1
|
Cescon M, Gambarotta G, Calabrò S, Cicconetti C, Anselmi F, Kankowski S, Lang L, Basic M, Bleich A, Bolsega S, Steglich M, Oliviero S, Raimondo S, Bizzotto D, Haastert-Talini K, Ronchi G. Gut microbiota depletion delays somatic peripheral nerve development and impairs neuromuscular junction maturation. Gut Microbes 2024; 16:2363015. [PMID: 38845453 PMCID: PMC11164225 DOI: 10.1080/19490976.2024.2363015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Sonia Calabrò
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Chiara Cicconetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Anselmi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Luisa Lang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Matthias Steglich
- Research Core Unit Genomics, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
2
|
Qaisar R. Targeting neuromuscular junction to treat neuromuscular disorders. Life Sci 2023; 333:122186. [PMID: 37858716 DOI: 10.1016/j.lfs.2023.122186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The integrity and preservation of the neuromuscular junction (NMJ), the interface between the motor neuron and skeletal muscle, is critical for maintaining a healthy skeletal muscle. The structural and/or functional defects in the three cellular components of NMJ, namely the pre-synaptic terminal, synaptic cleft, and post-synaptic region, negatively affect skeletal muscle mass and/or strength. Therefore, NMJ repair appears to be an appropriate therapy for muscle disorders. Mouse models provide a detailed molecular characterization of various cellular components of NMJ with relevance to human diseases. This review discusses different molecular targets on the three cellular components of NMJ for treating muscle diseases. The potential effects of these therapies on NMJ morphology and motor performance, their therapeutic efficacy, and clinical relevance are discussed. Collectively, the available data supports targeting NMJ alone or as an adjunct therapy in treating muscle disorders. However, the potential impact of such interventions on human patients with muscle disorders requires further investigation.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Space Medicine Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
3
|
Monti E, Sarto F, Sartori R, Zanchettin G, Löfler S, Kern H, Narici MV, Zampieri S. C-terminal agrin fragment as a biomarker of muscle wasting and weakness: a narrative review. J Cachexia Sarcopenia Muscle 2023; 14:730-744. [PMID: 36772862 PMCID: PMC10067498 DOI: 10.1002/jcsm.13189] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Ageing is accompanied by an inexorable loss of muscle mass and functionality and represents a major risk factor for numerous diseases such as cancer, diabetes and cardiovascular and pulmonary diseases. This progressive loss of muscle mass and function may also result in the insurgence of a clinical syndrome termed sarcopenia, exacerbated by inactivity and disease. Sarcopenia and muscle weakness yield the risk of falls and injuries, heavily impacting on health and social costs. Thus, screening, monitoring and prevention of conditions inducing muscle wasting and weakness are essential to improve life quality in the ageing modern society. To this aim, the reliability of easily accessible and non-invasive blood-derived biomarkers is being evaluated. C-terminal agrin fragment (CAF) has been widely investigated as a neuromuscular junction (NMJ)-related biomarker of muscle dysfunction. This narrative review summarizes and critically discusses, for the first time, the studies measuring CAF concentration in young and older, healthy and diseased individuals, cross-sectionally and in response to inactivity and physical exercise, providing possible explanations behind the discrepancies observed in the literature. To identify the studies investigating CAF in the above-mentioned conditions, all the publications found in PubMed, written in English and measuring this biomarker in blood from 2013 (when CAF was firstly measured in human serum) to 2022 were included in this review. CAF increases with age and in sarcopenic individuals when compared with age-matched, non-sarcopenic peers. In addition, CAF was found to be higher than controls in other muscle wasting conditions, such as diabetes, COPD, chronic heart failure and stroke, and in pancreatic and colorectal cancer cachectic patients. As agrin is also expressed in kidney glomeruli, chronic kidney disease and transplantation were shown to have a profound impact on CAF independently from muscle wasting. CAF concentration raises following inactivity and seems to be lowered or maintained by exercise training. Finally, CAF was reported to be cross-sectionally correlated to appendicular lean mass, handgrip and gait speed; whether longitudinal changes in CAF are associated with those in muscle mass or performance following physical exercise is still controversial. CAF seems a reliable marker to assess muscle wasting in ageing and disease, also correlating with measurements of appendicular lean mass and muscle function. Future research should aim at enlarging sample size and accurately reporting the medical history of each patient, to normalize for any condition, including chronic kidney disease, that may influence the circulating concentration of this biomarker.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and ImmunologyStanford School of MedicineStanfordCAUSA
| | - Fabio Sarto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Roberta Sartori
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePadovaItaly
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology, and GastroenterologyUniversity of PadovaPadovaItaly
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
| | - Marco Vincenzo Narici
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly
| | - Sandra Zampieri
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Surgery, Oncology, and GastroenterologyUniversity of PadovaPadovaItaly
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
- CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly
| |
Collapse
|
4
|
Clary RC, Jenkins BA, Lumpkin EA. Spatiotemporal dynamics of sensory neuron and Merkel-cell remodeling are decoupled during epidermal homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528558. [PMID: 36824872 PMCID: PMC9949164 DOI: 10.1101/2023.02.14.528558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
As the juncture between the body and environment, epithelia are both protective barriers and sensory interfaces that continually renew. To determine whether sensory neurons remodel to maintain homeostasis, we used in vivo two-photon imaging of somatosensory axons innervating Merkel cells in adult mouse skin. These touch receptors were highly plastic: 63% of Merkel cells and 89% of branches appeared, disappeared, grew, regressed and/or relocated over a month. Interestingly, Merkel-cell plasticity was synchronized across arbors during rapid epithelial turnover. When Merkel cells remodeled, the degree of plasticity between Merkel-cell clusters and their axons was well correlated. Moreover, branches were stabilized by Merkel-cell contacts. These findings highlight the role of epithelial-neural crosstalk in homeostatic remodeling. Conversely, axons were also dynamic when Merkel cells were stable, indicating that intrinsic neural mechanisms drive branch plasticity. Two terminal morphologies innervated Merkel cells: transient swellings called boutons, and stable cups termed kylikes. In Atoh1 knockout mice that lack Merkel cells, axons showed higher complexity than control mice, with exuberant branching and no kylikes. Thus, Merkel cells limit axonal branching and promote branch maturation. Together, these results reveal a previously unsuspected high degree of plasticity in somatosensory axons that is biased, but not solely dictated, by plasticity of target epithelial cells. This system provides a platform to identify intrinsic and extrinsic mechanisms that govern axonal patterning in epithelial homeostasis.
Collapse
|
5
|
Jing H, Chen P, Hui T, Yu Z, Zhou J, Fei E, Wang S, Ren D, Lai X, Li B. Synapse-specific Lrp4 mRNA enrichment requires Lrp4/MuSK signaling, muscle activity and Wnt non-canonical pathway. Cell Biosci 2021; 11:105. [PMID: 34090516 PMCID: PMC8180081 DOI: 10.1186/s13578-021-00619-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background The neuromuscular junction (NMJ) is a peripheral synapse critical to muscle contraction. Like acetylcholine receptors (AChRs), many essential proteins of NMJ are extremely concentrated at the postjunctional membrane. However, the mechanisms of synapse-specific concentration are not well understood; furthermore, it is unclear whether signaling molecules critical to NMJ formation and maintenance are also locally transcribed. Results We studied the β-gal activity encoded by a lacZ cassette driven by the promoter of the Lrp4 gene. As reported for Lrp4 mRNA, β-gal was in the central region in embryonic muscles and at the NMJ after its formation. However, β-gal was no longer in the central areas of muscle fibers in Lrp4 or MuSK mutant mice, indicating a requirement of Lrp4/MuSK signaling. This phenotype could be rescued by transgenic expression of LRP4 with a transmembrane domain but not soluble ECD in Lrp4 mutant mice. β-gal and AChR clusters were distributed in a broader region in lacZ/ECD than that of heterozygous lacZ/+ mice, indicating an important role of the transmembrane domain in Lrp4 signaling. Synaptic β-gal activity became diffused after denervation or treatment with µ-conotoxin, despite its mRNA was increased, indicating synaptic Lrp4 mRNA enrichment requires muscle activity. β-gal was also diffused in aged mice but became re-concentrated after muscle stimulation. Finally, Lrp4 mRNA was increased in C2C12 myotubes by Wnt ligands in a manner that could be inhibited by RKI-1447, an inhibitor of ROCK in Wnt non-canonical signaling. Injecting RKI-1447 into muscles of adult mice diminished Lrp4 synaptic expression. Conclusions This study demonstrates that synapse-specific enrichment of Lrp4 mRNA requires a coordinated interaction between Lrp4/MuSK signaling, muscle activity, and Wnt non-canonical signaling. Thus, the study provides a new mechanism for Lrp4 mRNA enrichment. It also provides a potential target for the treatment of NMJ aging and other NMJ-related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00619-z.
Collapse
Affiliation(s)
- Hongyang Jing
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Peng Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Tiankun Hui
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zheng Yu
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jin Zhou
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Human Aging Research Institute, Nanchang University, Nanchang, 330031, China
| | - Erkang Fei
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shunqi Wang
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dongyan Ren
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Baoming Li
- School of Life Science, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China. .,Department of Psychology and Institute of Brain Science, School of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
6
|
He M, Cheng C, Tu J, Ji SS, Lou D, Bai B. Agrin expression is correlated with tumor development and poor prognosis in cholangiocarcinoma. J Int Med Res 2021; 49:3000605211009722. [PMID: 34018826 PMCID: PMC8150497 DOI: 10.1177/03000605211009722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective This study examined the role of agrin in the development of cholangiocarcinoma (CCA). Methods Western blotting was performed to detect the expression of target genes. The correlation between agrin expression and prognosis was analyzed using the Kaplan–Meier method. Proliferation, migration, invasion, and tumorigenesis were examined in CCA cells and tissues using the Cell Counting Kit-8 assay, cell cycle analysis, transwell migration assay, and nude mouse tumorigenicity assay in vivo, respectively. Results Agrin expression was significantly upregulated in CCA tissues compared with that in adjacent non-tumor tissues, and agrin expression was correlated with poorer tumor characteristics such as portal vein tumor thrombus, intrahepatic metastasis, and worse survival. Forced agrin expression in CCA cells apparently promoted proliferation, colony formation, migration, invasion, and cell cycle progression, but agrin depletion had the opposite effects. Furthermore, agrin-depleted CCA cells developed fewer and smaller tumors than control cells in vivo. Mechanistic analyses indicated that agrin activated the Hippo signaling pathway and induced the translocation of YAP to the nucleus. Conclusions Agrin promoted CCA progression by activating the Hippo signaling pathway, suggesting its promise as a target for CCA therapy.
Collapse
Affiliation(s)
- Meimei He
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Chen Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Junxue Tu
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Sha-Sha Ji
- Department of Pharmacy, Shaoxing Traditional Chinese Medicine Hospital, Shaoxing, Zhejiang Province, China
| | - Dan Lou
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Binglong Bai
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| |
Collapse
|
7
|
Yoshioka K, Ito A, Kawabe Y, Kamihira M. Novel neuromuscular junction model in 2D and 3D myotubes co-cultured with induced pluripotent stem cell-derived motor neurons. J Biosci Bioeng 2020; 129:486-493. [DOI: 10.1016/j.jbiosc.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
|
8
|
Rimer M. Extracellular signal-regulated kinases 1 and 2 regulate neuromuscular junction and myofiber phenotypes in mammalian skeletal muscle. Neurosci Lett 2019; 715:134671. [PMID: 31805372 DOI: 10.1016/j.neulet.2019.134671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
The neuromuscular junction is the synapse between a motor neuron of the spinal cord and a skeletal muscle fiber in the periphery. Reciprocal interactions between these excitable cells, and between them and others cell types present within the muscle tissue, shape the development, homeostasis and plasticity of skeletal muscle. An important aim in the field is to understand the molecular mechanisms underlying these cellular interactions, which include identifying the nature of the signals and receptors involved but also of the downstream intracellular signaling cascades elicited by them. This review focuses on work that shows that skeletal muscle fiber-derived extracellular signal-regulated kinases 1 and 2 (ERK1/2), ubiquitous and prototypical intracellular mitogen-activated protein kinases, have modulatory roles in the maintenance of the neuromuscular synapse and in the acquisition and preservation of fiber type identity in skeletal muscle.
Collapse
Affiliation(s)
- Mendell Rimer
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center and Texas A&M Institute for Neuroscience, Bryan, TX 77807 USA.
| |
Collapse
|
9
|
Swenarchuk LE. Nerve, Muscle, and Synaptogenesis. Cells 2019; 8:cells8111448. [PMID: 31744142 PMCID: PMC6912269 DOI: 10.3390/cells8111448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
The vertebrate skeletal neuromuscular junction (NMJ) has long served as a model system for studying synapse structure, function, and development. Over the last several decades, a neuron-specific isoform of agrin, a heparan sulfate proteoglycan, has been identified as playing a central role in synapse formation at all vertebrate skeletal neuromuscular synapses. While agrin was initially postulated to be the inductive molecule that initiates synaptogenesis, this model has been modified in response to work showing that postsynaptic differentiation can develop in the absence of innervation, and that synapses can form in transgenic mice in which the agrin gene is ablated. In place of a unitary mechanism for neuromuscular synapse formation, studies in both mice and zebrafish have led to the proposal that two mechanisms mediate synaptogenesis, with some synapses being induced by nerve contact while others involve the incorporation of prepatterned postsynaptic structures. Moreover, the current model also proposes that agrin can serve two functions, to induce synaptogenesis and to stabilize new synapses, once these are formed. This review examines the evidence for these propositions, and concludes that it remains possible that a single molecular mechanism mediates synaptogenesis at all NMJs, and that agrin acts as a stabilizer, while its role as inducer is open to question. Moreover, if agrin does not act to initiate synaptogenesis, it follows that as yet uncharacterized molecular interactions are required to play this essential inductive role. Several alternatives to agrin for this function are suggested, including focal pericellular proteolysis and integrin signaling, but all require experimental validation.
Collapse
|
10
|
Signal Exchange through Extracellular Vesicles in Neuromuscular Junction Establishment and Maintenance: From Physiology to Pathology. Int J Mol Sci 2019; 20:ijms20112804. [PMID: 31181747 PMCID: PMC6600513 DOI: 10.3390/ijms20112804] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Neuromuscular junction (NMJ) formation involves morphological changes both in motor terminals and muscle membrane. The molecular mechanisms leading to NMJ formation and maintenance have not yet been fully elucidated. During the last decade, it has become clear that virtually all cells release different types of extracellular vesicles (EVs), which can be taken up by nearby or distant cells modulating their activity. Initially, EVs were associated to a mechanism involved in the elimination of unwanted material; subsequent evidence demonstrated that exosomes, and more in general EVs, play a key role in intercellular communication by transferring proteins, lipids, DNA and RNA to target cells. Recently, EVs have emerged as potent carriers for Wnt, bone morphogenetic protein, miRNA secretion and extracellular traveling. Convincing evidence demonstrates that presynaptic terminals release exosomes that are taken up by muscle cells, and these exosomes can modulate synaptic plasticity in the recipient muscle cell in vivo. Furthermore, recent data highlighted that EVs could also be a potential cause of neurodegenerative disorders. Indeed, mutant SOD1, TDP-43 and FUS/TLS can be secreted by neural cells packaged into EVs and enter in neighboring neural cells, contributing to the onset and severity of the disease.
Collapse
|
11
|
McMacken G, Cox D, Roos A, Müller J, Whittaker R, Lochmüller H. The beta-adrenergic agonist salbutamol modulates neuromuscular junction formation in zebrafish models of human myasthenic syndromes. Hum Mol Genet 2019; 27:1556-1564. [PMID: 29462491 PMCID: PMC5905648 DOI: 10.1093/hmg/ddy062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/14/2018] [Indexed: 11/15/2022] Open
Abstract
Inherited defects of the neuromuscular junction (NMJ) comprise an increasingly diverse range of disorders, termed congenital myasthenic syndromes (CMS). Therapies acting on the sympathetic nervous system, including the selective β2 adrenergic agonist salbutamol and the α and β adrenergic agonist ephedrine, have become standard treatment for several types of CMS. However, the mechanism of the therapeutic effect of sympathomimetics in these disorders is not understood. Here, we examined the effect of salbutamol on NMJ development using zebrafish with deficiency of the key postsynaptic proteins Dok-7 and MuSK. Treatment with salbutamol reduced motility defects in zebrafish embryos and larvae. In addition, salbutamol lead to morphological improvement of postsynaptic acetycholine receptor (AChR) clustering and size of synaptic contacts in Dok-7-deficient zebrafish. In MuSK-deficient zebrafish, salbutamol treatment reduced motor axon pathfinding defects and partially restored the formation of aneural prepatterned AChRs. In addition, the effects of salbutamol treatment were prevented by pre-treatment with a selective β2 antagonist. Treatment with the cyclic adenosine monophosphate (cAMP) activator forskolin, replicated the effects of salbutamol treatment. These results suggest that sympathomimetics exert a direct effect on neuromuscular synaptogenesis and do so via β2 adrenoceptors and via a cAMP-dependent pathway.
Collapse
Affiliation(s)
- Grace McMacken
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| | - Dan Cox
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| | - Andreas Roos
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK.,Tissue Omics Project Group, Biomedical Research Department, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Juliane Müller
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| | - Roger Whittaker
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Hanns Lochmüller
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| |
Collapse
|
12
|
Schmidt N, Basu S, Kröger S, Brenner HR. A Cell Culture System to Investigate the Presynaptic Control of Subsynaptic Membrane Differentiation at the Neuromuscular Junction. Methods Mol Biol 2018; 1538:3-11. [PMID: 27943179 DOI: 10.1007/978-1-4939-6688-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
For decades the neuromuscular junction (NMJ) has been a favorite preparation to investigate basic mechanisms of synaptic function and development. As its function is to transmit action potentials in a 1:1 ratio from motor neurons to muscle fibers, the NMJ shows little or no functional plasticity, a property that makes it poorly suited to investigate mechanisms of use-dependent adaptations of synaptic function, which are thought to underlie learning and memory formation in the brain. On the other hand, the NMJ is unique in that the differentiation of the subsynaptic membrane is regulated by one major factor secreted from motor neurons, agrin. As a consequence, myotubes grown on a laminin substrate that is focally impregnated with recombinant neural agrin closely resemble the situation in vivo, where agrin secreted from motor neurons binds to the basal lamina of the NMJ's synaptic cleft to induce and maintain the subsynaptic muscle membrane. We provide here a detailed protocol through which acetylcholine receptor clusters are induced in cultured myotubes contacting laminin-attached agrin, enabling molecular, biochemical and cell biological analyses including high resolution microscopy in 4D. This preparation is ideally suited to investigate the mechanisms involved in the assembly of the postsynaptic muscle membrane, providing distinct advantages over inducing AChR clusters using soluble agrin.
Collapse
Affiliation(s)
- Nadine Schmidt
- Department of Physiology II, Albert-Ludwigs University, 79104, Freiburg, Germany
| | - Sreya Basu
- Department of Cell Biology and Genetics, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Stephan Kröger
- Department of Physiological Genomics, Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Hans Rudolf Brenner
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4051, Basel, Switzerland.
| |
Collapse
|
13
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
14
|
Abstract
The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms.
Collapse
|
15
|
Basu S, Sladecek S, Martinez de la Peña y Valenzuela I, Akaaboune M, Smal I, Martin K, Galjart N, Brenner HR. CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5β and actin for focal delivery of acetylcholine receptor vesicles. Mol Biol Cell 2015; 26:938-51. [PMID: 25589673 PMCID: PMC4342029 DOI: 10.1091/mbc.e14-06-1158] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A novel mechanism is described for the agrin-mediated focal delivery of acetylcholine receptors (AChRs) to the postsynaptic membrane of the neuromuscular junction. Microtubule capture mediated by CLASP2 and its interaction partner, LL5β, and an intact subsynaptic actin cytoskeleton are both required for focal AChR transport to the synaptic membrane. A hallmark of the neuromuscular junction (NMJ) is the high density of acetylcholine receptors (AChRs) in the postsynaptic muscle membrane. The postsynaptic apparatus of the NMJ is organized by agrin secreted from motor neurons. The mechanisms that underlie the focal delivery of AChRs to the adult NMJ are not yet understood in detail. We previously showed that microtubule (MT) capture by the plus end–tracking protein CLASP2 regulates AChR density at agrin-induced AChR clusters in cultured myotubes via PI3 kinase acting through GSK3β. Here we show that knockdown of the CLASP2-interaction partner LL5β by RNAi and forced expression of a CLASP2 fragment blocking the CLASP2/LL5β interaction inhibit microtubule capture. The same treatments impair focal vesicle delivery to the clusters. Consistent with these findings, knockdown of LL5β at the NMJ in vivo reduces the density and insertion of AChRs into the postsynaptic membrane. MT capture and focal vesicle delivery to agrin-induced AChR clusters are also inhibited by microtubule- and actin-depolymerizing drugs, invoking both cytoskeletal systems in MT capture and in the fusion of AChR vesicles with the cluster membrane. Combined our data identify a transport system, organized by agrin through PI3 kinase, GSK3β, CLASP2, and LL5β, for precise delivery of AChR vesicles from the subsynaptic nuclei to the overlying synaptic membrane.
Collapse
Affiliation(s)
- Sreya Basu
- Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland Department of Cell Biology, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Stefan Sladecek
- Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | | | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology and Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109
| | - Ihor Smal
- Biomedical Imaging Group, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Katrin Martin
- Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Niels Galjart
- Department of Cell Biology, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | | |
Collapse
|
16
|
Halum SL, Bijangi-Vishehsaraei K, Zhang H, Sowinski J, Bottino MC. Stem cell-derived tissue-engineered constructs for hemilaryngeal reconstruction. Ann Otol Rhinol Laryngol 2014; 123:124-34. [PMID: 24574468 DOI: 10.1177/0003489414523709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES As an initial step toward our goal of developing a completely tissue-engineered larynx, the aim of this study was to describe and compare three strategies of creating tissue-engineered muscle-polymer constructs for hemilaryngeal reconstruction. METHODS Cartilage-mimicking polymer was developed from electrospun poly(D,L-lactide-co-ε-caprolactone) (PCL). Primary muscle progenitor cell cultures were derived from syngeneic F344 rat skeletal muscle biopsies. Twenty F344 rats underwent resection of the outer hemilaryngeal cartilage with the underlying laryngeal adductor muscle. The defects were repaired with muscle stem cell-derived muscle-PCL constructs (5 animals), myotube-derived muscle-PCL constructs (5 animals), motor end plate-expressing muscle-PCL constructs (5 animals), or PCL alone (controls; 5 animals). The outcome measures at 1 month included animal survival, muscle thickness, and innervation status as determined by electromyography and immunohistochemistry. RESULTS All of the animals survived the 1-month implant period and had appropriate weight gain. The group that received motor end plate-expressing muscle-PCL constructs demonstrated the greatest muscle thickness and the strongest innervation, according to electromyographic activity and the percentage of motor end plates that had nerve contact. CONCLUSIONS Although all of the tissue-engineered constructs provided effective reconstruction, those that expressed motor end plates before implantation yielded muscle that was more strongly innervated and viable. This finding suggests that this novel approach may be useful in the development of a tissue-engineered laryngeal replacement.
Collapse
Affiliation(s)
- Stacey L Halum
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (Halum, Bijangi-Vishehsaraei, Zhang, Sowinski), Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
17
|
Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci 2014; 15:630-1. [DOI: 10.1038/nrn3821] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Perlecan antagonizes collagen IV and ADAMTS9/GON-1 in restricting the growth of presynaptic boutons. J Neurosci 2014; 34:10311-24. [PMID: 25080592 DOI: 10.1523/jneurosci.5128-13.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the mature nervous system, a significant fraction of synapses are structurally stable over a long time scale. However, the mechanisms that restrict synaptic growth within a confined region are poorly understood. Here, we identified that in the C. elegans neuromuscular junction, collagens Type IV and XVIII, and the secreted metalloprotease ADAMTS/GON-1 are critical for growth restriction of presynaptic boutons. Without these components, ectopic boutons progressively invade into the nonsynaptic region. Perlecan/UNC-52 promotes the growth of ectopic boutons and functions antagonistically to collagen Type IV and GON-1 but not to collagen XVIII. The growth constraint of presynaptic boutons correlates with the integrity of the extracellular matrix basal lamina or basement membrane (BM), which surrounds chemical synapses. Fragmented BM appears in the region where ectopic boutons emerge. Further removal of UNC-52 improves the BM integrity and the tight association between BM and presynaptic boutons. Together, our results unravel the complex role of the BM in restricting the growth of presynaptic boutons and reveal the antagonistic function of perlecan on Type IV collagen and ADAMTS protein.
Collapse
|
19
|
Basu S, Sladecek S, Pemble H, Wittmann T, Slotman JA, van Cappellen W, Brenner HR, Galjart N. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends. J Biol Chem 2014; 289:30857-30867. [PMID: 25231989 DOI: 10.1074/jbc.m114.589457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3β-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3β-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends.
Collapse
Affiliation(s)
- Sreya Basu
- Institute of Physiology, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland,; Department of Cell Biology, Erasmus Medical Center, 3015 GE, Rotterdam, Netherlands
| | - Stefan Sladecek
- Institute of Physiology, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Hayley Pemble
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143, and
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143, and
| | - Johan A Slotman
- Optical Imaging Center, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | | | - Hans-Rudolf Brenner
- Institute of Physiology, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland,.
| | - Niels Galjart
- Department of Cell Biology, Erasmus Medical Center, 3015 GE, Rotterdam, Netherlands,.
| |
Collapse
|
20
|
Brenner HR, Akaaboune M. Recycling of acetylcholine receptors at ectopic postsynaptic clusters induced by exogenous agrin in living rats. Dev Biol 2014; 394:122-8. [PMID: 25093969 DOI: 10.1016/j.ydbio.2014.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/16/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
During the development of the neuromuscular junction, motor axons induce the clustering of acetylcholine receptors (AChRs) and increase their metabolic stability in the muscle membrane. Here, we asked whether the synaptic organizer agrin might regulate the metabolic stability and density of AChRs by promoting the recycling of internalized AChRs, which would otherwise be destined for degradation, into synaptic sites. We show that at nerve-free AChR clusters induced by agrin in extrasynaptic membrane, internalized AChRs are driven back into the ectopic synaptic clusters where they intermingle with pre-existing and new receptors. The extent of AChR recycling depended on the strength of the agrin stimulus, but not on the development of junctional folds, another hallmark of mature postsynaptic membranes. In chronically denervated muscles, in which both AChR stability and recycling are significantly decreased by muscle inactivity, agrin maintained the amount of recycled AChRs at agrin-induced clusters at a level similar to that at denervated original endplates. In contrast, AChRs did not recycle at agrin-induced clusters in C2C12 or primary myotubes. Thus, in muscles in vivo, but not in cultured myotubes, neural agrin promotes the recycling of AChRs and thereby increases their metabolic stability.
Collapse
Affiliation(s)
- Hans Rudolf Brenner
- Department of Biomedicine, University of Basel, Pharmazentrum, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology and Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Ko IK, Lee BK, Lee SJ, Andersson KE, Atala A, Yoo JJ. The effect of in vitro formation of acetylcholine receptor (AChR) clusters in engineered muscle fibers on subsequent innervation of constructs in vivo. Biomaterials 2013; 34:3246-55. [PMID: 23391495 DOI: 10.1016/j.biomaterials.2013.01.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/04/2013] [Indexed: 11/16/2022]
Abstract
Timely innervation of muscle tissue is critical in the recovery of function, and this time-sensitive process relies heavily on the host tissue microenvironment after implantation. However, restoration of muscle tissue mass and function has been a challenge. We investigated whether pre-forming acetylcholine receptor (AChR) clusters on engineered muscle fibers using an AChR cluster-inducing factor (agrin) prior to implantation would facilitate established contacts between implanted muscle tissues and nerves and result in rapid innervation of engineered muscle in vivo. We showed that agrin treatment significantly increased the formation of AChR clusters on culture differentiated myotubes (C2C12), enhanced contacts with nerves in vitro and in vivo, and increased angiogenesis. Pre-fabrication of AChR clusters on engineered skeletal muscle using a released neurotrophic factor can accelerate innervations following implantation in vivo. This technique has considerable potential for enhancing muscle tissue function.
Collapse
Affiliation(s)
- In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
22
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
23
|
Schmidt N, Basu S, Sladecek S, Gatti S, van Haren J, Treves S, Pielage J, Galjart N, Brenner HR. Agrin regulates CLASP2-mediated capture of microtubules at the neuromuscular junction synaptic membrane. ACTA ACUST UNITED AC 2012; 198:421-37. [PMID: 22851317 PMCID: PMC3413356 DOI: 10.1083/jcb.201111130] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agrin regulates acetylcholine receptors at the neuromuscular junction by locally stabilizing microtubules through the plus end tracking proteins CLASP2 and CLIP-170. Agrin is the major factor mediating the neuronal regulation of postsynaptic structures at the vertebrate neuromuscular junction, but the details of how it orchestrates this unique three-dimensional structure remain unknown. Here, we show that agrin induces the formation of the dense network of microtubules in the subsynaptic cytoplasm and that this, in turn, regulates acetylcholine receptor insertion into the postsynaptic membrane. Agrin acted in part by locally activating phosphatidylinositol 3-kinase and inactivating GSK3β, which led to the local capturing of dynamic microtubules at agrin-induced acetylcholine receptor (AChR) clusters, mediated to a large extent by the microtubule plus-end tracking proteins CLASP2 and CLIP-170. Indeed, in the absence of CLASP2, microtubule plus ends at the subsynaptic muscle membrane, the density of synaptic AChRs, the size of AChR clusters, and the numbers of subsynaptic muscle nuclei with their selective gene expression programs were all reduced. Thus, the cascade linking agrin to CLASP2-mediated microtubule capturing at the synaptic membrane is essential for the maintenance of a normal neuromuscular phenotype.
Collapse
Affiliation(s)
- Nadine Schmidt
- Department of Biomedicine, Institute of Physiology, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barik A, Xiong WC, Mei L. MuSK: A Kinase Critical for the Formation and Maintenance of the Neuromuscular Junction. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-1-61779-824-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
25
|
Abstract
Skeletal muscle innervation is a multi-step process leading to the neuromuscular junction (NMJ) apparatus formation. The transmission of the signal from nerve to muscle occurs at the NMJ level. The molecular mechanism that orchestrates the organization and functioning of synapses is highly complex, and it has not been completely elucidated so far. Neuromuscular junctions are assembled on the muscle fibers at very precise locations called end plates (EP). Acetylcholine receptor (AChR) clusterization at the end plates is required for an accurate synaptic transmission. This review will focus on some mechanisms responsible for accomplishing the correct distribution of AChRs at the synapses. Recent evidences support the concept that a dual transcriptional control of AChR genes in subsynaptic and extrasynaptic nuclei is crucial for AChR clusterization. Moreover, new players have been discovered in the agrin-MuSK pathway, the master organizer of postsynaptical differentiation. Mutations in this pathway cause neuromuscular congenital disorders. Alterations of the postynaptic apparatus are also present in physiological conditions characterized by skeletal muscle wasting. Indeed, recent evidences demonstrate how NMJ misfunctioning has a crucial role at the onset of age-associated sarcopenia.
Collapse
|
26
|
Punga AR, Ruegg MA. Signaling and aging at the neuromuscular synapse: lessons learnt from neuromuscular diseases. Curr Opin Pharmacol 2012; 12:340-6. [PMID: 22365504 DOI: 10.1016/j.coph.2012.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/26/2012] [Accepted: 02/02/2012] [Indexed: 12/30/2022]
Abstract
The neuromuscular junction (NMJ) is a specialized synapse between motor neurons and skeletal muscle with a complex signaling network that assures highly reliable neuromuscular transmission. Diseases of the NMJ cause skeletal muscle fatigue and include inherited and acquired disorders that affect presynaptic, intrasynaptic or postsynaptic components. Moreover, fragmentation of the NMJ contributes to sarcopenia, the loss of muscle mass during aging. Studies from recent years indicate that the formation and stabilization of NMJs differs between various muscles and that this difference affects their response under pathological conditions. This review summarizes the most important mechanisms involved in the development, maintenance and dysfunction of the NMJ and it discusses their significance in myasthenic disorders and aging and as targets for possible future treatment of NMJ dysfunction.
Collapse
Affiliation(s)
- Anna Rostedt Punga
- Institute of Neuroscience, Department of Clinical Neurophysiology, Uppsala University Hospital, Uppsala, Sweden
| | | |
Collapse
|
27
|
Rimer M. Emerging roles for MAP kinases in agrin signaling. Commun Integr Biol 2011; 4:143-6. [PMID: 21655426 DOI: 10.4161/cib.4.2.14357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022] Open
Abstract
Information between neurons and the target cells they innervate passes through sites of functional contact called synapses. How synapses form and are altered by sensory or cognitive experience is central to understand nervous system function. Studies of synapse formation and plasticity have concentrated on a few "model" synapses. The vertebrate neuromuscular junction (NMJ), the synapse between a motoneuron in the spinal cord and a skeletal muscle fiber, is one such model synapse. The extracellular matrix proteoglycan agrin plays an essential organizing role at the NMJ. Agrin is also present at some synapses in the brain and in other organs in the periphery, but its function outside the NMJ is unclear. The core signaling pathway for agrin at the NMJ, which is still incompletely defined, includes molecules specifically involved in this cascade and molecules used in other signaling pathways in many cells. Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved components of intracellular signaling modules that control a myriad of cellular processes. This article reviews emerging evidence that suggests that MAPKs are involved in agrin signaling at the NMJ and in the putative functions of agrin in the formation of a subset of synapses in the brain.
Collapse
Affiliation(s)
- Mendell Rimer
- Department of Neuroscience & Experimental Therapeutics; College of Medicine; Texas A&M Health Science Center; College Station, TX USA
| |
Collapse
|
28
|
Punga AR, Maj M, Lin S, Meinen S, Rüegg MA. MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity. Eur J Neurosci 2011; 33:890-8. [PMID: 21255125 DOI: 10.1111/j.1460-9568.2010.07569.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscle-specific tyrosine kinase (MuSK) is involved in the formation and maintenance of the neuromuscular junction (NMJ), and is necessary for NMJ integrity. As muscle involvement is strikingly selective in pathological conditions in which MuSK is targeted, including congenital myasthenic syndrome with MuSK mutation and MuSK antibody-seropositive myasthenia gravis, we hypothesized that the postsynaptic response to MuSK-agrin signalling differs between adult muscles. Transcript levels of postsynaptic proteins were compared between different muscles in wild-type adult mice. MuSK expression was high in the soleus and sternomastoid muscles and low in the extensor digitorum longus (EDL) and omohyoid muscles. The acetylcholine receptor (AChR) α subunit followed a similar expression pattern, whereas expression of Dok-7, Lrp4 and rapsyn was comparable between the muscles. We subsequently examined muscles in mice that overexpressed a miniaturized form of neural agrin or MuSK. In these transgenic mice, the soleus and sternomastoid muscles responded with formation of ectopic AChR clusters, whereas such clusters were almost absent in the EDL and omohyoid muscles. Electroporation of Dok-7 revealed its important role as an activator of MuSK in AChR cluster formation in adult muscles. Together, our findings indicate for the first time that adult skeletal muscles harbour different endogenous levels of MuSK and that these levels determine the ability to form ectopic AChR clusters upon overexpression of agrin or MuSK. We believe that these findings are important for our understanding of adult muscle plasticity and the selective muscle involvement in neuromuscular disorders in which MuSK is diminished.
Collapse
Affiliation(s)
- Anna R Punga
- Department of Neurobiology/Pharmacology, Biozentrum, University of Basel, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
29
|
Barros CS, Franco SJ, Müller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 2011; 3:a005108. [PMID: 21123393 DOI: 10.1101/cshperspect.a005108] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Claudia S Barros
- The Scripps Research Institute, Department of Cell Biology, Dorris Neuroscience Center, La Jolla, California 92037, USA
| | | | | |
Collapse
|
30
|
Zhang Y, Liu A, Zhang W, Jiang H, Cai Z. Correlation of contractile function recovery with acetylcholine receptor changes in a rat muscle flap model. Microsurgery 2010; 30:307-13. [PMID: 20063380 DOI: 10.1002/micr.20727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to investigate the correlation between contractile function recovery and changes of acetylcholine receptors (AChR) in a transferred muscle flap following reinnervation. Orthotopic transfer of the gracilis muscle flap with repair of its nerve was performed bilaterally in 48 rats. The rats were randomly divided into six experimental groups based on the time intervals for assessments (1, 4, 5, 10, 20, and 30 weeks). Sixteen gracilis muscle samples from eight rats without surgery were used as the controls. In each group, muscle contractile force and weight were measured (n = 16). The AChR numbers (n = 8) and subunits (epsilon and gamma) mRNA (n = 8) were examined using [(125)I]-alpha-bungarotoxin and fluorescent quantitative-PCR. The results showed the AChR numbers in the muscle flap increased from 4 to 20 weeks after reinnervation and correlated with recovery of the tetanic contraction force. However, correlation between the increase of AChR number with the specific tension (peak contractile force normalized to wet muscle weight) was only found from 4 to 10 weeks postoperatively. The expression of gamma-subunit mRNA increased at the early period after flap transfer and then decreased rapidly, whereas the epsilon-subunit mRNA recovered gradually since fourth week postoperatively. A small amount of gamma-subunit mRNA could still be detected at 30 weeks after surgery. In conclusion, following reinnervation of the transferred muscle flap, the contractile functional recovery is partially correlated to increase of the AChRepsilon. Our findings may provide evidence for further study of improving muscle function in functional reconstruction by targeting the AChR.
Collapse
Affiliation(s)
- Yingfan Zhang
- Department of Plastic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
31
|
Trinkaus M, Pregelj P, Trkov S, Sketelj J. Neural regulation of acetylcholinesterase-associated collagen Q in rat skeletal muscles. J Neurochem 2010; 105:2535-44. [PMID: 18373559 DOI: 10.1111/j.1471-4159.2008.05328.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholinesterase-associated collagen Q is expressed also outside of neuromuscular junctions in the slow soleus muscle, but not in fast muscles. We examined the nerve dependence of muscle collagen Q expression and mechanisms responsible for these differences. Denervation decreased extrajunctional collagen Q mRNA levels in the soleus muscles and junctional levels in fast sternomastoid muscles to about one third. Cross-innervation of denervated soleus muscles by a fast muscle nerve, or electrical stimulation by 'fast' impulse pattern, reduced their extrajunctional collagen Q mRNA levels by 70-80%. In contrast, stimulation of fast muscles by 'slow' impulse pattern had no effect on collagen Q expression. Calcineurin inhibitors tacrolimus and cyclosporin A decreased collagen Q mRNA levels in the soleus muscles to about 35%, but did not affect collagen Q expression in denervated soleus muscles or the junctional expression in fast muscles. Therefore, high extrajunctional expression of collagen Q in the soleus muscle is maintained by its tonic nerve-induced activation pattern via the activated Ca(2+)-calcineurin signaling pathway. The extrajunctional collagen Q expression in fast muscles is independent of muscle activation pattern and seems irreversibly suppressed. The junctional expression of collagen Q in fast muscles is partly nerve-dependent, but does not encompass the Ca(2+)-calcineurin signaling pathway.
Collapse
Affiliation(s)
- Miha Trinkaus
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
32
|
Wu H, Xiong WC, Mei L. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 2010; 137:1017-33. [PMID: 20215342 DOI: 10.1242/dev.038711] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synapses, as fundamental units of the neural circuitry, enable complex behaviors. The neuromuscular junction (NMJ) is a synapse type that forms between motoneurons and skeletal muscle fibers and that exhibits a high degree of subcellular specialization. Aided by genetic techniques and suitable animal models, studies in the past decade have brought significant progress in identifying NMJ components and assembly mechanisms. This review highlights recent advances in the study of NMJ development, focusing on signaling pathways that are activated by diffusible cues, which shed light on synaptogenesis in the brain and contribute to a better understanding of muscular dystrophy.
Collapse
Affiliation(s)
- Haitao Wu
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
33
|
Lain E, Carnejac S, Escher P, Wilson MC, Lømo T, Gajendran N, Brenner HR. A novel role for embigin to promote sprouting of motor nerve terminals at the neuromuscular junction. J Biol Chem 2009; 284:8930-9. [PMID: 19164284 DOI: 10.1074/jbc.m809491200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adult skeletal muscle accepts ectopic innervation by foreign motor axons only after section of its own nerve, suggesting that the formation of new neuromuscular junctions is promoted by muscle denervation. With the aim to identify new proteins involved in neuromuscular junction formation we performed an mRNA differential display on innervated versus denervated adult rat muscles. We identified transcripts encoding embigin, a transmembrane protein of the immunoglobulin superfamily (IgSF) class of cell adhesion molecules to be strongly regulated by the state of innervation. In innervated muscle it is preferentially localized to neuromuscular junctions. Forced overexpression in innervated muscle of a full-length embigin transgene, but not of an embigin fragment lacking the intracellular domain, promotes nerve terminal sprouting and the formation of additional acetylcholine receptor clusters at synaptic sites without affecting terminal Schwann cell number or morphology, and it delays the retraction of terminal sprouts following re-innervation of denervated endplates. Conversely, knockdown of embigin by RNA interference in wild-type muscle accelerates terminal sprout retraction, both by itself and synergistically with deletion of neural cell adhesion molecule. These findings indicate that embigin enhances neural cell adhesion molecule-dependent neuromuscular adhesion and thereby modulates neuromuscular junction formation and plasticity.
Collapse
Affiliation(s)
- Enzo Lain
- Institute of Physiology, Department of Biomedicine, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The heparan sulfate proteoglycan agrin is best known for its essential role during formation, maintenance and regeneration of the neuromuscular junction. Mutations in agrin-interacting proteins are the genetic basis for a number of neuromuscular disorders. However, agrin is widely expressed in many tissues including neurons and glial cells of the brain, where its precise function is much less understood. Fewer synapses develop in brains that lack agrin, consistent with a function of agrin during CNS synaptogenesis. Recently, a specific transmembrane form of agrin (TM-agrin) was identified that is concentrated at that interneuronal synapses in the brain. Clustering or overexpression of TM-agrin leads to the formation of filopodia-like processes, which might be precursors for CNS synapses. Agrin is subject to defined and activity-dependent proteolytic cleavage by neurotrypsin at synapses and dysregulation of agrin processing might contribute to the development of mental retardation. This review summarizes what is known about the role of agrin during synapse formation at the neuromuscular junction and in the developing CNS and will discuss additional functions of agrin in the adult CNS, in particular during BBB formation, during recovery after traumatic brain injury and in the etiology of diseases, including Alzheimer’s disease and mental retardation.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| | - Heike Pfister
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| |
Collapse
|
35
|
Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L. LRP4 serves as a coreceptor of agrin. Neuron 2008; 60:285-97. [PMID: 18957220 PMCID: PMC2743173 DOI: 10.1016/j.neuron.2008.10.006] [Citation(s) in RCA: 427] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/09/2008] [Accepted: 10/08/2008] [Indexed: 11/17/2022]
Abstract
Neuromuscular junction (NMJ) formation requires agrin, a factor released from motoneurons, and MuSK, a transmembrane tyrosine kinase that is activated by agrin. However, how signal is transduced from agrin to MuSK remains unclear. We report that LRP4, a low-density lipoprotein receptor (LDLR)-related protein, is expressed specifically in myotubes and binds to neuronal agrin. Its expression enables agrin binding and MuSK signaling in cells that otherwise do not respond to agrin. Suppression of LRP4 expression in muscle cells attenuates agrin binding, agrin-induced MuSK tyrosine phosphorylation, and AChR clustering. LRP4 also forms a complex with MuSK in a manner that is stimulated by agrin. Finally, we showed that LRP4 becomes tyrosine-phosphorylated in agrin-stimulated muscle cells. These observations indicate that LRP4 is a coreceptor of agrin that is necessary for MuSK signaling and AChR clustering and identify a potential target protein whose mutation and/or autoimmunization may cause muscular dystrophies.
Collapse
Affiliation(s)
- Bin Zhang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Shiwen Luo
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Qiang Wang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Wen C. Xiong
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| |
Collapse
|
36
|
Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice. Proc Natl Acad Sci U S A 2008; 105:11406-11. [PMID: 18685098 DOI: 10.1073/pnas.0801683105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrin and its receptor MuSK are required for the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). In the current model the local deposition of agrin by the nerve and the resulting local activation of MuSK are responsible for creating and maintaining the postsynaptic apparatus including clusters of acetylcholine receptors (AChRs). Concomitantly, the release of acetylcholine (ACh) and the resulting depolarization disperses those postsynaptic structures that are not apposed by the nerve and thus not stabilized by agrin-MuSK signaling. Here we show that a miniaturized form of agrin, consisting of the laminin-binding and MuSK-activating domains, is sufficient to fully restore NMJs in agrin mutant mice when expressed by developing muscle. Although miniagrin is expressed uniformly throughout muscle fibers and induces ectopic AChR clusters, the size and the number of those AChR clusters contacted by the motor nerve increase during development. We provide experimental evidence that this is due to ACh, because the AChR agonist carbachol stabilizes AChR clusters in organotypic cultures of embryonic diaphragms. In summary, our results show that agrin function in NMJ development requires only two small domains, and that this function does not depend on the local deposition of agrin at synapses. Finally, they suggest a novel local function of ACh in stabilizing postsynaptic structures.
Collapse
|
37
|
Noell S, Fallier-Becker P, Beyer C, Kröger S, Mack AF, Wolburg H. Effects of agrin on the expression and distribution of the water channel protein aquaporin-4 and volume regulation in cultured astrocytes. Eur J Neurosci 2007; 26:2109-18. [PMID: 17927773 DOI: 10.1111/j.1460-9568.2007.05850.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Agrin is a heparan sulfate proteoglycan of the extracellular matrix and is known for organizing the postsynaptic differentiation of the neuromuscular junction. Increasing evidence also suggests roles for agrin in the developing CNS, including the formation and maintenance of the blood-brain barrier. Here we describe effects of agrin on the expression and distribution of the water channel protein aquaporin-4 (AQP4) and on the swelling capacity of cultured astrocytes of newborn mice. If astrocytes were cultured on a substrate containing poly DL-ornithine, anti-AQP4 immunoreactivity was evenly and diffusely distributed. If, however, astrocytes were cultured in the presence of agrin-conditioned medium, we observed an increase in the intensity of AQP4-specific membrane-associated staining. Freeze-fracture studies revealed a clustering of orthogonal arrays of particles, representing a structural equivalent of AQP4, when exogenous agrin was present in the astrocyte cultures. Neuronal and non-neuronal agrin isoforms (agrin A0B0 and agrin A4B8, respectively) were able to induce membrane-associated AQP4 staining. Water transport capacity as well as the density of orthogonal arrays of intramembranous particles was increased in astrocytes cultured with the neuronal agrin isoform A4B8, but not with the endothelial and meningeal isoform A0B0. RT-PCR demonstrated that agrin A4B8 increased the level of the M23 splice variant of AQP4 and decreased the level of the M1 splice variant of AQP4. Implications for the regulation and maintenance of the blood-brain barrier including oedema formation under pathological conditions are discussed.
Collapse
Affiliation(s)
- Susan Noell
- Institute of Pathology, University of Tübingen, Liebermeisterstrasse 8, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Ksiazek I, Burkhardt C, Lin S, Seddik R, Maj M, Bezakova G, Jucker M, Arber S, Caroni P, Sanes JR, Bettler B, Ruegg MA. Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci 2007; 27:7183-95. [PMID: 17611272 PMCID: PMC6794585 DOI: 10.1523/jneurosci.1609-07.2007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Agrin-deficient mice die at birth because of aberrant development of the neuromuscular junctions. Here, we examined the role of agrin at brain synapses. We show that agrin is associated with excitatory but not inhibitory synapses in the cerebral cortex. Most importantly, we examined the brains of agrin-deficient mice whose perinatal death was prevented by the selective expression of agrin in motor neurons. We find that the number of presynaptic and postsynaptic specializations is strongly reduced in the cortex of 5- to 7-week-old mice. Consistent with a reduction in the number of synapses, the frequency of miniature postsynaptic currents was greatly decreased. In accordance with the synaptic localization of agrin to excitatory synapses, changes in the frequency were only detected for excitatory but not inhibitory synapses. Moreover, we find that the muscle-specific receptor tyrosine kinase MuSK, which is known to be an essential component of agrin-induced signaling at the neuromuscular junction, is also localized to a subset of excitatory synapses. Finally, some components of the mitogen-activated protein (MAP) kinase pathway, which has been shown to be activated by agrin in cultured neurons, are deregulated in agrin-deficient mice. In summary, our results provide strong evidence that agrin plays an important role in the formation and/or the maintenance of excitatory synapses in the brain, and we provide evidence that this function involves MAP kinase signaling.
Collapse
Affiliation(s)
| | | | | | - Riad Seddik
- Institute of Physiology, Department of Clinical-Biological Sciences, University of Basel, CH-4056 Basel, Switzerland
| | | | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie-Institute of Clinical Brain Research, D-72076 Tübingen, Germany
| | - Silvia Arber
- Biozentrum and
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland, and
| | - Pico Caroni
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland, and
| | - Joshua R. Sanes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238
| | - Bernhard Bettler
- Institute of Physiology, Department of Clinical-Biological Sciences, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
39
|
Godfrey EW, Longacher M, Neiswender H, Schwarte RC, Browning DD. Guanylate cyclase and cyclic GMP-dependent protein kinase regulate agrin signaling at the developing neuromuscular junction. Dev Biol 2007; 307:195-201. [PMID: 17560564 PMCID: PMC1978166 DOI: 10.1016/j.ydbio.2007.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 03/23/2007] [Accepted: 04/17/2007] [Indexed: 02/04/2023]
Abstract
During formation of the neuromuscular junction (NMJ), agrin secreted by motor axons signals the embryonic muscle cells to organize a postsynaptic apparatus including a dense aggregate of acetylcholine receptors (AChRs). Agrin signaling at the embryonic NMJ requires the activity of nitric oxide synthase (NOS). Common downstream effectors of NOS are guanylate cyclase (GC), which synthesizes cyclic GMP, and cyclic GMP-dependent protein kinase (PKG). Here we show that GC and PKG are important for agrin signaling at the embryonic NMJ of the frog, Xenopus laevis. Inhibitors of both GC and PKG reduced endogenous AChR aggregation in embryonic muscles by 50-85%, and blocked agrin-induced AChR aggregation in cultured embryonic muscle cells. A cyclic GMP analog, 8-bromo-cyclic GMP, increased endogenous AChR aggregation in embryonic muscles to 3- to 4-fold control levels. Overexpression of either GC or PKG in embryos increased AChR aggregate area by 60-170%, whereas expression of a dominant negative form of GC inhibited endogenous aggregation by 50%. These results indicate that agrin signaling in embryonic muscle cells requires the activity of GC and PKG as well as NOS.
Collapse
Affiliation(s)
- Earl W Godfrey
- Department of Pathology and Anatomy, Eastern Virginia Medical School, PO Box 1980, Norfolk, VA 23501, USA.
| | | | | | | | | |
Collapse
|
40
|
Abstract
At the developing vertebrate neuromuscular junction, neuregulins are growth/differentiation factors essential for terminal Schwann cell survival. Neuregulins have also been thought as the critical signals responsible for the increased transcription of acetylcholine receptor subunit genes at the neuromuscular synapse. This latter role is now highly controversial. This article reviews the evidence that has shaped the views of the neuregulins and how these views have been challenged. The most recent experiments indicate that neuregulin signaling to postsynaptic muscle fibers may modulate, rather than determine, acetylcholine receptor expression at the neuromuscular junction. Based on findings from my lab and those of others, I propose that this modulation might involve novel posttranscriptional molecular mechanisms. Finally, I also suggest that neuregulin signaling may have an important role to play in mediating the response of adult terminal Schwann cells to denervation.
Collapse
Affiliation(s)
- Mendell Rimer
- Section of Neurobiology, Institute for Neuroscience and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-0248, USA.
| |
Collapse
|
41
|
Scotton P, Bleckmann D, Stebler M, Sciandra F, Brancaccio A, Meier T, Stetefeld J, Ruegg MA. Activation of muscle-specific receptor tyrosine kinase and binding to dystroglycan are regulated by alternative mRNA splicing of agrin. J Biol Chem 2006; 281:36835-45. [PMID: 17012237 DOI: 10.1074/jbc.m607887200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agrin induces the aggregation of postsynaptic proteins at the neuromuscular junction (NMJ). This activity requires the receptor-tyrosine kinase MuSK. Agrin isoforms differ in short amino acid stretches at two sites, called A and B, that are localized in the two most C-terminal laminin G (LG) domains. Importantly, agrin isoforms greatly differ in their activities of inducing MuSK phosphorylation and of binding to alpha-dystroglycan. By using site-directed mutagenesis, we characterized the amino acids important for these activities of agrin. We find that the conserved tripeptide asparagineglutamate-isoleucine in the eight-amino acid long insert at the B-site is necessary and sufficient for full MuSK phosphorylation activity. However, even if all eight amino acids were replaced by alanines, this agrin mutant still has significantly higher MuSK phosphorylation activity than the splice version lacking any insert. We also show that binding to alpha-dystroglycan requires at least two LG domains and that amino acid inserts at the A and the B splice sites negatively affect binding.
Collapse
Affiliation(s)
- Patrick Scotton
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Macpherson PCD, Cieslak D, Goldman D. Myogenin-dependent nAChR clustering in aneural myotubes. Mol Cell Neurosci 2006; 31:649-60. [PMID: 16443371 DOI: 10.1016/j.mcn.2005.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 12/07/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022] Open
Abstract
During development of the neuromuscular junction, nerve-derived agrin and the cell substrate laminin stimulate postsynaptic nAChR clustering. This clustering is dependent on activation of the tyrosine kinase, MuSK, which signals receptor clustering via a rapsyn-dependent mechanism. Myogenin is a muscle-specific transcription factor that controls myoblast differentiation and nAChR gene expression. Here, we used RNA interference to investigate if myogenin is also necessary for nAChR clustering. We find that myogenin expression is essential for robust nAChR clustering and cannot be compensated by the muscle regulatory factors MyoD, myf5, and MRF4. In addition, we show that clustering cannot be rescued in myogenin-depleted myotubes by simply overexpressing the essential clustering molecules MuSK, rapsyn, and nAChRs. These data suggest that myogenin controls the expression of molecules crucial to nAChR clustering in addition to its role in regulating nAChR gene expression.
Collapse
Affiliation(s)
- Peter C D Macpherson
- Molecular and Behavioral Neurosciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
43
|
Jaworski A, Burden SJ. Neuromuscular synapse formation in mice lacking motor neuron- and skeletal muscle-derived Neuregulin-1. J Neurosci 2006; 26:655-61. [PMID: 16407563 PMCID: PMC6674415 DOI: 10.1523/jneurosci.4506-05.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/21/2005] [Accepted: 11/23/2005] [Indexed: 11/21/2022] Open
Abstract
The localization of acetylcholine receptors (AChRs) to the vertebrate neuromuscular junction is mediated, in part, through selective transcription of AChR subunit genes in myofiber subsynaptic nuclei. Agrin and the muscle-specific receptor tyrosine kinase, MuSK, have critical roles in synapse-specific transcription, because AChR genes are expressed uniformly in mice lacking either agrin or MuSK. Several lines of evidence suggest that agrin and MuSK stimulate synapse-specific transcription indirectly by regulating the distribution of other cell surface ligands, which stimulate a pathway for synapse-specific gene expression. This putative secondary signal for directing AChR gene expression to synapses is not known, but Neuregulin-1 (Nrg-1), primarily based on its presence at synapses and its ability to induce AChR gene expression in vitro, has been considered a good candidate. To study the role of Nrg-1 at neuromuscular synapses, we inactivated nrg-1 in motor neurons, skeletal muscle, or both cell types, using mice that express Cre recombinase selectively in developing motor neurons or in developing skeletal myofibers. We find that AChRs are clustered at synapses and that synapse-specific transcription is normal in mice lacking Nrg-1 in motor neurons, myofibers, or both cell types. These data indicate that Nrg-1 is dispensable for clustering AChRs and activating AChR genes in subsynaptic nuclei during development and suggest that these aspects of postsynaptic differentiation are dependent on Agrin/MuSK signaling without a requirement for a secondary signal.
Collapse
MESH Headings
- Agrin/physiology
- Animals
- Cell Differentiation
- Diaphragm/embryology
- Diaphragm/innervation
- ErbB Receptors/metabolism
- Genes, Reporter
- Integrases/genetics
- Integrases/metabolism
- Intercostal Muscles/embryology
- Intercostal Muscles/innervation
- Mice
- Mice, Knockout
- Motor Neurons/metabolism
- Motor Neurons/ultrastructure
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuregulin-1
- Neuromuscular Junction/embryology
- Neuromuscular Junction/physiology
- Neuromuscular Junction/ultrastructure
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-4
- Receptors, Cholinergic/biosynthesis
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Deletion
- Viral Proteins/genetics
- Viral Proteins/metabolism
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Alexander Jaworski
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
44
|
Abstract
The neuromuscular junction (NMJ) is a complex structure that serves to efficiently communicate the electrical impulse from the motor neuron to the skeletal muscle to signal contraction. Over the last 200 years, technological advances in microscopy allowed visualization of the existence of a gap between the motor neuron and skeletal muscle that necessitated the existence of a messenger, which proved to be acetylcholine. Ultrastructural analysis identified vesicles in the presynaptic nerve terminal, which provided a beautiful structural correlate for the quantal nature of neuromuscular transmission, and the imaging of synaptic folds on the muscle surface demonstrated that specializations of the underlying protein scaffold were required. Molecular analysis in the last 20 years has confirmed the preferential expression of synaptic proteins, which is guided by a precise developmental program and maintained by signals from nerve. Although often overlooked, the Schwann cell that caps the NMJ and the basal lamina is proving to be critical in maintenance of the junction. Genetic and autoimmune disorders are known that compromise neuromuscular transmission and provide further insights into the complexities of NMJ function as well as the subtle differences that exist among NMJ that may underlie the differential susceptibility of muscle groups to neuromuscular transmission diseases. In this review we summarize the synaptic physiology, architecture, and variations in synaptic structure among muscle types. The important roles of specific signaling pathways involved in NMJ development and acetylcholine receptor (AChR) clustering are reviewed. Finally, genetic and autoimmune disorders and their effects on NMJ architecture and neuromuscular transmission are examined.
Collapse
Affiliation(s)
- Benjamin W Hughes
- Department of Neurology, Case Western University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
45
|
Ponomareva ON, Fischer TM, Lai C, Rimer M. Schwann cell-derived neuregulin-2α can function as a cell-attached activator of muscle acetylcholine receptor expression. Glia 2006; 54:630-7. [PMID: 16944454 DOI: 10.1002/glia.20413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we show that neuregulin-2 (Nrg-2) alpha- and beta-isoforms can activate acetylcholine receptor (AChR) transcription as surface-attached ligands. More importantly, we demonstrate that Schwann cells that express Nrg-2alpha on their cell surface, the same Nrg-2 isoform expressed by terminal Schwann cells at the neuromuscular junction, can induce AChR expression if brought into cell-to-cell contact with myotubes specifically expressing ErbB4. These Schwann cells, the D6P2T cell line, induce AChR expression apparently as well as 293T cells transfected with Nrg-2beta, the isoform with the highest AChR-inducing activity when presented in a soluble form. These results provide a potential role for the previously reported, paradoxical perisynaptic accumulation of Nrg-2alpha, the isoform with the least AChR-inducing activity when presented in a soluble form. They also raise the possibility that Schwann cell-derived Nrg-2 could activate ErbB receptors on the synaptic sarcolemma and that this could account, at least in part, for the Nrg-mediated regulation of AChR expression.
Collapse
|
46
|
Ponomareva ON, Ma H, Dakour R, Raabe TD, Lai C, Rimer M. Stimulation of acetylcholine receptor transcription by neuregulin-2 requires an N-box response element and is regulated by alternative splicing. Neuroscience 2005; 134:495-503. [PMID: 15961242 DOI: 10.1016/j.neuroscience.2005.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/18/2005] [Indexed: 11/23/2022]
Abstract
The neuregulin (Nrg) family of growth/differentiation factors is encoded by at least four genes in the mammalian genome: nrg-1, nrg-2, nrg-3 and nrg-4. Nrg-1 and Nrg-2 share the highest homology within the family, and the primary RNA transcripts from their encoding genes are subjected to extensive alternative splicing. Although little is known about the biological function of Nrg-2-4, their structural similarity with Nrg-1 suggests that they could account for some of the activities presently attributed to Nrg-1. Thus, at the neuromuscular junction Nrg-1 has been a favored candidate for the signal that activates selective acetylcholine receptor (AChR) transcription in synaptic myonuclei. However, we have recently shown that like Nrg-1, Nrg-2 can also activate AChR transcription in cultured myotubes and accumulates at the synaptic site. Synapse-specific and Nrg-1-induced AChR transcription require an enhancer sequence, the N-box, which is also mutated in some patients with congenital myasthenia gravis. Here, we show that Nrg-2-induced AChR transcription requires an N-box motif and is regulated by alternative splicing. We also show that unique Nrg-2 isoforms are differentially distributed between spinal cord and skeletal muscle, the tissues that harbor the cellular components of the neuromuscular synapse.
Collapse
Affiliation(s)
- O N Ponomareva
- Section of Neurobiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
47
|
Flanagan-Steet H, Fox MA, Meyer D, Sanes JR. Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development 2005; 132:4471-81. [PMID: 16162647 DOI: 10.1242/dev.02044] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synapse formation requires the coordination of pre- and postsynaptic differentiation. An unresolved question is which steps in the process require interactions between pre- and postsynaptic cells, and which proceed cell-autonomously. One current model is that factors released from presynaptic axons organize postsynaptic differentiation directly beneath the nerve terminal. Here, we used neuromuscular junctions (NMJs) of the zebrafish primary motor system to test this model. Clusters of neurotransmitter (acetylcholine) receptors (AChRs) formed in the central region of the myotome, destined to be synapse-rich, before axons extended and even when axon extension was prevented. Time-lapse imaging revealed that pre-existing clusters on early-born slow (adaxial) muscle fibers were incorporated into NMJs as axons advanced. Axons were, however, required for the subsequent remodeling and selective stabilization of synaptic clusters that precisely appose post- to presynaptic elements. Thus, motor axons are dispensable for the initial stages of postsynaptic differentiation but are required for later stages. Moreover, many AChR clusters on later-born fast muscle fibers formed at sites that had already been contacted by axons, suggesting heterogeneity in the signaling mechanisms leading to synapse formation by a single axon.
Collapse
Affiliation(s)
- Heather Flanagan-Steet
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
48
|
Stocksley MA, Awad SS, Young C, Lightowlers RN, Brenner HR, Slater CR. Accumulation of Nav1 mRNAs at differentiating postsynaptic sites in rat soleus muscles. Mol Cell Neurosci 2005; 28:694-702. [PMID: 15797716 DOI: 10.1016/j.mcn.2004.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/17/2004] [Accepted: 11/30/2004] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine receptors (AChRs) and voltage-gated sodium channels (Na(V)1s) accumulate at different times in the development of the murine neuromuscular junction (NMJ). We used in situ hybridization to study the relationship of Na(V)1 mRNA accumulation to this difference. mRNAs encoding both muscle Na(V)1 isoforms, Na(v)1.4 and Na(v)1.5, were first concentrated at NMJs at birth, when the proteins start to accumulate. Within 4 weeks, Na(v)1.4 mRNA increased 5-fold at the NMJ while Na(v)1.5 mRNA became undetectable. Na(V)1 mRNA accumulation occurred even if the nerve was cut at birth. Like AChR mRNA, Na(V)1 mRNA accumulated at denervated synaptic sites on regenerating muscles and in response to ectopically expressed neural agrin. Clustering of Na(V)1 at the NMJ follows that of its mRNA while AChR clustering precedes its mRNA clustering by several days. This suggests that factors other than local mRNA upregulation determine the timing of clustering of these two important postsynaptic ion channels.
Collapse
Affiliation(s)
- Mark A Stocksley
- School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
49
|
Dimitropoulou A, Bixby JL. Motor neurite outgrowth is selectively inhibited by cell surface MuSK and agrin. Mol Cell Neurosci 2005; 28:292-302. [PMID: 15691710 DOI: 10.1016/j.mcn.2004.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 09/17/2004] [Accepted: 09/22/2004] [Indexed: 01/16/2023] Open
Abstract
During neuromuscular development, "stop signals" present on the target myotube inhibit motor axon growth. Mice lacking either the neuronal form of agrin or the muscle-specific tyrosine kinase (MuSK) lose stop signal activity, suggesting that they are part of such signals or induce them in myotubes. To test whether MuSK complexes form stop signals in the absence of myotube signaling, we cultured ciliary ganglion (CG) neurons with nonmuscle cells expressing cell-surface MuSK. Expression of MuSK had no effect on neuronal adhesion. MuSK expression, however, inhibited neurite outgrowth from CG neurons, but not retinal ganglion cell neurons. The neurite-inhibitory effect could be completely reversed by an antibody to the MuSK extracellular domain, and partially reversed by an antibody to agrin, suggesting that inhibition is mediated by a complex of these proteins. Thus, an agrin/MuSK complex may form part of a motor neuron stop signal involved in "reverse signaling" to the motor neuron.
Collapse
|
50
|
Strochlic L, Cartaud A, Cartaud J. The synaptic muscle-specific kinase (MuSK) complex: New partners, new functions. Bioessays 2005; 27:1129-35. [PMID: 16237673 DOI: 10.1002/bies.20305] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The muscle-specific kinase MuSK is part of an agrin receptor complex that stimulates tyrosine phosphorylation and drives clustering of acetylcholine receptors (AChRs) in the postsynaptic membrane at the vertebrate neuromuscular junction (NMJ). MuSK also regulates synaptic gene transcription in subsynaptic nuclei. Over the past few years, decisive progress has been made in the identification of MuSK effectors, helping to understand its function in the formation of the NMJ. Similarly to AChR, MuSK and several of its partners are the target of mutations responsible for diseases of the NMJ, such as congenital myasthenic syndromes. This minireview will focus on the multiple MuSK effectors so far identified that place MuSK at the center of a multifunctional signaling complex involved in the organization of the NMJ and associated disorders.
Collapse
Affiliation(s)
- Laure Strochlic
- Biologie Cellulaire des Membranes, Institut Jacques Monod, Paris, France
| | | | | |
Collapse
|