1
|
Albulescu A, Botezatu A, Fudulu A, Hotnog CM, Bostan M, Mihăilă M, Iancu IV, Plesa A, Brasoveanu L. Combined Effect of Conventional Chemotherapy with Epigenetic Modulators on Glioblastoma. Genes (Basel) 2025; 16:138. [PMID: 40004468 PMCID: PMC11855767 DOI: 10.3390/genes16020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Glioblastoma is the most common malignant primary brain tumor, characterized by necrosis, uncontrolled proliferation, infiltration, angiogenesis, apoptosis resistance, and genomic instability. Epigenetic modifiers hold promise as adjuvant therapies for gliomas, with synergistic combinations being explored to enhance efficacy and reduce toxicity. This study aimed to evaluate the effects of single or combined treatments with various anticancer drugs (Carboplatin, Paclitaxel, Avastin), natural compounds (Quercetin), and epigenetic modulators (suberoylanilide hydroxamic acid and 5-Azacytidine) on the expression of some long noncoding RNAs and methylation drivers or some functional features in the U87-MG cell line. METHODS Treated and untreated U87-MG cells were used for the evaluation of drug-induced cytotoxicity, apoptotic events, and distribution in cell cycle phases, detection of cytokine release, and assessment of gene expression and global methylation. RESULTS Cytotoxicity assays led to the selection of drug concentrations to be used in further experiments. Expression analysis revealed distinct downregulation of nearly all investigated genes and long noncoding RNAs following treatments. All treatments resulted in a higher percentage of global methylation compared to untreated controls. All treatments effectively increased levels of apoptosis, while the epigenetic modulators exhibited a lower proliferation profile, with combined treatments showing elevated values of cell lysis. CONCLUSIONS The results indicate a link between Carboplatin and Avastin treatments and DNA methylation mechanisms involving EZH2, DNMT3A, and DNMT3B, with Avastin's direct impact on these enzymes warranting further study. This research underscores the promise of platinum-based therapies combined with epigenetic drugs to reactivate silenced tumor suppressor genes and optimize methylation profiles.
Collapse
Affiliation(s)
- Adrian Albulescu
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.A.); (A.F.); (I.V.I.); (A.P.)
- Pharmacology Department, National Institute for Chemical Pharmaceutical Research and Development, 031299 Bucharest, Romania
| | - Anca Botezatu
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.A.); (A.F.); (I.V.I.); (A.P.)
| | - Alina Fudulu
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.A.); (A.F.); (I.V.I.); (A.P.)
| | - Camelia Mia Hotnog
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.M.H.); (M.B.); (M.M.); (L.B.)
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.M.H.); (M.B.); (M.M.); (L.B.)
| | - Mirela Mihăilă
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.M.H.); (M.B.); (M.M.); (L.B.)
| | - Iulia Virginia Iancu
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.A.); (A.F.); (I.V.I.); (A.P.)
| | - Adriana Plesa
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.A.); (A.F.); (I.V.I.); (A.P.)
| | - Lorelei Brasoveanu
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.M.H.); (M.B.); (M.M.); (L.B.)
| |
Collapse
|
2
|
Xiao Y, Ju L, Qian K, Jin W, Wang G, Zhao Y, Jiang W, Liu N, Wu K, Peng M, Cao R, Li S, Shi H, Gong Y, Zheng H, Liu T, Luo Y, Ma H, Chang L, Li G, Cao X, Tian Y, Xu Z, Yang Z, Shan L, Guo Z, Yao D, Zhou X, Chen X, Guo Z, Liu D, Xu S, Ji C, Yu F, Hong X, Luo J, Cao H, Zhang Y, Wang X. Non-invasive diagnosis and surveillance of bladder cancer with driver and passenger DNA methylation in a prospective cohort study. Clin Transl Med 2022; 12:e1008. [PMID: 35968916 PMCID: PMC9377153 DOI: 10.1002/ctm2.1008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND State-of-art non-invasive diagnosis processes for bladder cancer (BLCA) harbour shortcomings such as low sensitivity and specificity, unable to distinguish between high- (HG) and low-grade (LG) tumours, as well as inability to differentiate muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). This study investigates a comprehensive characterization of the entire DNA methylation (DNAm) landscape of BLCA to determine the relevant biomarkers for the non-invasive diagnosis of BLCA. METHODS A total of 304 samples from 224 donors were enrolled in this multi-centre, prospective cohort study. BLCA-specific DNAm signature discovery was carried out with genome-wide bisulfite sequencing in 32 tumour tissues and 12 normal urine samples. A targeted sequencing assay for BLCA-specific DNAm signatures was developed to categorize tumour tissue against normal urine, or MIBC against NMIBC. Independent validation was performed with targeted sequencing of 259 urine samples in a double-blinded manner to determine the clinical diagnosis and prognosis value of DNAm-based classification models. Functions of genomic region harbouring BLCA-specific DNAm signature were validated with biological assays. Concordances of pathology to urine tumour DNA (circulating tumour DNA [ctDNA]) methylation, genomic mutations or other state-of-the-art diagnosis methods were measured. RESULTS Genome-wide DNAm profile could accurately classify LG tumour from HG tumour (LG NMIBC vs. HG NMIBC: p = .038; LG NMIBC vs. HG MIBC, p = .00032; HG NMIBC vs. HG MIBC: p = .82; Student's t-test). Overall, the DNAm profile distinguishes MIBC from NMIBC and normal urine. Targeted-sequencing-based DNAm signature classifiers accurately classify LG NMIBC tissues from HG MIBC and could detect tumours in urine at a limit of detection of less than .5%. In tumour tissues, DNAm accurately classifies pathology, thus outperforming genomic mutation or RNA expression profiles. In the independent validation cohort, pre-surgery urine ctDNA methylation outperforms fluorescence in situ hybridization (FISH) assay to detect HG BLCA (n = 54) with 100% sensitivity (95% CI: 82.5%-100%) and LG BLCA (n = 26) with 62% sensitivity (95% CI: 51.3%-72.7%), both at 100% specificity (non-BLCA: n = 72; 95% CI: 84.1%-100%). Pre-surgery urine ctDNA methylation signature correlates with pathology and predicts recurrence and metastasis. Post-surgery urine ctDNA methylation (n = 61) accurately predicts recurrence-free survival within 180 days, with 100% accuracy. CONCLUSION With the discovery of BLCA-specific DNAm signatures, targeted sequencing of ctDNA methylation outperforms FISH and DNA mutation to detect tumours, predict recurrence and make prognoses.
Collapse
|
3
|
Becker WR, Nevins SA, Chen DC, Chiu R, Horning AM, Guha TK, Laquindanum R, Mills M, Chaib H, Ladabaum U, Longacre T, Shen J, Esplin ED, Kundaje A, Ford JM, Curtis C, Snyder MP, Greenleaf WJ. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat Genet 2022; 54:985-995. [PMID: 35726067 PMCID: PMC9279149 DOI: 10.1038/s41588-022-01088-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
Abstract
To chart cell composition and cell state changes that occur during the transformation of healthy colon to precancerous adenomas to colorectal cancer (CRC), we generated single-cell chromatin accessibility profiles and single-cell transcriptomes from 1,000 to 10,000 cells per sample for 48 polyps, 27 normal tissues and 6 CRCs collected from patients with or without germline APC mutations. A large fraction of polyp and CRC cells exhibit a stem-like phenotype, and we define a continuum of epigenetic and transcriptional changes occurring in these stem-like cells as they progress from homeostasis to CRC. Advanced polyps contain increasing numbers of stem-like cells, regulatory T cells and a subtype of pre-cancer-associated fibroblasts. In the cancerous state, we observe T cell exhaustion, RUNX1-regulated cancer-associated fibroblasts and increasing accessibility associated with HNF4A motifs in epithelia. DNA methylation changes in sporadic CRC are strongly anti-correlated with accessibility changes along this continuum, further identifying regulatory markers for molecular staging of polyps.
Collapse
Affiliation(s)
- Winston R Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Biophysics, Stanford University, Stanford, CA, USA
| | - Stephanie A Nevins
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek C Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Roxanne Chiu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron M Horning
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tuhin K Guha
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rozelle Laquindanum
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Meredith Mills
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hassan Chaib
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Uri Ladabaum
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Teri Longacre
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jeanne Shen
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Edward D Esplin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - James M Ford
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Ma G, Babarinde IA, Zhou X, Hutchins AP. Transposable Elements in Pluripotent Stem Cells and Human Disease. Front Genet 2022; 13:902541. [PMID: 35719395 PMCID: PMC9201960 DOI: 10.3389/fgene.2022.902541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can randomly integrate into other genomic sites. They have successfully replicated and now occupy around 40% of the total DNA sequence in humans. TEs in the genome have a complex relationship with the host cell, being both potentially deleterious and advantageous at the same time. Only a tiny minority of TEs are still capable of transposition, yet their fossilized sequence fragments are thought to be involved in various molecular processes, such as gene transcriptional activity, RNA stability and subcellular localization, and chromosomal architecture. TEs have also been implicated in biological processes, although it is often hard to reveal cause from correlation due to formidable technical issues in analyzing TEs. In this review, we compare and contrast two views of TE activity: one in the pluripotent state, where TEs are broadly beneficial, or at least mechanistically useful, and a second state in human disease, where TEs are uniformly considered harmful.
Collapse
|
5
|
Muthamilselvan S, Raghavendran A, Palaniappan A. Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression. PLoS One 2022; 17:e0249151. [PMID: 35202405 PMCID: PMC8870460 DOI: 10.1371/journal.pone.0249151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant DNA methylation acts epigenetically to skew the gene transcription rate up or down, contributing to cancer etiology. A gap in our understanding concerns the epigenomics of stagewise cancer progression. In this study, we have developed a comprehensive computational framework for the stage-differentiated modelling of DNA methylation landscapes in colorectal cancer (CRC). Methods The methylation β-matrix was derived from the public-domain TCGA data, converted into M-value matrix, annotated with AJCC stages, and analysed for stage-salient genes using an ensemble of approaches involving stage-differentiated modelling of methylation patterns and/or expression patterns. Differentially methylated genes (DMGs) were identified using a contrast against controls (adjusted p-value <0.001 and |log fold-change of M-value| >2), and then filtered using a series of all possible pairwise stage contrasts (p-value <0.05) to obtain stage-salient DMGs. These were then subjected to a consensus analysis, followed by matching with clinical data and performing Kaplan–Meier survival analysis to evaluate the impact of methylation patterns of consensus stage-salient biomarkers on disease prognosis. Results We found significant genome-wide changes in methylation patterns in cancer cases relative to controls agnostic of stage. The stage-differentiated models yielded the following consensus salient genes: one stage-I gene (FBN1), one stage-II gene (FOXG1), one stage-III gene (HCN1) and four stage-IV genes (NELL1, ZNF135, FAM123A, LAMA1). All the biomarkers were significantly hypermethylated in the promoter regions, indicating down-regulation of expression and implying a putative CpG island Methylator Phenotype (CIMP) manifestation. A prognostic signature consisting of FBN1 and FOXG1 survived all the analytical filters, and represents a novel early-stage epigenetic biomarker / target. Conclusions We have designed and executed a workflow for stage-differentiated epigenomic analysis of colorectal cancer progression, and identified several stage-salient diagnostic biomarkers, and an early-stage prognostic biomarker panel. The study has led to the discovery of an alternative CIMP-like signature in colorectal cancer, reinforcing the role of CIMP drivers in tumor pathophysiology.
Collapse
Affiliation(s)
- Sangeetha Muthamilselvan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
| | - Abirami Raghavendran
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
- * E-mail:
| |
Collapse
|
6
|
Hosseinalizadeh H, Mahmoodpour M, Ebrahimi A. The Role of Cell-Free Circulating DNA in the Diagnosis and Prognosis of Breast Cancer. ANNALS OF CANCER RESEARCH AND THERAPY 2021; 29:169-177. [DOI: 10.4993/acrt.29.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne
| |
Collapse
|
7
|
Yi B, Cheng H, Wyczechowska D, Yu Q, Li L, Ochoa AC, Riker AI, Xi Y. Sulindac Modulates the Response of Proficient MMR Colorectal Cancer to Anti-PD-L1 Immunotherapy. Mol Cancer Ther 2021; 20:1295-1304. [PMID: 33879557 PMCID: PMC8295201 DOI: 10.1158/1535-7163.mct-20-0934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Immune-checkpoint inhibitor (ICI) therapy has been widely used to treat different human cancers, particularly advanced solid tumors. However, clinical studies have reported that ICI immunotherapy benefits only ∼15% of patients with colorectal cancer, specifically those with tumors characterized by microsatellite instability (MSI), a molecular marker of defective DNA mismatch repair (dMMR). For the majority of patients with colorectal cancer who carry proficient MMR (pMMR), ICIs have shown little clinical benefit. In this study, we examined the efficacy of sulindac to enhance the response of pMMR colorectal cancer to anti-PD-L1 immunotherapy. We utilized a CT26 syngeneic mouse tumor model to compare the inhibitory effects of PD-L1 antibody (Ab), sulindac, and their combination on pMMR colorectal cancer tumor growth. We found that mice treated with combination therapy showed a significant reduction in tumor volume, along with increased infiltration of CD8+ T lymphocytes in the tumor tissues. We also demonstrated that sulindac could downregulate PD-L1 by blocking NF-κB signaling, which in turn led to a decrease in exosomal PD-L1. Notably, PD-L1 Ab can be bound and consumed by exosomal PD-L1 in the blood circulation. Therefore, in combination therapy, sulindac downregulating PD-L1 leads to increased availability of PD-L1 Ab, which potentially improves the overall efficacy of anti-PD-L1 therapy. We also show that low-dose sulindac does not appear to have a systemic inhibitory effect on prostaglandin E2 (PGE2). In conclusion, our findings provide unique insights into the mechanism of action and efficacy for sulindac as an immunomodulatory agent in combination with anti-PD-L1 therapy for the treatment of pMMR colorectal cancer.
Collapse
Affiliation(s)
- Bin Yi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Hao Cheng
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Qingzhao Yu
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Li Li
- Ochsner Clinical School, University of Queensland, and Institute for Translational Research, Ochsner Clinic Foundation, New Orleans, Louisiana
| | - Augusto C Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Anne Arundel Medical Center, Luminis Health, Annapolis, Maryland
| | - Yaguang Xi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
8
|
Masalmeh RHA, Taglini F, Rubio-Ramon C, Musialik KI, Higham J, Davidson-Smith H, Kafetzopoulos I, Pawlicka KP, Finan HM, Clark R, Wills J, Finch AJ, Murphy L, Sproul D. De novo DNA methyltransferase activity in colorectal cancer is directed towards H3K36me3 marked CpG islands. Nat Commun 2021; 12:694. [PMID: 33514701 PMCID: PMC7846778 DOI: 10.1038/s41467-020-20716-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The aberrant gain of DNA methylation at CpG islands is frequently observed in colorectal tumours and may silence the expression of tumour suppressors such as MLH1. Current models propose that these CpG islands are targeted by de novo DNA methyltransferases in a sequence-specific manner, but this has not been tested. Using ectopically integrated CpG islands, here we find that aberrantly methylated CpG islands are subject to low levels of de novo DNA methylation activity in colorectal cancer cells. By delineating DNA methyltransferase targets, we find that instead de novo DNA methylation activity is targeted primarily to CpG islands marked by the histone modification H3K36me3, a mark associated with transcriptional elongation. These H3K36me3 marked CpG islands are heavily methylated in colorectal tumours and the normal colon suggesting that de novo DNA methyltransferase activity at CpG islands in colorectal cancer is focused on similar targets to normal tissues and not greatly remodelled by tumourigenesis.
Collapse
Affiliation(s)
| | - Francesca Taglini
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Cristina Rubio-Ramon
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kamila I Musialik
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Jonathan Higham
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Ioannis Kafetzopoulos
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kamila P Pawlicka
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Hannah M Finan
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Richard Clark
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Jimi Wills
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Andrew J Finch
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK.
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Castro-Piedras I, Vartak D, Sharma M, Pandey S, Casas L, Molehin D, Rasha F, Fokar M, Nichols J, Almodovar S, Rahman RL, Pruitt K. Identification of Novel MeCP2 Cancer-Associated Target Genes and Post-Translational Modifications. Front Oncol 2020; 10:576362. [PMID: 33363010 PMCID: PMC7758440 DOI: 10.3389/fonc.2020.576362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation of DNA methylation and its readers has been associated with a wide range of cellular dysfunction. Disruption of the normal function of DNA methylation readers contributes to cancer progression, neurodevelopmental disorders, autoimmune disease and other pathologies. One reader of DNA methylation known to be especially important is MeCP2. It acts a bridge and connects DNA methylation with histone modifications and regulates many gene targets contributing to various diseases; however, much remains unknown about how it contributes to cancer malignancy. We and others previously described novel MeCP2 post-translational regulation. We set out to test the hypothesis that MeCP2 would regulate novel genes linked with tumorigenesis and that MeCP2 is subject to additional post-translational regulation not previously identified. Herein we report novel genes bound and regulated by MeCP2 through MeCP2 ChIP-seq and RNA-seq analyses in two breast cancer cell lines representing different breast cancer subtypes. Through genomics analyses, we localize MeCP2 to novel gene targets and further define the full range of gene targets within breast cancer cell lines. We also further examine the scope of clinical and pre-clinical lysine deacetylase inhibitors (KDACi) that regulate MeCP2 post-translationally. Through proteomics analyses, we identify many additional novel acetylation sites, nine of which are mutated in Rett Syndrome. Our study provides important new insight into downstream targets of MeCP2 and provide the first comprehensive map of novel sites of acetylation associated with both pre-clinical and FDA-approved KDACi used in the clinic. This report examines a critical reader of DNA methylation and has important implications for understanding MeCP2 regulation in cancer models and identifying novel molecular targets associated with epigenetic therapies.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - David Vartak
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Somnath Pandey
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Laura Casas
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Mohamed Fokar
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, United States
| | - Jacob Nichols
- Department of Internal Medicine, Texas Tech University, Lubbock, TX, United States
| | - Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
10
|
Nam AS, Chaligne R, Landau DA. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet 2020; 22:3-18. [PMID: 32807900 DOI: 10.1038/s41576-020-0265-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
Cancer represents an evolutionary process through which growing malignant populations genetically diversify, leading to tumour progression, relapse and resistance to therapy. In addition to genetic diversity, the cell-to-cell variation that fuels evolutionary selection also manifests in cellular states, epigenetic profiles, spatial distributions and interactions with the microenvironment. Therefore, the study of cancer requires the integration of multiple heritable dimensions at the resolution of the single cell - the atomic unit of somatic evolution. In this Review, we discuss emerging analytic and experimental technologies for single-cell multi-omics that enable the capture and integration of multiple data modalities to inform the study of cancer evolution. These data show that cancer results from a complex interplay between genetic and non-genetic determinants of somatic evolution.
Collapse
Affiliation(s)
- Anna S Nam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,New York Genome Center, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ronan Chaligne
- New York Genome Center, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. .,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA. .,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Murat El Houdigui S, Adam-Guillermin C, Armant O. Ionising Radiation Induces Promoter DNA Hypomethylation and Perturbs Transcriptional Activity of Genes Involved in Morphogenesis during Gastrulation in Zebrafish. Int J Mol Sci 2020; 21:ijms21114014. [PMID: 32512748 PMCID: PMC7312202 DOI: 10.3390/ijms21114014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022] Open
Abstract
Embryonic development is particularly vulnerable to stress and DNA damage, as mutations can accumulate through cell proliferation in a wide number of cells and organs. However, the biological effects of chronic exposure to ionising radiation (IR) at low and moderate dose rates (< 6 mGy/h) remain largely controversial, raising concerns for environmental protection. The present study focuses on the molecular effects of IR (0.005 to 50 mGy/h) on zebrafish embryos at the gastrula stage (6 hpf), at both the transcriptomics and epigenetics levels. Our results show that exposure to IR modifies the expression of genes involved in mitochondrial activity from 0.5 to 50 mGy/h. In addition, important developmental pathways, namely, the Notch, retinoic acid, BMP and Wnt signalling pathways, were altered at 5 and 50 mGy/h. Transcriptional changes of genes involved in the morphogenesis of the ectoderm and mesoderm were detected at all dose rates, but were prominent from 0.5 to 50 mGy/h. At the epigenetic level, exposure to IR induced a hypomethylation of DNA in the promoter of genes that colocalised with both H3K27me3 and H3Kme4 histone marks and correlated with changes in transcriptional activity. Finally, pathway enrichment analysis demonstrated that the DNA methylation changes occurred in the promoter of important developmental genes, including morphogenesis of the ectoderm and mesoderm. Together, these results show that the transcriptional program regulating morphogenesis in gastrulating embryos was modified at dose rates greater than or equal to 0.5 mGy/h, which might predict potential neurogenesis and somitogenesis defects observed at similar dose rates later in development.
Collapse
Affiliation(s)
- Sophia Murat El Houdigui
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France;
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France;
| | - Olivier Armant
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France;
- Correspondence:
| |
Collapse
|
12
|
Dai B, Zhang M, Yuan JL, Ren LQ, Han XY, Liu DJ. Integrative Analysis of Methylation and Transcriptional Profiles to Reveal the Genetic Stability of Cashmere Traits in the Tβ4 Overexpression of Cashmere Goats. Animals (Basel) 2019; 9:ani9121002. [PMID: 31756916 PMCID: PMC6940810 DOI: 10.3390/ani9121002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/27/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cashmere goats have double coats consisting of non-medullated fine inner hairs or cashmere fibers produced by secondary hair follicles (SHFs) and guard hairs produced by primary hair follicles (PHFs). Cashmere is an important economic product worldwide and the world market for cashmere is increasing while the current production of cashmere is limited. Thymosin β4 (Tβ4), a 4.9-kDa protein, contains 43 amino acids. Here, we produced Tβ4 overexpression (Tβ4-OE) offspring using two methods. The somatic cell nuclear transfer (SCNT) goats had increased hair follicle development and higher cashmere yields than wild type (WT) and natural mating (NM) goats. Taken together, our results showed that DNA methylation affected the expression of differentially expressed genes (DEGs) between generations and the genetic stability of cashmere traits. Abstract DNA methylation alteration is frequently observed in exogenous gene silencing and may play important roles in the genetic stability of traits. Cashmere is derived from the secondary hair follicles (SHFs) of cashmere goats, which are morphogenetically distinct from primary hair follicles (PHFs). Here, in light of having initially produced 15 Tβ4 overexpression (Tβ4-OE) cashmere goats which had more SHFs than the wild type (WT) goats, and produced more cashmere, we produced Tβ4-OE offsprings both via somatic cell nuclear transfer (SCNT) and via natural mating (NM). However, the desired trait exhibited lower fixation in the line-bred offspring compared to the SCNT offspring. Integrative analysis of methylation and transcriptional profiles showed that this might be due to the influence of methylation on the expression of differentially expressed genes (DEGs) between generations, which was mutually consistent with the results of the functional and pathway enrichment analysis of differentially methylated regions (DMRs) and DEGs. Overall, our study systematically describes the DNA methylation characteristics between generations of cashmere goats and provides a basis for improving genetic stability.
Collapse
|
13
|
Mutirangura A. A Hypothesis to Explain How the DNA of Elderly People Is Prone to Damage: Genome-Wide Hypomethylation Drives Genomic Instability in the Elderly by Reducing Youth-Associated Gnome-Stabilizing DNA Gaps. Epigenetics 2019. [DOI: 10.5772/intechopen.83372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
Scelfo A, Fachinetti D. Keeping the Centromere under Control: A Promising Role for DNA Methylation. Cells 2019; 8:cells8080912. [PMID: 31426433 PMCID: PMC6721688 DOI: 10.3390/cells8080912] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 01/22/2023] Open
Abstract
In order to maintain cell and organism homeostasis, the genetic material has to be faithfully and equally inherited through cell divisions while preserving its integrity. Centromeres play an essential task in this process; they are special sites on chromosomes where kinetochores form on repetitive DNA sequences to enable accurate chromosome segregation. Recent evidence suggests that centromeric DNA sequences, and epigenetic regulation of centromeres, have important roles in centromere physiology. In particular, DNA methylation is abundant at the centromere, and aberrant DNA methylation, observed in certain tumors, has been correlated to aneuploidy and genomic instability. In this review, we evaluate past and current insights on the relationship between centromere function and the DNA methylation pattern of its underlying sequences.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75005 Paris, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
15
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Intestinal Epithelial Organoids as Tools to Study Epigenetics in Gut Health and Disease. Stem Cells Int 2019; 2019:7242415. [PMID: 30809264 PMCID: PMC6369455 DOI: 10.1155/2019/7242415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
The intestinal epithelium forms the inner layer of the human intestine and serves a wide range of diverse functions. Its constant exposure to a vast amount of complex microbiota highlights the critical interface that this single-cell layer forms between the host and our environment. Importantly, the well-documented contribution of environmental factors towards the functional development of the human intestinal epithelium directly implies epigenetic mechanisms in orchestrating this complex interplay. The development of intestinal epithelial organoid culture systems that can be generated from human tissue provides researchers with unpresented opportunities to study functional aspects of human intestinal epithelial pathophysiology. In this brief review, we summarise existing evidence for the role of epigenetics in regulating intestinal epithelial cell function and highlight the great potential for human gut organoids as translational research tools to investigate these mechanisms in vitro.
Collapse
|
17
|
Wang WW, Zhou H, Xie JJ, Yi GS, He JH, Wang FP, Xiao X, Liu XP. Thermococcus Eurythermalis Endonuclease IV Can Cleave Various Apurinic/Apyrimidinic Site Analogues in ssDNA and dsDNA. Int J Mol Sci 2018; 20:ijms20010069. [PMID: 30586940 PMCID: PMC6341776 DOI: 10.3390/ijms20010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
Endonuclease IV (EndoIV) is a DNA damage-specific endonuclease that mainly hydrolyzes the phosphodiester bond located at 5' of an apurinic/apyrimidinic (AP) site in DNA. EndoIV also possesses 3'-exonuclease activity for removing 3'-blocking groups and normal nucleotides. Here, we report that Thermococcus eurythermalis EndoIV (TeuendoIV) shows AP endonuclease and 3'-exonuclease activities. The effect of AP site structures, positions and clustered patterns on the activity was characterized. The AP endonuclease activity of TeuendoIV can incise DNA 5' to various AP site analogues, including the alkane chain Spacer and polyethylene glycol Spacer. However, the short Spacer C2 strongly inhibits the AP endonuclease activity. The kinetic parameters also support its preference to various AP site analogues. In addition, the efficient cleavage at AP sites requires ≥2 normal nucleotides existing at the 5'-terminus. The 3'-exonuclease activity of TeuendoIV can remove one or more consecutive AP sites at the 3'-terminus. Mutations on the residues for substrate recognition show that binding AP site-containing or complementary strand plays a key role for the hydrolysis of phosphodiester bonds. Our results provide a comprehensive biochemical characterization of the cleavage/removal of AP site analogues and some insight for repairing AP sites in hyperthermophile cells.
Collapse
Affiliation(s)
- Wei-Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China.
| | - Juan-Juan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Gang-Shun Yi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China.
| | - Feng-Ping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| |
Collapse
|
18
|
Li K, Zeng L, Wei H, Hu J, Jiao L, Zhang J, Xiong Y. Identification of gene-specific DNA methylation signature for Colorectal Cancer. Cancer Genet 2018; 228-229:5-11. [PMID: 30553473 DOI: 10.1016/j.cancergen.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/08/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal Cancer (CC), a common disease causing approximately million deaths annually, has been the third most frequent type of malignancy. We aimed to identify gene-specific DNA methylation signature to function as prognostic and predictive markers for CC patient survival. METHODS Expression profiles of gene-specific DNA methylation and the corresponding clinical information of 201 CC patients were downloaded from The Cancer Genome Atlas (TCGA) dataset and differentially expressed gene-specific DNA methylation was identified after tumor subtype classification. A risk score model was further built by analyzing the expression data of these gene-specific DNA methylations from the training dataset of CC patients. RESULTS Totally, 214 gene-specific DNA methylations were found to be expressed significantly between different subtypes of CC, including 150 up-regulated and 64 down-regulated ones. Up-regulated gene-specific DNA methylation accounted for 70.1% and the down-regulated gene-specific DNA methylation accounted for 29.9%. Hereinto, six gene-specific DNA methylations were obtained, including methy_vimentin and methy_ TFPI2, which were found significantly correlated with overall survival status of patients with CC. CONCLUSIONS With the six gene-specific DNA methylation signatures, patients in the training set were divided into low-risk and high- risk groups. What's more, gene-specific DNA methylation target genes were highly associated with protein phosphorylation, which indicated that further research on phosphorylation of target gene-coding protein might provide new sight on the treatment of CC.
Collapse
Affiliation(s)
- Kaixue Li
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Li Zeng
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Hong Wei
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Jingjing Hu
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Lu Jiao
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Juan Zhang
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Ying Xiong
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| |
Collapse
|
19
|
Liang D, Shi S, Liang C, Meng Q, Zhang B, Ni Q, Xu J, Yu X. Mismatch repair status as a beneficial predictor of fluorouracil-based adjuvant chemotherapy for pancreatic cancer. Surgery 2018; 163:1080-1089. [DOI: 10.1016/j.surg.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 01/06/2023]
|
20
|
Assessment of concordance between fresh-frozen and formalin-fixed paraffin embedded tumor DNA methylation using a targeted sequencing approach. Oncotarget 2018; 8:48126-48137. [PMID: 28611295 PMCID: PMC5564631 DOI: 10.18632/oncotarget.18296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/03/2017] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is altered in many types of disease, including metastatic colorectal cancer. However, the methylome has not yet been fully described in archival formalin-fixed paraffin embedded (FFPE) samples in the context of matched fresh-frozen (FF) tumor material at base-pair resolution using a targeted approach. Using next-generation sequencing, we investigated three pairs of matched FFPE and FF samples to determine the extent of their similarity. We identified a ‘bowing’ pattern specific to FFPE samples categorized by a lower CG proportion at the start of sequence reads. We have found no evidence that this affected methylation calling, nor concordance of results. We also found no significant increase in deamination, measured by C>T transitions, previously considered a result of crosslinking DNA by formalin fixation and a barrier to the use of FFPE in methylation studies. The methods used in this study have shown sensitivity of between 60-70% based on positions also methylated in colorectal cancer cell lines. We demonstrate that FFPE material is a useful source of tumor material for methylation studies using targeted sequencing.
Collapse
|
21
|
Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. Signal Transduct Target Ther 2018; 3:8. [PMID: 29610678 PMCID: PMC5878831 DOI: 10.1038/s41392-018-0011-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer is one of the leading causes of cancer death worldwide. According to global genomic status, colorectal cancer can be classified into two main types: microsatellite-stable and microsatellite-instable tumors. Moreover, the two subtypes also exhibit different responses to chemotherapeutic agents through distinctive molecular mechanisms. Recently, mitochondrial DNA depletion has been shown to induce apoptotic resistance in microsatellite-instable colorectal cancer. However, the effects of altered mitochondrial DNA copy number on the progression of microsatellite-stable colorectal cancer, which accounts for the majority of colorectal cancer, remain unclear. In this study, we systematically investigated the functional role of altered mitochondrial DNA copy number in the survival and metastasis of microsatellite-stable colorectal cancer cells. Moreover, the underlying molecular mechanisms were also explored. Our results demonstrated that increased mitochondrial DNA copy number by forced mitochondrial transcription factor A expression significantly facilitated cell proliferation and inhibited apoptosis of microsatellite-stable colorectal cancer cells both in vitro and in vivo. Moreover, we demonstrated that increased mitochondrial DNA copy number enhanced the metastasis of microsatellite-stable colorectal cancer cells. Mechanistically, the survival advantage conferred by increased mitochondrial DNA copy number was caused in large part by elevated mitochondrial oxidative phosphorylation. Furthermore, treatment with oligomycin significantly suppressed the survival and metastasis of microsatellite-stable colorectal cancer cells with increased mitochondrial DNA copy number. Our study provides evidence supporting a possible tumor-promoting role for mitochondrial DNA and uncovers the underlying mechanism, which suggests a potential novel therapeutic target for microsatellite-stable colorectal cancer. An increase in mitochondrial DNA (mtDNA) in microsatellite stable colorectal cancer (MSSCRC) cells stimulates cell proliferation and prevents cell death. MtDNA copy number is regulated by mitochondrial transcription factor A and both increases and decreases in mtDNA levels have been associated with different types of cancer. A study led by Qichao Huang and Xianli He at the Fourth Military Medical University, China, investigated the effects of altering mtDNA levels in MSSCRC cells on tumor progression in mice. They found that high levels of mtDNA promoted MSSCRC cell survival and metastasis by stimulating mitochondrial oxidative phosphorylation and energy production. Conversely, mtDNA depletion or treatment with the mitochondrial toxin oligomycin reduced the survival and metastasis of MSSCRC cells. These findings suggest that reducing mtDNA copy number could be a useful therapeutic strategy for MSSCRC.
Collapse
|
22
|
Riley JM, Cross AW, Paulos CM, Rubinstein MP, Wrangle J, Camp ER. The clinical implications of immunogenomics in colorectal cancer: A path for precision medicine. Cancer 2018; 124:1650-1659. [PMID: 29315503 DOI: 10.1002/cncr.31214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) remains the third most common malignancy and the second-leading cause of cancer-related deaths in the United States. Large multi-omic databases, such as The Cancer Genome Atlas and the International Colorectal Cancer Subtyping Consortium, have identified distinct molecular subtypes related to anatomy. The identification of genomic alterations in CRC is now critical because of the recent success and US Food and Drug Administration approval of pembrolizumab and nivolumab for microsatellite-instable tumors. In parallel, landmark studies have established the prognostic significance of the CRC tumor-infiltrating lymphocyte and the clinical impact of the tumor immune microenvironment. As a result, there is a growing appreciation for immunogenomics, the interconnected relation between tumor genomics and the immune microenvironment. The clinical implications of CRC immunogenomics continue to expand, and it will likely serve as a guide for next-generation immunotherapy strategies for improving outcomes for this disease. Cancer 2018;124:1650-9. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Jenny M Riley
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Ashley W Cross
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P Rubinstein
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina.,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - John Wrangle
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - E Ramsay Camp
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
23
|
TGF-β-mediated repression of MST1 by DNMT1 promotes glioma malignancy. Biomed Pharmacother 2017; 94:774-780. [PMID: 28802229 DOI: 10.1016/j.biopha.2017.07.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/28/2022] Open
Abstract
Human gliomas are related to high rates of morbidity and mortality. TGF-β promotes the growth of glioma cells, and correlate with the degree of malignancy of human gliomas. However, the molecular mechanisms involved in the malignant function of TGF-β are not fully elucidated. Here, we showed that TGF-β induced the downregulation of MST1 expression in U87 and U251 glioma cells. Treatment of glioma cells with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AzadC) prevented the loss of MST1 expression. Addition of 5-AzadC also reduced the TGF-β-stimulated proliferation, migration and invasiveness of glioma cells. Furthermore, Knockdown of DNMT1 upregulated MST1 expression in gliomas cells. In addition, the inhibition of DNMT1 blocked TGF-β-induced proliferation, migration and invasiveness in glioma cells. These results suggest that TGF-β promotes glioma malignancy through DNMT1-mediated loss of MST1 expression.
Collapse
|
24
|
Abstract
More and more studies show that chronic inflammation can lead to tumor formation. The complex interactions of inflammatory cells, stroma and tumor parenchymal cell are closely related to tumor formation. Under the state of chronic inflammatory microenvironment, long-term interaction of inflammatory cells and stromal cells as well as the parenchymal cells makes signaling pathway in parenchyma cells disordered. A series of gene level editor modification, epigenetic changes, and the regulation of transcription and translation changes will happen based on signaling pathway disorder. The changes ultimately lead to cell mutations and phenotypic transformation occurred. Recent findings provide an objective basis for cancer treatment and prevention. However, further discusses at the core of the possible molecular in tumor formation provide a theoretical foundation for future study of the pathogenesis and molecular targeted therapy of cancer. This review summarizes the research in the field of chronic inflammation and cancer in recent years, and analyze the molecules network in the process of the carcinogenic inflammation comprehensively. Beyond that, this review intends to describe possible carcinogenic inflammation core molecular and provides a theoretical basis for future study of the pathogenesis, chemoprevention and molecular targeted therapy of cancer.
Collapse
Affiliation(s)
- Hui Zhang
- 1 Department of Gastroenterology, The Shidong Hospital of Shanghai, Shanghai, China
- 2 Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, China
| | - Xuanfu Xu
- 1 Department of Gastroenterology, The Shidong Hospital of Shanghai, Shanghai, China
| |
Collapse
|
25
|
Multiple endpoints to evaluate pristine and remediated titanium dioxide nanoparticles genotoxicity in lung epithelial A549 cells. Toxicol Lett 2017; 276:48-61. [DOI: 10.1016/j.toxlet.2017.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
|
26
|
Pardieck IN, Jawahier PA, Swets M, van de Velde CJH, Kuppen PJK. Novel avenues in immunotherapies for colorectal cancer. Expert Rev Gastroenterol Hepatol 2016; 10:465-80. [PMID: 26582071 DOI: 10.1586/17474124.2016.1122522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since it is known that the immune system affects tumor growth, it has been studied if immunotherapy can be developed to combat cancer. While some successes have been claimed, the increasing knowledge on tumor-immune interactions has, however, also shown the limitations of this approach. Tumors may show selective outgrowth of cells escaped from immune control. Escape variants arise spontaneously due to the genetically instable nature of tumor cells. This is one of the most obvious limitations of cancer immunotherapy. However, new therapies are becoming available, designed to respond to tumor-immune escape.
Collapse
Affiliation(s)
- Iris N Pardieck
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Priscilla A Jawahier
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Marloes Swets
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | | | - Peter J K Kuppen
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
27
|
Abstract
Stems cells of the colon crypt are the origin of colon mature cells. Colorectal cancer cells are also suggested to originate from crypt stem cells undergoing a series of epigenetic and genetic alterations. Aberrant methylation plays important roles in early carcinogenesis and lead to altered gene expression and regulation, resulting in accumulation of damages to cell function and ultimately, malignant transformation. Aberrances in hypermethylation and hypomethylation act in different mechanism through the regulation of various genes during CSC carcinogenesis, and both of them play crucial roles in stem cell differentiation towards cancer cells. A large majority of epigenetic and genetic abnormalities that work coordinately in colorectal carcinogenesis are related to cell growth and division, indicating that the intrinsic abnormalities of CRC lie in dysregulation of basic cellular processes. Detection of abnormal methylation can be used in cancer screening and early detection, while reversal of aberrant methylation using drugs may have potential in cancer therapy. This review will provide an overview on the roles of aberrant methylation and a summary of genes that are affected during CRC carcinogenesis.
Collapse
Affiliation(s)
- Lele Song
- Department of Radiotherapy, The Chinese PLA 309th Hospital, No. 17, Heishanhu Road, Haidian District, Beijing, 100091, People's Republic of China.
- BioChain (Beijing) Science and Technology, Inc, Beijing, 100176, People's Republic of China.
| | - Yuemin Li
- Department of Radiotherapy, The Chinese PLA 309th Hospital, No. 17, Heishanhu Road, Haidian District, Beijing, 100091, People's Republic of China.
| |
Collapse
|
28
|
de Vries NL, Swets M, Vahrmeijer AL, Hokland M, Kuppen PJK. The Immunogenicity of Colorectal Cancer in Relation to Tumor Development and Treatment. Int J Mol Sci 2016; 17:ijms17071030. [PMID: 27367680 PMCID: PMC4964406 DOI: 10.3390/ijms17071030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
Although most cancer types have been viewed as immunologically silent until recently, it has become increasingly clear that the immune system plays key roles in the course of tumor development. Remarkable progress towards understanding cancer immunogenicity and tumor-immune system interactions has revealed important implications for the design of novel immune-based therapies. Natural immune responses, but also therapeutic interventions, can modulate the tumor phenotype due to selective outgrowth of resistant subtypes. This is the result of heterogeneity of tumors, with genetic instability as a driving force, and obviously changes the immunogenicity of tumors. In this review, we discuss the immunogenicity of colorectal cancer (CRC) in relation to tumor development and treatment. As most tumors, CRC activates the immune system in various ways, and is also capable of escaping recognition and elimination by the immune system. Tumor-immune system interactions underlie the balance between immune control and immune escape, and may differ in primary tumors, in the circulation, and in liver metastases of CRC. Since CRC immunogenicity varies between tumors and individuals, novel immune-based therapeutic strategies should not only anticipate the molecular profile, but also the immunological profile of a specific tumor.
Collapse
Affiliation(s)
- Natasja L de Vries
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, Build. 1242, DK-8000 Aarhus, Denmark.
| | - Marloes Swets
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Marianne Hokland
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, Build. 1242, DK-8000 Aarhus, Denmark.
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
29
|
Gentilini D, Garagnani P, Pisoni S, Bacalini MG, Calzari L, Mari D, Vitale G, Franceschi C, Di Blasio AM. Stochastic epigenetic mutations (DNA methylation) increase exponentially in human aging and correlate with X chromosome inactivation skewing in females. Aging (Albany NY) 2016; 7:568-78. [PMID: 26342808 PMCID: PMC4586102 DOI: 10.18632/aging.100792] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study we applied a new analytical strategy to investigate the relations between stochastic epigenetic mutations (SEMs) and aging. We analysed methylation levels through the Infinium HumanMethylation27 and HumanMethylation450 BeadChips in a population of 178 subjects ranging from 3 to 106 years. For each CpG probe, epimutated subjects were identified as the extreme outliers with methylation level exceeding three times interquartile ranges the first quartile (Q1-(3 × IQR)) or the third quartile (Q3+(3 × IQR)). We demonstrated that the number of SEMs was low in childhood and increased exponentially during aging. Using the HUMARA method, skewing of X chromosome inactivation (XCI) was evaluated in heterozygotes women. Multivariate analysis indicated a significant correlation between log(SEMs) and degree of XCI skewing after adjustment for age (β = 0.41; confidence interval: 0.14, 0.68; p-value = 0.0053). The PATH analysis tested the complete model containing the variables: skewing of XCI, age, log(SEMs) and overall CpG methylation. After adjusting for the number of epimutations we failed to confirm the well reported correlation between skewing of XCI and aging. This evidence might suggest that the known correlation between XCI skewing and aging could not be a direct association but mediated by the number of SEMs.
Collapse
Affiliation(s)
- Davide Gentilini
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095 Milan, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum- University of Bologna, Bologna 40138, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy
| | - Serena Pisoni
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095 Milan, Italy
| | - Maria Giulia Bacalini
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum- University of Bologna, Bologna 40138, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy
| | - Luciano Calzari
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095 Milan, Italy
| | - Daniela Mari
- Geriatric Unit, IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Giovanni Vitale
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095 Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum- University of Bologna, Bologna 40138, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy
| | | |
Collapse
|
30
|
Chen D, Wen X, Song YS, Rhee YY, Lee TH, Cho NY, Han SW, Kim TY, Kang GH. Associations and prognostic implications of Eastern Cooperative Oncology Group performance status and tumoral LINE-1 methylation status in stage III colon cancer patients. Clin Epigenetics 2016; 8:36. [PMID: 27051466 PMCID: PMC4820986 DOI: 10.1186/s13148-016-0203-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
Background Low methylation status of LINE-1 in tumors is associated with poor survival in patients with colon cancer. Eastern Cooperative Oncology Group performance status (ECOG-PS) is a method to assess the functional status of a patient. We retrospectively evaluated the relationship between ECOG-PS and LINE-1 methylation in colorectal cancers (CRCs) and their prognostic impact in CRC or colon cancer patients receiving adjuvant 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX). Results LINE-1 methylation and microsatellite instability were analyzed in stage III or high-risk stage II CRCs (n = 336). LINE-1 methylation levels were correlated with clinicopathological features, including PS and recurrence-free survival (RFS). The association between the tumoral LINE-1 methylation level and PS was observed (OR = 2.56, P < 0.001). Differences in LINE-1 methylation levels in cancer tissue between the PS 0 and 1 groups were significant in patients older than 60 years (P = 0.001), the overweight body mass index group (P = 0.005), and the stage III disease group (P = 0.008). Prognostic significances of LINE-1 methylation status or combined PS and LINE-1 methylation statuses were identified in stage III colon cancers, not in stage III and high-risk stage II CRCs. Low LINE-1 methylation status was closely associated with a shorter RFS time. The difference between PS(0)/LINE-1(high) and PS(≥1)/LINE-1(low) was significant, which suggests that colon cancer patients with concurrent PS(≥1)/LINE-1 (low) have a higher recurrence rate. Conclusions PS was associated with LINE-1 methylation in CRC tissue. LINE-1 methylation was associated with RFS in stage III colon cancer patients who were treated with adjuvant FOLFOX chemotherapy. Combined PS and LINE-1 methylation status might serve as a useful predictor of cancer recurrence. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0203-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duo Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xianyu Wen
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Seok Song
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Young Rhee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Hun Lee
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nam Yun Cho
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Division of Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-You Kim
- Division of Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Hypomethylation of repetitive elements in blood leukocyte DNA and risk of gastric lesions in a Chinese population. Cancer Epidemiol 2016; 41:122-8. [PMID: 26943853 DOI: 10.1016/j.canep.2016.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND To explore the association between hypomethylation of repetitive elements (LINE-1, Sat2, and ALU) in blood leukocyte DNA and risks of gastric lesions, and development of gastric cancer (GC), a population-based study was conducted in a high-risk area of GC in China. MATERIALS Methylation levels were determined by MethyLight in 902 subjects with various gastric lesions from two cohort studies at baseline and 276 subjects with long-term follow-up data. RESULTS The frequency of LINE-1 or Sat2 hypomethylation was significantly increased in subjects with dysplasia (DYS) compared with superficial gastritis/chronic atrophic gastritis. The odds ratios (ORs) were 2.22 [95% confidence interval (CI): 1.45-3.40] for LINE-1 and 1.58 (95% CI: 1.14-2.21) for Sat2. A dose-response pattern was found for the risk of DYS and LINE-1 hypomethylation (P-trend<0.001). Further stratified analysis indicated that the frequency of LINE-1 or Sat2 hypomethylation was higher in subjects with Helicobacter pylori infection. The ORs were 1.83 (95% CI: 1.12-2.99) for LINE-1 and 1.44 (95% CI: 1.01-2.05) for Sat2. The follow-up data indicated that the risk of progression to GC was increased in intestinal metaplasia (IM) subjects with LINE-1 hypomethylation (OR=2.82; 95% CI: 1.17-6.77) or Sat2 hypomethylation (OR=2.78; 95% CI: 1.15-6.74). The risk of progression to GC was also increased in DYS subjects with Sat2 hypomethylation (OR=5.24; 95% CI: 2.00-13.74). CONCLUSIONS These findings suggest that hypomethylation of repetitive elements in blood leukocytes is associated with the risks of advanced gastric lesions and development of GC.
Collapse
|
32
|
Cougnoux A, Delmas J, Gibold L, Faïs T, Romagnoli C, Robin F, Cuevas-Ramos G, Oswald E, Darfeuille-Michaud A, Prati F, Dalmasso G, Bonnet R. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut 2016; 65:278-85. [PMID: 25588406 DOI: 10.1136/gutjnl-2014-307241] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Colorectal cancers (CRCs) are frequently colonised by colibactin toxin-producing Escherichia coli bacteria that induce DNA damage in host cells and exhibit protumoural activities. Our objective was to identify small molecules inhibiting the toxic effects induced by these colibactin-producing bacteria. DESIGN A structural approach was adopted for the identification of a putative ligand for the ClbP enzyme involved in the synthesis of colibactin. Intestinal epithelial cells and a CRC mouse model were used to assess the activity of the selected compounds in vitro and in vivo. RESULTS Docking experiments identified two boron-based compounds with computed ligand efficiency values (-0.8 and -0.9 kcal/mol/atom) consistent with data expected for medicinal chemistry leads. The crystalline structure of ClbP in complex with the compounds confirmed that the compounds were binding to the active site of ClbP. The two compounds (2 mM) suppressed the genotoxic activity of colibactin-producing E coli both in vitro and in vivo. The mean degree of suppression of DNA damage for the most efficient compound was 98±2% (95% CI). This compound also prevented cell proliferation and colibactin-producing E coli-induced tumourigenesis in mice. In a CRC murine model colonised by colibactin-producing E coli, the number of tumours decreased by 3.5-fold in animals receiving the compound in drinking water (p<0.01). CONCLUSIONS These results demonstrate that targeting colibactin production controls the genotoxic and protumoural effects induced by this toxin.
Collapse
Affiliation(s)
- Antony Cougnoux
- Clermont Université, Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France
| | - Julien Delmas
- Clermont Université, Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Lucie Gibold
- Clermont Université, Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Tiphanie Faïs
- Clermont Université, Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France
| | - Chiara Romagnoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Frederic Robin
- Clermont Université, Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Gabriel Cuevas-Ramos
- INRA; USC 1360, Université de Toulouse, Toulouse, France Inserm; UMR1043, Université de Toulouse, Toulouse, France CNRS; UMR5282, Université de Toulouse, Toulouse, France
| | - Eric Oswald
- INRA; USC 1360, Université de Toulouse, Toulouse, France Inserm; UMR1043, Université de Toulouse, Toulouse, France CNRS; UMR5282, Université de Toulouse, Toulouse, France UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France CHU Toulouse; Hôpital Purpan; Service de bactériologie-Hygiène, Toulouse, France
| | - Arlette Darfeuille-Michaud
- Clermont Université, Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France Institut Universitaire de Technologie, Université d'Auvergne, Aubière, France
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Dalmasso
- Clermont Université, Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France
| | - Richard Bonnet
- Clermont Université, Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France Centre Hospitalier Universitaire, Clermont-Ferrand, France
| |
Collapse
|
33
|
Bejarano PA, Garcia-Buitrago MT, Berho M, Allende D. Biologic and molecular markers for staging colon carcinoma. COLORECTAL CANCER 2016. [DOI: 10.2217/crc.15.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomarkers in the field of pathology and oncology may allow for the detection of disease, assessment of prognosis or to predict response to certain therapy. Molecular abnormalities in colorectal cancer genesis may occur due to chromosome instability, microsatellite instability and DNA methylation (CpG island methylator phenotype). These alterations are associated in some cases to sporadic carcinomas whereas in others are seen in syndrome-related tumors and are the basis for the use of different biomarkers in the clinical setting. These may include mismatched repair gene/proteins, RAS, BRAF, PIK3CA, which help to determine tumor prognosis and predict response to certain drugs.
Collapse
Affiliation(s)
- Pablo A Bejarano
- Department of Pathology Cleveland Clinic Florida, 2900 Weston Road, Weston, FL 33331, USA
| | - Monica T Garcia-Buitrago
- Department of Pathology, University of Miami School of Medicine, 1611 NW 12 Ave. Holtz Bldg, Miami, FL 33136, USA
| | - Mariana Berho
- Department of Pathology Cleveland Clinic Florida, 2900 Weston Road, Weston, FL 33331, USA
| | - Daniela Allende
- Department of Pathology Cleveland Clinic, Cleveland, OH 9500 Euclid Avenue Cleveland, OH 44195, USA
| |
Collapse
|
34
|
Yang CH, Lin YD, Chiang YC, Chuang LY. A Hybrid Approach for CpG Island Detection in the Human Genome. PLoS One 2016; 11:e0144748. [PMID: 26727213 PMCID: PMC4705099 DOI: 10.1371/journal.pone.0144748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
Background CpG islands have been demonstrated to influence local chromatin structures and simplify the regulation of gene activity. However, the accurate and rapid determination of CpG islands for whole DNA sequences remains experimentally and computationally challenging. Methodology/Principal Findings A novel procedure is proposed to detect CpG islands by combining clustering technology with the sliding-window method (PSO-based). Clustering technology is used to detect the locations of all possible CpG islands and process the data, thus effectively obviating the need for the extensive and unnecessary processing of DNA fragments, and thus improving the efficiency of sliding-window based particle swarm optimization (PSO) search. This proposed approach, named ClusterPSO, provides versatile and highly-sensitive detection of CpG islands in the human genome. In addition, the detection efficiency of ClusterPSO is compared with eight CpG island detection methods in the human genome. Comparison of the detection efficiency for the CpG islands in human genome, including sensitivity, specificity, accuracy, performance coefficient (PC), and correlation coefficient (CC), ClusterPSO revealed superior detection ability among all of the test methods. Moreover, the combination of clustering technology and PSO method can successfully overcome their respective drawbacks while maintaining their advantages. Thus, clustering technology could be hybridized with the optimization algorithm method to optimize CpG island detection. Conclusion/Significance The prediction accuracy of ClusterPSO was quite high, indicating the combination of CpGcluster and PSO has several advantages over CpGcluster and PSO alone. In addition, ClusterPSO significantly reduced implementation time.
Collapse
Affiliation(s)
- Cheng-Hong Yang
- Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan
| | - Yu-Da Lin
- Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan
| | - Yi-Cheng Chiang
- Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan
| | - Li-Yeh Chuang
- Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Singh R, Lillard JW, Singh S. Epigenetic Changes and Potential Targets in Pancreatic Cancer. EPIGENETIC ADVANCEMENTS IN CANCER 2016:27-63. [DOI: 10.1007/978-3-319-24951-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Song YS, Kim Y, Cho NY, Yang HK, Kim WH, Kang GH. Methylation status of long interspersed element-1 in advanced gastric cancer and its prognostic implication. Gastric Cancer 2016; 19:98-106. [PMID: 25609453 DOI: 10.1007/s10120-015-0463-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS Reportedly, the pyrosequencing methylation assay can produce inconsistent results between paired snap-frozen and formalin-fixed paraffin-embedded archival tissue samples. In this study, we assayed the methylation levels at four individual CpG sites of L1 using pyrosequencing and found that the methylation levels at individual CpG sites were different but were closely correlated between paired snap-frozen and formalin-fixed paraffin-embedded tissue samples. We aimed to determine whether low methylation status of L1 is associated with gastric cancer patient prognosis. METHODS We analyzed 434 formalin-fixed paraffin-embedded tissue samples of advanced gastric cancer for their methylation status at four CpG sites of L1 [nucleotide positions 328, 321, 318, and 306 of X58075 (Genbank)] using pyrosequencing, and correlated the L1 methylation level with clinicopathological features. RESULTS Older age at onset, males, tumor location at antrum or lower body, intestinal type, and lymphatic or venous invasion were associated with a low average methylation level of L1 at the two CpG sites 1 and 4 combined. The average methylation level of L1 at CpG sites 1 and 4 combined was significantly lower in microsatellite-stable and EBV-negative gastric cancers than in EBV-positive or microsatellite-unstable gastric cancers. Low methylation status of L1 was independently correlated with shorter overall survival and disease-free survival time. CONCLUSION Our findings indicate that the discrepancy in the methylation level of L1 between fresh tissue and formalin-fixed paraffin-embedded tissue samples depends on the CpG sites considered, and that the methylation status of L1 at CpG sites 1 and 4 combined could be utilized as a prognostic parameter for advanced gastric cancers.
Collapse
Affiliation(s)
- Young Seok Song
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Nam Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han Kwang Yang
- Department of General Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Gyeong Hoon Kang
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. .,Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea.
| |
Collapse
|
37
|
Li J, Bian EB, He XJ, Ma CC, Zong G, Wang HL, Zhao B. Epigenetic repression of long non-coding RNA MEG3 mediated by DNMT1 represses the p53 pathway in gliomas. Int J Oncol 2015; 48:723-33. [PMID: 26676363 DOI: 10.3892/ijo.2015.3285] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/20/2015] [Indexed: 11/06/2022] Open
Abstract
Epigenetic regulation plays a significant role in gliomas. However, how methylation and long non-coding RNA (lncRNA) cooperates to regulate gliomas progression is largely unknown. In this investigation we showed that the downregulation of MEG3 expression due to hypermethylation of MEG3 was observed in gliomas tissues. Treatment of glioma cells with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-AzadC) decreased aberrant hypermethylation of the MEG3 promoter and prevented the loss of MEG3 expression. In addition, DNMT1 was involved in MEG3 promoter methylation, and was inversely correlated with MEG3 expression in gliomas. The inhibition of DNMT1 repressed the proliferation, clone formation, and induced apoptosis in glioma cells. Importantly, the inhibition of DNMT1 contributed to the activation of p53 pathways in gliomas cells. These results suggest that DNMT1-mediated MEG3 hypermethylation caused the loss of MEG3 expression, followed by the inhibition of the p53 pathways in gliomas.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Er-Bao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xiao-Jun He
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Chun-Chun Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Gang Zong
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Hong-Liang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
38
|
Elliott EN, Kaestner KH. Epigenetic regulation of the intestinal epithelium. Cell Mol Life Sci 2015; 72:4139-56. [PMID: 26220502 PMCID: PMC4607638 DOI: 10.1007/s00018-015-1997-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium is an ideal model system for the study of normal and pathological differentiation processes. The mammalian intestinal epithelium is a single cell layer comprising proliferative crypts and differentiated villi. The crypts contain both proliferating and quiescent stem cell populations that self-renew and produce all the differentiated cell types, which are replaced every 3-5 days. The genetics of intestinal development, homeostasis, and disease are well defined, but less is known about the contribution of epigenetics in modulating these processes. Epigenetics refers to heritable phenotypic traits, including gene expression, which are independent of mutations in the DNA sequence. We have known for several decades that human colorectal cancers contain hypomethylated DNA, but the causes and consequences of this phenomenon are not fully understood. In contrast, tumor suppressor gene promoters are often hypermethylated in colorectal cancer, resulting in decreased expression of the associated gene. In this review, we describe the role that epigenetics plays in intestinal homeostasis and disease, with an emphasis on results from mouse models. We highlight the importance of producing and analyzing next-generation sequencing data detailing the epigenome from intestinal stem cell to differentiated intestinal villus cell.
Collapse
Affiliation(s)
- Ellen N Elliott
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, 12-126 Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, 12-126 Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Sonay TB, Koletou M, Wagner A. A survey of tandem repeat instabilities and associated gene expression changes in 35 colorectal cancers. BMC Genomics 2015; 16:702. [PMID: 26376692 PMCID: PMC4574073 DOI: 10.1186/s12864-015-1902-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer is a major contributor to cancer morbidity and mortality. Tandem repeat instability and its effect on cancer phenotypes remain so far poorly studied on a genome-wide scale. RESULTS Here we analyze the genomes of 35 colorectal tumors and their matched normal (healthy) tissues for two types of tandem repeat instability, de-novo repeat gain or loss and repeat copy number variation. Specifically, we study for the first time genome-wide repeat instability in the promoters and exons of 18,439 genes, and examine the association of repeat instability with genome-scale gene expression levels. We find that tumors with a microsatellite instable (MSI) phenotype are enriched in genes with repeat instability, and that tumor genomes have significantly more genes with repeat instability compared to healthy tissues. Genes in tumor genomes with repeat instability in their promoters are significantly less expressed and show slightly higher levels of methylation. Genes in well-studied cancer-associated signaling pathways also contain significantly more unstable repeats in tumor genomes. Genes with such unstable repeats in the tumor-suppressor p53 pathway have lower expression levels, whereas genes with repeat instability in the MAPK and Wnt signaling pathways are expressed at higher levels, consistent with the oncogenic role they play in cancer. CONCLUSIONS Our results suggest that repeat instability in gene promoters and associated differential gene expression may play an important role in colorectal tumors, which is a first step towards the development of more effective molecular diagnostic approaches centered on repeat instability.
Collapse
Affiliation(s)
- Tugce Bilgin Sonay
- Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland.
- Institute of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland.
| | | | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland.
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- The Santa Fe Institute, Santa Fe, NM, United States of America.
| |
Collapse
|
40
|
Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, Massfelder T, Rathmell WK, Xia M, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Prudhomme KR, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Lowe L, Jensen L, Bisson WH, Kleinstreuer N. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis 2015; 36 Suppl 1:S184-S202. [PMID: 26106137 PMCID: PMC4492067 DOI: 10.1093/carcin/bgv036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
Collapse
Affiliation(s)
- Zhiwei Hu
- To whom correspondence should be addressed. Tel: +1 614 685 4606; Fax: +1-614-247-7205;
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valérian Dormoy
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Chia-Wen Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, Taipei Medical University, Taiwan, Republic of China
| | - Thierry Massfelder
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Fahd Al-Mulla
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate
, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - A. Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advance Research), King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden and
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems, Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, NIEHS, MD K2-16, RTP, NC 27709, USA
| |
Collapse
|
41
|
Babić Božović I, Stanković A, Živković M, Vraneković J, Kapović M, Brajenović-Milić B. Altered LINE-1 Methylation in Mothers of Children with Down Syndrome. PLoS One 2015; 10:e0127423. [PMID: 26017139 PMCID: PMC4446367 DOI: 10.1371/journal.pone.0127423] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/15/2015] [Indexed: 01/08/2023] Open
Abstract
Down syndrome (DS, also known as trisomy 21) most often results from chromosomal nondisjunction during oogenesis. Numerous studies sustain a causal link between global DNA hypomethylation and genetic instability. It has been suggested that DNA hypomethylation might affect the structure and dynamics of chromatin regions that are critical for chromosome stability and segregation, thus favouring chromosomal nondisjunction during meiosis. Maternal global DNA hypomethylation has not yet been analyzed as a potential risk factor for chromosome 21 nondisjunction. This study aimed to asses the risk for DS in association with maternal global DNA methylation and the impact of endogenous and exogenous factors that reportedly influence DNA methylation status. Global DNA methylation was analyzed in peripheral blood lymphocytes by quantifying LINE-1 methylation using the MethyLight method. Levels of global DNA methylation were significantly lower among mothers of children with maternally derived trisomy 21 than among control mothers (P = 0.000). The combination of MTHFR C677T genotype and diet significantly influenced global DNA methylation (R2 = 4.5%, P = 0.046). The lowest values of global DNA methylation were observed in mothers with MTHFR 677 CT+TT genotype and low dietary folate. Although our findings revealed an association between maternal global DNA hypomethylation and trisomy 21 of maternal origin, further progress and final conclusions regarding the role of global DNA methylation and the occurrence of trisomy 21 are facing major challenges.
Collapse
Affiliation(s)
- Ivana Babić Božović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Aleksandra Stanković
- Vinča Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- Vinča Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Jadranka Vraneković
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Miljenko Kapović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojana Brajenović-Milić
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
- * E-mail:
| |
Collapse
|
42
|
Erice O, Smith MP, White R, Goicoechea I, Barriuso J, Jones C, Margison GP, Acosta JC, Wellbrock C, Arozarena I. MGMT Expression Predicts PARP-Mediated Resistance to Temozolomide. Mol Cancer Ther 2015; 14:1236-46. [PMID: 25777962 DOI: 10.1158/1535-7163.mct-14-0810] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Melanoma and other solid cancers are frequently resistant to chemotherapies based on DNA alkylating agents such as dacarbazine and temozolomide. As a consequence, clinical responses are generally poor. Such resistance is partly due to the ability of cancer cells to use a variety of DNA repair enzymes to maintain cell viability. Particularly, the expression of MGMT has been linked to temozolomide resistance, but cotargeting MGMT has proven difficult due to dose-limiting toxicities. Here, we show that the MGMT-mediated resistance of cancer cells is profoundly dependent on the DNA repair enzyme PARP. Both in vitro and in vivo, we observe that MGMT-positive cancer cells strongly respond to the combination of temozolomide and PARP inhibitors (PARPi), whereas MGMT-deficient cells do not. In melanoma cells, temozolomide induced an antiproliferative senescent response, which was greatly enhanced by PARPi in MGMT-positive cells. In summary, we provide compelling evidence to suggest that the stratification of patients with cancer upon the MGMT status would enhance the success of combination treatments using temozolomide and PARPi.
Collapse
Affiliation(s)
- Oihane Erice
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Michael P Smith
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Rachel White
- Edinburgh Cancer Research UK Centre and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Ibai Goicoechea
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Jorge Barriuso
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, Sutton, United Kingdom
| | - Geoffrey P Margison
- Centre for Occupational and Environmental Health, The University of Manchester, Stopford Building, Manchester, United Kingdom
| | - Juan C Acosta
- Edinburgh Cancer Research UK Centre and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom.
| | - Imanol Arozarena
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
43
|
Prognostic significance of promoter CpG island hypermethylation and repetitive DNA hypomethylation in stage I lung adenocarcinoma. Virchows Arch 2015; 466:675-83. [DOI: 10.1007/s00428-015-1749-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/15/2015] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
|
44
|
Tiscornia MM, González HS, Lorenzati MA, Zapata PD. Association Between Methylation of SHP-1 Isoform I and SSTR2A Promoter Regions with Breast and Prostate Carcinoma Development. Cancer Invest 2015; 33:61-9. [DOI: 10.3109/07357907.2014.1001892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Ulahannan N, Greally JM. Genome-wide assays that identify and quantify modified cytosines in human disease studies. Epigenetics Chromatin 2015; 8:5. [PMID: 25788985 PMCID: PMC4363328 DOI: 10.1186/1756-8935-8-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022] Open
Abstract
The number of different assays that has been published to study DNA methylation is extensive, complemented by recently described assays that test modifications of cytosine other than the most abundant 5-methylcytosine (5mC) variant. In this review, we describe the considerations involved in choosing how to study 5mC throughout the genome, with an emphasis on the common application of testing for epigenetic dysregulation in human disease. While microarray studies of 5mC continue to be commonly used, these lack the additional qualitative information from sequencing-based approaches that is increasingly recognized to be valuable. When we test the representation of functional elements in the human genome by several current assay types, we find that no survey approach interrogates anything more than a small minority of the nonpromoter cis-regulatory sites where DNA methylation variability is now appreciated to influence gene expression and to be associated with human disease. However, whole-genome bisulphite sequencing (WGBS) adds a substantial representation of loci at which DNA methylation changes are unlikely to be occurring with transcriptional consequences. Our assessment is that the most effective approach to DNA methylation studies in human diseases is to use targeted bisulphite sequencing of the cis-regulatory loci in a cell type of interest, using a capture-based or comparable system, and that no single design of a survey approach will be suitable for all cell types.
Collapse
Affiliation(s)
- Netha Ulahannan
- Department of Genetics, Albert Einstein College of Medicine, Center for Epigenomics and Division of Computational Genetics, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Center for Epigenomics and Division of Computational Genetics, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| |
Collapse
|
46
|
Mokarram P, Estiar MA, Ashktorab H. Methylation in Colorectal Cancer. EPIGENETICS TERRITORY AND CANCER 2015:373-455. [DOI: 10.1007/978-94-017-9639-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Murria R, Palanca S, de Juan I, Egoavil C, Alenda C, García-Casado Z, Juan MJ, Sánchez AB, Santaballa A, Chirivella I, Segura Á, Hervás D, Llop M, Barragán E, Bolufer P. Methylation of tumor suppressor genes is related with copy number aberrations in breast cancer. Am J Cancer Res 2014; 5:375-385. [PMID: 25628946 PMCID: PMC4300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023] Open
Abstract
This study investigates the relationship of promoter methylation in tumor suppressor genes with copy-number aberrations (CNA) and with tumor markers in breast cancer (BCs). The study includes 98 formalin fixed paraffin-embedded BCs in which promoter methylation of 24 tumour suppressor genes were assessed by Methylation-Specific Multiplex Ligation-dependent Probe Amplification (MS-MLPA), CNA of 20 BC related genes by MLPA and ER, PR, HER2, CK5/6, CK18, EGFR, Cadherin-E, P53, Ki-67 and PARP expression by immunohistochemistry (IHC). Cluster analysis classed BCs in two groups according to promoter methylation percentage: the highly-methylated group (16 BCs), containing mostly hyper-methylated genes, and the sparsely-methylated group (82 BCs) with hypo-methylated genes. ATM, CDKN2A, VHL, CHFR and CDKN2B showed the greatest differences in the mean methylation percentage between these groups. We found no relationship of the IHC parameters or pathological features with methylation status, except for Catherin-E (p = 0.008). However the highly methylated BCs showed higher CNA proportion than the sparsely methylated BCs (p < 0.001, OR = 1.62; IC 95% [1.26, 2.07]). CDC6, MAPT, MED1, PRMD14 and AURKA showed the major differences in the CNA percentage between the two groups, exceeding the 22%. Methylation in RASSF1, CASP8, DAPK1 and GSTP1 conferred the highest probability of harboring CNA. Our results show a new link between promoter methylation and CNA giving support to the importance of methylation events to establish new BCs subtypes. Our findings may be also of relevance in personalized therapy assessment, which could benefit the hyper methylated BC patients group.
Collapse
Affiliation(s)
- Rosa Murria
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La FeValencia, Spain
| | - Sarai Palanca
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La FeValencia, Spain
| | - Inmaculada de Juan
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La FeValencia, Spain
| | - Cecilia Egoavil
- Department of Pathology, University General HospitalAlicante, Spain
| | - Cristina Alenda
- Department of Pathology, University General HospitalAlicante, Spain
| | | | | | - Ana B Sánchez
- Genetic Counseling Unit, Elche HospitalAlicante, Spain
| | - Ana Santaballa
- Department of Oncology, University Hospital La FeValencia, Spain
| | | | - Ángel Segura
- Genetic Counseling Unit, University Hospital La FeValencia, Spain
| | - David Hervás
- Biostatistics Service, Health Research Institute La FeValencia, Spain
| | - Marta Llop
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La FeValencia, Spain
| | - Eva Barragán
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La FeValencia, Spain
| | - Pascual Bolufer
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La FeValencia, Spain
| |
Collapse
|
48
|
RASSF1 and PTEN Promoter Hypermethylation Influences the Outcome in Epithelial Ovarian Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.cogc.2014.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Shah S, McRae AF, Marioni RE, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR, Pattie A, Corley J, Murphy L, Martin NG, Montgomery GW, Starr JM, Wray NR, Deary IJ, Visscher PM. Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Res 2014; 24:1725-33. [PMID: 25249537 PMCID: PMC4216914 DOI: 10.1101/gr.176933.114] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) are essential for regulation of gene expression. DNAm is dynamic, influenced by both environmental and genetic factors. Epigenetic drift is the divergence of the epigenome as a function of age due to stochastic changes in methylation. Here we show that epigenetic drift may be constrained at many CpGs across the human genome by DNA sequence variation and by lifetime environmental exposures. We estimate repeatability of DNAm at 234,811 autosomal CpGs in whole blood using longitudinal data (2–3 repeated measurements) on 478 older people from two Scottish birth cohorts—the Lothian Birth Cohorts of 1921 and 1936. Median age was 79 yr and 70 yr, and the follow-up period was ∼10 yr and ∼6 yr, respectively. We compare this to methylation heritability estimated in the Brisbane Systems Genomics Study, a cross-sectional study of 117 families (offspring median age 13 yr; parent median age 46 yr). CpG repeatability in older people was highly correlated (0.68) with heritability estimated in younger people. Highly heritable sites had strong underlying cis-genetic effects. Thirty-seven and 1687 autosomal CpGs were associated with smoking and sex, respectively. Both sets were strongly enriched for high repeatability. Sex-associated CpGs were also strongly enriched for high heritability. Our results show that a large number of CpGs across the genome, as a result of environmental and/or genetic constraints, have stable DNAm variation over the human lifetime. Moreover, at a number of CpGs, most variation in the population is due to genetic factors, despite some sites being highly modifiable by the environment.
Collapse
Affiliation(s)
- Sonia Shah
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Allan F McRae
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Riccardo E Marioni
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia; Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Sarah E Harris
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Jude Gibson
- Wellcome Trust Clinical Research Facility, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Anjali K Henders
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Queensland, Australia
| | - Paul Redmond
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom; Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Lee Murphy
- Wellcome Trust Clinical Research Facility, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Queensland, Australia
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Queensland, Australia
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom; Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Naomi R Wray
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom; Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Peter M Visscher
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom; University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| |
Collapse
|
50
|
Yang W, Wang Y, Pu Q, Ye S, Ma Q, Ren J, Zhong G, Liu L, Zhu W. Elevated expression of SLC34A2 inhibits the viability and invasion of A549 cells. Mol Med Rep 2014; 10:1205-14. [PMID: 25017204 PMCID: PMC4121420 DOI: 10.3892/mmr.2014.2376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/10/2014] [Indexed: 02/05/2023] Open
Abstract
Abnormal expression of solute carrier family 34 (sodium phosphate), member 2 (SLC34A2) in the lung may induce abnormal alveolar type II (AT II) cells to transform into lung adenocarcinoma cells, and may also be important in biological process of lung adenocarcinoma. However, at present, the effects and molecular mechanisms of SLC34A2 in the initiation and progression of lung cancer remain to be elucidated. To the best of our knowledge, the present study revealed for the first time that the expression levels of SLC34A2 were downregulated in the A549 and H1299 lung adenocarcinoma cell lines. Further investigation demonstrated that the elevated expression of SLC34A2 in A549 cells was able to significantly inhibit cell viability and invasion in vitro. In addition, 10 upregulated genes between the A549-P-S cell line stably expressing SLC34A2 and the control cell line A549-P were identified by microarray analysis and quantitative polymerase chain reaction, including seven tumor suppressor genes and three complement genes. Furthermore, the upregulation of complement gene C3 and complement 4B preproprotein (C4b) in A549-P-S cells was confirmed by ELISA analysis and was identified to be correlated with recovering Pi absorption in A549 cells by the phosphomolybdic acid method by enhancing the expression of SLC34A2. Therefore, it was hypothesized that the mechanisms underlying the effect of SLC34A2 on A549 cells might be associated with the activation of the complement alternative pathway (C3 and C4b) and upregulation of the expression of selenium binding protein 1, thioredoxin-interacting protein, PDZK1-interacting protein 1 and dual specificity protein phosphatase 6. Downregulation of SLC34A2 may primarily cause abnormal AT II cells to escape from complement-associated immunosurveillance and abnormally express certain tumor-suppressor genes inducing AT II cells to develop into lung adenocarcinoma. The present study further elucidated the effects and mechanisms of SLC34A2 in the generation and development of lung cancer.
Collapse
Affiliation(s)
- Weihan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Sujuan Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qingping Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guoxing Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|