopoietic tree. Moreover, the identification of cell surface marker patterns in human burst-forming unit-erythroid and colony-forming unit-erythroid enhance our ability to perform downstream functional and molecular analyses at the population and single cell level. Advances in these techniques have already revealed novel subpopulations with increased self-renewing capacity, roles for erythroid progenitors in globin gene expression, and insights into pharmacologic mechanisms of glucocorticoids and pomalidomide. SUMMARY Immunophenotypic and molecular characterization resolves the diversity of erythroid progenitors, and may ultimately lead to the ability to target these progenitors to ameliorate diseases of dyserythropoiesis.
Collapse
Affiliation(s)
- Brian M. Dulmovits
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| | - Jimmy Hom
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| | - Anupama Narla
- Stanford University School of Medicine, Department of Pediatric Hematology/Oncology, Stanford, CA
| | - Narla Mohandas
- Red Cell Physiology laboratory, New York Blood Center, New York, NY
| | - Lionel Blanc
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| |
Collapse
|
20
|
Ueda F, Tago K, Tamura H, Funakoshi-Tago M. Three Tyrosine Residues in the Erythropoietin Receptor Are Essential for Janus Kinase 2 V617F Mutant-induced Tumorigenesis. J Biol Chem 2016; 292:1826-1846. [PMID: 27998978 DOI: 10.1074/jbc.m116.749465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/20/2016] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin receptor (EpoR) regulates development of blood cells, and its full activation normally requires the cytokine erythropoietin (Epo). In the case of myeloproliferative neoplasms (MPN), Epo-independent signaling through EpoR can be caused by a point mutation, V617F, in the EpoR-interacting tyrosine kinase Janus kinase 2 (JAK2). In cells expressing the JAK2 V617F mutant, eight tyrosine residues in the intracellular domain of EpoR are phosphorylated, but the functional role of these phosphorylations in oncogenic signaling is incompletely understood. Here, to evaluate the functional consequences of the phosphorylation of these tyrosine residues, we constructed an EpoR-8YF mutant in which we substituted all eight tyrosine residues with phenylalanine. Co-expression of EpoR-8YF with the JAK2 V617F mutant failed to induce cytokine-independent cell proliferation and tumorigenesis, indicating that JAK2-mediated EpoR phosphorylation is the reason for JAK2 V617F mutant-induced oncogenic signaling. An exhaustive mutational analysis of the eight EpoR tyrosine residues indicated that three of these residues, Tyr-343, Tyr-460, and Tyr-464, are required for the JAK2 V617F mutant to exhibit its oncogenic activity. We also showed that phosphorylation at these three residues was necessary for full activation of the transcription factor STAT5, which is a critical downstream factor of JAK2 V617F-induced oncogenic signaling. In contrast, Epo stimulation could moderately stimulate the proliferation of cells expressing wild type JAK2 and EpoR-8YF, suggesting that the requirement of the phosphorylation of these three tyrosine residues seems to be specific for the oncogenic proliferation provoked by V617F mutation. Collectively, these results have revealed that phosphorylation of Tyr-343, Tyr-460, and Tyr-464 in EpoR underlies JAK2 V617F mutant-induced tumorigenesis. We propose that the targeted disruption of this pathway has therapeutic utility for managing MPN.
Collapse
Affiliation(s)
- Fumihito Ueda
- From the Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512
| | - Kenji Tago
- the Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken 329-0498, Japan
| | - Hiroomi Tamura
- From the Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512
| | - Megumi Funakoshi-Tago
- From the Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512.
| |
Collapse
|
21
|
McIver SC, Katsumura KR, Davids E, Liu P, Kang YA, Yang D, Bresnick EH. Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis. eLife 2016; 5. [PMID: 27543448 PMCID: PMC5040589 DOI: 10.7554/elife.17877] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Since the highly conserved exosome complex mediates the degradation and processing of multiple classes of RNAs, it almost certainly controls diverse biological processes. How this post-transcriptional RNA-regulatory machine impacts cell fate decisions and differentiation is poorly understood. Previously, we demonstrated that exosome complex subunits confer an erythroid maturation barricade, and the erythroid transcription factor GATA-1 dismantles the barricade by transcriptionally repressing the cognate genes. While dissecting requirements for the maturation barricade in Mus musculus, we discovered that the exosome complex is a vital determinant of a developmental signaling transition that dictates proliferation/amplification versus differentiation. Exosome complex integrity in erythroid precursor cells ensures Kit receptor tyrosine kinase expression and stem cell factor/Kit signaling, while preventing responsiveness to erythropoietin-instigated signals that promote differentiation. Functioning as a gatekeeper of this developmental signaling transition, the exosome complex controls the massive production of erythroid cells that ensures organismal survival in homeostatic and stress contexts. DOI:http://dx.doi.org/10.7554/eLife.17877.001 Red blood cells supply an animal’s tissues with the oxygen they need to survive. These cells circulate for a certain amount of time before they die. To replenish the red blood cells that are lost, first a protein called stem cell factor (SCF) instructs stem cells and precursor cells to proliferate, and a second protein, known as erythropoietin, then signals to these cells to differentiate into mature red blood cells. It is important to maintain this balance between these two processes because too much proliferation can lead to cancer while too much differentiation will exhaust the supply of stem cells. Previous work has shown that a collection of proteins called the exosome complex can block steps leading towards mature red blood cells. The exosome complex controls several processes within cells by modifying or degrading a variety of messenger RNAs, the molecules that serve as intermediates between DNA and protein. However, it was not clear how the exosome complex sets up the differentiation block and whether it is somehow connected to the signaling from SCF and erythropoietin. McIver et al. set out to address this issue by isolating precursor cells with the potential to become red blood cells from mouse fetal livers and experimentally reducing the levels of the exosome complex. The experiments showed that these cells were no longer able to respond when treated with SCF in culture, whereas the control cells responded as normal. Further experiments showed that cells with less of the exosome complex also made less of a protein named Kit. Normally, SCF interacts with Kit to instruct cells to multiply. Lastly, although the experimental cells could no longer respond to these proliferation signals, they could react to erythropoietin, which promotes differentiation. Thus, normal levels of the exosome complex keep the delicate balance between proliferation and differentiation, which is crucial to the development of red blood cells. In future, it will be important to study the exosome complex in living mice and in human cells, and to see whether it also controls other signaling pathways. Furthermore, it is worth exploring whether this new knowledge can help efforts to produce red blood cells on an industrial scale, which could then be used to treat patients with conditions such as anemia. DOI:http://dx.doi.org/10.7554/eLife.17877.002
Collapse
Affiliation(s)
- Skye C McIver
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Koichi R Katsumura
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Elsa Davids
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Yoon-A Kang
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - David Yang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| |
Collapse
|
22
|
Katakura F, Yabu T, Yamaguchi T, Miyamae J, Shirinashihama Y, Nakanishi T, Moritomo T. Exploring erythropoiesis of common carp (Cyprinus carpio) using an in vitro colony assay in the presence of recombinant carp kit ligand A and erythropoietin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:13-22. [PMID: 26111997 DOI: 10.1016/j.dci.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
The use of in vitro colony assays in mammals has contributed to identification of erythroid progenitor cells such as burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) progenitors, and serves to examine functions of erythropoietic growth factors like Erythropoietin (Epo) and Kit ligand. Here, we established an in vitro colony-forming assay capable of investigating erythropoiesis in carp (Cyprinus carpio), cloned and functionally characterized recombinant homologous molecules Epo and Kit ligand A (Kitla), and identified three distinct erythroid progenitor cells in carp. Recombinant carp Epo induced the formation of CFU-E-like and BFU-E-like erythroid colonies, expressing erythroid marker genes, β-globin, epor and gata1. Recombinant carp Kitla alone induced limited colony formation, whereas a combination of Kitla and Epo dramatically enhanced erythroid colony formation and colony cell growth, as well as stimulated the formation of thrombocytic/erythroid colonies expressing not only erythroid markers but also thrombocytic markers, cd41 and c-mpl. Utilizing this colony assay to examine the distribution of distinct erythroid progenitor cells in carp, we demonstrated that carp head and trunk kidney play a primary role in erythropoiesis, while the spleen plays a secondary. Furthermore, we showed that presumably bi-potent thrombocytic/erythroid progenitor cells localize principally in the trunk kidney. Our results indicate that teleost fish possess mechanisms of Epo- and Kitla-dependent erythropoiesis similar to those in other vertebrates, and also help to demonstrate the diversity of erythropoietic sites among vertebrates.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan.
| | - Takeshi Yabu
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Takuya Yamaguchi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Jiro Miyamae
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuki Shirinashihama
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Teruyuki Nakanishi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW KIT tyrosine kinase receptor is essential for several tissue stem cells, especially for hematopoietic stem cells (HSCs). Moderately decreased KIT signaling is well known to cause anemia and defective HSC self-renewal, whereas gain-of-function mutations are infrequently found in leukemias. Thus, maintaining KIT signal strength is critically important for homeostasis. KIT signaling in HSCs involves effectors such as SHP2 and PTPN11. This review summarizes the recent developments on the novel mechanisms regulating or reinforcing KIT signal strength in HSCs and its perturbation in polycythemia vera. RECENT FINDINGS Stem cell leukemia (SCL) is a transcription factor that is essential for HSC development. Genetic experiments indicate that Kit, protein tyrosine phosphatase, nonreceptor type 11 (Ptpn11), or Scl control long-term HSC self-renewal, survival, and quiescence in adults. Kit is now shown to be centrally involved in two feedforward loops in HSCs, one with Ptpn11 and the other with Scl. SUMMARY Knowledge of the regulatory mechanisms that favor self-renewal divisions or a lineage determination process is central to the design of strategies to expand HSCs for the purpose of cell therapy. In addition, transcriptome and phosphoproteome analyses of erythroblasts in polycythemia vera identified lower SCL expression and hypophosphorylated KIT, suggesting that the KIT-SCL loop is relevant to the pathophysiology of human blood disorders as well.
Collapse
|
24
|
Gassmann M, Muckenthaler MU. Adaptation of iron requirement to hypoxic conditions at high altitude. J Appl Physiol (1985) 2015; 119:1432-40. [PMID: 26183475 DOI: 10.1152/japplphysiol.00248.2015] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/10/2015] [Indexed: 12/12/2022] Open
Abstract
Adequate acclimatization time to enable adjustment to hypoxic conditions is one of the most important aspects for mountaineers ascending to high altitude. Accordingly, most reviews emphasize mechanisms that cope with reduced oxygen supply. However, during sojourns to high altitude adjustment to elevated iron demand is equally critical. Thus in this review we focus on the interaction between oxygen and iron homeostasis. We review the role of iron 1) in the oxygen sensing process and erythropoietin (Epo) synthesis, 2) in gene expression control mediated by the hypoxia-inducible factor-2 (HIF-2), and 3) as an oxygen carrier in hemoglobin, myoglobin, and cytochromes. The blood hormone Epo that is abundantly expressed by the kidney under hypoxic conditions stimulates erythropoiesis in the bone marrow, a process requiring high iron levels. To ensure that sufficient iron is provided, Epo-controlled erythroferrone that is expressed in erythroid precursor cells acts in the liver to reduce expression of the iron hormone hepcidin. Consequently, suppression of hepcidin allows for elevated iron release from storage organs and enhanced absorption of dietary iron by enterocytes. As recently observed in sojourners at high altitude, however, iron uptake may be hampered by reduced appetite and gastrointestinal bleeding. Reduced iron availability, as observed in a hypoxic mountaineer, enhances hypoxia-induced pulmonary hypertension and may contribute to other hypoxia-related diseases. Overall, adequate systemic iron availability is an important prerequisite to adjust to high-altitude hypoxia and may have additional implications for disease-related hypoxic conditions.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland, and Universidad Peruana Cayetano Heredia, Lima, Peru; and
| | - Martina U Muckenthaler
- Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Molecular Medicine Partnership Unit, University of Heidelberg, Translational Lung Research Center Heidelberg, and German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
25
|
Tan KS, Inoue T, Kulkeaw K, Tanaka Y, Lai MI, Sugiyama D. Localized SCF and IGF-1 secretion enhances erythropoiesis in the spleen of murine embryos. Biol Open 2015; 4:596-607. [PMID: 25887124 PMCID: PMC4434811 DOI: 10.1242/bio.201410686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fetal spleen is a major hematopoietic site prior to initiation of bone marrow hematopoiesis. Morphologic analysis suggested erythropoietic activity in fetal spleen, but it remained unclear how erythropoiesis was regulated. To address this question, we performed flow cytometric analysis and observed that the number of spleen erythroid cells increased 18.6-fold from 16.5 to 19.5 days post-coitum (dpc). Among erythropoietic cytokines, SCF and IGF-1 were primarily expressed in hematopoietic, endothelial and mesenchymal-like fetal spleen cells. Cultures treated with SCF and/or IGF-1R inhibitors showed significantly decreased CD45−c-Kit−CD71+/−Ter119+ erythroid cells and downregulated Gata1, Klf1 and β-major globin expression. Administration of these inhibitors to pregnant mice significantly decreased the number of CD45−c-Kit−CD71+/−Ter119+ cells and downregulated β-major globin gene expression in embryos derived from these mice. We conclude that fetal spleen is a major erythropoietic site where endothelial and mesenchymal-like cells primarily accelerate erythropoietic activity through SCF and IGF-1 secretion.
Collapse
Affiliation(s)
- Keai Sinn Tan
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Tomoko Inoue
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan
| | - Kasem Kulkeaw
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan
| | - Yuka Tanaka
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka 812-8582 Japan Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582 Japan
| | - Mei I Lai
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Daisuke Sugiyama
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka 812-8582 Japan Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582 Japan
| |
Collapse
|
26
|
Wiedenmann T, Ehrhardt S, Cerny D, Hildebrand D, Klein S, Heeg K, Kubatzky KF. Erythropoietin acts as an anti-inflammatory signal on murine mast cells. Mol Immunol 2015; 65:68-76. [PMID: 25645506 DOI: 10.1016/j.molimm.2015.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/23/2014] [Accepted: 01/12/2015] [Indexed: 02/01/2023]
Abstract
Recently it was found that the erythropoietin receptor (EpoR) is expressed on innate immune cells, such as dendritic cells and macrophages. We found that murine bone marrow-derived mast cells express the EpoR and that its expression is increased under hypoxic conditions. Interestingly, Epo stimulation of the cells did not activate signal transducer and activator of transcription molecules, nor did we find differences in the expression of typical STAT-dependent genes, the proliferation rate, and the ability to differentiate or to protect the cells from apoptosis. Instead, we demonstrate that stimulation of mast cells with Epo leads to phosphorylation of the receptor tyrosine kinase c-kit. We hypothesize that this is due to the formation of a receptor complex between the EpoR and c-kit. The common beta chain of the IL-3 receptor family, which was described as part of the tissue protective receptor (TPR) on other non-erythroid cells, however is not activated. To investigate whether the EpoR/c-kit complex has tissue protective properties, cells were treated with the Toll-like receptor ligand LPS. Combined Epo and LPS treatment downregulated the inflammatory response of the cells as detected by a decrease in IL-6 and TNF-α secretion.
Collapse
Affiliation(s)
- Tanja Wiedenmann
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Stefanie Ehrhardt
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Daniela Cerny
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Dagmar Hildebrand
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Sabrina Klein
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Klaus Heeg
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| | - Katharina F Kubatzky
- Universitätsklinikum Heidelberg, Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Germany.
| |
Collapse
|
27
|
Schnöder TM, Arreba-Tutusaus P, Griehl I, Bullinger L, Buschbeck M, Lane SW, Döhner K, Plass C, Lipka DB, Heidel FH, Fischer T. Epo-induced erythroid maturation is dependent on Plcγ1 signaling. Cell Death Differ 2014; 22:974-85. [PMID: 25394487 DOI: 10.1038/cdd.2014.186] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022] Open
Abstract
Erythropoiesis is a tightly regulated process. Development of red blood cells occurs through differentiation of hematopoietic stem cells (HSCs) into more committed progenitors and finally into erythrocytes. Binding of erythropoietin (Epo) to its receptor (EpoR) is required for erythropoiesis as it promotes survival and late maturation of erythroid progenitors. In vivo and in vitro studies have highlighted the requirement of EpoR signaling through Janus kinase 2 (Jak2) tyrosine kinase and Stat5a/b as a central pathway. Here, we demonstrate that phospholipase C gamma 1 (Plcγ1) is activated downstream of EpoR-Jak2 independently of Stat5. Plcγ1-deficient pro-erythroblasts and erythroid progenitors exhibited strong impairment in differentiation and colony-forming potential. In vivo, suppression of Plcγ1 in immunophenotypically defined HSCs (Lin(-)Sca1(+)KIT(+)CD48(-)CD150(+)) severely reduced erythroid development. To identify Plcγ1 effector molecules involved in regulation of erythroid differentiation, we assessed changes occurring at the global transcriptional and DNA methylation level after inactivation of Plcγ1. The top common downstream effector was H2afy2, which encodes for the histone variant macroH2A2 (mH2A2). Inactivation of mH2A2 expression recapitulated the effects of Plcγ1 depletion on erythroid maturation. Taken together, our findings identify Plcγ1 and its downstream target mH2A2, as a 'non-canonical' Epo signaling pathway essential for erythroid differentiation.
Collapse
Affiliation(s)
- T M Schnöder
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - P Arreba-Tutusaus
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - I Griehl
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - L Bullinger
- Internal Medicine III, Department of Hematology/Oncology, University Hospital Ulm, Ulm, Germany
| | - M Buschbeck
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Spain
| | - S W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - K Döhner
- Internal Medicine III, Department of Hematology/Oncology, University Hospital Ulm, Ulm, Germany
| | - C Plass
- Division of Epigenomics and Cancer Risk Factors (C010), German Cancer Research Center, Heidelberg, Germany
| | - D B Lipka
- 1] Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany [2] Division of Epigenomics and Cancer Risk Factors (C010), German Cancer Research Center, Heidelberg, Germany
| | - F H Heidel
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - T Fischer
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| |
Collapse
|
28
|
Aguilar C, Aguilar C, Lopez-Marure R, Jiménez-Sánchez A, Rocha-Zavaleta L. Co-stimulation with stem cell factor and erythropoietin enhances migration of c-Kit expressing cervical cancer cells through the sustained activation of ERK1/2. Mol Med Rep 2014; 9:1895-902. [PMID: 24626629 DOI: 10.3892/mmr.2014.2044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 02/17/2014] [Indexed: 11/06/2022] Open
Abstract
The cytokines erythropoietin (Epo) and stem cell factor (SCF), coupled with the cooperation between their receptors (EpoR and c-Kit), are essential components of normal physiological erythropoiesis. In earlier studies, we demonstrated the expression of c-Kit and EpoR in cervical cancer cells. It was identified that SCF is a survival factor, whereas Epo promotes cell proliferation. Cooperation between EpoR and SCF in cervical cancer has rarely been studied, despite the fact that cell migration and anchorage independent growth are considered initial steps in metastasis. Thus, the aim of this study was to analyse the effect of SCF and Epo alone, or in combination, on the migration and anchorage independent growth of two cervical cancer-derived cell lines. First, we demonstrated the expression of EpoR and c-Kit in the cell lines. Next, we evaluated anchorage independent growth, and identified that Epo and SCF produced a modest number of colonies, whereas the combination Epo/SCF induced a significantly higher number of colonies. Migration was then evaluated in Boyden chambers. Co-stimulation with Epo/SCF induced a significantly higher number of migrating cells than either cytokine alone. SCF-, Epo- and Epo/SCF-induced migration was inhibited by blocking phosphorylation of Janus kinase 2 (JAK2). Accordingly, western blot analysis demonstrated that the JAK2/signal transducer and activator of transcription-5 (STAT5) axis was activated in all cases. By contrast, inhibition of extracellular signal-related kinase (ERK) 1/2 abrogated migration induced by SCF and Epo/SCF only. Concurrently, Epo induced a modest, transient activation of ERK1/2, whereas SCF and Epo/SCF prompted a strong, sustained phosphorylation of ERK1/2. The results from this study have revealed that co-stimulation with Epo/SCF promotes migration and anchorage independent cell growth, and that co-signalling from EpoR and c-Kit converge on JAK2/STAT5 activation. Furthermore, SCF- and Epo/SCF-induced migration depends on the sustained activation of ERK1/2. These results indicate that co-signalling from different cytokine receptors induces migration, and this suggests that migratory behaviour may be regulated by the cooperative activity of Epo and SCF in cells expressing their cognate receptors.
Collapse
Affiliation(s)
- Cristina Aguilar
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, UNAM, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Cecilia Aguilar
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, UNAM, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Rebeca Lopez-Marure
- Instituto Nacional de Cardiología 'Ignacio Chávez', Departamento de Biología Celular, Colonia Sección 16, Tlalpan, C.P. 14080, Mexico City, Mexico
| | - Alejandro Jiménez-Sánchez
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, UNAM, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Leticia Rocha-Zavaleta
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, UNAM, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| |
Collapse
|
29
|
Huang Z, Ruan HB, Zhang ZD, Chen W, Lin Z, Zeng H, Gao X. Mutation in the first Ig-like domain of Kit leads to JAK2 activation and myeloproliferation in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:122-32. [PMID: 24211109 DOI: 10.1016/j.ajpath.2013.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
Abstract
Myeloproliferative neoplasms constitute a group of hematopoietic neoplasms at the myeloid stem cell level. Although mutations in the receptor tyrosine kinase KIT have been identified in patients with myeloproliferative neoplasm, the functional causality is unknown because of a lack of animal models. Here, we describe a mouse strain harboring a point mutation in the first Ig-like domain of Kit. Intriguingly, the mutant mice develop a myeloproliferative disorder with typical loss-of-function phenotypes in other tissues. The mutant Kit is incompletely N-glycosylated, shows compromised receptor dimerization, and down-regulates Akt and extracellular signal-regulating kinase 1/2 signaling. However, the mutation increases the association of Kit to Janus kinase (JAK)2 and hence the activation of JAK2. The β common receptor of the gp140 family interacts and synergizes with Kit to promote JAK2 phosphorylation, which is further enhanced by the Kit mutation. Inhibition of JAK2 suppresses the proliferation of hematopoietic progenitors in vitro and partially rescues myeloproliferation in mice. Our data suggest that overactivation of JAK2 leads to myeloproliferation in Kit mutant mice and provide mechanistic insights for the diagnosis and treatment of myeloproliferative neoplasms in humans.
Collapse
Affiliation(s)
- Zan Huang
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hai-Bin Ruan
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zeng-Di Zhang
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Weiqian Chen
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China; Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhaoyu Lin
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hu Zeng
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiang Gao
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.
| |
Collapse
|
30
|
Lafuse WP, Story R, Mahylis J, Gupta G, Varikuti S, Steinkamp H, Oghumu S, Satoskar AR. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen. PLoS One 2013; 8:e59509. [PMID: 23533629 PMCID: PMC3606219 DOI: 10.1371/journal.pone.0059509] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/15/2013] [Indexed: 11/18/2022] Open
Abstract
Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2) were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR) and transcription factors (GATA1, GATA2, FOG1) were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL), was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by cytokine-mediated apoptosis of erythroblasts.
Collapse
Affiliation(s)
- William P. Lafuse
- Department of Microbial Infection and Immunity, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
- Center for Microbial Interface Biology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Ryan Story
- Medical School, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Jocelyn Mahylis
- Medical School, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Gaurav Gupta
- Department of Pathology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Sanjay Varikuti
- Department of Pathology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Heidi Steinkamp
- Department of Pathology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Steve Oghumu
- Department of Pathology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Abhay R. Satoskar
- Center for Microbial Interface Biology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
- Department of Pathology, Wexner Medical Center at the Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Wang W, Akbarian V, Audet J. Biochemical measurements on single erythroid progenitor cells shed light on the combinatorial regulation of red blood cell production. MOLECULAR BIOSYSTEMS 2012; 9:234-45. [PMID: 23168618 DOI: 10.1039/c2mb25348h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult bone marrow (BM) erythrocyte colony-forming units (CFU-Es) are important cellular targets for the treatment of anemia and also for the manufacture of red blood cells (RBCs) ex vivo. We obtained quantitative biochemical measurements from single and small numbers of CFU-Es by isolating and analyzing c-Kit(+)CD71(high)Ter119(-) cells from adult mouse BM and this allowed us to identify two mechanisms that can be manipulated to increase RBC production. As expected, maximum RBC output was obtained when CFU-Es were stimulated with a combination of Stem Cell Factor (SCF) and Erythropoietin (EPO) mainly because SCF supports a transient CFU-E expansion and EPO promotes the survival and terminal differentiation of erythroid progenitors. However, we found that one of the main factors limiting the output in RBCs was that EPO induces a downregulation of c-Kit expression which limits the transient expansion of CFU-Es. In the presence of SCF, the EPO-mediated downregulation of c-Kit on CFU-Es is delayed but still significant. Moreover, treatment of CFU-Es with 1-Naphthyl PP1 could partially inhibit the downregulation of c-Kit induced by EPO, suggesting that this process is dependent on a Src family kinase, v-Src and/or c-Fyn. We also found that CFU-E survival and proliferation was dependent on the level of time-integrated extracellular-regulated kinase (ERK) activation in these cells, all of which could be significantly increased when SCF and EPO were combined with mouse fetal liver-derived factors. Taken together, these results suggest two novel molecular strategies to increase RBC production and regeneration.
Collapse
Affiliation(s)
- Weijia Wang
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, 164 College Street, Rm 407, Toronto, ON, Canada M5S 3G9
| | | | | |
Collapse
|
32
|
Moriconi F, Ramadori P, Schultze FC, Blaschke M, Amanzada A, Khan S, Ramadori G. Characterization of the erythropoietin/erythropoietin receptor axis in a rat model of liver damage and cholangiocarcinoma development. Histochem Cell Biol 2012; 139:473-85. [PMID: 23052842 PMCID: PMC3573187 DOI: 10.1007/s00418-012-1037-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 01/28/2023]
Abstract
It has been recently shown that the biological effects of erythropoietin (EPO) are not limited to the hematopoietic compartment but, as pleiotropic glycoprotein, this hormone can exert pro-angiogenic and tissue-protective functions also in a wide range of non-hematopoietic organs. The role of EPO and the effective functionality of its receptor in solid tumors are still a controversial point of debate. In the present work we analyzed the gene expression of EPO and its cognate receptor (EpoR) in a rat model of thioacetamide-induced damage and tumor. An analysis of the EPO/EpoR axis was also performed on human cholangiocarcinoma (CC) cell lines. A progressive increase of EPO and EpoR mRNA can already be observed during the fibrotic–cirrhotic development with a peak of expression rising at tumor formation (24.7 ± 9.9-fold increase and 15.5 ± 1.1-fold increase, respectively, for the two genes). Co-localization studies by immunofluorescence revealed hepatocytes in the regenerative cirrhotic nodules (Hep Par-1+) and in the dysplastic bile duct cells (CK19+) as the major EPO producers in this specific condition. The same cell populations, together with endothelial cells, exhibited an increased expression of EpoR, although all the non-parenchymal cell populations in the liver exhibited modest basal mRNA levels. Challenging human CC cells, Mz-Cha-2, with a combination of EPO and SCF resulted in a synergistic effect on the gene expression of EPO, CyclinD1 and PCNA. This study suggests that the autocrine and paracrine release of endogenous EPO in the microenvironment may contribute to the development and maintenance of the CC possibly in cooperation with other signaling pathways.
Collapse
Affiliation(s)
- Federico Moriconi
- Department of Gastroenterology and Endocrinology, Center of Internal Medicine, University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Ye ZJ, Gulcicek E, Stone K, Lam T, Schulz V, Weissman SM. Complex interactions in EML cell stimulation by stem cell factor and IL-3. Proc Natl Acad Sci U S A 2011; 108:4882-7. [PMID: 21383156 PMCID: PMC3064389 DOI: 10.1073/pnas.1018002108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34- cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone.
Collapse
Affiliation(s)
- Zhi-jia Ye
- Department of Genetics, Yale University, New Haven, CT 06519
- College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Erol Gulcicek
- Keck Center, Yale University, New Haven, CT 06510; and
| | - Kathryn Stone
- Keck Center, Yale University, New Haven, CT 06510; and
| | - Tukiet Lam
- Keck Center, Yale University, New Haven, CT 06510; and
| | - Vincent Schulz
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06510
| | | |
Collapse
|
35
|
Audet J. Adventures in time and space: Nonlinearity and complexity of cytokine effects on stem cell fate decisions. Biotechnol Bioeng 2010; 106:173-82. [PMID: 20198618 DOI: 10.1002/bit.22708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cytokines are central factors in the control of stem cell fate decisions and, as such, they are invaluable to those interested in the manipulation of stem and progenitor cells for clinical or research purposes. In their in vivo niches or in optimized cultures, stem cells are exposed to multiple cytokines, matrix proteins and other cell types that provide individual and combinatorial signals that influence their self-renewal, proliferation and differentiation. Although the individual effects of cytokines are well-characterized in terms of increases or decreases in stem cell expansion or in the production of specific cell lineages, their interactions are often overlooked. Factorial design experiments in association with multiple linear regression is a powerful multivariate approach to derive response-surface models and to obtain a quantitative understanding of cytokine dose and interactions effects. On the other hand, cytokine interactions detected in stem cell processes can be difficult to interpret due to the fact that the cell populations examined are often heterogeneous, that cytokines can exhibit pleiotropy and redundancy and that they can also be endogenously produced. This perspective piece presents a list of possible biological mechanisms that can give rise to positive and negative two-way factor interactions in the context of in vivo and in vitro stem cell-based processes. These interpretations are based on insights provided by recent studies examining intra- and extra-cellular signaling pathways in adult and embryonic stem cells. Cytokine interactions have been classified according to four main types of molecular and cellular mechanisms: (i) interactions due to co-signaling; (ii) interactions due to sequential actions; (iii) interactions due to high-dose saturation and inhibition; and (iv) interactions due to intercellular signaling networks. For each mechanism, possible patterns of regression coefficients corresponding to the cytokine main effects, quadratic effects and two-way interactions effects are provided. Finally, directions for future mechanistic studies are presented.
Collapse
Affiliation(s)
- Julie Audet
- Institute of Biomaterials and Biomedical Engineering and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, RS 407, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Brumatti G, Salmanidis M, Ekert PG. Crossing paths: interactions between the cell death machinery and growth factor survival signals. Cell Mol Life Sci 2010; 67:1619-30. [PMID: 20157838 PMCID: PMC11115775 DOI: 10.1007/s00018-010-0288-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/08/2023]
Abstract
Cytokines and growth factors play a crucial role in the maintenance of haematopoietic homeostasis. They transduce signals that regulate the competing commitments of haematopoietic stem cells, quiescence or proliferation, retention of stem cell pluripotency or differentiation, and survival or demise. When the balance between these commitments and the requirements of the organisms is disturbed, particularly when it favours survival and proliferation, cancer may result. Cell death provoked by loss of growth factor signalling is regulated by the Bcl-2 family of apoptosis regulators, and thus survival messages transduced by growth factors must regulate the activity of these proteins. Many aspects of direct interactions between cytokine signalling and regulation of apoptosis remain elusive. In this review, we explore the mechanisms by which cytokines, in particular Interleukin-3 and granulocyte-macrophage colony-stimulating factor, promote cell survival and suppress apoptosis as models of how cytokine signalling and apoptotic pathways intersect.
Collapse
Affiliation(s)
- Gabriela Brumatti
- Children's Cancer Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Department of Paediatrics, University of Melbourne, Flemington Rd Parkville, Melbourne, 3052, Australia.
| | | | | |
Collapse
|
37
|
Kiykim AA, Genctoy G, Horoz M, Tiftik NE, Gok E, Altun B, Arici M, Haznedaroglu I. Serum Stem Cell Factor Level in Renal Transplant Recipients With Posttransplant Erythrocytosis. Artif Organs 2009; 33:1086-90. [DOI: 10.1111/j.1525-1594.2009.00823.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Kosmider O, Buet D, Gallais I, Denis N, Moreau-Gachelin F. Erythropoietin down-regulates stem cell factor receptor (Kit) expression in the leukemic proerythroblast: role of Lyn kinase. PLoS One 2009; 4:e5721. [PMID: 19492092 PMCID: PMC2683931 DOI: 10.1371/journal.pone.0005721] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/28/2009] [Indexed: 01/17/2023] Open
Abstract
Overexpression of the transcription factor Spi-1/PU.1 by transgenesis in mice induces a maturation arrest at the proerythroblastic stage of differentiation. We have previously isolated a panel of spi-1 transgenic erythroleukemic cell lines that proliferated in the presence of either erythropoietin (Epo) or stem cell factor (SCF). Using these cell lines, we observed that EpoR stimulation by Epo down-regulated expression of the SCF receptor Kit and induced expression of the Src kinase Lyn. Furthermore, enforced expression of Lyn in the cell lines increased cell proliferation in response to Epo, but reduced cell growth in response to SCF in accordance with Lyn ability to down-regulate Kit expression. Together, the data suggest that Epo-R/Lyn signaling pathway is essential for extinction of SCF signaling leading the proerythroblast to strict Epo dependency. These results highlight a new role for Lyn as an effector of EpoR in controlling Kit expression. They suggest that Lyn may play a central role in during erythroid differentiation at the switch between proliferation and maturation.
Collapse
Affiliation(s)
| | - Dorothée Buet
- Inserm U830, Paris, France
- Institut Curie, Paris, France
| | | | - Nicole Denis
- Inserm U830, Paris, France
- Institut Curie, Paris, France
| | | |
Collapse
|
39
|
Ucan BH, Irkorucu O, Cakmak GK, Tascilar O, Tekin IO, Acikgoz S, Emre AU, Bahadir B, Ankarali H, Comert M. Erythropoietin: a possible cytoprotective cytokine in acute necrotizing pancreatitis. ACTA ACUST UNITED AC 2009; 16:530-7. [PMID: 19333535 DOI: 10.1007/s00534-009-0082-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/09/2008] [Indexed: 01/30/2023]
Abstract
BACKGROUND/PURPOSE Despite decades of research and clinical trials, a specific therapeutic treatment for acute pancreatitis (AP) has yet to be developed. The aim of the present study was to investigate the effects of erythropoietin on the severity of taurocolic acid-induced acute necrotizing pancreatitis. METHODS Forty-seven male Wistar albino rats were randomized into seven experimental groups. In group I, animals were sham-operated (n = 5). In groups II, III, IV, IIepo, IIIepo, and IVepo, AP was induced by sodium taurodeoxycholate treatment (n = 7). In groups II, III, and IV, 1 ml normal saline and in groups IIepo, IIIepo, and IVepo, 1000 U/kg body weight erythropoietin (EPO) was administered intramuscularly immediately after the induction of AP. Animals were killed at 24, 48, and 72 h postoperatively. Histopathological and biochemical evaluations were performed. RESULTS The serum levels of interleukin-6 (IL-6) and tissue levels of malondialdehyde were found to be significantly lower in EPO-administered groups when compared with the levels in groups without EPO treatment. The severity of pancreatic edema, acinar necrosis, inflammation, and perivascular infiltrate were reduced in all the EPO groups compared with the no-treatment groups. CONCLUSIONS Our findings may reflect the possible cytoprotective effect of EPO in acute necrotizing pancreatitis.
Collapse
Affiliation(s)
- Bulent Hamdi Ucan
- Zonguldak Karaelmas University, School of Medicine, Zonguldak, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Agosti V, Karur V, Sathyanarayana P, Besmer P, Wojchowski DM. A KIT juxtamembrane PY567 -directed pathway provides nonredundant signals for erythroid progenitor cell development and stress erythropoiesis. Exp Hematol 2009; 37:159-71. [PMID: 19100679 PMCID: PMC2701661 DOI: 10.1016/j.exphem.2008.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 10/06/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE KITL/KIT can elicit diverse sets of signals within lymphoid, myeloid, mast, and erythroid lineages, and exert distinct effects on growth, survival, migration, adhesion, and secretory responses. Presently, we have applied a PY-mutant allele knockin approach to specifically assess possible roles for KIT-PY567 and KIT-PY719 sites, and coupled pathways, during erythropoiesis. MATERIALS AND METHODS Mouse models used to investigate this problem include those harboring knocked-in KIT(Y567F/Y567F), KIT(Y569F/Y569F), KIT(Y719F,Y719F), and KIT(Y567F/Y567F:Y569F/Y569F) alleles. The erythron was stressed by myelosuppression using 5-fluorouracil, and by phenylhydrazine-induced hemolysis. In addition, optimized systems for ex vivo analyses of bone marrow and splenic erythropoiesis were employed to more directly analyze possible stage-specific effects on erythroid cell growth, survival, development and KIT signaling events. RESULTS In Kit(Y567F/Y567F) mice, steady-state erythropoiesis was unperturbed while recovery from anemia due to 5-fluorouracil or phenylhydrazine was markedly impaired. Deficiencies in erythroid progenitor expansion occurred both in the bone marrow and the spleen. Responses to chronic erythropoietin dosing were also compromised. Ex vivo, Kit(Y567F/Y567F) (pro)erythroblast development was skewed from a Kit(pos)CD71(high) stage toward a subsequent Kit(neg)CD71(high) compartment. Proliferation and, to an extent, survival capacities were also compromised. Similar stage-specific defects existed for erythroid progenitors from Kit(Y567F/Y567F:Y569F/Y569F) but not KIT(Y719F/Y719F) mice. Kit(Y567F/Y567F) erythroblasts were used further to analyze KIT-PY567-dependent signals. MEK-1,2/ERK-1,2 signaling was unaffected while AKT, p70S6K, and especially JNK2/p54 pathways were selectively attenuated. CONCLUSIONS Nonredundant KIT-PY567-directed erythroblast-intrinsic signals are selectively critical for stress erythropoiesis. Investigations also add to an understanding of how KIT directs distinct outcomes among diverse progenitors and lineages.
Collapse
Affiliation(s)
- Valter Agosti
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY., USA
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Vinit Karur
- Stem & Progenitor Cell Biology Program, Division of Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Pradeep Sathyanarayana
- Stem & Progenitor Cell Biology Program, Division of Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Peter Besmer
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY., USA
| | - Don M. Wojchowski
- Stem & Progenitor Cell Biology Program, Division of Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| |
Collapse
|
41
|
Hong L, Ramdas B, Chen J, Harris C, Wojchowski DM, Kapur R. KIT associated intracellular tyrosines play an essential role in EpoR co-signaling. Cell Signal 2008; 20:1513-20. [PMID: 18538998 PMCID: PMC2666019 DOI: 10.1016/j.cellsig.2008.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/20/2008] [Accepted: 04/07/2008] [Indexed: 02/04/2023]
Abstract
KIT and erythropoietin receptor (EpoR) mediated co-signaling is essential for normal erythroid cell expansion, however the intracellular signals that contribute to cooperative signaling are poorly understood. Here, we examined the role of intracellular tyrosine residues in KIT and EpoR cooperation by co-expressing tyrosine (Y) to phenylalanine (F) and deletion mutants of KIT and EpoR in 32D cells. Of the four EpoR mutants examined, only EpoR-Y343 induced proliferation to near wildtype EpoR levels. A modest increase in the growth was also observed in 32D cells expressing the EpoR-Y343F; however neither EpoR-W282R nor EpoR-F8 showed any increase in growth over baseline. Biochemical analysis revealed that EpoR-Y343 induced the activation of Stat5, PI-3Kinase/Akt and MAP kinase Erk1/2 to near wildtype EpoR levels, while the remaining mutants failed to activate any of these signals. Interestingly, none of the EpoR mutants cooperated with WT KIT, although EpoR-Y343 showed a modest increase in co-signaling. Loss of seven tyrosine residues in KIT (KIT-F7) completely abrogated EpoR induced co-signaling. Restoring the Src kinase binding sites in KIT-F7 alone or together with the PI3Kinase binding site restored KIT induced signals as well as co-signals with WT EpoR, although restoring the Src kinase binding sites along with the PLC-gamma binding site repressed both KIT induced signaling as well as co-signaling with WT EpoR. Taken together, these results suggest that KIT and EpoR mediated co-signaling requires intracellular tyrosine residues and tyrosine residues that bind Src kinases in the KIT receptor appear to be sufficient for restoring both KIT signaling as well as co-signaling with EpoR. In contrast, restoration of the PLC-gamma binding site in the context of Src binding sites appears to antagonize the positive signals induced via the Src kinase binding sites in the KIT receptor.
Collapse
Affiliation(s)
- Li Hong
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
42
|
Grebien F, Kerenyi MA, Kovacic B, Kolbe T, Becker V, Dolznig H, Pfeffer K, Klingmüller U, Müller M, Beug H, Müllner EW, Moriggl R. Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood 2008; 111:4511-22. [PMID: 18239084 PMCID: PMC2976848 DOI: 10.1182/blood-2007-07-102848] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Erythropoiesis requires erythropoietin (Epo) and stem cell factor (SCF) signaling via their receptors EpoR and c-Kit. EpoR, like many other receptors involved in hematopoiesis, acts via the kinase Jak2. Deletion of EpoR or Janus kinase 2 (Jak2) causes embryonic lethality as a result of defective erythropoiesis. The contribution of distinct EpoR/Jak2-induced signaling pathways (mitogen-activated protein kinase, phosphatidylinositol 3-kinase, signal transducer and activator of transcription 5 [Stat5]) to functional erythropoiesis is incompletely understood. Here we demonstrate that expression of a constitutively activated Stat5a mutant (cS5) was sufficient to relieve the proliferation defect of Jak2(-/-) and EpoR(-/-) cells in an Epo-independent manner. In addition, tamoxifen-induced DNA binding of a Stat5a-estrogen receptor (ER)* fusion construct enabled erythropoiesis in the absence of Epo. Furthermore, c-Kit was able to enhance signaling through the Jak2-Stat5 axis, particularly in lymphoid and myeloid progenitors. Although abundance of hematopoietic stem cells was 2.5-fold reduced in Jak2(-/-) fetal livers, transplantation of Jak2(-/-)-cS5 fetal liver cells into irradiated mice gave rise to mature erythroid and myeloid cells of donor origin up to 6 months after transplantation. Cytokine- and c-Kit pathways do not function independently of each other in hematopoiesis but cooperate to attain full Jak2/Stat5 activation. In conclusion, activated Stat5 is a critical downstream effector of Jak2 in erythropoiesis/myelopoiesis, and Jak2 functionally links cytokine- with c-Kit-receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Florian Grebien
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Marc A. Kerenyi
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Boris Kovacic
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, Veterinary University Vienna, Vienna, Austria
- Department of Agrobiotechnology, IFA (Interuniversitären Forschungsinstitutes für Agrarbiotechnologie)–Tulln, Biotechnology in Animal Production, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | - Helmut Dolznig
- Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Klaus Pfeffer
- Institute of Medical Microbiology, Heinrich-Heine University, Duesseldorf, Germany
| | | | - Mathias Müller
- Biomodels Austria, Veterinary University Vienna, Vienna, Austria
- Institute of Animal Breeding and Genetics, Veterinary University Vienna, Vienna, Austria
| | - Hartmut Beug
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ernst W. Müllner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| |
Collapse
|
43
|
Wang W, Horner DN, Chen WLK, Zandstra PW, Audet J. Synergy between erythropoietin and stem cell factor during erythropoiesis can be quantitatively described without co-signaling effects. Biotechnol Bioeng 2008; 99:1261-72. [DOI: 10.1002/bit.21677] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Paffett-Lugassy N, Hsia N, Fraenkel PG, Paw B, Leshinsky I, Barut B, Bahary N, Caro J, Handin R, Zon LI. Functional conservation of erythropoietin signaling in zebrafish. Blood 2007; 110:2718-26. [PMID: 17579187 PMCID: PMC1988930 DOI: 10.1182/blood-2006-04-016535] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/08/2006] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (Epo) and its cognate receptor (EpoR) are required for maintaining adequate levels of circulating erythrocytes during embryogenesis and adulthood. Here, we report the functional characterization of the zebrafish epo and epor genes. The expression of epo and epor was evaluated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization, revealing marked parallels between zebrafish and mammalian gene expression patterns. Examination of the hypochromic mutant, weissherbst, and adult hypoxia-treated hearts indicate that zebrafish epo expression is induced by anemia and hypoxia. Overexpression of epo mRNA resulted in severe polycythemia, characterized by a striking increase in the number of cells expressing scl, c-myb, gata1, ikaros, epor, and betae1-globin, suggesting that both the erythroid progenitor and mature erythrocyte compartments respond to epo. Morpholino-mediated knockdown of the epor caused a slight decrease in primitive and complete block of definitive erythropoiesis. Abrogation of STAT5 blocked the erythropoietic expansion by epo mRNA, consistent with a requirement for STAT5 in epo signaling. Together, the characterization of zebrafish epo and epor demonstrates the conservation of an ancient program that ensures proper red blood cell numbers during normal homeostasis and under hypoxic conditions.
Collapse
Affiliation(s)
- Noëlle Paffett-Lugassy
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen L, Gao Z, Zhu J, Rodgers GP. Identification of CD13+CD36+ cells as a common progenitor for erythroid and myeloid lineages in human bone marrow. Exp Hematol 2007; 35:1047-55. [PMID: 17588473 PMCID: PMC2693325 DOI: 10.1016/j.exphem.2007.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/02/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To identify bipotential precursor cells of erythroid and myeloid development in human bone marrow. MATERIALS AND METHODS Cells coexpressing CD13 and CD36 (CD13+CD36+) were investigated by analyzing cell-surface marker expression during erythroid development (induced with a combination of cytokines plus erythropoietin), or myeloid development (induced with the same cocktail of cytokines plus granulocyte colony-stimulating factor of bone marrow-derived CD133 cells in liquid cultures. CD13+CD36+ subsets were also isolated on the 14(th) day of cultures and further evaluated for their hematopoietic clonogenic capacity in methylcellulose. RESULTS Colony-forming analysis of sorted CD13+CD36+ cells of committed erythroid and myeloid lineages demonstrated that these cells were able to generate erythroid, granulocyte, and mixed erythroid-granulocyte colonies. In contrast, CD13+CD36- or CD13-CD36+ cells exclusively committed to granulocyte/monocyte or erythroid colonies, respectively, but failed to form mixed erythroid-granulocyte colonies; no colonies were detected in CD13-CD36- cells with lineage-supporting cytokines. In addition, our data confirmed that erythropoietin induced both erythroid and myeloid commitment, while granulocyte colony-stimulating factor only supported the differentiation of the myeloid lineage. CONCLUSIONS The present data identify some CD13+CD36+ cells as bipotential precursors of erythroid and myeloid commitment in normal hematopoiesis. They provide a physiological explanation for the cell identification of myeloid and erythroid lineages observed in hematopoietic diseases. This unique fraction of CD13+CD36+ cells may be useful for further studies on regulating erythroid and myeloid differentiation during normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Ling Chen
- Molecular and Clinical Hematology Branch (MCHB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, First Affiliated Hospital, Zunyi Medical College, Zunyi, Guizhou, China
| | - Zhigang Gao
- Molecular and Clinical Hematology Branch (MCHB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch (MCHB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Griffin P. Rodgers
- Molecular and Clinical Hematology Branch (MCHB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Jahn T, Sindhu S, Gooch S, Seipel P, Lavori P, Leifheit E, Weinberg K. Direct interaction between Kit and the interleukin-7 receptor. Blood 2007; 110:1840-7. [PMID: 17554063 PMCID: PMC1976346 DOI: 10.1182/blood-2005-12-028019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo analyses of thymopoiesis in mice defective in signaling through Kit and gammac or Kit and IL-7Ralpha demonstrate synergy and partial complementation of gammac or IL-7-mediated signaling by the Kit signaling pathway. Our molecular analysis in T-lymphoid cells as well as in nonhematopoietic cells shows that Kit and IL-7R signaling pathways directly interact. KL-mediated activation of Kit induced strong tyrosine phosphorylation of gammac and IL-7Ralpha in the absence of IL-7. Activated Kit formed a complex with either IL-7Ralpha or gammac, and tyrosine phosphorylation of both subunits occurred independently of Jak3, suggesting that gammac and IL-7Ralpha are each direct substrates of Kit. Kit activated Jak3 in an IL-7R-dependent manner. Moreover, deficient Stat5 activation of the Kit mutant YY567/569FF lacking intrinsic Src activation capacity was partially reconstituted in the presence of IL-7R and Jak3. Based on the molecular data, we propose a model of Kit-mediated functional activation of gammac-containing receptors such as IL-7R, similar to the interaction between Kit and Epo-R. Such indirect activation of the Jak-Stat pathway induced by the interaction between an RTK and type I cytokine receptor could be the underlying mechanism for a context-specific signaling repertoire of a pleiotropic RTK-like Kit.
Collapse
Affiliation(s)
- Thomas Jahn
- Division of Research Immunology and Bone Marrow Transplantation, Childrens Hospital Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Sharma S, Gurudutta GU, Satija NK, Pati S, Afrin F, Gupta P, Verma YK, Singh VK, Tripathi RP. Stem cell c-KIT and HOXB4 genes: critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cells Dev 2007; 15:755-78. [PMID: 17253940 DOI: 10.1089/scd.2006.15.755] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess a distinct ability to perpetuate through self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. A better understanding of the molecular mechanisms by which HSCs replicate and differentiate from the perspective of developing new approaches for HSC transplantation is necessary for further advances. The interaction of the receptor tyrosine kinase--c-KIT--with its ligand stem cell factor plays a key role in HSC survival, mitogenesis, proliferation, differentiation, adhesion, homing, migration, and functional activation. Evidence that activating site-directed point mutations in the c-KIT gene contributes to its ligand-independent constitutive activation, which induces enhanced proliferation of HSCs, is accumulating. Similarly, and equally important, self-renewal is a process by which HSCs generate daughter cells via division. Self-renewal is necessary for retaining the HSC pool. Therefore, elucidating the molecular machinery that governs self-renewal is of key importance. The transcription factor, HOXB4 is a key molecule that has been reported to induce the in vitro expansion of HSCs via self-renewal. However, critical downstream effector molecules of HOXB4 remain to be determined. This concisely reviewed information on c-KIT and HOXB4 helps us to update our understanding of their function and mechanism of action in self-renewal, proliferation, and differentiation of HSCs, particularly modulation by c-KIT mutant interactions, and HOXB4 overexpression showing certain therapeutic implications.
Collapse
Affiliation(s)
- Shilpa Sharma
- Stem-Cell Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Delhi, India-110054
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sivertsen EA, Hystad ME, Gutzkow KB, Døsen G, Smeland EB, Blomhoff HK, Myklebust JH. PI3K/Akt-dependent Epo-induced signalling and target genes in human early erythroid progenitor cells. Br J Haematol 2006; 135:117-28. [PMID: 16965383 DOI: 10.1111/j.1365-2141.2006.06252.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Erythropoietin (Epo) is the major regulator of differentiation, proliferation and survival of erythroid progenitors, but the Epo-induced changes in gene expression that lead to these effects are not fully understood. The aim of this study was to examine how Epo, via activation of phosphatidylinositol 3-kinase (PI3K)/Akt, exerts its role in the development of erythroid progenitors from CD34+ cells, and to identify early Epo target genes in human erythroid progenitors. In CD34+ progenitor cells, Epo alone was able to induce cell cycle progression as demonstrated by upregulation of cyclin D3, E and A leading to hyperphosphorylation of the retinoblastoma protein (RB). These effects were completely counteracted by the PI3K inhibitor LY294002. Furthermore, enforced expression of an activated form of Akt kinase highly augmented Epo-induced erythropoiesis. Fluorescent-activated cell sorting (FACS)-sorted CD34+CD71+CD45RA-GPA- erythroid progenitors stimulated with Epo in the presence or absence of LY294002 were subjected to gene expression profiling. Several novel target genes of Epo were identified, and the majority were regulated in a PI3K-dependent manner, including KIT (CD117) and CDH1 (E-cadherin). FACS analysis of Epo-stimulated erythroid progenitors showed that the increased mRNA expression of KIT and CDH1 was accompanied by an induction of the corresponding proteins CD117 and E-cadherin.
Collapse
Affiliation(s)
- Einar Andreas Sivertsen
- Department of Immunology, Institute of Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
49
|
Um M, Gross AW, Lodish HF. A "classical" homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytoma PC-12 cells. Cell Signal 2006; 19:634-45. [PMID: 17045782 DOI: 10.1016/j.cellsig.2006.08.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/21/2006] [Indexed: 02/01/2023]
Abstract
The hematopoietic cytokine erythropoietin (Epo) exerts cytoprotective effects on several types of neuronal cells both in vivo and in culture. Detailed molecular mechanisms underlying this phenomenon have not been elucidated and even the identity of the cytoprotective Epo receptors in neuronal cells is controversial. Here we show that Epo prevents staurosporine-induced apoptosis of differentiated human neuroblastoma SH-SY5Y cells, and activates the STAT5, AKT and MAPK signaling pathways. Differentiated SH-SY5Y cells have fewer than 50 high affinity Epo surface binding sites per cell, which could not be detected by standard assays measuring binding of 125I-labeled Epo. However, by measuring endocytosis of 125I-Epo, we could reliably quantify very small numbers of high-affinity Epo surface binding sites. Using SH-SY5Y cells stably expressing an Epo receptor (EpoR) shRNA and thus lacking detectable EpoR expression, we show that high affinity binding of Epo to these neuronal cells is mediated by the hematopoietic EpoR, and that this EpoR is also essential for the antiapoptotic activity of Epo. In contrast, a mutant Epo that has an intact binding site 1 but a non-functional binding site 2 and hence binds only to one cell surface EpoR molecule ("site 2" Epo mutant) displays significantly lower antiapoptotic activity than wild-type Epo. Furthermore, expression of the GM-CSF/IL-3/IL-5 receptor common beta chain, which was proposed to be responsible for the cytoprotective activity of Epo on certain types of neuronal cells, was undetectable in differentiated SH-SY5Y cells. Epo also alleviated staurosporine-induced apoptosis of rat PC-12 pheochromocytoma cells while the R103A "site 2" Epo mutant did not, and we could not detect expression of the common beta chain in PC-12 cells. Together our results indicate that Epo exerts its antiapoptotic effects on differentiated SH-SY5Y and PC-12 cells through the standard stoichiometry of one molecule of Epo binding to two EpoR subunits, comprising the "classical" Epo receptor signaling complex.
Collapse
Affiliation(s)
- Moonkyoung Um
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
50
|
Claessens YE, Fontenay M, Pene F, Chiche JD, Guesnu M, Hababou C, Casadevall N, Dhainaut JF, Mira JP, Cariou A. Erythropoiesis abnormalities contribute to early-onset anemia in patients with septic shock. Am J Respir Crit Care Med 2006; 174:51-7. [PMID: 16574939 DOI: 10.1164/rccm.200504-561oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE The intimate mechanisms of early onset anemia observed in critically ill patients with septic shock remain unclear. OBJECTIVES We investigated erythropoiesis abnormalities in this setting by studying morphologic, functional, and biochemical patterns of erythroid lineage. METHODS Erythroid lineage in the bone marrow from patients with septic shock who developed early-onset anemia was compared with that of healthy control subjects. Survival and proliferation capacities were quantified in both groups. Biochemical and flow cytometry patterns of apoptosis were dissected by exploring antiapoptotic (erythropoietin [Epo] receptor-dependent) and proapoptotic (death receptor-dependent) pathways. MEASUREMENTS AND MAIN RESULTS Erythroid lineage was morphologically similar in both groups. Apoptosis of glycophorin-A-positive erythroid precursors was increased in patients versus control subjects as assessed by labeling with annexin V (26.1 +/- 8.8 vs. 3.1 +/- 2.9%, p < 0.05) or 3-3'-dihexyloxacarbocyanine iodide (55.9 +/- 10.5 vs. 19.1 +/- 5.4%, p < 0.05), respectively. This was associated with significant overexpression of Fas on erythroid precursors and higher tumor necrosis factor-alpha plasma levels in patients with septic shock vs. control subjects. Moreover, growth capacities of late erythroid progenitors of burst-forming unit erythroids (BFU-Es) at Day 10 were impaired in the presence of serum from patients with septic shock as compared with the effect of serum from control subjects (27 +/- 12 vs. 109 +/- 27 per 10(5) seeded cells, respectively; p < 0.001). Saturating concentrations of recombinant human Epo (rHuEpo) restored growth capacity of patients' BFU-Es (72 +/- 14 per 10(5) seeded cells) in autologous conditions of serum. CONCLUSIONS Early-onset anemia that may be observed in patients with septic shock is associated with defective erythropoiesis related to an excess of apoptosis that can be counterbalanced in vitro by rHuEpo.
Collapse
Affiliation(s)
- Yann-Erick Claessens
- Medical Intensive Care Unit, Cochin Hospital, APHP Université Paris-Descartes, 27 rue du Faubourg Saint-Jacques, F-75679 Paris, Cedex 14, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|