1
|
Escudero-Flórez M, Torres-Hoyos D, Miranda-Brand Y, Boudreau RL, Gallego-Gómez JC, Vicente-Manzanares M. Dengue Virus Infection Alters Inter-Endothelial Junctions and Promotes Endothelial-Mesenchymal-Transition-Like Changes in Human Microvascular Endothelial Cells. Viruses 2023; 15:1437. [PMID: 37515125 PMCID: PMC10386726 DOI: 10.3390/v15071437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Dengue virus (DENV) is a pathogenic arbovirus that causes human disease. The most severe stage of the disease (severe dengue) is characterized by vascular leakage, hypovolemic shock, and organ failure. Endothelial dysfunction underlies these phenomena, but the causal mechanisms of endothelial dysfunction are poorly characterized. This study investigated the role of c-ABL kinase in DENV-induced endothelial dysfunction. Silencing c-ABL with artificial miRNA or targeting its catalytic activity with imatinib revealed that c-ABL is required for the early steps of DENV infection. DENV-2 infection and conditioned media from DENV-infected cells increased endothelial expression of c-ABL and CRKII phosphorylation, promoted expression of mesenchymal markers, e.g., vimentin and N-cadherin, and decreased the levels of endothelial-specific proteins, e.g., VE-cadherin and ZO-1. These effects were reverted by silencing or inhibiting c-ABL. As part of the acquisition of a mesenchymal phenotype, DENV infection and treatment with conditioned media from DENV-infected cells increased endothelial cell motility in a c-ABL-dependent manner. In conclusion, DENV infection promotes a c-ABL-dependent endothelial phenotypic change that leads to the loss of intercellular junctions and acquisition of motility.
Collapse
Affiliation(s)
- Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - David Torres-Hoyos
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Yaneth Miranda-Brand
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Ryan L. Boudreau
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Juan Carlos Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Shi L, Racedo SE, Diacou A, Park T, Zhou B, Morrow BE. Crk and Crkl have shared functions in neural crest cells for cardiac outflow tract septation and vascular smooth muscle differentiation. Hum Mol Genet 2021; 31:1197-1215. [PMID: 34686881 PMCID: PMC9029238 DOI: 10.1093/hmg/ddab313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
CRK and CRKL encode cytoplasmic adaptors that contribute to the etiology of congenital heart disease. Neural crest cells (NCCs) are required for cardiac outflow tract (OFT) septation and aortic arch formation. The roles of Crk/Crkl in NCCs during mouse cardiovascular development remains unknown. To test this, we inactivated Crk and/or Crkl in NCCs. We found that the loss of Crk, rather than Crkl, in NCCs resulted in double outlet right ventricle, while loss of both Crk/Crkl in NCCs resulted in severe defects with earlier lethality due to failed OFT septation and severe dilation of the pharyngeal arch arteries (PAAs). We found that these defects are due to altered cell morphology resulting in reduced localization of NCCs to the OFT and failed integrity of the PAAs, along with reduced expression of Integrin signaling genes. Further, molecular studies identified reduced differentiation of vascular smooth muscle cells that may in part be due to altered Notch signaling. Additionally, there is increased cellular stress that leads to modest increase in apoptosis. Overall, this explains the mechanism for the Crk/Crkl phenotype.
Collapse
Affiliation(s)
- Lijie Shi
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Silvia E Racedo
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Alexander Diacou
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Taeju Park
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Why Should Growth Hormone (GH) Be Considered a Promising Therapeutic Agent for Arteriogenesis? Insights from the GHAS Trial. Cells 2020; 9:cells9040807. [PMID: 32230747 PMCID: PMC7226428 DOI: 10.3390/cells9040807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 01/07/2023] Open
Abstract
Despite the important role that the growth hormone (GH)/IGF-I axis plays in vascular homeostasis, these kind of growth factors barely appear in articles addressing the neovascularization process. Currently, the vascular endothelium is considered as an authentic gland of internal secretion due to the wide variety of released factors and functions with local effects, including the paracrine/autocrine production of GH or IGF-I, for which the endothelium has specific receptors. In this comprehensive review, the evidence involving these proangiogenic hormones in arteriogenesis dealing with the arterial occlusion and making of them a potential therapy is described. All the elements that trigger the local and systemic production of GH/IGF-I, as well as their possible roles both in physiological and pathological conditions are analyzed. All of the evidence is combined with important data from the GHAS trial, in which GH or a placebo were administrated to patients suffering from critical limb ischemia with no option for revascularization. We postulate that GH, alone or in combination, should be considered as a promising therapeutic agent for helping in the approach of ischemic disease.
Collapse
|
5
|
Liu M, Zhang Y, Yang J, Cui X, Zhou Z, Zhan H, Ding K, Tian X, Yang Z, Fung KMA, Edil BH, Postier RG, Bronze MS, Fernandez-Zapico ME, Stemmler MP, Brabletz T, Li YP, Houchen CW, Li M. ZIP4 Increases Expression of Transcription Factor ZEB1 to Promote Integrin α3β1 Signaling and Inhibit Expression of the Gemcitabine Transporter ENT1 in Pancreatic Cancer Cells. Gastroenterology 2020; 158:679-692.e1. [PMID: 31711924 PMCID: PMC7837454 DOI: 10.1053/j.gastro.2019.10.038] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Pancreatic tumors undergo rapid growth and progression, become resistant to chemotherapy, and recur after surgery. We studied the functions of the solute carrier family 39 member 4 (SLC39A4, also called ZIP4), which regulates concentrations of intracellular zinc and is increased in pancreatic cancer cells, in cell lines and mice. METHODS We obtained 93 pancreatic cancer specimens (tumor and adjacent nontumor tissues) from patients who underwent surgery and gemcitabine chemotherapy and analyzed them by immunohistochemistry. ZIP4 and/or ITGA3 or ITGB1 were overexpressed or knocked down with short hairpin RNAs in AsPC-1 and MIA PaCa-2 pancreatic cancer cells lines, and in pancreatic cells from KPC and KPC-ZEB1-knockout mice, and pancreatic spheroids were established; cells and spheroids were analyzed by immunoblots, reverse transcription polymerase chain reaction, and liquid chromatography tandem mass spectrometry. We studied transcriptional regulation of ZEB1, ITGA3, ITGB1, JNK, and ENT1 by ZIP4 using chromatin precipitation and luciferase reporter assays. Nude mice were given injections of genetically manipulated AsPC-1 and MIA PaCa-2 cells, and growth of xenograft tumors and metastases was measured. RESULTS In pancreatic cancer specimens from patients, increased levels of ZIP4 were associated with shorter survival times. MIA PaCa-2 cells that overexpressed ZIP4 had increased resistance to gemcitabine, 5-fluorouracil, and cisplatin, whereas AsPC-1 cells with ZIP4 knockdown had increased sensitivity to these drugs. In mice, xenograft tumors grown from AsPC-1 cells with ZIP4 knockdown were smaller and more sensitive to gemcitabine. ZIP4 overexpression significantly reduced accumulation of gemcitabine in pancreatic cancer cells, increased growth of xenograft tumors in mice, and increased expression of the integrin subunits ITGA3 and ITGB1; expression levels of ITGA3 and ITGB1 were reduced in cells with ZIP4 knockdown. Pancreatic cancer cells with ITGA3 or ITGB1 knockdown had reduced proliferation and formed smaller tumors in mice, despite overexpression of ZIP4; spheroids established from these cells had increased sensitivity to gemcitabine. We found ZIP4 to activate STAT3 to induce expression of ZEB1, which induced expression of ITGA3 and ITGB1 in KPC cells. Increased ITGA3 and ITGB1 expression and subsequent integrin α3β1 signaling, via c-Jun-N-terminal kinase (JNK), inhibited expression of the gemcitabine transporter ENT1, which reduced gemcitabine uptake by pancreatic cancer cells. ZEB1-knockdown cells had increased sensitivity to gemcitabine. CONCLUSIONS In studies of pancreatic cancer cell lines and mice, we found that ZIP4 increases expression of the transcription factor ZEB1, which activates expression of ITGA3 and ITGB1. The subsequent increase in integrin α3β1 signaling, via JNK, inhibits expression of the gemcitabine transporter ENT1, so that cells take up smaller amounts of the drug. Activation of this pathway might help mediate resistance of pancreatic tumors to chemotherapeutic agents.
Collapse
Affiliation(s)
- Mingyang Liu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuqing Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xiaobo Cui
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hanxiang Zhan
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xiang Tian
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma
| | - Kar-Ming A. Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Barish H. Edil
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Russell G. Postier
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael S. Bronze
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Martin E. Fernandez-Zapico
- Department of Oncology, Mayo Clinic, Rochester, Minnesota;,Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Marc P. Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | - Yi-Ping Li
- Department of Integrative Biology & Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas
| | - Courtney W. Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
6
|
Adaptor protein CrkII negatively regulates osteoblast differentiation and function through JNK phosphorylation. Exp Mol Med 2019; 51:1-10. [PMID: 31554784 PMCID: PMC6802640 DOI: 10.1038/s12276-019-0314-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
The adaptor protein CrkII is involved in several biological activities, including mitogenesis, phagocytosis, and cytoskeleton reorganization. Previously, we demonstrated that CrkII plays an important role in osteoclast differentiation and function through Rac1 activation both in vitro and in vivo. In this study, we investigated whether CrkII also regulates the differentiation and function of another type of bone cells, osteoblasts. Overexpression of CrkII in primary osteoblasts inhibited bone morphogenetic protein (BMP) 2-induced osteoblast differentiation and function, whereas knockdown of CrkII expression exerted the opposite effect. Importantly, CrkII strongly enhanced c-Jun-N-terminal kinase (JNK) phosphorylation, and the CrkII overexpression-mediated attenuation of osteoblast differentiation and function was recovered by JNK inhibitor treatment. Furthermore, transgenic mice overexpressing CrkII under control of the alpha-1 type I collagen promoter exhibited a reduced bone mass phenotype. Together, these results indicate that CrkII negatively regulates osteoblast differentiation and function through JNK phosphorylation. Given that CrkII acts as a negative and positive regulator of osteoblast and osteoclast differentiation, respectively, the regulation of CrkII expression in bone cells may help to develop new strategies to enhance bone formation and inhibit bone resorption.
Collapse
|
7
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
8
|
Yi SJ, Hwang SY, Oh MJ, Kim K, Jhun BH. Carboxy-terminal domain of Cas differentially modulates c-Jun expression, DNA synthesis, and membrane ruffling induced by insulin, EGF, and IGF-1. Anim Cells Syst (Seoul) 2018; 22:69-75. [PMID: 30460082 PMCID: PMC6138344 DOI: 10.1080/19768354.2018.1447013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/25/2018] [Accepted: 02/18/2018] [Indexed: 12/23/2022] Open
Abstract
p130 Crk-associated substrate (Cas) is an adaptor protein associating with many other signaling proteins and regulates a various biological processes including cell adhesion, migration, and growth factor stimulation. However, the exact functional role of Cas in growth factor signaling pathway was poorly understood. Here we investigated the role of Cas and its domains in the effects of insulin, EGF, and IGF-1 on c-Jun gene expression, DNA synthesis, cytoskeletal reorganization. We found that microinjection of anti-Cas antibody and C-terminal domain of Cas (Cas-CT) specifically inhibited EGF-induced, but not insulin- or IGF-1-induced, c-Jun expression. Cell cycle progression and cytoskeleton reorganization induced by insulin and EGF, but not by IGF-1, were inhibited by microinjected anti-Cas and Cas-CT. In contrast, microinjection of the substate domain (Cas-SD) of Cas did not have any inhibitory effects. These results revealed that the Cas-CT is differentially implicated in insulin and EGF-mediated, but not IGF-1-mediated, c-Jun expression, DNA synthesis and membrane ruffling.
Collapse
Affiliation(s)
- Sun-Ju Yi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong Yun Hwang
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Myung-Ju Oh
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Kyunghwan Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Byung H Jhun
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Park T, Koptyra M, Curran T. Fibroblast Growth Requires CT10 Regulator of Kinase (Crk) and Crk-like (CrkL). J Biol Chem 2016; 291:26273-26290. [PMID: 27807028 DOI: 10.1074/jbc.m116.764613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
CT10 regulator of kinase (Crk) and Crk-like (CrkL) are the cellular counterparts of the viral oncogene v-Crk Elevated levels of Crk and CrkL have been observed in many human cancers; inhibition of Crk and CrkL expression reduced the tumor-forming potential of cancer cell lines. Despite a close relationship between the Crk family proteins and tumorigenesis, how Crk and CrkL contribute to cell growth is unclear. We ablated endogenous Crk and CrkL from cultured fibroblasts carrying floxed alleles of Crk and CrkL by transfection with synthetic Cre mRNA (synCre). Loss of Crk and CrkL induced by synCre transfection blocked cell proliferation and caused shrinkage of the cytoplasm and the nucleus, formation of adherens junctions, and reduced cell motility. Ablation of Crk or CrkL alone conferred a much more modest reduction in cell proliferation. Reintroduction of CrkI, CrkII, or CrkL individually rescued cell proliferation in the absence of the endogenous Crk and CrkL, suggesting that Crk and CrkL play overlapping functions in regulating fibroblast growth. Serum and basic FGF induced phosphorylation of Akt, MAP kinases, and S6 kinase and Fos expression in the absence of Crk and CrkL, suggesting that cells lacking Crk and CrkL are capable of initiating major signal transduction pathways in response to extracellular stimuli. Furthermore, cell cycle and cell death analyses demonstrated that fibroblasts lacking Crk and CrkL become arrested at the G1-S transition and undergo a modest apoptosis. Taken together, our results suggest that Crk and CrkL play essential overlapping roles in fibroblast growth.
Collapse
Affiliation(s)
- Taeju Park
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| | - Mateusz Koptyra
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| | - Tom Curran
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| |
Collapse
|
10
|
Braiman A, Isakov N. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration. Front Immunol 2015; 6:509. [PMID: 26500649 PMCID: PMC4593252 DOI: 10.3389/fimmu.2015.00509] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. They are involved in early steps of lymphocyte activation through their SH2-mediated transient interaction with signal transducing effector molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, they constitutively associate, via their SH3 domain, with effector molecules, such as C3G, that mediate cell adhesion and regulate lymphocyte extravasation and recruitment to sites of inflammation. Recent studies demonstrated that the conformation and function of CrkII is subjected to a regulation by immunophilins, which also affect CrkII-dependent T-cell adhesion to fibronectin and migration toward chemokines. This article addresses mechanisms that regulate CrkII conformation and function, in general, and emphasizes the role of Crk proteins in receptor-coupled signaling pathways that control T-lymphocyte adhesion and migration to inflammatory sites.
Collapse
Affiliation(s)
- Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel ; School of Pharmacy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
11
|
p130Cas scaffolds the signalosome to direct adaptor-effector cross talk during Kaposi's sarcoma-associated herpesvirus trafficking in human microvascular dermal endothelial cells. J Virol 2014; 88:13858-78. [PMID: 25253349 DOI: 10.1128/jvi.01674-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE Eukaryotic cell adaptor molecules, without any intrinsic enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies.
Collapse
|
12
|
Lennartsson J, Rönnstrand L. Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev 2012; 92:1619-49. [DOI: 10.1152/physrev.00046.2011] [Citation(s) in RCA: 593] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lars Rönnstrand
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
13
|
Signalling to actin: role of C3G, a multitasking guanine-nucleotide-exchange factor. Biosci Rep 2011; 31:231-44. [PMID: 21366540 DOI: 10.1042/bsr20100094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
C3G (Crk SH3-domain-binding guanine-nucleotide-releasing factor) is a ubiquitously expressed member of a class of molecules called GEFs (guanine-nucleotide-exchange factor) that activate small GTPases and is involved in pathways triggered by a variety of signals. It is essential for mammalian embryonic development and many cellular functions in adult tissues. C3G participates in regulating functions that require cytoskeletal remodelling such as adhesion, migration, maintenance of cell junctions, neurite growth and vesicle traffic. C3G is spatially and temporally regulated to act on Ras family GTPases Rap1, Rap2, R-Ras, TC21 and Rho family member TC10. Increased C3G protein levels are associated with differentiation of various cell types, indicating an important role for C3G in cellular differentiation. In signalling pathways, C3G serves functions dependent on catalytic activity as well as protein interaction and can therefore integrate signals necessary for the execution of more than one cellular function. This review summarizes our current knowledge of the biology of C3G with emphasis on its role as a transducer of signals to the actin cytoskeleton. Deregulated C3G may also contribute to pathogenesis of human disorders and therefore could be a potential therapeutic target.
Collapse
|
14
|
Zheng J, Machida K, Antoku S, Ng KY, Claffey KP, Mayer BJ. Proteins that bind the Src homology 3 domain of CrkI have distinct roles in Crk transformation. Oncogene 2010; 29:6378-89. [PMID: 20729917 PMCID: PMC2996469 DOI: 10.1038/onc.2010.369] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/27/2010] [Accepted: 07/15/2010] [Indexed: 12/15/2022]
Abstract
The v-Crk oncogene product consists of two protein interaction modules, a Src homology 2 (SH2) domain and a Src homology 3 (SH3) domain. Overexpression of CrkI, the cellular homolog of v-Crk, transforms mouse fibroblasts, and elevated CrkI expression is observed in several human cancers. The SH2 and SH3 domains of Crk are required for transformation, but the identity of the critical cellular binding partners is not known. A number of candidate Crk SH3-binding proteins have been identified, including the nonreceptor tyrosine kinases c-Abl and Arg, and the guanine nucleotide exchange proteins C3G, SOS1 and DOCK180. The aim of this study is to determine which of these are required for transformation by CrkI. We found that short hairpin RNA-mediated knockdown of C3G or SOS1 suppressed anchorage-independent growth of NIH-3T3 cells overexpressing CrkI, whereas knockdown of SOS1 alone was sufficient to suppress tumor formation by these cells in nude mice. Knockdown of C3G was sufficient to revert morphological changes induced by CrkI expression. By contrast, knockdown of Abl family kinases or their inhibition with imatinib enhanced anchorage-independent growth and tumorigenesis induced by Crk. These results show that SOS1 is essential for CrkI-induced fibroblast transformation, and also reveal a surprising negative role for Abl kinases in Crk transformation.
Collapse
Affiliation(s)
- Ji Zheng
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, CT 06030-3301, USA
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, CT 06030-3301, USA
| | - Susumu Antoku
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, CT 06030-3301, USA
| | - Khong Ying Ng
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, CT 06030-3301, USA
| | - Kevin P. Claffey
- Center for Vascular Biology and Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, CT 06030-3301, USA
| | - Bruce J. Mayer
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, CT 06030-3301, USA
| |
Collapse
|
15
|
Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal 2009; 7:13. [PMID: 19426560 PMCID: PMC2689226 DOI: 10.1186/1478-811x-7-13] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/10/2009] [Indexed: 01/24/2023] Open
Abstract
The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses.
Collapse
Affiliation(s)
- Raymond B Birge
- Department of Biochemistry & Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
16
|
Hasegawa H, Senga T, Ito S, Iwamoto T, Hamaguchi M. A role for AP-1 in matrix metalloproteinase production and invadopodia formation of v-Crk-transformed cells. Exp Cell Res 2009; 315:1384-92. [PMID: 19268464 DOI: 10.1016/j.yexcr.2009.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 01/24/2009] [Accepted: 02/23/2009] [Indexed: 11/29/2022]
Abstract
Both MMP-2 and MMP-9 play critical roles in tumor invasion, but their productions are differentially controlled. While the promoter region of MMP-9 has the conserved proximal AP-1 binding site, that of the MMP-2 has a noncanonical AP-1 site. To assess the role of AP-1 function, we examined the effects of dominant-negative Fos (DeltaFos), BATF and siRNA against c-Jun on MMP production in v-Crk-transformed cells which have augmented production of MMP-2 and MMP-9. Suppression of AP-1 dependent transcription by conditional expression of dominant-negative Fos (DeltaFos) and BATF substantially inhibited not only MMP-9 production but also MMP-2 production. The ChIP analysis showed the direct association of AP-1 and MMP-2 promoter region. In addition, silencing of c-Jun expression by siRNA transfection suppressed MMP-2 and MMP-9 production and in vitro invasiveness. Furthermore, the invadopodia formation of v-Crk-transformed cells could be suppressed by BATF expression or c-Jun siRNA treatment. Taken together, AP-1 appears to play a critical role in the production of MMP-2 and MMP-9 and invadopodia formation of v-Crk-transformed cells.
Collapse
Affiliation(s)
- Hitoki Hasegawa
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
17
|
Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y, Ogura K, Tanaka S, Inagaki F. [Structural basis for the transforming activity of human cancer-related signaling adaptor protein Crk]. Nat Struct Mol Biol 2008; 14:503-10. [PMID: 17515907 DOI: 10.1038/nsmb1241] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Accepted: 03/27/2007] [Indexed: 01/13/2023]
Abstract
CRKI (SH2-SH3) and CRKII (SH2-SH3-SH3) are splicing isoforms of the oncoprotein CRK that regulate transcription and cytoskeletal reorganization for cell growth and motility by linking tyrosine kinases to small G proteins. CRKI shows substantial transforming activity, whereas the activity of CRKII is low, and phosphorylated CRKII has no biological activity whatsoever. The molecular mechanisms underlying the distinct biological activities of the CRK proteins remain elusive. We determined the solution structures of CRKI, CRKII and phosphorylated CRKII by NMR and identified the molecular mechanism that gives rise to their activities. Results from mutational analysis using rodent 3Y1 fibroblasts were consistent with those from the structural studies. Together, these data suggest that the linker region modulates the binding of CRKII to its targets, thus regulating cell growth and motility.
Collapse
Affiliation(s)
- Yoshihiro Kobashigawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Radha V, Rajanna A, Mitra A, Rangaraj N, Swarup G. C3G is required for c-Abl-induced filopodia and its overexpression promotes filopodia formation. Exp Cell Res 2007; 313:2476-92. [PMID: 17475248 DOI: 10.1016/j.yexcr.2007.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 02/27/2007] [Accepted: 03/18/2007] [Indexed: 01/26/2023]
Abstract
The Rap1 guanine nucleotide exchange factor, C3G (also known as Rap1GEF-1) is involved in signaling from growth factors, cytokines and integrins and plays a role in cell adhesion and migration, but the mechanism by which C3G regulates various cellular functions is poorly understood. We, therefore, investigated the ability of C3G to affect actin cytoskeleton-dependent morphological changes in cells. Using RNA interference, we provide evidence that C3G is required for c-Abl-induced filopodia during cell spreading on fibronectin. C3G expression induces actin cytoskeletal reorganization and promotes filopodia formation independent of its catalytic activity. It showed enrichment at filopodia tips characteristic of molecules involved in filopodia dynamics. C3G-induced filopodia were not inhibited by dominant negative mutants of Rho, Rac and Cdc42, but required Abl catalytic activity. Coexpression of N-Wasp-Crib inhibited C3G induced as well as c-Abl-induced filopodia and wiskostatin, a pharmacological inhibitor of N-Wasp attenuates C3G-induced filopodia. Cellular C3G interacts with c-Abl and C3G expression results in enhanced localization of endogenous c-Abl in the cytoplasm. We suggest that C3G and c-Abl function in an interdependent manner, in linking external signals to remodeling the cytoskeleton to induce filopodia.
Collapse
Affiliation(s)
- Vegesna Radha
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India.
| | | | | | | | | |
Collapse
|
19
|
Huang J, Sakai R, Furuichi T. The docking protein Cas links tyrosine phosphorylation signaling to elongation of cerebellar granule cell axons. Mol Biol Cell 2006; 17:3187-96. [PMID: 16687575 PMCID: PMC1483050 DOI: 10.1091/mbc.e05-12-1122] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Crk-associated substrate (Cas) is a tyrosine-phosphorylated docking protein that is indispensable for the regulation of the actin cytoskeletal organization and cell migration in fibroblasts. The function of Cas in neurons, however, is poorly understood. Here we report that Cas is dominantly enriched in the brain, especially the cerebellum, of postnatal mice. During cerebellar development, Cas is highly tyrosine phosphorylated and is concentrated in the neurites and growth cones of granule cells. Cas coimmunoprecipitates with Src family protein tyrosine kinases, Crk, and cell adhesion molecules and colocalizes with these proteins in granule cells. The axon extension of granule cells is inhibited by either RNA interference knockdown of Cas or overexpression of the Cas mutant lacking the YDxP motifs, which are tyrosine phosphorylated and thereby interact with Crk. These findings demonstrate that Cas acts as a key scaffold that links the proteins associated with tyrosine phosphorylation signaling pathways to the granule cell axon elongation.
Collapse
Affiliation(s)
- Jinhong Huang
- *Laboratory for Molecular Neurogenesis, Riken Brain Science Institute, Wako, Saitama 351-0198; and
| | - Ryuichi Sakai
- Growth Factor Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Teiichi Furuichi
- *Laboratory for Molecular Neurogenesis, Riken Brain Science Institute, Wako, Saitama 351-0198; and
| |
Collapse
|
20
|
Okino K, Nagai H, Nakayama H, Doi D, Yoneyama K, Konishi H, Takeshita T. Inactivation of Crk SH3 domain-binding guanine nucleotide-releasing factor (C3G) in cervical squamous cell carcinoma. Int J Gynecol Cancer 2006; 16:763-71. [PMID: 16681758 DOI: 10.1111/j.1525-1438.2006.00352.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
C3G, a Crk SH3 domain-binding guanine nucleotide-releasing factor functions as a guanine nucleotide exchange factor for Rap1. It is activated via the Crk adaptor protein and plays an important role in transducing signals from receptors on the cell surface to the nucleus via the Ras/Raf/MAPK signal transduction pathway. However, since the experimental data result in pleiotropic effects in the cascade manner, its precise function remains unclear. Here we examined the C3G expression in cervical squamous cell carcinomas and found a marked decrease in the expression of C3G in a high incidence of said samples. In addition, we also demonstrated frequent hypermethylation of C3G, which resulted in an inactivation mechanism of the gene. Clinical and pathologic data failed to show any relationship between the human papillomavirus infection and the down-regulation of C3G. These results indicate that inactivation of C3G by de novo methylation plays an important role in the development of cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- K Okino
- Department of Obstetrics and Gynecology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Linghu H, Tsuda M, Makino Y, Sakai M, Watanabe T, Ichihara S, Sawa H, Nagashima K, Mochizuki N, Tanaka S. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene 2006; 25:3547-56. [PMID: 16491127 DOI: 10.1038/sj.onc.1209398] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Signaling adaptor protein Crk regulates cell motility and growth through its targets Dock180 and C3G, those are the guanine-nucleotide exchange factors (GEFs) for small GTPases Rac and Rap, respectively. Recently, overexpression of Crk has been reported in various human cancers. To define the role for Crk in human cancer cells, Crk expression was targeted in the human ovarian cancer cell line MCAS through RNA interference, resulting in the establishment of three Crk knockdown cell lines. These cell lines exhibited disorganized actin fibers, reduced number of focal adhesions, and abolishment of lamellipodia formation. Decreased Rac activity was demonstrated by pull-down assay and FRET-based time-lapse microscopy, in association with suppression of both motility and invasion by phagokinetic track assay and transwell assay in these cells. Furthermore, Crk knockdown cells exhibited slow growth rates in culture and suppressed anchorage-dependent growth in soft agar. Tumor forming potential in nude mice was attenuated, and intraperitoneal dissemination was not observed when Crk knockdown cells were injected into the peritoneal cavity. These results suggest that the Crk is a key component of focal adhesion and involved in cell growth, invasion, and dissemination of human ovarian cancer cell line MCAS.
Collapse
Affiliation(s)
- H Linghu
- Laboratory of Molecular and Cellular Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yeh YT, Hou MF, Chung YF, Chen YJ, Yang SF, Chen DC, Su JH, Yuan SSF. Decreased expression of phosphorylated JNK in breast infiltrating ductal carcinoma is associated with a better overall survival. Int J Cancer 2006; 118:2678-84. [PMID: 16381010 DOI: 10.1002/ijc.21707] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorylation/activation of c-jun NH2-terminal kinase (JNK) has an ambivalent role, pro-proliferation or antiproliferation, in human cancers, which is determined by different cell types and by its crosstalk with other kinases. So far, the role of phosphorylated JNK (p-JNK) in breast cancer is mostly undefined. In this study, we analyzed the expression of p-JNK, as well as p-ERK1/2 and p-38, in the pair of cancer and noncancer breast tissues, by using immunoblotting techniques. These results were further correlated with the clinicopathological characteristics and overall survival. Decreased p-JNK1/2 expression in cancer tissues was observed in 48.5% of breast infiltrating ductal carcinoma (IDC) cases and was correlated significantly with the increased tumor grade and the decreased age at diagnosis (p = 0.030 and 0.029). Interestingly, the Kaplan-Meier survival curve showed that the decreased p-JNK1/2 expression was associated with a better overall survival of IDC (p = 0.004). The expression of p-JNK1/2 was positively correlated with p-p38 (p = 0.002), but not p-ERK1/2. Furthermore, co-expressed p-JNK1/2 and p-p38 was associated with a poor overall survival of IDC (p = 0.007). In conclusion, our results indicate that the aberrant p-JNK1/2 expression and the co-expressed p-JNK1/2 and p-p38 in breast tissues may play a role in the carcinogenesis of breast IDC.
Collapse
Affiliation(s)
- Yao-Tsung Yeh
- Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rennefahrt U, Janakiraman M, Ollinger R, Troppmair J. Stress kinase signaling in cancer: fact or fiction? Cancer Lett 2005; 217:1-9. [PMID: 15596290 DOI: 10.1016/j.canlet.2004.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 08/04/2004] [Indexed: 01/07/2023]
Abstract
Cancer results from genetic alterations in intracellular signaling pathways, which normally orchestrate the execution of developmental programs and the organismic response to extrinsic factors. Mutations in upstream activators and components of the cytoplasmic (Ras-Raf MEK-ERK) cascade frequently occur in tumors. In vitro and in vivo studies have shown that isolated activation of this pathway is both, necessary and sufficient for transformation. During the last years two new groups of related kinases have joined the ranks of mitogen-activated protein kinases, stress-activated protein kinases/Jun N-terminal kinases and p38. Their activation not only occurs during cellular responses to unphysiological stimuli but also downstream of cytokine and pathogen receptors and has been observed in tumors. In this article we will review the role of stress kinases in cancer, and discuss the mechanisms through which they regulate the transformation process.
Collapse
Affiliation(s)
- Ulrike Rennefahrt
- Institut für Medizinische Strahlenkunde und Zellforschung, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
24
|
Rennefahrt U, Illert B, Greiner A, Rapp UR, Troppmair J. Tumor induction by activated JNK occurs through deregulation of cellular growth. Cancer Lett 2004; 215:113-24. [PMID: 15374640 DOI: 10.1016/j.canlet.2004.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 05/15/2004] [Accepted: 05/18/2004] [Indexed: 01/28/2023]
Abstract
Activation of the cytoplasmic (Ras-Raf-MEK-ERK) signaling cascade was shown to be both, necessary and sufficient for transformation in vitro as well as in vivo. However, over the last years the involvement of stress-activated protein kinases (SAPKs)/Jun N-terminal kinases (JNKs), and their substrate c-Jun in the process of cellular transformation has been suggested. To dissect the mechanisms through which JNK signaling contributes to the transformation process we employed a recently generated constitutively active version of this kinase, SAPKbeta-MKK7, which behaves like a weakly transforming oncogene in vitro. Dissection of the transforming potential of oncogenic JNK demonstrates that it is sufficient for tumor induction in nude mice. In vitro studies and analysis of tumor material support the conclusion that oncogenic JNK primarily transforms through its effects on cell proliferation and tumor vascularization but does not affect cell survival.
Collapse
Affiliation(s)
- Ulrike Rennefahrt
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Radha V, Rajanna A, Swarup G. Phosphorylated guanine nucleotide exchange factor C3G, induced by pervanadate and Src family kinases localizes to the Golgi and subcortical actin cytoskeleton. BMC Cell Biol 2004; 5:31. [PMID: 15320955 PMCID: PMC515295 DOI: 10.1186/1471-2121-5-31] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 08/20/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The guanine nucleotide exchange factor C3G (RapGEF1) along with its effector proteins participates in signaling pathways that regulate eukaryotic cell proliferation, adhesion, apoptosis and embryonic development. It activates Rap1, Rap2 and R-Ras members of the Ras family of GTPases. C3G is activated upon phosphorylation at tyrosine 504 and therefore, determining the localization of phosphorylated C3G would provide an insight into its site of action in the cellular context. RESULTS C3G is phosphorylated in vivo on Y504 upon coexpression with Src or Hck, two members of the Src family tyrosine kinases. Here we have determined the subcellular localization of this protein using antibodies specific to C3G and Tyr 504 phosphorylated C3G (pY504 C3G). While exogenously expressed C3G was present mostly in the cytosol, pY504 C3G formed upon Hck or Src coexpression localized predominantly at the cell membrane and the Golgi complex. Tyrosine 504-phosphorylated C3G showed colocalization with Hck and Src. Treatment of Hck and C3G transfected cells with pervanadate showed an increase in the cytosolic staining of pY504 C3G suggesting that tyrosine phosphatases may be involved in dephosphorylating cytosolic phospho-C3G. Expression of Src family kinases or treatment of cells with pervanadate resulted in an increase in endogenous pY504 C3G, which was localized predominantly at the Golgi and the cell periphery. Endogenous pY504 C3G at the cell periphery colocalized with F-actin suggesting its presence at the subcortical actin cytoskeleton. Disruption of actin cytoskeleton by cytochalasin D abolished phospho-C3G staining at the periphery of the cell without affecting its Golgi localization. CONCLUSIONS These findings show that tyrosine kinases involved in phosphorylation of C3G are responsible for regulation of its localization in a cellular context. We have demonstrated the localization of endogenous C3G modified by tyrosine phosphorylation to defined subcellular domains where it may be responsible for restricted activation of signaling pathways.
Collapse
Affiliation(s)
- Vegesna Radha
- Centre for Cellular and Molecular Biology Uppal Road, Hyderabad – 500 007 India
| | - Ajumeera Rajanna
- Centre for Cellular and Molecular Biology Uppal Road, Hyderabad – 500 007 India
| | - Ghanshyam Swarup
- Centre for Cellular and Molecular Biology Uppal Road, Hyderabad – 500 007 India
| |
Collapse
|
26
|
Abstract
p130Cas is a multifunctional signaling adaptor protein. It integrates and relays signals generated from a variety of extracellular stimuli and regulates a number of cellular activities including cell death. In this study, we analyzed the regulation and function of p130Cas in anoikis, a type of apoptosis caused by disruption of cell-matrix interactions. We found that p130Cas was specifically cleaved during anoikis in anoikis-sensitive epithelial cells, but not in anoikis-resistant tumor cells. There is a close correlation between p130Cas cleavage and anoikis. Furthermore, we found that the cleavage of p130Cas, as well as another focal adhesion component FAK, is different from that of caspase substrate PARP and spectrin. Although caspases and calpain were found to be involved in the cleavage of p130Cas, there appear to be other unidentified proteases that are mainly responsible for the cleavage of p130Cas, particularly at the early stage of anoikis. Overexpression of the p130Cas cleavage product induced apoptosis. Taken together, these data suggest that there are novel proteases involved in the cleavage of p130Cas during anoikis, which may be functionally involved in the onset of anoikis. p130Cas may have a dual role in the regulation of anoikis. On one hand, it mediates a survival signal from cell-matrix interactions when cells are attached to the extracellular matrix. On the other hand, it participates in executing cell death when cell-matrix interactions are disrupted. These observations provide new insights into the understanding of the function of p130Cas and the molecular mechanism of anoikis.
Collapse
Affiliation(s)
- Lin Wei
- Pulmonary Center, Department of Medicine, and Department of Biochemistry, Boston University Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
27
|
Shivakrupa R, Radha V, Sudhakar C, Swarup G. Physical and functional interaction between Hck tyrosine kinase and guanine nucleotide exchange factor C3G results in apoptosis, which is independent of C3G catalytic domain. J Biol Chem 2003; 278:52188-94. [PMID: 14551197 DOI: 10.1074/jbc.m310656200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The hematopoietic cell kinase Hck is a Src family tyrosine kinase expressed in cells of myelomonocytic lineage, B lymphocytes, and embryonic stem cells. To study its role in signaling pathways we used the Hck-SH3 domain in protein interaction cloning and identified C3G, the guanine nucleotide exchange factor for Rap1 and R-Ras, as a protein that associated with Hck. This interaction was direct and was mediated partly through the proline-rich region of C3G. C3G could be co-immunoprecipitated with Hck from Cos-1 cells transfected with Hck and C3G. C3G was phosphorylated on tyrosine 504 in cells when coexpressed with Hck but not with a catalytically inactive mutant of Hck. Phosphorylation of endogenous C3G at Tyr-504 was increased by treatment of human myelomonocytic THP-1 cells with mercuric chloride, which is known to activate Hck tyrosine kinase specifically. Coexpression of Hck with C3G induced a high level of apoptosis in many cell lines by 30-42 h of transfection. Induction of apoptosis was not dependent on Tyr-504 phosphorylation or the catalytic domain of C3G but required the catalytic activity of Hck. Using dominant negative constructs of caspases we found that caspase-1, -8, and -9 are involved in this apoptotic pathway. These results suggest that C3G and Hck interact physically and functionally in vivo to activate kinase-dependent and caspase-mediated apoptosis, which is independent of catalytic domain of C3G.
Collapse
Affiliation(s)
- R Shivakrupa
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
28
|
Miller CT, Chen G, Gharib TG, Wang H, Thomas DG, Misek DE, Giordano TJ, Yee J, Orringer MB, Hanash SM, Beer DG. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 2003; 22:7950-7. [PMID: 12970743 DOI: 10.1038/sj.onc.1206529] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The C-CRK gene, cellular homolog of the avian v-crk oncogene, encodes two alternatively spliced adaptor signaling proteins, CRKI (28 kDa) and CRKII (40 kDa). Both CRKI and CRKII have been shown to activate kinase signaling and anchorage-independent growth in vitro and CRKI transformed cells readily form tumors in nude mice. Affymetrix oligonucleotide arrays were used to analyse 86 lung adenocarcinomas and 10 uninvolved lung tissues. C-CRK mRNA expression was increased in more advanced (stage III versus stage I), larger (T(2-4) versus T(1)), and poorly differentiated tumors and in tumors from patients demonstrating poor survival (P=0.00034). An overlapping series of 93 lung adenocarcinomas (64 stage I and 29 stage III) and 10 uninvolved lung specimens were measured for quantitative differences in CRKI and CRKII protein levels using 2-D PAGE. CRK protein spots were identified using mass spectrometry and 2-D Western blotting. A significant increase in levels of the CRKI oncoprotein and the phosphorylated isoform of CRKII was observed in tumors (P<0.05). No difference in protein level was evident between stages. Concordant with mRNA expression, CRKI and CRKII were increased in poorly differentiated tumors (P<0.05). CRK immunohistochemical analysis of tumor tissue arrays using the same tumor series also demonstrated increased abundance of nuclear and cytoplasmic CRK in more proliferative tumors (P<0.05). This study provides the first quantitative analysis of discrete CRKI and CRKII protein isoforms in human lung tumors and provides evidence that the C-CRK proto-oncogene may foment a more aggressive phenotype in lung cancers.
Collapse
Affiliation(s)
- Charles T Miller
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Iwahara T, Akagi T, Shishido T, Hanafusa H. CrkII induces serum response factor activation and cellular transformation through its function in Rho activation. Oncogene 2003; 22:5946-57. [PMID: 12955073 DOI: 10.1038/sj.onc.1206633] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CrkII belongs to the adaptor protein family that plays a crucial role in signal transduction. In order to better understand the biological functions of CrkII, we focused on the regulation of gene expression by CrkII. Various transcriptional control elements were examined for their activation by CrkII-expression, and we found that CrkII selectively activates the serum response element (SRE), a transcriptional control element of immediate-early genes. This SRE activation induced by CrkII-overexpression was mediated by the serum response factor (SRF) via Rho. Indeed, we confirmed that the amount of activated Rho was increased in the CrkII-expressing cells. Moreover, we showed that when overexpressed, CrkII induces the cellular transformation of NIH 3T3 cells and that a dominant negative mutant of Rho suppresses this transformation, strongly suggesting that activation of Rho is essential for the transforming activity by CrkII. Furthermore, we also found that CrkII and Galpha12, a member of the heterotrimeric G proteins, synergistically activates Rho as well as the SRF, and that an SH3 mutant of CrkII can inhibit the Galpha12-induced activation of SRF. These results strongly suggest that CrkII is involved in the activation of Rho and SRF by Galpha12. Our study provides strong evidence that Rho activation plays a crucial role in CrkII-mediated signals to induce gene expression and cellular transformation.
Collapse
Affiliation(s)
- Toshinori Iwahara
- Laboratory of Molecular Oncology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | |
Collapse
|
30
|
Ling L, Zhu T, Lobie PE. Src-CrkII-C3G-dependent activation of Rap1 switches growth hormone-stimulated p44/42 MAP kinase and JNK/SAPK activities. J Biol Chem 2003; 278:27301-11. [PMID: 12734187 DOI: 10.1074/jbc.m302516200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate here that growth hormone (GH) stimulates the activation of Rap1 and Rap2 in NIH-3T3 cells. Full activation of Rap1 and Rap2 by GH necessitated the combined activity of both JAK2 and c-Src kinases, although c-Src was predominantly required. GH-stimulated Rap1 and Rap2 activity was also demonstrated to be CrkII-C3G-dependent. GH stimulated the tyrosine phosphorylation of C3G, which again required the combined activity of JAK2 and c-Src. C3G tyrosine residue 504 was required for GH-stimulated Rap activation. Activated Rap1 inhibited GH-stimulated activation of RalA and subsequent GH-stimulated p44/42 MAP kinase activity and Elk-1-mediated transcription. In addition, we demonstrated that C3G-Rap1 mediated CrkII enhancement of GH-stimulated JNK/SAPK activity. We have therefore identified a linear JAK2-independent pathway switching GH-stimulated p44/42 MAP kinase and JNK/SAPK activities.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | |
Collapse
|
31
|
Su ZZ, Kang DC, Chen Y, Pekarskaya O, Chao W, Volsky DJ, Fisher PB. Identification of gene products suppressed by human immunodeficiency virus type 1 infection or gp120 exposure of primary human astrocytes by rapid subtraction hybridization. J Neurovirol 2003; 9:372-89. [PMID: 12775420 DOI: 10.1080/13550280390201263] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurodegeneration and human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) are the major disease manifestations of HIV-1 colonization of the central nervous system (CNS). In the brain, HIV-1 replicates in microglial cells and infiltrating macrophages and it persists in a low-productive, noncytolytic state in astrocytes. Astrocytes play critical roles in the maintenance of the brain microenvironment, responses to injury, and in neuronal signal transmission, and disruption of these functions by HIV-1 could contribute to HAD. To better understand the potential effects of HIV-1 on astrocyte biology, the authors investigated changes in gene expression using an efficient and sensitive rapid subtraction hybridization approach, RaSH. Primary human astrocytes were isolated from abortus brain tissue, low-passage cells were infected with HIV-1 or mock infected, and total cellular RNAs were isolated at multiple time points over a period of 1 week. This approach is designed to identify gene products modulated early and late after HIV-1 infection and limits the cloning of genes displaying normal cell-cycle fluctuations in astrocytes. By subtracting temporal cDNAs derived from HIV-1-infected astrocytes from temporal cDNAs made from uninfected cells, 10 genes displaying reduced expression in infected cells, termed astrocyte suppressed genes (ASGs), were identified and their suppression was confirmed by Northern blot hybridization. Both known and novel ASGs, not reported in current DNA databases, that are down-regulated by HIV-1 infection are described. Northern blotting confirms suppression of the same panel of ASGs by treatment of astrocytes with recombinant HIV-1 envelope glycoprotein, gp120. These results extend our previous analysis of astrocyte genes induced or enhanced by HIV-1 infection and together they suggest that HIV-1 and viral proteins have profound effects on astrocyte physiology, which may influence their function in the CNS.
Collapse
Affiliation(s)
- Zao-Zhong Su
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Voss AK, Gruss P, Thomas T. The guanine nucleotide exchange factor C3G is necessary for the formation of focal adhesions and vascular maturation. Development 2003; 130:355-67. [PMID: 12466202 DOI: 10.1242/dev.00217] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ras signalling pathway has major roles in normal cell function and oncogenesis. C3G is a guanine nucleotide exchange factor for members of the Ras family of GTPases. We generated a mouse strain with a hypomorphic C3G allele. C3G(gt/gt) mutant embryos died of vascular defects around E11.5 due to haemorrhage and vascular integrity defects. Vascular supporting cells did not develop appropriately. C3G-deficient fibroblasts responded to PDGF-BB abnormally, exhibited cell adhesion defects and lacked paxillin and integrin-beta1-positive cell adhesions. In contrast, integrin-beta3-positive cell adhesions formed normally. These results show that C3G is required for (1) vascular myogenesis, (2) the formation of paxillin- and integrin beta1-positive, but not integrin beta3-positive, cell adhesions and (3) normal response to PDGF, necessary for vascular myogenesis.
Collapse
Affiliation(s)
- Anne K Voss
- Development and Neurobiology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|
33
|
Sakakibara A, Ohba Y, Kurokawa K, Matsuda M, Hattori S. Novel function of Chat in controlling cell adhesion via Cas-Crk-C3G-pathway-mediated Rap1 activation. J Cell Sci 2002; 115:4915-24. [PMID: 12432078 DOI: 10.1242/jcs.00207] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chat (Cas/HEF1-associated signal transducer) is a novel signaling molecule with an N-terminal SH2 domain and C-terminal Cas/HEF1 association domain that is implicated in the regulation of cell adhesion. The Cas/HEF1 association domain also shows sequence similarity with guanine nucleotide exchange factors for Ras family small GTPases. In this study, we found significant activation of Rap1 in Chat-overexpressing cells. Myr-Chat, a membrane-targeted form of Chat, activated Rap1 more efficiently. Interestingly, Chat and Cas synergistically activated Rap1. Certain Cas, Crk or C3G mutants suppressed Rap1 activation by Chat. We also confirmed the ternary complex formation consisting of Chat, Cas and Crk. Thus, it is likely that Chat-induced Rap1 activation was mediated by upregulation of the Cas-Crk-C3G signaling pathway rather than direct guanine nucleotide exchange factor activity of Chat. We further demonstrated that Myr-Chat expression induced cell periphery spreading and cell shape branching and that this activity also depended on the Cas-Crk-C3G pathway and Rap1 activity. Moreover, expression of Myr-Chat enhanced integrin-mediated cell adhesion. Taken together we propose a novel role for the Chat-Cas complex in controlling cell adhesion via the activation of Rap1.
Collapse
Affiliation(s)
- Akira Sakakibara
- Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | | | |
Collapse
|
34
|
Akagi T, Murata K, Shishido T, Hanafusa H. v-Crk activates the phosphoinositide 3-kinase/AKT pathway by utilizing focal adhesion kinase and H-Ras. Mol Cell Biol 2002; 22:7015-23. [PMID: 12242282 PMCID: PMC139810 DOI: 10.1128/mcb.22.20.7015-7023.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
v-Crk, an oncogene product of avian sarcoma virus CT10, efficiently transforms chicken embryo fibroblasts (CEF). We have recently reported that constitutive activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway plays a critical role in the v-Crk-induced transformation of CEF. In the present study we investigated the molecular mechanism by which v-Crk activates the PI3K/AKT pathway. First, we found that v-Crk promotes the association of the p85 regulatory subunit of PI3K with focal adhesion kinase (FAK) by inducing the phosphorylation of the Y397 residue in FAK. This FAK phosphorylation needs activation of the Src family tyrosine kinase(s) for which the v-Crk SH2 domain is responsible. v-Crk was unable to activate the PI3K/AKT pathway in FAK-null cells, indicating the functional importance of FAK. In addition, we found that H-Ras is also required for the activation of the PI3K/AKT pathway. The v-Crk-induced activation of AKT was greatly enhanced by the overexpression of H-Ras or its guanine nucleotide exchange factor mSOS, which binds to the v-Crk SH3 domain, whereas a dominant-negative mutant of H-Ras almost completely suppressed this activation. Furthermore, we showed that v-Crk stimulates the interaction of H-Ras with the Ras binding domain in the PI3K p110 catalytic subunit. Our data indicated that the v-Crk-induced activation of PI3K/AKT pathway was cooperatively achieved by two distinct interactions. One is the interaction of p85 with tyrosine-phosphorylated FAK promoted by the v-Crk SH2 domain, and another is the interaction of p110 with H-Ras dictated by the v-Crk SH3 domain.
Collapse
Affiliation(s)
- Tsuyoshi Akagi
- Laboratory of Molecular Oncology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | |
Collapse
|
35
|
Kirsch KH, Kensinger M, Hanafusa H, August A. A p130Cas tyrosine phosphorylated substrate domain decoy disrupts v-crk signaling. BMC Cell Biol 2002; 3:18. [PMID: 12119061 PMCID: PMC117778 DOI: 10.1186/1471-2121-3-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Accepted: 07/15/2002] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The adaptor protein p130Cas (Cas) has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals. RESULTS We found that a tyrosine phosphorylated Cas substrate domain acts as a dominant negative mutant by blocking Cas-mediated signaling events, including JNK activation by the oncogene v-crk in transient and stable lines and v-crk transformation. This block was the result of competition for binding partners as the chimera competed for binding to endogenous c-crk and exogenously expressed v-crk. CONCLUSION Our approach suggests a novel method to study adaptor proteins that require phosphorylation, and indicates that mere tyrosine phosphorylation of the substrate domain of Cas is not sufficient for its function.
Collapse
Affiliation(s)
- Kathrin H Kirsch
- Laboratory of Molecular Oncology, The Rockefeller University, NY, NY, 10021, USA
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, K-225, Boston, MA 02118, USA
| | - Margaret Kensinger
- Immunology Research Laboratories, Department of Veterinary Science, Penn State University, 115 Henning Building, University Park, PA 16802, USA
| | - Hidesaburo Hanafusa
- Laboratory of Molecular Oncology, The Rockefeller University, NY, NY, 10021, USA
- Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Avery August
- Immunology Research Laboratories, Department of Veterinary Science, Penn State University, 115 Henning Building, University Park, PA 16802, USA
- Laboratory of Molecular Oncology, The Rockefeller University, NY, NY, 10021, USA
| |
Collapse
|
36
|
Yang LT, Alexandropoulos K, Sap J. c-SRC mediates neurite outgrowth through recruitment of Crk to the scaffolding protein Sin/Efs without altering the kinetics of ERK activation. J Biol Chem 2002; 277:17406-14. [PMID: 11867627 DOI: 10.1074/jbc.m111902200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SRC family kinases have been consistently and recurrently implicated in neurite extension events, yet the mechanism underlying their neuritogenic role has remained elusive. We report that epidermal growth factor (EGF) can be converted from a non-neuritogenic into a neuritogenic factor through moderate activation of endogenous SRC by receptor-protein-tyrosine phosphatase alpha (a physiological SRC activator). We show that such a qualitative change in the response to EGF is not accompanied by changes in the extent or kinetics of ERK induction in response to this factor. Instead, the pathway involved relies on increased tyrosine phosphorylation of, and recruitment of Crk to, the SRC substrate Sin/Efs. The latter is a scaffolding protein structurally similar to the SRC substrate Cas, tyrosine phosphorylation of which is critical for migration in fibroblasts and epithelial cells. Expression of a dominant negative version of Sin interfered with receptor-protein-tyrosine phosphatase alpha/EGF- as well as fibroblast growth factor-induced neurite outgrowth. These observations uncouple neuritogenic signaling in PC12 cells from sustained activation of ERK kinases and for the first time identify an effector of SRC function in neurite extension.
Collapse
Affiliation(s)
- Liang-Tung Yang
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
37
|
Abstract
Anticancer therapy is frequently efficient in early stages of the disease, whereas advanced tumors are usually resistant to the same treatments. The molecular basis for this change is not entirely understood. Many anticancer agents are DNA- or cytoskeleton-damaging drugs that show some specificity towards dividing cells. However, recent studies show that these agents also activate stress-signaling cascades that may play a role in eliciting the observed therapeutic effects. We discuss recent findings that suggest that induction of stress signaling in oncogenically transformed cells is integrated into apoptotic pathways. Reactive oxygen species (ROS) and stress-activated protein kinases (SAPKs), which are potentiated in recently transformed cells, emerge as key effectors of cell death. In advanced tumors, however, these agents are downregulated and, consequently, death signaling is suppressed. Such changes in ROS and SAPK activity levels during the course of tumor development may underlie the changes in responsiveness to anticancer therapy.
Collapse
Affiliation(s)
- Moran Benhar
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
38
|
Igawa T, Lin FF, Lee MS, Karan D, Batra SK, Lin MF. Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate 2002; 50:222-35. [PMID: 11870800 DOI: 10.1002/pros.10054] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The acquisition of an androgen-independent phenotype is the most serious issue of prostate cancer treatment. Although several experimental cell models have been reported for studying androgen independence, they have limited applications related to hormone-refractory prostate cancer. To investigate the molecular mechanism of androgen-independent growth of prostate cancer, we established a useful LNCaP cell model that resembles the clinical scenario of hormone-refractory prostate cancer. METHODS Androgen-sensitive LNCaP parental cells were continuously maintained in a regular cell-culture medium, that is, phenol red-positive RPMI 1640 medium supplemented with 5% fetal bovine serum and 1% glutamine. Upon passage, the androgen responsiveness of those cells decreased, to a level lower than that of parental cells. We examined the growth properties and androgen responsiveness of these different LNCaP cells in vitro and in vivo. Cytogenetic characteristics and expression of androgen receptors (ARs) and prostate-specific antigen (PSA) were determined. RESULTS Upon continuous passage, the biological behavior of parental C-33 cells (passage number less than 33) was altered. C-81 cells (passage number higher than 81) clearly exhibited more aggressive growth and lower androgen responsiveness than C-33 and C-51 cells (passage number between 35 and 80) in vitro and in vivo. Nevertheless, all these cells expressed a similar level of functional AR protein as well as a similar genetic profile. Moreover, in a steroid-reduced culture condition, C-81 cells secreted a higher level of PSA than C-33 cells. CONCLUSIONS Our LNCaP cell model closely recapitulates the progression of human prostate cancer from the androgen-responsive to the hormone-refractory state under the androgen nondeprived condition. This cell model may provide the opportunity to understand the molecular mechanisms associated with the acquisition of androgen independence during human prostate cancer progression.
Collapse
MESH Headings
- Androgens/pharmacology
- Androgens/physiology
- Animals
- Blotting, Northern
- Blotting, Western
- Cytogenetic Analysis
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/isolation & purification
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/pathology
- Polymerase Chain Reaction
- Prostate-Specific Antigen/biosynthesis
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Receptors, Androgen/biosynthesis
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Tsukasa Igawa
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-4525, USA
| | | | | | | | | | | |
Collapse
|
39
|
Nakamura T, Komiya M, Gotoh N, Koizumi S, Shibuya M, Mori N. Discrimination between phosphotyrosine-mediated signaling properties of conventional and neuronal Shc adapter molecules. Oncogene 2002; 21:22-31. [PMID: 11791173 DOI: 10.1038/sj.onc.1205019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Revised: 09/24/2001] [Accepted: 10/01/2001] [Indexed: 11/08/2022]
Abstract
The phosphotyrosine (pTyr) adapter Shc/ShcA is a major connector in various tyrosine kinase signalings following a variety of stimulation such as growth factor/neurotrophin, as well as in those following calcium influx and integrin activation. As in other tissues, Shc has been implicated in neuronal signalings; however, recent evidence suggests that N-Shc/ShcC and Sck/ShcB would take over most of the roles of Shc in mature central neurons, and switching phenomena between Shc and N-Shc expression were observed in several neuronal paradigms. Little is, however, known as to the signal-output differences between Shc and N-Shc. Here we determined the efficacy of Shc and N-Shc toward Erk activation in NGF-treated PC12 cells, and found that N-Shc transduced Grb2/Sos/Ras-dependent Erk activation less efficiently than Shc. This was mainly because N-Shc has only one high-affinity Grb2-binding site, whereas Shc has two such sites. Phosphopeptide mapping revealed that N-Shc has novel tyrosine-phosphorylation sites at Y259/Y260 and Y286; in vivo-phosphorylation of these tyrosines was demonstrated by site-specific anti-pTyr antibodies. Phosphorylated Y286 bound to several proteins, of which one was Crk. The pY221/pY222 site, corresponding to one of the Grb2-binding sites of Shc, also preferentially bound to Crk. The phosphorylation-dependent interaction between N-Shc and Crk was demonstrated in vitro and in vivo. These results indicate that N-Shc has specific features of signal-output, and further suggest that the switching between Shc and N-Shc during neural development and regeneration would lead to differentiation of downstream signalings.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Department of Molecular Genetics, National Institute for Longevity Sciences, Oobu, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Crk family adaptors are widely expressed and mediate the timely formation of signal transduction protein complexes upon a variety of extracellular stimuli, including various growth and differentiation factors. Selective formation of multi-protein complexes by the Crk and Crk-like (CRKL) proteins depends on specific motifs recognized by their SH2 and SH3 domains. In the case of the first SH3 domains [SH3(1)] a P-x-x-P-x-K motif is crucial for highly selective binding, while the SH2 domains prefer motifs which conform to the consensus pY-x-x-P. Crk family proteins are involved in the relocalization and activation of several different effector proteins which include guanine nucleotide releasing proteins like C3G, protein kinases of the Abl- and GCK-families and small GTPases like Rap1 and Rac. Crk-type proteins have been found not only in vertebrates but also in flies and nematodes. Major insight into the function of Crk within organisms came from the genetic model organism C. elegans, where the Crk-homologue CED-2 regulates cell engulfment and phagocytosis. Other biological outcomes of the Crk-activated signal transduction cascades include the modulation of cell adhesion, cell migration and immune cell responses. Crk family adaptors also appear to play a role in mediating the action of human oncogenes like the leukaemia-inducing Bcr-Abl protein. This review summarizes some key findings and highlights recent insights and open questions.
Collapse
Affiliation(s)
- S M Feller
- Cell Signalling Laboratory, Imperial Cancer Research Fund, University of Oxford, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
41
|
Abstract
Cell proliferation is controlled not only by soluble mitogens but also by components of the extracellular matrix (ECM) such as fibronectin, to which cells adhere via the integrin family of transmembrane receptors. Input from both growth factor receptors and integrins is required to stimulate progression through the G1 phase of the cell cycle, via induction of G1 cyclins and suppression of inhibitors of the G1 cyclin-dependent kinases. Extensive crosstalk takes place between integrin and growth factor receptor signaling pathways, and mitogenic signaling is weak and transient in the absence of integrin-mediated cell adhesion. In normal untransformed cells, all of the important mitogenic signal transduction cascades, namely those downstream of the Ras and Rho family small GTPases and the phosphoinositide 3-OH kinase-PKB/Akt pathway, are regulated by integrin-mediated cell adhesion. As a result, these cells are anchorage-dependent for growth. In contrast, constitutive activity of each of these pathways has been reported in cancer cells, which not only reduces their mitogen dependence but also allows these cells to grow in an anchorage-independent fashion.
Collapse
Affiliation(s)
- E H Danen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | |
Collapse
|
42
|
Liu Y, Hiraiwa Y, Liu E, Kurata H, Thant AA, Matsuda S, Hamaguchi M. Suppression of cell spreading by v-Crk requires Ras-MEK-MAP kinase signaling. Oncogene 2001; 20:5908-12. [PMID: 11593397 DOI: 10.1038/sj.onc.1204738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Revised: 05/24/2001] [Accepted: 06/18/2001] [Indexed: 01/16/2023]
Abstract
We investigated the attachment and spreading of v-Crk-transformed cells, v-Crk3Y1, on fibronectin. Transformation by v-Crk virtually suppressed the spreading, but not the attachment, of cells on fibronectin. This suppression of cell spreading was not correlated with the suppression of integrin alpha5 and beta1 expression. However, the spreading of v-Crk3Y1 on fibronectin was dramatically restored by either expression of dominant-negative Ras or treatment with manumycin A, a Ras farnesyltransferase inhibitor. Moreover, both expression of dominant-negative MEK1 and treatment of cells with U0126, a MEK1 inhibitor, restored the cell spreading of v-Crk3Y1. In contrast, neither treatment with LY294002, a PI3K inhibitor, nor expression of dominant-negative C3G showed no effect on cell spreading on fibronectin. Taken together, our results suggest that, among multiple signaling pathways activated by v-Crk, the Ras-MEK1-MAP kinase cascade plays a pivotal role in the suppression of cell spreading on fibronectin, but C3G and the PI3 kinase do not.
Collapse
Affiliation(s)
- Y Liu
- Department of Molecular Pathogenesis, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Rapid progress has been made recently in the definition of growth hormone (GH) receptor signal transduction pathways. It is now apparent that many cytokines, including GH, share identical or similar signalling components to exert their cellular effects. This review provides a brief discourse on the signal transduction pathways, which have been demonstrated to be utilized by GH. The identification of such pathways provides a basis for understanding the pleiotropic actions of GH. The mechanisms by which the specific cellular effects of GH are achieved remain to be elucidated.
Collapse
Affiliation(s)
- T Zhu
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | | | |
Collapse
|
44
|
Shim SR, Kook S, Kim JI, Song WK. Degradation of focal adhesion proteins paxillin and p130cas by caspases or calpains in apoptotic rat-1 and L929 cells. Biochem Biophys Res Commun 2001; 286:601-8. [PMID: 11511102 DOI: 10.1006/bbrc.2001.5441] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunofluorescence microscopy revealed the rearrangement and gradual dissociation of paxillin from focal adhesion sites during apoptosis. In vitro, cleavage of paxillin by caspase-3 generated a 42-kDa fragment, among other products, while cleavage by calpain generated a different set of fragments. In Rat-1 cells, cleavage of paxillin by caspase-3 was suppressed by zVAD-fmk or zDEVD-cmk, making caspase-3 a likely executioner during etoposide-induced apoptosis. In contrast, the cleavage of paxillin and p130cas in apoptotic L929 cells was blocked by calpain-specific inhibitors, which also reduced the death rate by 23 to 44%. Therefore, The disassembly and degradation of p130cas and paxillin during apoptosis may controlled by both caspases and calpains, depending upon their cellular contexts. Our findings also suggest that focal adhesion proteins paxillin and p130cas take part in integrin-mediated signaling for cell survival, and that their cleavage by caspase and/or calpain may not only disrupt focal adhesion complexes, but may also impede cell survival signaling.
Collapse
Affiliation(s)
- S R Shim
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, 500-712, Korea
| | | | | | | |
Collapse
|
45
|
Nishiya N, Tachibana K, Shibanuma M, Mashimo JI, Nose K. Hic-5-reduced cell spreading on fibronectin: competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase. Mol Cell Biol 2001; 21:5332-45. [PMID: 11463817 PMCID: PMC87257 DOI: 10.1128/mcb.21.16.5332-5345.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hic-5 is a paxillin homologue that is localized to focal adhesion complexes. Hic-5 and paxillin share structural homology and interacting factors such as focal adhesion kinase (FAK), Pyk2/CAKbeta/RAFTK, and PTP-PEST. Here, we showed that Hic-5 inhibits integrin-mediated cell spreading on fibronectin in a competitive manner with paxillin in NIH 3T3 cells. The overexpression of Hic-5 sequestered FAK from paxillin, reduced tyrosine phosphorylation of paxillin and FAK, and prevented paxillin-Crk complex formation. In addition, Hic-5-mediated inhibition of spreading was not observed in mouse embryo fibroblasts (MEFs) derived from FAK(-/-) mice. The activity of c-Src following fibronectin stimulation was decreased by about 30% in Hic-5-expressing cells, and the effect of Hic-5 was restored by the overexpression of FAK and the constitutively active forms of Rho-family GTPases, Rac1 V12 and Cdc42 V12, but not RhoA V14. These observations suggested that Hic-5 inhibits cell spreading through competition with paxillin for FAK and subsequent prevention of downstream signal transduction. Moreover, expression of antisense Hic-5 increased spreading in primary MEFs. These results suggested that the counterbalance of paxillin and Hic-5 expression may be a novel mechanism regulating integrin-mediated signal transduction.
Collapse
Affiliation(s)
- N Nishiya
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Hatanodai, Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Girardin SE, Yaniv M. A direct interaction between JNK1 and CrkII is critical for Rac1-induced JNK activation. EMBO J 2001; 20:3437-46. [PMID: 11432831 PMCID: PMC125507 DOI: 10.1093/emboj/20.13.3437] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CrkII, a cellular homolog of v-crk, belongs to a family of adaptor proteins that play a central role in signal transduction cascades. We demonstrate that CrkII interacts directly with c-Jun N-terminal kinase 1 (JNK1). A proline-rich sequence of JNK1 is critical for the interaction of the kinase with the N-terminal Src homology 3 (SH3) domain of CrkII. JNK1 is localized with CrkII in membrane ruffles of Crk-overexpressing cells in a Rac1-dependent manner. A JNK1 mutant (K340A) that fails to interact with CrkII is defective in Rac/epidermal growth factor-induced activation, but remains responsive to UVC irradiation. Furthermore, CrkII recruits JNK1 to a p130Cas multiprotein complex where it may be activated through a hematopoietic progenitor kinase 1- and mitogen-activated protein kinase kinase 4-dependent pathway. Together, the results presented here argue for a new mechanism of regulation of the JNK pathway through the CrkII-p130Cas adaptor complex.
Collapse
Affiliation(s)
| | - Moshe Yaniv
- Unité des Virus Oncogènes, URA CNRS 1644, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
Corresponding author e-mail:
| |
Collapse
|
47
|
Hayashi H, Endo S, Suzuki S, Tanaka S, Sawa H, Ozaki Y, Sawamura Y, Nagashima K. JC virus large T protein transforms rodent cells but is not involved in human medulloblastoma. Neuropathology 2001; 21:129-37. [PMID: 11396678 DOI: 10.1046/j.1440-1789.2001.00384.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
JC virus (JCV) together with Simian virus 40 (SV40) and BK virus (BKV), belong to the polyomavirus group and these viruses are neuro-oncogenic to rodents by expression of large T antigen (LT), which binds to cellular p53 and pRB thus reducing the anticancer potential of the cell. The function of LT has not been clarified because small t antigen (st) is transcribed from the same start codon as the overlapping reading frame of LT, and is translated as a different protein with the same N-terminal residues (1-81 amino acids) by a splice-site variant of mRNA. To elucidate the function of LT without st, we constructed plasmids that express LT only by deleting the splicing region including the C-terminus of st, and consequently stable cell lines were established that express only JCLT, SV40LT and BKLT. The growth rates of these cells were examined in colonies on soft agar and it was found that LT alone has a transforming capacity; the order of efficiency being SV40LT, BKLT and JCLT. In addition, to verify the involvement of JCV in human medulloblastoma, eight cases of medulloblastoma, six cases of frozen material and five cases of paraffin-embedded tissues which included three cases of frozen tissues, were examined. PCR assay, genomic Southern blotting, and in situ hybridization were applied to detect the JCV genome, and LT and st were examined by immunohistochemistry; the results were compared with JCV-infected tissues as a positive control. All methods failed to detect not only JCV genome but also LT protein in medulloblastoma and it was concluded that JCV LT has transforming activities in rodent cells, but is not related to human medulloblastoma.
Collapse
Affiliation(s)
- H Hayashi
- Laboratory of Molecular and Cellular Pathology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bruce-Staskal PJ, Bouton AH. PKC-dependent activation of FAK and src induces tyrosine phosphorylation of Cas and formation of Cas-Crk complexes. Exp Cell Res 2001; 264:296-306. [PMID: 11262186 DOI: 10.1006/excr.2000.5137] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SH-SY5Y neuroblastoma cells are a well-characterized model for studying the induction of neuronal differentiation. TPA treatment of these cells induces cytoskeletal rearrangements that ultimately result in neurite extension. However, the signaling pathways that precede these changes are poorly understood. Other investigators have shown that TPA treatment of SH-SY5Y cells results in increased tyrosine phosphorylation of cytoskeletal-associated proteins, including the adapter protein Cas. In this report, we examine the events upstream and downstream of Cas phosphorylation. We show that TPA treatment induces the PKC-dependent association of tyrosine-phosphorylated Cas with Crk. The activity of two protein tyrosine kinases, Src and FAK, was shown to be necessary and sufficient for TPA-induced Cas phosphorylation. We propose that the PKC-dependent phosphorylation of Cas by Src and FAK promotes the establishment of Cas-Crk complexes and that these interactions may play an important role in regulating the actin cytoskeleton during neuronal differentiation.
Collapse
Affiliation(s)
- P J Bruce-Staskal
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0734, USA
| | | |
Collapse
|
49
|
Nagai M, Tanaka S, Tsuda M, Endo S, Kato H, Sonobe H, Minami A, Hiraga H, Nishihara H, Sawa H, Nagashima K. Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF2 alpha. Proc Natl Acad Sci U S A 2001; 98:3843-8. [PMID: 11274403 PMCID: PMC31140 DOI: 10.1073/pnas.061036798] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human synovial sarcoma has been shown to exclusively harbor the chromosomal translocation t(X;18) that produces the chimeric gene SYT-SSX. However, the role of SYT-SSX in cellular transformation remains unclear. In this study, we have established 3Y1 rat fibroblast cell lines that constitutively express SYT, SSX1, and SYT-SSX1 and found that SYT-SSX1 promoted growth rate in culture, anchorage-independent growth in soft agar, and tumor formation in nude mice. Deletion of the N-terminal 181 amino acids of SYT-SSX1 caused loss of its transforming activity. Furthermore, association of SYT-SSX1 with the chromatin remodeling factor hBRM/hSNF2 alpha, which regulates transcription, was demonstrated in both SYT-SSX1-expressing 3Y1 cells and in the human synovial sarcoma cell line HS-SY-II. The binding region between the two molecules was shown to reside within the N-terminal 181 amino acids stretch (aa 1--181) of SYT-SSX1 and 50 amino acids (aa 156--205) of hBRM/hSNF2 alpha and we found that the overexpression of this binding region of hBRM/hSNF2 alpha significantly suppressed the anchorage-independent growth of SYT-SSX1-expressing 3Y1 cells. To analyze the transcriptional regulation by SYT-SSX1, we established conditional expression system of SYT-SSX1 and examined the gene expression profiles. The down-regulation of potential tumor suppressor DCC was observed among 1,176 genes analyzed by microarray analysis, and semi-quantitative reverse transcription--PCR confirmed this finding. These data clearly demonstrate transforming activity of human oncogene SYT-SSX1 and also involvement of chromatin remodeling factor hBRM/hSNF2 alpha in human cancer.
Collapse
Affiliation(s)
- M Nagai
- Laboratory of Molecular and Cellular Pathology, Hokkaido University School of Medicine, N 15, W7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhao JH, Guan JL. Role of focal adhesion kinase in signaling by the extracellular matrix. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2001; 25:37-55. [PMID: 10986717 DOI: 10.1007/978-3-642-59766-4_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J H Zhao
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|