1
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
A Cyclic Nucleotide-Gated Channel, HvCNGC2-3, Is Activated by the Co-Presence of Na⁺ and K⁺ and Permeable to Na⁺ and K⁺ Non-Selectively. PLANTS 2018; 7:plants7030061. [PMID: 30049942 PMCID: PMC6161278 DOI: 10.3390/plants7030061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/09/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
Cyclic nucleotide-gated channels (CNGCs) have been postulated to contribute significantly in plant development and stress resistance. However, their electrophysiological properties remain poorly understood. Here, we characterized barley CNGC2-3 (HvCNGC2-3) by the two-electrode voltage-clamp technique in the Xenopus laevis oocyte heterologous expression system. Current was not observed in X. laevis oocytes injected with HvCNGC2-3 complementary RNA (cRNA) in a bathing solution containing either Na+ or K+ solely, even in the presence of 8-bromoadenosine 3′,5′-cyclic monophosphate (8Br-cAMP) or 8-bromoguanosine 3′,5′-cyclic monophosphate (8Br-cGMP). A weakly voltage-dependent slow hyperpolarization-activated ion current was observed in the co-presence of Na+ and K+ in the bathing solution and in the presence of 10 µM 8Br-cAMP, but not 8Br-cGMP. Permeability ratios of HvCNGC2-3 to K+, Na+ and Cl− were determined as 1:0.63:0.03 according to reversal-potential analyses. Amino-acid replacement of the unique ion-selective motif of HvCNGC2-3, AQGL, with the canonical motif, GQGL, resulted in the abolition of the current. This study reports a unique two-ion-dependent activation characteristic of the barley CNGC, HvCNGC2-3.
Collapse
|
3
|
Saponaro A, Porro A, Chaves-Sanjuan A, Nardini M, Rauh O, Thiel G, Moroni A. Fusicoccin Activates KAT1 Channels by Stabilizing Their Interaction with 14-3-3 Proteins. THE PLANT CELL 2017; 29:2570-2580. [PMID: 28970335 PMCID: PMC5774578 DOI: 10.1105/tpc.17.00375] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/31/2017] [Accepted: 09/27/2017] [Indexed: 05/20/2023]
Abstract
Plants acquire potassium (K+) ions for cell growth and movement via regulated diffusion through K+ channels. Here, we present crystallographic and functional data showing that the K+ inward rectifier KAT1 (K+Arabidopsis thaliana 1) channel is regulated by 14-3-3 proteins and further modulated by the phytotoxin fusicoccin, in analogy to the H+-ATPase. We identified a 14-3-3 mode III binding site at the very C terminus of KAT1 and cocrystallized it with tobacco (Nicotiana tabacum) 14-3-3 proteins to describe the protein complex at atomic detail. Validation of this interaction by electrophysiology shows that 14-3-3 binding augments KAT1 conductance by increasing the maximal current and by positively shifting the voltage dependency of gating. Fusicoccin potentiates the 14-3-3 effect on KAT1 activity by stabilizing their interaction. Crystal structure of the ternary complex reveals a noncanonical binding site for the toxin that adopts a novel conformation. The structural insights underscore the adaptability of fusicoccin, predicting more potential targets than so far anticipated. The data further advocate a common mechanism of regulation of the proton pump and a potassium channel, two essential elements in K+ uptake in plant cells.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Alessandro Porro
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Marco Nardini
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Oliver Rauh
- Plant Membrane Biophysics, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Institute for Biophysics-Milan, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| |
Collapse
|
4
|
Meshik X, Choi M, Baker A, Malchow RP, Covnot L, Doan S, Mukherjee S, Farid S, Dutta M, Stroscio MA. Modulation of voltage-gated conductances of retinal horizontal cells by UV-excited TiO2 nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1031-1040. [DOI: 10.1016/j.nano.2016.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/19/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
|
5
|
Larisch N, Kirsch SA, Schambony A, Studtrucker T, Böckmann RA, Dietrich P. The function of the two-pore channel TPC1 depends on dimerization of its carboxy-terminal helix. Cell Mol Life Sci 2016; 73:2565-81. [PMID: 26781468 PMCID: PMC4894940 DOI: 10.1007/s00018-016-2131-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Two-pore channels (TPCs) constitute a family of intracellular cation channels with diverse permeation properties and functions in animals and plants. In the model plant Arabidopsis, the vacuolar cation channel TPC1 is involved in propagation of calcium waves and in cation homeostasis. Here, we discovered that the dimerization of a predicted helix within the carboxyl-terminus (CTH) is essential for the activity of TPC1. Bimolecular fluorescence complementation and co-immunoprecipitation demonstrated the interaction of the two C-termini and pointed towards the involvement of the CTH in this process. Synthetic CTH peptides dimerized with a dissociation constant of 3.9 µM. Disruption of this domain in TPC1 either by deletion or point mutations impeded the dimerization and cation transport. The homo-dimerization of the CTH was analyzed in silico using coarse-grained molecular dynamics (MD) simulations for the study of aggregation, followed by atomistic MD simulations. The simulations revealed that the helical region of the wild type, but not a mutated CTH forms a highly stable, antiparallel dimer with characteristics of a coiled-coil. We propose that the voltage- and Ca(2+)-sensitive conformation of TPC1 depends on C-terminal dimerization, adding an additional layer to the complex regulation of two-pore cation channels.
Collapse
Affiliation(s)
- Nina Larisch
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Sonja A Kirsch
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Alexandra Schambony
- Developmental Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Tanja Studtrucker
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany.
| |
Collapse
|
6
|
Zhang A, Ren HM, Tan YQ, Qi GN, Yao FY, Wu GL, Yang LW, Hussain J, Sun SJ, Wang YF. S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. THE PLANT CELL 2016; 28. [PMID: 27002025 PMCID: PMC4863386 DOI: 10.1105/tpc.15.01050] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Drought stress induces stomatal closure and inhibits stomatal opening simultaneously. However, the underlying molecular mechanism is still largely unknown. Here we show that S-type anion channels SLAC1 and SLAH3 mainly inhibit inward K+ (K+in) channel KAT1 by protein-protein interaction, and consequently prevent stomatal opening in Arabidopsis. Voltage-clamp results demonstrated that SLAC1 inhibited KAT1 dramatically, but did not inhibit KAT2. SLAH3 inhibited KAT1 to a weaker degree relative to SLAC1. Both the N terminus and the C terminuses of SLAC1 inhibited KAT1, but the inhibition by the N terminus was stronger. The C terminus was essential for the inhibition of KAT1 by SLAC1. Furthermore, drought stress strongly up-regulated the expression of SLAC1 and SLAH3 in Arabidopsis guard cells, and the over-expression of wild type and truncated SLAC1 dramatically impaired K+in currents of guard cells and light-induced stomatal opening. Additionally, the inhibition of KAT1 by SLAC1 and KC1 only partially overlapped, suggesting that SLAC1 and KC1 inhibited K+in channels using different molecular mechanisms. Taken together, we discovered a novel regulatory mechanism for stomatal movement, in which singling pathways for stomatal closure and opening are directly coupled together by protein-protein interaction between SLAC1/SLAH3 and KAT1 in Arabidopsis.
Collapse
Affiliation(s)
- An Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Hui-Min Ren
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Yan-Qiu Tan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Guo-Ning Qi
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Fen-Yong Yao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Gui-Li Wu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Lu-Wen Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Jamshaid Hussain
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Shu-Jing Sun
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Yong-Fei Wang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai POSTAL_CODE: 200032 China [CN]
| |
Collapse
|
7
|
Zhang A, Ren HM, Tan YQ, Qi GN, Yao FY, Wu GL, Yang LW, Hussain J, Sun SJ, Wang YF. S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. THE PLANT CELL 2016; 28:949-955. [PMID: 27002025 PMCID: PMC4863386 DOI: 10.1105/tpc.16.01050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/22/2016] [Accepted: 03/17/2016] [Indexed: 05/08/2023]
Abstract
Drought stress induces stomatal closure and inhibits stomatal opening simultaneously. However, the underlying molecular mechanism is still largely unknown. Here we show that S-type anion channels SLAC1 and SLAH3 mainly inhibit inward K+ (K+in) channel KAT1 by protein-protein interaction, and consequently prevent stomatal opening in Arabidopsis. Voltage-clamp results demonstrated that SLAC1 inhibited KAT1 dramatically, but did not inhibit KAT2. SLAH3 inhibited KAT1 to a weaker degree relative to SLAC1. Both the N terminus and the C terminuses of SLAC1 inhibited KAT1, but the inhibition by the N terminus was stronger. The C terminus was essential for the inhibition of KAT1 by SLAC1. Furthermore, drought stress strongly up-regulated the expression of SLAC1 and SLAH3 in Arabidopsis guard cells, and the over-expression of wild type and truncated SLAC1 dramatically impaired K+in currents of guard cells and light-induced stomatal opening. Additionally, the inhibition of KAT1 by SLAC1 and KC1 only partially overlapped, suggesting that SLAC1 and KC1 inhibited K+in channels using different molecular mechanisms. Taken together, we discovered a novel regulatory mechanism for stomatal movement, in which singling pathways for stomatal closure and opening are directly coupled together by protein-protein interaction between SLAC1/SLAH3 and KAT1 in Arabidopsis.
Collapse
Affiliation(s)
- An Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Hui-Min Ren
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Yan-Qiu Tan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Guo-Ning Qi
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Fen-Yong Yao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Gui-Li Wu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Lu-Wen Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Jamshaid Hussain
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Shu-Jing Sun
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Yong-Fei Wang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai POSTAL_CODE: 200032 China [CN]
| |
Collapse
|
8
|
Lefoulon C, Boeglin M, Moreau B, Véry AA, Szponarski W, Dauzat M, Michard E, Gaillard I, Chérel I. The Arabidopsis AtPP2CA Protein Phosphatase Inhibits the GORK K+ Efflux Channel and Exerts a Dominant Suppressive Effect on Phosphomimetic-activating Mutations. J Biol Chem 2016; 291:6521-33. [PMID: 26801610 DOI: 10.1074/jbc.m115.711309] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/13/2022] Open
Abstract
The regulation of the GORK (Guard Cell Outward Rectifying) Shaker channel mediating a massive K(+) efflux in Arabidopsis guard cells by the phosphatase AtPP2CA was investigated. Unlike the gork mutant, the atpp2ca mutants displayed a phenotype of reduced transpiration. We found that AtPP2CA interacts physically with GORK and inhibits GORK activity in Xenopus oocytes. Several amino acid substitutions in the AtPP2CA active site, including the dominant interfering G145D mutation, disrupted the GORK-AtPP2CA interaction, meaning that the native conformation of the AtPP2CA active site is required for the GORK-AtPP2CA interaction. Furthermore, two serines in the GORK ankyrin domain that mimic phosphorylation (Ser to Glu) or dephosphorylation (Ser to Ala) were mutated. Mutations mimicking phosphorylation led to a significant increase in GORK activity, whereas mutations mimicking dephosphorylation had no effect on GORK. In Xenopus oocytes, the interaction of AtPP2CA with "phosphorylated" or "dephosphorylated" GORK systematically led to inhibition of the channel to the same baseline level. Single-channel recordings indicated that the GORK S722E mutation increases the open probability of the channel in the absence, but not in the presence, of AtPP2CA. The dephosphorylation-independent inactivation mechanism of GORK by AtPP2CA is discussed in relation with well known conformational changes in animal Shaker-like channels that lead to channel opening and closing. In plants, PP2C activity would control the stomatal aperture by regulating both GORK and SLAC1, the two main channels required for stomatal closure.
Collapse
Affiliation(s)
- Cécile Lefoulon
- From the Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/SupAgro/UM2, Unité Mixte de Recherche (UMR) 5004, 2 Place Viala, 34060 Montpellier Cedex, France and
| | - Martin Boeglin
- From the Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/SupAgro/UM2, Unité Mixte de Recherche (UMR) 5004, 2 Place Viala, 34060 Montpellier Cedex, France and
| | - Bertrand Moreau
- From the Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/SupAgro/UM2, Unité Mixte de Recherche (UMR) 5004, 2 Place Viala, 34060 Montpellier Cedex, France and
| | - Anne-Aliénor Véry
- From the Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/SupAgro/UM2, Unité Mixte de Recherche (UMR) 5004, 2 Place Viala, 34060 Montpellier Cedex, France and
| | - Wojciech Szponarski
- From the Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/SupAgro/UM2, Unité Mixte de Recherche (UMR) 5004, 2 Place Viala, 34060 Montpellier Cedex, France and
| | - Myriam Dauzat
- the Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA/SupAgro, UMR 759, 2 Place Viala, 34060 Montpellier Cedex, France
| | - Erwan Michard
- From the Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/SupAgro/UM2, Unité Mixte de Recherche (UMR) 5004, 2 Place Viala, 34060 Montpellier Cedex, France and
| | - Isabelle Gaillard
- From the Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/SupAgro/UM2, Unité Mixte de Recherche (UMR) 5004, 2 Place Viala, 34060 Montpellier Cedex, France and
| | - Isabelle Chérel
- From the Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/SupAgro/UM2, Unité Mixte de Recherche (UMR) 5004, 2 Place Viala, 34060 Montpellier Cedex, France and
| |
Collapse
|
9
|
Nieves-Cordones M, Gaillard I. Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels. PLANT SIGNALING & BEHAVIOR 2014; 9:e972892. [PMID: 25482770 PMCID: PMC4622754 DOI: 10.4161/15592316.2014.972892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Among the different transport systems present in plant cells, Shaker channels constitute the major pathway for K(+) in the plasma membrane. Plant Shaker channels are members of the 6 transmembrane-1 pore (6TM-1P) cation channel superfamily as the animal Shaker (Kv) and HCN channels. All these channels are voltage-gated K(+) channels: Kv channels are outward-rectifiers, opened at depolarized voltages and HCN channels are inward-rectifiers, opened by membrane hyperpolarization. Among plant Shaker channels, we can find outward-rectifiers, inward-rectifiers and also weak-rectifiers, with weak voltage dependence. Despite the absence of crystal structures of plant Shaker channels, functional analyses coupled to homology modeling, mostly based on Kv and HCN crystals, have permitted the identification of several regions contributing to plant Shaker channel gating. In the present mini-review, we make an update on the voltage-gating mechanism of plant Shaker channels which seem to be comparable to that proposed for HCN channels.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
- Correspondence to: Manuel Nieves-Cordones; , Isabelle Gaillard;
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
- Correspondence to: Manuel Nieves-Cordones; , Isabelle Gaillard;
| |
Collapse
|
10
|
Mumm P, Imes D, Martinoia E, Al-Rasheid KAS, Geiger D, Marten I, Hedrich R. C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1. MOLECULAR PLANT 2013; 6:1550-63. [PMID: 23314055 DOI: 10.1093/mp/sst008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel families—SLAC/SLAH and ALMT—are known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al(3+)-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In contrast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al(3+)-insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUAC1-type currents in the plasma membrane of guard cells and QUAC1-expressing oocytes revealing similar voltage dependencies and activation–deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increasing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains common for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is conserved in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.
Collapse
Affiliation(s)
- Patrick Mumm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol 2012; 3:49. [PMID: 22470342 PMCID: PMC3311039 DOI: 10.3389/fphar.2012.00049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo Oviedo, Asturias, Spain
| | | | | |
Collapse
|
12
|
Lebaudy A, Pascaud F, Véry AA, Alcon C, Dreyer I, Thibaud JB, Lacombe B. Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells. J Biol Chem 2009; 285:6265-74. [PMID: 20040603 DOI: 10.1074/jbc.m109.068445] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guard cells adjust their volume by changing their ion content due to intense fluxes that, for K(+), are believed to flow through inward or outward Shaker channels. Because Shaker channels can be homo- or heterotetramers and Arabidopsis guard cells express at least five genes encoding inward Shaker subunits, including the two major ones, KAT1 and KAT2, the molecular identity of inward Shaker channels operating therein is not yet completely elucidated. Here, we first addressed the properties of KAT1-KAT2 heteromers by expressing KAT1-KAT2 tandems in Xenopus oocytes. Then, computer analyses of the data suggested that coexpression of free KAT1 and KAT2 subunits resulted mainly in heteromeric channels made of two subunits of each type due to some preferential association of KAT1-KAT2 heterodimers at the first step of channel assembly. This was further supported by the analysis of KAT2 effect on KAT1 targeting in tobacco cells. Finally, patch-clamp recordings of native inward channels in wild-type and mutant genotypes strongly suggested that this preferential heteromerization occurs in planta and that Arabidopsis guard cell inward Shaker channels are mainly heteromers of KAT1 and KAT2 subunits.
Collapse
Affiliation(s)
- Anne Lebaudy
- Biochimie et Physiologie Moléculaire des Plantes, CNRS UMR 5004, Institut National de la Recherche Agronomique U386, Montpellier SupAgro, Université Montpellier II, Place Viala, 34060 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Naso A, Dreyer I, Pedemonte L, Testa I, Gomez-Porras JL, Usai C, Mueller-Rueber B, Diaspro A, Gambale F, Picco C. The role of the C-terminus for functional heteromerization of the plant channel KDC1. Biophys J 2009; 96:4063-74. [PMID: 19450478 DOI: 10.1016/j.bpj.2009.02.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/06/2009] [Accepted: 02/17/2009] [Indexed: 12/25/2022] Open
Abstract
Voltage-gated potassium channels are formed by the assembly of four identical (homotetramer) or different (heterotetramer) subunits. Tetramerization of plant potassium channels involves the C-terminus of the protein. We investigated the role of the C-terminus of KDC1, a Shaker-like inward-rectifying K(+) channel that does not form functional homomeric channels, but participates in the formation of heteromeric complexes with other potassium alpha-subunits when expressed in Xenopus oocytes. The interaction of KDC1 with KAT1 was investigated using the yeast two-hybrid system, fluorescence and electrophysiological studies. We found that the KDC1-EGFP fusion protein is not targeted to the plasma membrane of Xenopus oocytes unless it is coexpressed with KAT1. Deletion mutants revealed that the KDC1 C-terminus is involved in heteromerization. Two domains of the C-terminus, the region downstream the putative cyclic nucleotide binding domain and the distal part of the C-terminus called K(HA) domain, contributed to a different extent to channel assembly. Whereas the first interacting region of the C-terminus was necessary for channel heteromerization, the removal of the distal K(HA) domain decreased but did not abolish the formation of heteromeric complexes. Similar results were obtained when coexpressing KDC1 with the KAT1-homolog KDC2 from carrots, thus indicating the physiological significance of the KAT1/KDC1 characterization. Electrophysiological experiments showed furthermore that the heteromerization capacity of KDC1 was negatively influenced by the presence of the enhanced green fluorescence protein fusion.
Collapse
Affiliation(s)
- Alessia Naso
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sankaranarayanan K, Varshney A, Mathew MK. N type rapid inactivation in human Kv1.4 channels: functional role of a putative C-terminal helix. Mol Membr Biol 2009; 22:389-400. [PMID: 16308273 DOI: 10.1080/09687860500190663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Voltage gated potassium channels are tetrameric membrane proteins, which have a central role in cellular excitability. Human Kv1.4 channels open on membrane depolarization and inactivate rapidly by a 'ball and chain' mechanism whose molecular determinants have been mapped to the cytoplasmic N terminus of the channel. Here we show that the other terminal end of the channel also plays a role in channel inactivation. Swapping the C-terminal residues of hKv1.4 with those from two non-inactivating channels (hKv1.1 and hKv1.2) affects the rates of inactivation, as well as the recovery of the channel from the inactivated state. Secondary structure predictions of the hKv1.4 sequence reveal a helical structure at its distal C-terminal. Complete removal or partial disruption of this helical region results in channels with remarkably slowed inactivation kinetics. The ionic selectivity and voltage-dependence of channel opening were similar to hKv1.4, indicative of an unperturbed channel pore. These results demonstrate that fast inactivation is modulated by structural elements in the C-terminus, suggesting that the process involves the concerted action of the N- and C-termini.
Collapse
|
15
|
Zhao LL, Wu A, Bi LJ, Liu P, Zhang XE, Jiang T, Jin G, Qi Z. Length-dependent regulation of the Kv1.2 channel activation by its C-terminus. Mol Membr Biol 2009; 26:186-93. [PMID: 19247844 DOI: 10.1080/09687680802714741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The cytoplasmic C-terminus plays regulatory roles in the gating of many ion channels. However, lack of structural information on the C-terminus prevents the elucidation of how the C-terminal domain interacts with the gating machinery to exert its effects on the channel gating. In this report, we investigated the regulatory role of the C-terminus with functional study and structural modeling of a succession of C-terminal truncations of the Kv1.2 and Kv1.2(427)-KcsA(112-160) chimeric channels. Functional study demonstrated a length-dependent shift of the activation curves for the C-terminal truncations of the Kv1.2 channel. Structural modeling indicated that the C-terminus of one subunit could dynamically interact with the S4-S5 linker of a neighboring subunit and the probability of interaction was dependent on the length of the C-terminal truncated Kv1.2 channels. In contrast, no length-dependent shift of the activation curve and probability of interaction between C-terminus and the neighboring S4-S5 linker were observed for the truncations of the Kv1.2-KcsA chimeric channel, suggesting that the native C-terminus of the Kv1.2 channel is essential for the interaction. Furthermore, surface plasmon resonance measurements indicated that there is direct interaction between the C-terminal domain and the S4-S5 linker of the Kv1.2 channel. These results imply that the dynamic interaction of the C-terminus with the S4-S5 linker from a neighboring subunit of the Kv1.2 channel provides a mechanism for its C-terminus to regulate the channel activation.
Collapse
Affiliation(s)
- Li-Li Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hedrich R, Marten I. 30-year progress of membrane transport in plants. PLANTA 2006; 224:725-39. [PMID: 16835760 DOI: 10.1007/s00425-006-0341-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 03/18/2006] [Indexed: 05/10/2023]
Abstract
In the past 30 years enormous progress was made in plant membrane biology and transport physiology, a fact reflected in the appearance of textbooks. The first book dedicated to 'Membrane Transport in Plants' was published on the occasion of the 'International Workshop on Membrane Transport in Plants' held at the Nuclear Research Center, Jülich, Germany [Zimmermann and Dainty (eds) 1974] and was followed in 1976 by a related volume 'Transport in plants II' in the 'Encyclopedia of plant physiology' [Lüttge and Pitman (eds) 1976]. A broad spectrum of topics including thermodynamics of transport processes, water relations, primary reactions of photosynthesis, as well as more conventional aspects of membrane transport was presented. The aim of the editors of the first book was to bring advanced thermodynamical concepts to the attention of biologists and to show physical chemists and biophysicist what the more complex biological systems were like. To bundle known data on membrane transport in plants and relevant fields for mutual understanding, interdisciplinary research and clarification of problems were considered highly important for further progress in this scientific area of plant physiology. The present review will critically evaluate the progress in research in membrane transport in plants that was achieved during the past. How did 'Membrane Transport in Plants' progress within the 30 years between the publication of the first book about this topic (Zimmermann and Dainty 1974), a recent one with the same title (Blatt 2004), and today?
Collapse
Affiliation(s)
- Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Bioscience, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany.
| | | |
Collapse
|
17
|
Han W, Nattel S, Noguchi T, Shrier A. C-terminal Domain of Kv4.2 and Associated KChIP2 Interactions Regulate Functional Expression and Gating of Kv4.2. J Biol Chem 2006; 281:27134-44. [PMID: 16820361 DOI: 10.1074/jbc.m604843200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Kv4.2 transient voltage-dependent potassium current contributes to the morphology of the cardiac action potential as well as to neuronal excitability and firing frequency. Here we report profound effects of the Kv4.2 C terminus on the surface expression and activation gating properties of Kv4.2 that are modulated by the direct interaction between KChIP2, an auxiliary regulatory subunit, and the C terminus of Kv4.2. We show that increasingly large truncations of the C terminus of rat Kv4.2 (wild type) cause a progressive decrease of Kv4.2 current along with a shift in voltage-dependent activation that is closely correlated with negative charge deletion. Co-expression of more limited Kv4.2 C-terminal truncation mutants (T588 and T528) with KChIP2 results in a doubling of Kv4.2 protein expression and up to an 8-fold increase in Kv4.2 current amplitude. Pulsechase experiments show that co-expression with KChIP2 slows Kv4.2 wild type degradation 8-fold. Co-expression of KChIP2 with an intermediate-length C-terminal truncation mutant (T474) shifts Kv4.2 activation voltage dependence and enhances expression of Kv4.2 current. The largest truncation mutants (T417 and DeltaC) show an intracellular localization with no measurable currents and no response to KChIP2 co-expression. Co-immunoprecipitation and competitive glutathione S-transferase-binding assays indicate a direct interaction between KChIP2 and the Kv4.2 C terminus with a relative binding affinity comparable with that of the N terminus. Overall, these results suggest that the C-terminal domain of Kv4.2 plays a critical role in voltage-dependent activation and functional expression that is mediated by direct interaction between the Kv4.2 C terminus and KChIP2.
Collapse
Affiliation(s)
- Wei Han
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
18
|
Santacroce M, Orsini F, Perego C, Lenardi C, Castagna M, Mari SA, Sacchi VF, Poletti G. Atomic force microscopy imaging of actin cortical cytoskeleton of Xenopus laevis oocyte. J Microsc 2006; 223:57-65. [PMID: 16872432 DOI: 10.1111/j.1365-2818.2006.01596.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study we report an atomic force microscopy (AFM) investigation of the actin cortical cytoskeleton of Xenopus laevis oocytes. Samples consisted of inside-out orientated plasma membrane patches of X. laevis oocytes with overhanging cytoplasmic material. They were spread on a freshly cleaved mica surface, subsequently treated with Triton X-100 detergent and chemically fixed. The presence of actin fibres in oocyte patches was proved by fluorescence microscopy imaging. Contact mode AFM imaging was performed in air in constant force conditions. Reproducible high-resolution AFM images of a filamentous structure were obtained. The filamentous structure was identified as an actin cortical cytoskeleton, investigating its disaggregation induced by cytochalasin D treatment. The thinnest fibres showed a height of 7 nm in accordance with the diameter of a single actin microfilament. The results suggest that AFM imaging can be used for the high-resolution study of the actin cortical cytoskeleton of the X. laevis oocyte and its modifications mediated by the action of drugs and toxins.
Collapse
Affiliation(s)
- M Santacroce
- Istituto di Fisiologia Generale e Chimica Biologica Giovanni Esposito, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gambale F, Uozumi N. Properties of shaker-type potassium channels in higher plants. J Membr Biol 2006; 210:1-19. [PMID: 16794778 DOI: 10.1007/s00232-006-0856-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 02/17/2006] [Indexed: 10/24/2022]
Abstract
Potassium (K(+)), the most abundant cation in biological organisms, plays a crucial role in the survival and development of plant cells, modulation of basic mechanisms such as enzyme activity, electrical membrane potentials, plant turgor and cellular homeostasis. Due to the absence of a Na(+)/K(+) exchanger, which widely exists in animal cells, K(+) channels and some type of K(+) transporters function as K(+) uptake systems in plants. Plant voltage-dependent K(+) channels, which display striking topological and functional similarities with the voltage-dependent six-transmembrane segment animal Shaker-type K(+) channels, have been found to play an important role in the plasma membrane of a variety of tissues and organs in higher plants. Outward-rectifying, inward-rectifying and weakly-rectifying K(+) channels have been identified and play a crucial role in K(+) homeostasis in plant cells. To adapt to the environmental conditions, plants must take advantage of the large variety of Shaker-type K(+) channels naturally present in the plant kingdom. This review summarizes the extensive data on the structure, function, membrane topogenesis, heteromerization, expression, localization, physiological roles and modulation of Shaker-type K(+) channels from various plant species. The accumulated results also help in understanding the similarities and differences in the properties of Shaker-type K(+) channels in plants in comparison to those of Shaker channels in animals and bacteria.
Collapse
Affiliation(s)
- F Gambale
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova, Italy.
| | | |
Collapse
|
20
|
Porée F, Wulfetange K, Naso A, Carpaneto A, Roller A, Natura G, Bertl A, Sentenac H, Thibaud JB, Dreyer I. Plant K(in) and K(out) channels: approaching the trait of opposite rectification by analyzing more than 250 KAT1-SKOR chimeras. Biochem Biophys Res Commun 2005; 332:465-73. [PMID: 15894288 DOI: 10.1016/j.bbrc.2005.04.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
Members of the Shaker-like plant K(+) channel family share a common structure, but are highly diverse in their function: they behave as either hyperpolarization-activated inward-rectifying (K(in)) channels, or leak-like (K(weak)) channels, or depolarization-activated outward-rectifying (K(out)) channels. Here we created 256 chimeras between the K(in) channel KAT1 and the K(out) channel SKOR. The chimeras were screened in a potassium-uptake deficient yeast strain to identify those, which mediate potassium inward currents, i.e., which are functionally equivalent to KAT1. This strategy allowed us to identify three chimeras which differ from KAT1 in three parts of the polypeptide: the cytosolic N-terminus, the cytosolic C-terminus, and the putative voltage-sensor S4. Additionally, mutations in the K(out) channel SKOR were generated in order to localize molecular entities underlying its depolarization activation. The triple mutant SKOR-D312N-M313L-I314G, carrying amino-acid changes in the S6 segment, was identified as a channel which did not display any rectification in the tested voltage-range.
Collapse
Affiliation(s)
- Fabien Porée
- Biochimie et Physiologie Moléculaires des Plantes, UMR 5004, Agro.M-CNRS-INRA-UM2, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Akhavan A, Atanasiu R, Noguchi T, Han W, Holder N, Shrier A. Identification of the cyclic-nucleotide-binding domain as a conserved determinant of ion-channel cell-surface localization. J Cell Sci 2005; 118:2803-12. [PMID: 15961404 DOI: 10.1242/jcs.02423] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations of a putative cyclic-nucleotide-binding domain (CNBD) can disrupt the function of the hyperpolarization-activated cyclic-nucleotide-gated channel (HCN2) and the human ether-a-go-go-related gene potassium channel (HERG). Loss of function caused by C-terminal truncation, which includes all or part of the CNBD in HCN and HERG, has been related to abnormal channel trafficking. Similar defects have been reported for several of the missense mutations of HERG associated with long QT syndrome type 2 (LQT2). Thus, we postulate that normal processing of these channels depends upon the presence of the CNBD. Here, we show that removal of the entire CNBD prevents Golgi transit, surface localization and function of HERG channel tetramers. This is also true when any of the structural motifs of the CNBD is deleted, suggesting that deletion of any highly conserved region along the entire length of the CNBD can disrupt channel trafficking. Furthermore, we demonstrate that defective trafficking is a consequence of all LQT2 mutations in the CNBD, including two mutations not previously assessed and two others for which there are conflicting results in the literature. The trafficking sensitivity of the CNBD might be of general significance for other ion channels because complete deletion of the CNBD or mutations at highly conserved residues within the CNBD of the related ERG3 channel and HCN2 also prevent Golgi transit. These results broadly implicate the CNBD in ion-channel trafficking that accounts for the commonly observed loss of function associated with CNBD mutants and provides a rationale for distinct genetic disorders.
Collapse
Affiliation(s)
- Armin Akhavan
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Dreyer I, Porée F, Schneider A, Mittelstädt J, Bertl A, Sentenac H, Thibaud JB, Mueller-Roeber B. Assembly of plant Shaker-like K(out) channels requires two distinct sites of the channel alpha-subunit. Biophys J 2005; 87:858-72. [PMID: 15298894 PMCID: PMC1304495 DOI: 10.1529/biophysj.103.037671] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SKOR and GORK are outward-rectifying plant potassium channels from Arabidopsis thaliana. They belong to the Shaker superfamily of voltage-dependent K(+) channels. Channels of this class are composed of four alpha-subunits and subunit assembly is a prerequisite for channel function. In this study the assembly mechanism of SKOR was investigated using the yeast two-hybrid system and functional assays in Xenopus oocytes and in yeast. We demonstrate that SKOR and GORK physically interact and assemble into heteromeric K(out) channels. Deletion mutants and chimeric proteins generated from SKOR and the K(in) channel alpha-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains that are crucial for channel assembly were identified: i), a proximal interacting region comprising a putative cyclic nucleotide-binding domain together with 33 amino acids just upstream of this domain, and ii), a distal interacting region showing some resemblance to the K(T) domain of KAT1. Both regions contributed differently to channel assembly. Whereas the proximal interacting region was found to be active on its own, the distal interacting region required an intact proximal interacting region to be active. K(out) alpha-subunits did not assemble with K(in) alpha-subunits because of the absence of interaction between their assembly sites.
Collapse
Affiliation(s)
- Ingo Dreyer
- Biochimie et Physiologie Moléculaires des Plantes, UMR 5004, Agro-M/CNRS/INRA/UM2, F-34060 Montpellier Cedex 1, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Varshney A, Mathew MK. A tale of two tails: cytosolic termini and K(+) channel function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:153-70. [PMID: 12887978 DOI: 10.1016/s0079-6107(03)00054-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The enormous variety of neuronal action potential waveforms can be ascribed, in large part, to the sculpting of their falling phases by currents through voltage-gated potassium channels. These proteins play several additional roles in other tissues such as the regulation of heartbeat and of insulin release from pancreatic cells as well as auditory signal processing in the cochlea. The functional channel is a tetramer with either six or two transmembrane segments per monomer. Selectivity filters, voltage sensors and gating elements have been mapped to residues within the transmembrane region. Cytoplasmic residues, which are accessible targets for signal transduction cascades and provide attractive means of regulation of channel activity, are now seen to be capable of modulating various aspects of channel function. Here we review structural studies on segments of the cytoplasmic tails of K(+) channels, as well as the range of modulatory activities of these tails.
Collapse
Affiliation(s)
- Anurag Varshney
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, 560 065 Bangalore, India
| | | |
Collapse
|
24
|
Ju M, Stevens L, Leadbitter E, Wray D. The Roles of N- and C-terminal determinants in the activation of the Kv2.1 potassium channel. J Biol Chem 2003; 278:12769-78. [PMID: 12560340 DOI: 10.1074/jbc.m212973200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human and rat forms of the Kv2.1 channel have identical amino acids over the membrane-spanning regions and differ only in the N- and C-terminal intracellular regions. Rat Kv2.1 activates much faster than human Kv2.1. Here we have studied the role of the N- and C-terminal residues that determine this difference in activation kinetics between the two channels. For this, we constructed mutants and chimeras between the two channels, expressed them in oocytes, and recorded currents by two-electrode voltage clamping. In the N-terminal region, mutation Q67E in the rat channel displayed a slowing of activation relative to rat wild type, whereas mutation D75E in the human channel showed faster activation than human wild type. In the C-terminal region, we found that some residues within the region of amino acids 740-853 ("CTA" domain) were also involved in determining activation kinetics. The electrophysiological data also suggested interactions between the N and C termini. Such an interaction was confirmed directly by using a glutathione S-transferase (GST) fusion protein with the N terminus of Kv2.1, which we showed to bind to the C terminus of Kv2.1. Taken together, these data suggest that exposed residues in the T1 domain of the N terminus, as well as the CTA domain in the C terminus, are important in determining channel activation kinetics and that these N- and C-terminal regions interact.
Collapse
Affiliation(s)
- Min Ju
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
25
|
Proenza C, Tran N, Angoli D, Zahynacz K, Balcar P, Accili EA. Different roles for the cyclic nucleotide binding domain and amino terminus in assembly and expression of hyperpolarization-activated, cyclic nucleotide-gated channels. J Biol Chem 2002; 277:29634-42. [PMID: 12034718 DOI: 10.1074/jbc.m200504200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian heart and brain, pacemaker currents are produced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, which probably exist as heteromeric assemblies of different subunit isoforms. To investigate the molecular domains that participate in assembly and membrane trafficking of HCN channels, we have used the yeast two-hybrid system, patch clamp electrophysiology, and confocal microscopy. We show here that the N termini of the HCN1 and HCN2 isoforms interacted and were essential for expression of functional homo- or heteromeric channels on the plasma membrane of Chinese hamster ovary cells. We also show that the cyclic nucleotide binding domain (CNBD) of HCN2 was required for the expression of functional homomeric channels. This expression was dependent on a 12-amino acid domain corresponding to the B-helix in the CNBD of the catabolite activator protein. However, co-expression with HCN1 of an HCN2 deletion mutant lacking the CNBD rescued surface immunofluorescence and currents, indicating that a CNBD need not be present in each subunit of a heteromeric HCN channel. Furthermore, neither CNBDs nor other COOH-terminal domains of HCN1 and HCN2 interacted in yeast two-hybrid assays. Thus, interaction between NH(2)-terminal domains is important for HCN subunit assembly, whereas the CNBD is important for functional expression, but its absence from some subunits will still allow for the assembly of functional channels.
Collapse
Affiliation(s)
- Catherine Proenza
- Ion Channel Laboratory, School of Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | | | | | | | | | | |
Collapse
|
26
|
Shi H, Xiong L, Stevenson B, Lu T, Zhu JK. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. THE PLANT CELL 2002; 14:575-88. [PMID: 11910005 PMCID: PMC150580 DOI: 10.1105/tpc.010417] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Accepted: 12/13/2001] [Indexed: 05/18/2023]
Abstract
Salt stress is a major environmental factor influencing plant growth and development. To identify salt tolerance determinants, a genetic screen for salt overly sensitive (sos) mutants was performed in Arabidopsis. We present here the characterization of sos4 mutants and the positional cloning of the SOS4 gene. sos4 mutant plants are hypersensitive to Na(+), K(+), and Li(+) ions. Under NaCl stress, sos4 plants accumulate more Na(+) and retain less K(+) compared with wild-type plants. SOS4 encodes a pyridoxal kinase that is involved in the biosynthesis of pyridoxal-5-phosphate, an active form of vitamin B6. The expression of SOS4 cDNAs complements an Escherichia coli mutant defective in pyridoxal kinase. Supplementation of pyridoxine but not pyridoxal in the growth medium can partially rescue the sos4 defect in salt tolerance. SOS4 is expressed ubiquitously in all plant tissues. As a result of alternative splicing, two transcripts are derived from the SOS4 gene, the relative abundance of which is modulated by development and environmental stresses. Besides being essential cofactors for numerous enzymes, as shown by pharmacological studies in animal cells, pyridoxal-5-phosphate and its derivatives are also ligands for P2X receptor ion channels. Our results demonstrate that pyridoxal kinase is a novel salt tolerance determinant important for the regulation of Na(+) and K(+) homeostasis in plants. We propose that pyridoxal-5-phosphate regulates Na(+) and K(+) homeostasis by modulating the activities of ion transporters.
Collapse
Affiliation(s)
- Huazhong Shi
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Nonselective cation channels are a diverse group of ion channels characterized by their low discrimination between many essential and toxic cations. They are ubiquitous in plant tissues and are active in the plasma membrane, tonoplast, and other endomembranes. Members of this group are likely to function in low-affinity nutrient uptake, in distribution of cations within and between cells, and as plant Ca2+ channels. They are gated by diverse mechanisms, which can include voltage, cyclic nucleotides, glutamate, reactive oxygen species, and stretch. These channels dominate tonoplast cation transport, and the selectivity and gating mechanisms of tonoplast nonselective cation channels are comprehensively reviewed here. This review presents the first classification of plant nonselective cation channels and the first full description of nonselective cation channel candidate sequences in the Arabidopsis genome.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom.
| | | | | |
Collapse
|
28
|
Dietrich P, Sanders D, Hedrich R. The role of ion channels in light-dependent stomatal opening. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1959-67. [PMID: 11559731 DOI: 10.1093/jexbot/52.363.1959] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Stomatal opening represents a major determinant of plant productivity and stress management. Because plants lose water essentially through open stomata, volume control of the pore-forming guard cells represents a key step in the regulation of plant water status. These sensory cells are able to integrate various signals such as light, auxin, abscisic acid, and CO(2). Following signal perception, changes in membrane potential and activity of ion transporters finally lead to the accumulation of potassium salts and turgor pressure formation. This review analyses recent progress in molecular aspects of ion channel regulation and suggests how these developments impact on our understanding of light- and auxin-dependent stomatal action.
Collapse
Affiliation(s)
- P Dietrich
- Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | |
Collapse
|
29
|
Aydar E, Palmer C. Functional characterization of the C-terminus of the human ether-à-go-go-related gene K(+) channel (HERG). J Physiol 2001; 534:1-14. [PMID: 11432987 PMCID: PMC2278693 DOI: 10.1111/j.1469-7793.2001.t01-3-00001.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
1. In the present study the functional role of the C-terminus of the human ether-à-go-go-related gene K(+) channel HERG was investigated using a series of C-terminal deletion constructs expressed in Xenopus oocytes. 2. Constructs with deletions of 311 or more amino acid residues failed to form functional channels. Truncation by 215 amino acid residues or fewer had no discernable effects on channel activity. Truncation by 236 or 278 amino acid residues accelerated deactivation, and caused a faster recovery from inactivation. 3. In high extracellular K(+), channel deactivation of HERG results from the binding of the N-terminus to a site within the pore. This slows channel deactivation by a knock-off mechanism. Here, it was shown that C-terminal deletions also abolished this effect of high extracellular K(+). Mutants containing deletions in both the N- and C-termini deactivated with rates similar to those observed in individual deletion mutants. 4. In contrast, experiments with double-deletion constructs showed additive effects of the N- and C-termini on the voltage dependence of activation, and on the kinetics of inactivation and recovery from inactivation. The reduction of inactivation in these mutants contributed to an increase in peak current amplitude. 5. These results indicate that residues within the C-terminus of HERG play a role in channel expression as well as in most aspects of channel gating. The regulation of channel deactivation is likely to be mediated by an interaction with the N-terminus, but the regulation of the voltage dependence of activation, and of rate processes associated with inactivation, does not require the N-terminus.
Collapse
Affiliation(s)
- E Aydar
- University of Wisconsin--Madison, Department of Physiology, School of Medicine, 1300 University Avenue, Room 129 S.M.I., Madison, WI 53706, USA.
| | | |
Collapse
|
30
|
Hoth S, Geiger D, Becker D, Hedrich R. The pore of plant K(+) channels is involved in voltage and pH sensing: domain-swapping between different K(+) channel alpha-subunits. THE PLANT CELL 2001; 13:943-52. [PMID: 11283347 PMCID: PMC135535 DOI: 10.1105/tpc.13.4.943] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2000] [Accepted: 01/29/2001] [Indexed: 05/20/2023]
Abstract
Plant K(+) uptake channel types differ with respect to their voltage, Ca(2)+, and pH dependence. Here, we constructed recombinant chimeric channels between KST1, a member of the inward-rectifying, acid-activated KAT1 family, and AKT3, a member of the weakly voltage-dependent, proton-blocked AKT2/3 family. The homologous pore regions of AKT3 (amino acids 216 to 287) and KST1 (amino acids 217 to 289) have been exchanged to generate the two chimeric channels AKT3/(p)KST1 and KST1/(p)AKT3. In contrast to AKT3 wild-type channels, AKT3/(p)KST1 revealed a strong inward rectification reminiscent of that of KST1. Correspondingly, the substitution of the KST1 by the AKT3 pore led to less pronounced rectification properties of KST1/(p)AKT3 compared with wild-type KST1. Besides the voltage dependence, the interaction between the chimera and extracellular H(+) and Ca(2)+ resembled the properties of the inserted rather than the respective wild-type pore. Whereas AKT3/(p)KST1 was acid activated and Ca(2)+ insensitive, extracellular protons and Ca(2)+ inhibited KST1/(p)AKT3. The regulation of the chimeric channels by cytoplasmic protons followed the respective wild-type backbone of the chimeric channels, indicating that the intracellular pH sensor is located outside the P domain. We thus conclude that essential elements for external pH and Ca(2)+ regulation and for the rectification of voltage-dependent K(+) uptake channels are located within the channel pore.
Collapse
Affiliation(s)
- S Hoth
- Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | | | |
Collapse
|
31
|
Chen J, Mitcheson JS, Lin M, Sanguinetti MC. Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel. J Biol Chem 2000; 275:36465-71. [PMID: 10962006 DOI: 10.1074/jbc.m007034200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to pacemaking activity in specialized neurons and cardiac myocytes. HCN channels have a structure similar to voltage-gated K(+) channels but have a much larger putative S4 transmembrane domain and open in response to membrane hyperpolarization instead of depolarization. As an initial attempt to define the structural basis of HCN channel gating, we have characterized the functional roles of the charged residues in the S2, S3, and S4 transmembrane domains. The nine basic residues and a single Ser in S4 were mutated individually to Gln, and the function of mutant channels was analyzed in Xenopus oocytes using two-microelectrode voltage clamp techniques. Surface membrane expression of hemagglutinin-epitope-tagged channel proteins was examined by chemiluminescence. Our results suggest that 1) Lys-291, Arg-294, Arg-297, and Arg-300 contribute to the voltage dependence of gating but not to channel folding or trafficking to the surface membrane; 2) Lys-303 and Ser-306 are essential for gating, but not for channel folding/trafficking; 3) Arg-312 is important for folding but not gating; and 4) Arg-309, Arg-315, and Arg-318 are crucial for normal protein folding/trafficking and may charge-pair with Asp residues located in the S2 and S3 domains.
Collapse
Affiliation(s)
- J Chen
- Department of Medicine, Division of Cardiology and Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | | | |
Collapse
|
32
|
Varshney A, Mathew MK. Cytoplasmic residues influence the voltage-dependence of the gating of human K+ channels. Neuroreport 2000; 11:2913-7. [PMID: 11006965 DOI: 10.1097/00001756-200009110-00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Shaker type potassium channels are strongly voltage dependent and potassium selective. Kv1.4 channels from a variety of sources exhibit a much shallower voltage-dependence of activation than other members of the family. We have made a chimeric construct consisting of the N-terminal chain of hKv1.1 spliced onto the transmembrane portion of hKv1.4 (IN/4). When expressed in Xenopus oocytes, the chimeric channel exhibits a voltage dependence that is similar to hKv1.1 although the voltage sensing and transduction machinery presumably reside in the transmembrane portion of the channel. Loss of the N-terminal ball and chain from hKv1.4 is not responsible for this as a truncation construct, starting close to the splice junction, has the same voltage-dependence as full length hKv1.4. We suggest that residues from the N-terminal chain of hKv1.1 interact with the machinery that transduces movement of the voltage sensor into channel opening. If so, this chimeric construct could provide a handle to the identification of elements of this transduction machinery.
Collapse
Affiliation(s)
- A Varshney
- Laboratory of Membrane Biophysics, National Centre for Biological Sciences, Bangalore, India
| | | |
Collapse
|
33
|
Viloria CG, Barros F, Giráldez T, Gómez-Varela D, de la Peña P. Differential effects of amino-terminal distal and proximal domains in the regulation of human erg K(+) channel gating. Biophys J 2000; 79:231-46. [PMID: 10866950 PMCID: PMC1300928 DOI: 10.1016/s0006-3495(00)76286-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The participation of amino-terminal domains in human ether-a-go-go (eag)-related gene (HERG) K(+) channel gating was studied using deleted channel variants expressed in Xenopus oocytes. Selective deletion of the HERG-specific sequence (HERG Delta138-373) located between the conserved initial amino terminus (the eag or PAS domain) and the first transmembrane helix accelerates channel activation and shifts its voltage dependence to hyperpolarized values. However, deactivation time constants from fully activated states and channel inactivation remain almost unaltered after the deletion. The deletion effects are equally manifested in channel variants lacking inactivation. The characteristics of constructs lacking only about half of the HERG-specific domain (Delta223-373) or a short stretch of 19 residues (Delta355-373) suggest that the role of this domain is not related exclusively to its length, but also to the presence of specific sequences near the channel core. Deletion-induced effects are partially reversed by the additional elimination of the eag domain. Thus the particular combination of HERG-specific and eag domains determines two important HERG features: the slow activation essential for neuronal spike-frequency adaptation and maintenance of the cardiac action potential plateau, and the slow deactivation contributing to HERG inward rectification.
Collapse
Affiliation(s)
- C G Viloria
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, C/J Clavería s/n, Universidad de Oviedo, E-33006 Oviedo, Spain
| | | | | | | | | |
Collapse
|
34
|
Mori IC, Uozumi N, Muto S. Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase in Vicia guard cells. PLANT & CELL PHYSIOLOGY 2000; 41:850-856. [PMID: 10965941 DOI: 10.1093/pcp/pcd003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A 48-kDa protein kinase was detected in Vicia faba guard cell protoplasts by an in-gel protein kinase assay using a recombinant peptide (KAT1C) of the carboxyl-terminus of an inward-rectifying voltage-dependent K+ channel cloned from Arabidopsis thaliana, KAT1. This protein kinase (ABR* kinase) was activated by pretreatment of guard cell protoplasts with ABA, but not by pretreatment with IAA, 2,4-D, kinetin or GA3. The activation of ABR* kinase was dependent on the time and concentration of ABA. The kinase activity was sensitive to staurosporine and K-252a, protein kinase inhibitors, and insensitive to Ca2+. No ABR* kinase activity was detected in mesophyll cell protoplasts. These characteristics of ABR* kinase are consistent with those of an ABA-responsive protein kinase (ABR kinase) reported previously [Mori and Muto (1997), Plant Physiol. 113: 833]. These results indicate that ABR* kinase phosphorylates the inward-rectifying K+ channel in response to treatment of stomatal guard cells with ABA. The data reported here provide evidence that this ABA-responsive protein kinase may promote ABA signaling by directly phosphorylating guard cell ion channels.
Collapse
Affiliation(s)
- I C Mori
- Nagoya University Bioscience Center, Nagoya University, Chikusa, Japan
| | | | | |
Collapse
|
35
|
Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB. A shaker-like K(+) channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. THE PLANT CELL 2000; 12:837-51. [PMID: 10852932 PMCID: PMC149088 DOI: 10.1105/tpc.12.6.837] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RNA gel blot and reverse transcription-polymerase chain reaction experiments were used to identify a single K(+) channel gene in Arabidopsis as expressed throughout the plant. Use of the beta-glucuronidase reporter gene revealed expression of this gene, AKT2/AKT3, in both source and sink phloem tissues. The AKT2/AKT3 gene corresponds to two previously identified cDNAs, AKT2 (reconstructed at its 5' end) and AKT3, the open reading frame of the latter being shorter at its 5' end than that of the former. Rapid amplification of cDNA ends with polymerase chain reaction and site-directed mutagenesis was performed to identify the initiation codon for AKT2 translation. All of the data are consistent with the hypothesis that the encoded polypeptide corresponds to the longest open reading frame previously identified (AKT2). Electrophysiological characterization (macroscopic and single-channel currents) of AKT2 in both Xenopus oocytes and COS cells revealed a unique gating mode and sensitivity to pH (weak inward rectification, inhibition, and increased rectification upon internal or external acidification), suggesting that AKT2 has enough functional plasticity to perform different functions in phloem tissue of source and sink organs. The plant stress hormone abscisic acid was shown to increase the amount of AKT2 transcript, suggesting a role for the AKT2 in the plant response to drought.
Collapse
Affiliation(s)
- B Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004, Agro-M/CNRS/INRA/UM2, Place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | |
Collapse
|
36
|
Schachtman DP. Molecular insights into the structure and function of plant K(+) transport mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:127-39. [PMID: 10748250 DOI: 10.1016/s0005-2736(00)00134-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our understanding of plant potassium transport has increased in the past decade through the application of molecular biological techniques. In this review, recent work on inward and outward rectifying K(+) channels as well as high affinity K(+) transporters is described. Through the work on inward rectifying K(+) channels, we now have precise details on how the structure of these proteins determines functional characteristics such as ion conduction, pH sensitivity, selectivity and voltage sensing. The physiological function of inward rectifying K(+) channels in plants has been clarified through the analysis of expression patterns and mutational analysis. Two classes of outward rectifying K(+) channels have now been cloned from plants and their initial characterisation is reviewed. The physiological role of one class of outward rectifying K(+) channel has been demonstrated to be involved in long distance transport of K(+) from roots to shoots. The molecular structure and function of two classes of energised K(+) transporters are also reviewed. The first class is energised by Na(+) and shares structural similarities with K(+) transport mechanisms in bacteria and fungi. Structure-function studies suggest that it should be possible to increase the K(+) and Na(+) selectivity of these transporters, which will enhance the salt tolerance of higher plants. The second class of K(+) transporter is comprised of a large gene family and appears to have a dual affinity for K(+). A suite of molecular techniques, including gene cloning, oocyte expression, RNA localisation and gene inactivation, is now being used to fully characterise the biophysical and physiological function of plants K(+) transport mechanisms.
Collapse
Affiliation(s)
- D P Schachtman
- CSIRO Plant Industry, Horticulture Unit, GPO Box 350, Glen Osmond, Australia.
| |
Collapse
|
37
|
Tang XD, Marten I, Dietrich P, Ivashikina N, Hedrich R, Hoshi T. Histidine(118) in the S2-S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes. Biophys J 2000; 78:1255-69. [PMID: 10692314 PMCID: PMC1300727 DOI: 10.1016/s0006-3495(00)76682-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The guard cell K(+) channel KAT1, cloned from Arabidopsis thaliana, is activated by hyperpolarization and regulated by a variety of physiological factors. Low internal pH accelerated the activation kinetics of the KAT1 channel expressed in Xenopus oocytes with a pK of approximately 6, similar to guard cells in vivo. Mutations of histidine-118 located in the putative cytoplasmic linker between the S2 and S3 segments profoundly affected the gating behavior and pH dependence. At pH 7.2, substitution with a negatively charged amino acid (glutamate, aspartate) specifically slowed the activation time course, whereas that with a positively charged amino acid (lysine, arginine) accelerated. These mutations did not alter the channel's deactivation time course or the gating behavior after the first opening. Introducing an uncharged amino acid (alanine, asparagine) at position 118 did not have any obvious effect on the activation kinetics at pH 7.2. The charged substitutions markedly decreased the sensitivity of the KAT1 channel to internal pH in the physiological range. We propose a linear kinetic scheme to account for the KAT1 activation time course at the voltages where the opening transitions dominate. Changes in one forward rate constant in the model adequately account for the effects of the mutations at position 118 in the S2-S3 linker segment. These results provide a molecular and biophysical basis for the diversity in the activation kinetics of inward rectifiers among different plant species.
Collapse
Affiliation(s)
- X D Tang
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
38
|
Tang XD, Hoshi T. Rundown of the hyperpolarization-activated KAT1 channel involves slowing of the opening transitions regulated by phosphorylation. Biophys J 1999; 76:3089-98. [PMID: 10354434 PMCID: PMC1300278 DOI: 10.1016/s0006-3495(99)77461-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Disappearance of the functional activity or rundown of ion channels upon patch excision in many cells involves a decrease in the number of channels available to open. A variety of cellular and biophysical mechanisms have been shown to be involved in the rundown of different ion channels. We examined the rundown process of the plant hyperpolarization-activated KAT1 K+ channel expressed in Xenopus oocytes. The decrease in the KAT1 channel activity on patch excision was accompanied by progressive slowing of the activation time course, and it was caused by a shift in the voltage dependence of the channel without any change in the single-channel amplitude. The single-channel analysis showed that patch excision alters only the transitions leading up to the burst states of the channel. Patch cramming or concurrent application of protein kinase A (PKA) and ATP restored the channel activity. In contrast, nonspecific alkaline phosphatase (ALP) accelerated the rundown time course. Low internal pH, which inhibits ALP activity, slowed the KAT1 rundown time course. The results show that the opening transitions of the KAT1 channel are enhanced not only by hyperpolarization but also by PKA-mediated phosphorylation.
Collapse
Affiliation(s)
- X D Tang
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
39
|
Chanda B, Tiwari JK, Varshney A, Mathew MK. Transplanting the N-terminus from Kv1.4 to Kv1.1 generates an inwardly rectifying K+ channel. Neuroreport 1999; 10:237-41. [PMID: 10203315 DOI: 10.1097/00001756-199902050-00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A chimeric channel, 4N/1, was generated from two outwardly rectifying K+ channels by linking the N-terminal cytoplasmic domain of hKv1.4 (N terminus ball and chain of hKv1.4) with the transmembrane body of hKv1.1 (delta78N1 construct of hKv1.1). The recombinant channel has properties similar to the six transmembrane inward rectifiers and opens on hyperpolarization with a threshold of activation at -90 mV. Outward currents are seen on depolarization provided the channel is first exposed to a hyperpolarizing pulse of -100 mV or more. Hyperpolarization at and beyond -130 mV provides evidence of channel deactivation. Delta78N1 does not show inward currents on hyperpolarization but does open on depolarizing from -80 mV with characteristics similar to native hKv1.1. The outward currents seen in both delta78N1 and 4N/1 inactivate slowly at rates consistent with C-type inactivation. The inward rectification of the 4N/1 chimera is consistent with the inactivation gating mechanism. This implies that the addition of the N-terminus from hKv1.4 to hKv1.1 shifts channel activation to hyperpolarizing potentials. These results suggest a mechanism involving the N-terminal cytoplasmic domain for conversion of outward rectifiers to inward rectifiers.
Collapse
Affiliation(s)
- B Chanda
- National Centre for Biological Sciences, TIFR Centre, Indian Institute of Science Campus, Bangalore
| | | | | | | |
Collapse
|
40
|
Zei PC, Aldrich RW. Voltage-dependent gating of single wild-type and S4 mutant KAT1 inward rectifier potassium channels. J Gen Physiol 1998; 112:679-713. [PMID: 9834140 PMCID: PMC2229449 DOI: 10.1085/jgp.112.6.679] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1998] [Accepted: 10/01/1998] [Indexed: 12/25/2022] Open
Abstract
The voltage-dependent gating mechanism of KAT1 inward rectifier potassium channels was studied using single channel current recordings from Xenopus oocytes injected with KAT1 mRNA. The inward rectification properties of KAT1 result from an intrinsic gating mechanism in the KAT1 channel protein, not from pore block by an extrinsic cation species. KAT1 channels activate with hyperpolarizing potentials from -110 through -190 mV with a slow voltage-dependent time course. Transitions before first opening are voltage dependent and account for much of the voltage dependence of activation, while transitions after first opening are only slightly voltage dependent. Using burst analysis, transitions near the open state were analyzed in detail. A kinetic model with multiple closed states before first opening, a single open state, a single closed state after first opening, and a closed-state inactivation pathway accurately describes the single channel and macroscopic data. Two mutations neutralizing charged residues in the S4 region (R177Q and R176L) were introduced, and their effects on single channel gating properties were examined. Both mutations resulted in depolarizing shifts in the steady state conductance-voltage relationship, shortened first latencies to opening, decreased probability of terminating bursts, and increased burst durations. These effects on gating were well described by changes in the rate constants in the kinetic model describing KAT1 channel gating. All transitions before the open state were affected by the mutations, while the transitions after the open state were unaffected, implying that the S4 region contributes to the early steps in gating for KAT1 channels.
Collapse
Affiliation(s)
- P C Zei
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
41
|
Uozumi N, Nakamura T, Schroeder JI, Muto S. Determination of transmembrane topology of an inward-rectifying potassium channel from Arabidopsis thaliana based on functional expression in Escherichia coli. Proc Natl Acad Sci U S A 1998; 95:9773-8. [PMID: 9707551 PMCID: PMC21412 DOI: 10.1073/pnas.95.17.9773] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here that the inward-rectifying potassium channels KAT1 and AKT2 were functionally expressed in K+ uptake-deficient Escherichia coli. Immunological assays showed that KAT1 was translocated into the cell membrane of E. coli. Functional assays suggested that KAT1 was inserted topologically correctly into the cell membrane. In control experiments, the inactive point mutation in KAT1, T256R, did not complement for K+ uptake in E. coli. The inward-rectifying K+ channels of plants share a common hydrophobic domain comprising at least six membrane-spanning segments (S1-S6). The finding that a K+ channel can be expressed in bacteria was further exploited to determine the KAT1 membrane topology by a gene fusion approach using the bacterial reporter enzymes, alkaline phosphatase, which is active only in the periplasm, and beta-galactosidase. The enzyme activity from the alkaline phosphatase and beta-galactosidase fusion plasmid showed that the widely predicted S1, S2, S5, and S6 segments were inserted into the membrane. Although the S3 segment in the alkaline phosphatase fusion protein could not function as an export signal, the replacement of a negatively charged residue inside S3 with a neutral amino acid resulted in an increase in alkaline phosphatase activity, which indicates that the alkaline phosphatase was translocated into the periplasm. For membrane translocation of S3, the neutralization of a negatively charged residue in S3 may be required presumably because of pairing with a positively charged residue of S4. These results revealed that KAT1 has the common six transmembrane-spanning membrane topology that has been predicted for the Shaker superfamily of voltage-dependent K+ channels. Furthermore, the functional complementation of a bacterial K+ uptake mutant in this study is shown to be an alternative expression system for plant K+ channel proteins and a potent tool for their topological analysis.
Collapse
Affiliation(s)
- N Uozumi
- Bioscience Center, Nagoya University, Nagoya, 464-8601, Japan.
| | | | | | | |
Collapse
|
42
|
Dreyer I, Becker D, Bregante M, Gambale F, Lehnen M, Palme K, Hedrich R. Single mutations strongly alter the K+-selective pore of the K(in) channel KAT1. FEBS Lett 1998; 430:370-6. [PMID: 9688573 DOI: 10.1016/s0014-5793(98)00694-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Voltage-dependent potassium uptake channels represent the major pathway for K+ accumulation underlying guard cell swelling and stomatal opening. The core structure of these Shaker-like channels is represented by six transmembrane domains and an amphiphilic pore-forming region between the fifth and sixth domain. To explore the effect of point mutations within the stretch of amino acids lining the K+ conducting pore of KAT1, an Arabidopsis thaliana guard cell K(in) channel, we selected residues deep inside and in the periphery of the pore. The mutations on positions 256 and 267 strongly altered the interaction of the permeation pathway with external Ca2+ ions. Point mutations on position 256 in KAT1 affected the affinity towards Ca2+, the voltage dependence as well as kinetics of the Ca2+ blocking reaction. Among these T256S showed a Ca2+ phenotype reminiscent of an inactivation-like process, a phenomenon unknown for K(in) channels so far. Mutating histidine 267 to alanine, a substitution strongly affecting C-type inactivation in Shaker, this apparent inactivation could be linked to a very slow calcium block. The mutation H267A did not affect gating but hastened the Ca2+ block/unblock kinetics and increased the Ca2+ affinity of KAT1. From the analysis of the presented data we conclude that even moderate point mutations in the pore of KAT1 seem to affect the pore geometry rather than channel gating.
Collapse
Affiliation(s)
- I Dreyer
- Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl Botanik I-Molekulare Pflanzenphysiologie und Biophysik, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Marten I, Hoshi T. The N-terminus of the K channel KAT1 controls its voltage-dependent gating by altering the membrane electric field. Biophys J 1998; 74:2953-62. [PMID: 9635749 PMCID: PMC1299636 DOI: 10.1016/s0006-3495(98)78002-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Functional roles of different domains (pore region, S4 segment, N-terminus) of the KAT1 potassium channel in its voltage-dependent gating were electrophysiologically studied in Xenopus oocytes. The KAT1 properties did not depend on the extracellular K+ concentration or on residue H267, equivalent to one of the residues known to be important in C-type inactivation in Shaker channels, indicating that the hyperpolarization-induced KAT1 inward currents are related to the channel activation rather than to recovery from inactivation. Neutralization of a positively charged amino acid in the S4 domain (R176S) reduced the gating charge movement, suggesting that it acts as a voltage-sensing residue in KAT1. N-terminal deletions alone (e.g., delta20-34) did not affect the gating charge movement. However, the deletions paradoxically increased the voltage sensitivity of the R176S mutant channel, but not that of the wild-type channel. We propose a simple model in which the N-terminus determines the KAT1 voltage sensitivity by contributing to the electric field sensed by the voltage sensor.
Collapse
Affiliation(s)
- I Marten
- Department of Physiology and Biophysics, College of Medicine, The University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
44
|
Tang L, Chehab N, Wieland SJ, Kallen RG. Glutamine substitution at alanine1649 in the S4-S5 cytoplasmic loop of domain 4 removes the voltage sensitivity of fast inactivation in the human heart sodium channel. J Gen Physiol 1998; 111:639-52. [PMID: 9565402 PMCID: PMC2217139 DOI: 10.1085/jgp.111.5.639] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal activation-inactivation coupling in sodium channels insures that inactivation is slow at small but rapid at large depolarizations. M1651Q/M1652Q substitutions in the cytoplasmic loop connecting the fourth and fifth transmembrane segments of Domain 4 (S4-S5/D4) of the human heart sodium channel subtype 1 (hH1) affect the kinetics and voltage dependence of inactivation (Tang, L., R.G. Kallen, and R. Horn. 1996. J. Gen. Physiol. 108:89-104.). We now show that glutamine substitutions NH2-terminal to the methionines (L1646, L1647, F1648, A1649, L1650) also influence the kinetics and voltage dependence of inactivation compared with the wild-type channel. In contrast, mutations at the COOH-terminal end of the S4-S5/D4 segment (L1654, P1655, A1656) are without significant effect. Strikingly, the A1649Q mutation renders the current decay time constants virtually voltage independent and decreases the voltage dependences of steady state inactivation and the time constants for the recovery from inactivation. Single-channel measurements show that at negative voltages latency times to first opening are shorter and less voltage dependent in A1649Q than in wild-type channels; peak open probabilities are significantly smaller and the mean open times are shorter. This indicates that the rate constants for inactivation and, probably, activation are increased at negative voltages by the A1649Q mutation reminiscent of Y1494Q/ Y1495Q mutations in the cytoplasmic loop between the third and fourth domains (O'Leary, M.E., L.Q. Chen, R.G. Kallen, and R. Horn. 1995. J. Gen. Physiol. 106:641-658.). Other substitutions, A1649S and A1649V, decrease but fail to eliminate the voltage dependence of time constants for inactivation, suggesting that the decreased hydrophobicity of glutamine at either residues A1649 or Y1494Y1495 may disrupt a linkage between S4-S5/D4 and the interdomain 3-4 loop interfering with normal activation-inactivation coupling.
Collapse
Affiliation(s)
- L Tang
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | | | | | | |
Collapse
|
45
|
Terlau H, Heinemann SH, Stühmer W, Pongs O, Ludwig J. Amino terminal-dependent gating of the potassium channel rat eag is compensated by a mutation in the S4 segment. J Physiol 1997; 502 ( Pt 3):537-43. [PMID: 9279806 PMCID: PMC1159526 DOI: 10.1111/j.1469-7793.1997.537bj.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Rat eag potassium channels (r-eag) were expressed in Xenopus oocytes. They gave rise to delayed rectifying K+ currents with a strong Cole-Moore effect. 2. Deletions in the N-terminal structure of r-eag either shifted the activation threshold to more negative potentials and slowed the activation kinetics (delta 2-190, delta 2-12 and delta 7-12) or resulted in a shift to more positive potentials and faster activation kinetics (delta 150-162). 3. The impact of the deletion delta 7-12 was investigated in more detail: it almost abolished the Cole-Moore effect and markedly slowed down channel deactivation. 4. Unlike wild-type channels, the deletion mutants delta 7-12 exhibited a rapid inactivation which, in combination with the slow deactivation, resulted in current characteristics which were similar to those of the related potassium channel HERG. 5. Both the slowing of deactivation and the inactivation induced by the deletion delta 7-12 were compensated by a single histidine-to-arginine change in the S4 segment, while this mutation (H343R) only had minor effects on the gating kinetics of the full-length r-eag channel. 6. These results demonstrate a functional role of the N-terminus in the voltage-dependent gating of potassium channels which is presumably mediated by an interaction of the N-terminal protein structure with the S4 motif during the gating process.
Collapse
Affiliation(s)
- H Terlau
- Max-Planck-Institut für experimentelle Medizin, Abteilung Molekulare Biologie neuronaler Signale, Göttingen, Germany.
| | | | | | | | | |
Collapse
|