1
|
Lucas LM, Dwivedi V, Senfeld JI, Cullum RL, Mill CP, Piazza JT, Bryant IN, Cook LJ, Miller ST, Lott JH, Kelley CM, Knerr EL, Markham JA, Kaufmann DP, Jacobi MA, Shen J, Riese DJ. The Yin and Yang of ERBB4: Tumor Suppressor and Oncoprotein. Pharmacol Rev 2022; 74:18-47. [PMID: 34987087 PMCID: PMC11060329 DOI: 10.1124/pharmrev.121.000381] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
ERBB4 (HER4) is a member of the ERBB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ERBB1/HER1), ERBB2 (Neu/HER2), and ERBB3 (HER3). EGFR and ERBB2 are oncoproteins and validated targets for therapeutic intervention in a variety of solid tumors. In contrast, the role that ERBB4 plays in human malignancies is ambiguous. Thus, here we review the literature regarding ERBB4 function in human malignancies. We review the mechanisms of ERBB4 signaling with an emphasis on mechanisms of signaling specificity. In the context of this signaling specificity, we discuss the hypothesis that ERBB4 appears to function as a tumor suppressor protein and as an oncoprotein. Next, we review the literature that describes the role of ERBB4 in tumors of the bladder, liver, prostate, brain, colon, stomach, lung, bone, ovary, thyroid, hematopoietic tissues, pancreas, breast, skin, head, and neck. Whenever possible, we discuss the possibility that ERBB4 mutants function as biomarkers in these tumors. Finally, we discuss the potential roles of ERBB4 mutants in the staging of human tumors and how ERBB4 function may dictate the treatment of human tumors. SIGNIFICANCE STATEMENT: This articles reviews ERBB4 function in the context of the mechanistic model that ERBB4 homodimers function as tumor suppressors, whereas ERBB4-EGFR or ERBB4-ERBB2 heterodimers act as oncogenes. Thus, this review serves as a mechanistic framework for clinicians and scientists to consider the role of ERBB4 and ERBB4 mutants in staging and treating human tumors.
Collapse
Affiliation(s)
- Lauren M Lucas
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Vipasha Dwivedi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jared I Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Richard L Cullum
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Christopher P Mill
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - J Tyler Piazza
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Ianthe N Bryant
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Laura J Cook
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - S Tyler Miller
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - James H Lott
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Connor M Kelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Elizabeth L Knerr
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jessica A Markham
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David P Kaufmann
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Megan A Jacobi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David J Riese
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| |
Collapse
|
2
|
Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC, Barba-Moreno D, Macdonald A. E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Cell Death Differ 2021; 28:1669-1687. [PMID: 33303976 PMCID: PMC8166842 DOI: 10.1038/s41418-020-00693-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy worldwide, contributing to ~5% of all human cancers including almost all cases of cervical cancer and a growing number of ano-genital and oral cancers. HPV-induced malignancy is primarily driven by the viral oncogenes, E6 and E7, which manipulate host cellular pathways to increase cell proliferation and enhance cell survival, ultimately predisposing infected cells to malignant transformation. Consequently, a more detailed understanding of viral-host interactions in HPV-associated disease offers the potential to identify novel therapeutic targets. Here, we identify that the c-Jun N-terminal kinase (JNK) signalling pathway is activated in cervical disease and in cervical cancer. The HPV E6 oncogene induces JNK1/2 phosphorylation in a manner that requires the E6 PDZ binding motif. We show that blockade of JNK1/2 signalling using small molecule inhibitors, or knockdown of the canonical JNK substrate c-Jun, reduces cell proliferation and induces apoptosis in cervical cancer cells. We further demonstrate that this phenotype is at least partially driven by JNK-dependent activation of EGFR signalling via increased expression of EGFR and the EGFR ligands EGF and HB-EGF. JNK/c-Jun signalling promoted the invasive potential of cervical cancer cells and was required for the expression of the epithelial to mesenchymal transition (EMT)-associated transcription factor Slug and the mesenchymal marker Vimentin. Furthermore, JNK/c-Jun signalling is required for the constitutive expression of HPV E6 and E7, which are essential for cervical cancer cell growth and survival. Together, these data demonstrate a positive feedback loop between the EGFR signalling pathway and HPV E6/E7 expression, identifying a regulatory mechanism in which HPV drives EGFR signalling to promote proliferation, survival and EMT. Thus, our study has identified a novel therapeutic target that may be beneficial for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ethan L. Morgan
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.94365.3d0000 0001 2297 5165Present Address: Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD USA
| | - James A. Scarth
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Molly R. Patterson
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Christopher W. Wasson
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Present Address: Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, St-James University Teaching Hospital, Leeds, West Yorkshire UK
| | - Georgia C. Hemingway
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Diego Barba-Moreno
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Andrew Macdonald
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| |
Collapse
|
3
|
Cao SX, Wen CX, Sun R, Han JX, Sun YH, Xu XX, Li XM, Lian H. ErbB4 regulate extracellular dopamine through the p38 MAPK signaling pathway. Neurosci Lett 2021; 751:135830. [PMID: 33722543 DOI: 10.1016/j.neulet.2021.135830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
ErbB4 loss-of-function in catecholaminergic neurons induces catecholamine dyshomeostasis. Despite ErbB4's significant role in neuropathology, the signaling pathways that regulate these changes are still widely unknown. In this study, we attempt to identify the downstream pathway of ErbB4 that regulates catecholamine homeostasis. The SH-SY5Y human neuroblastoma cell line was used as the in vitro model for catecholaminergic neurons. Western blotting, enzyme-linked immunosorbent assay, and pharmacological and genetic manipulations by agonist/antagonist or small interference RNA were used to investigate the relationship between ErbB4 and extracellular catecholamines. We confirmed that ErbB4 is abundantly expressed in undifferentiated and retinoic acid-differentiated catecholaminergic cells from the SH-SY5Y cell line. ErbB4 inhibition increase the ratio of phosphorylated p38 to total p38 in SH-SY5Y human neuroblastoma cells. Consistent with previous in vivo observations in mice, ErbB4 deficiency led to increases in extracellular dopamine and norepinephrine levels. However, the resulting increase in extracellular dopamine, but not norepinephrine, could be suppressed by p38 inhibitor SB202190. Our results suggest that both extracellular dopamine and norepinephrine homeostasis could be regulated by ErbB4 in human catecholaminergic cells, and ErbB4 may regulate extracellular dopamine, but not norepinephrine, through the p38 MAPK signaling pathway, thus indicating different regulatory pathways of dopamine and norepinephrine by ErbB4 in catecholaminergic neurons.
Collapse
Affiliation(s)
- Shu-Xia Cao
- Department of Neurology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chen-Xi Wen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rui Sun
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jia-Xuan Han
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yan-Hui Sun
- Department of Neurology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin-Xin Xu
- Department of Neurology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Hong Lian
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
4
|
Ledonne A, Mercuri NB. Insights on the Functional Interaction between Group 1 Metabotropic Glutamate Receptors (mGluRI) and ErbB Receptors. Int J Mol Sci 2020; 21:ijms21217913. [PMID: 33114459 PMCID: PMC7662933 DOI: 10.3390/ijms21217913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
It is well-appreciated that phosphorylation is an essential post-translational mechanism of regulation for several proteins, including group 1 metabotropic glutamate receptors (mGluRI), mGluR1, and mGluR5 subtypes. While contributions of various serine/threonine protein kinases on mGluRI modulation have been recognized, the functional role of tyrosine kinases (TKs) is less acknowledged. Here, while describing current evidence supporting that mGluRI are targets of TKs, we mainly focus on the modulatory roles of the ErbB tyrosine kinases receptors—activated by the neurotrophic factors neuregulins (NRGs)—on mGluRI function. Available evidence suggests that mGluRI activity is tightly dependent on ErbB signaling, and that ErbB’s modulation profoundly influences mGluRI-dependent effects on neurotransmission, neuronal excitability, synaptic plasticity, and learning and memory processes.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence: ; Tel.: +39-06-50170-3160
| | - Nicola B. Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Systems Medicine, Università di Roma “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
5
|
Linnerbauer M, Rothhammer V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Front Immunol 2020; 11:573256. [PMID: 33117368 PMCID: PMC7561408 DOI: 10.3389/fimmu.2020.573256] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play important roles in numerous central nervous system disorders including autoimmune inflammatory, hypoxic, and degenerative diseases such as Multiple Sclerosis, ischemic stroke, and Alzheimer’s disease. Depending on the spatial and temporal context, activated astrocytes may contribute to the pathogenesis, progression, and recovery of disease. Recent progress in the dissection of transcriptional responses to varying forms of central nervous system insult has shed light on the mechanisms that govern the complexity of reactive astrocyte functions. While a large body of research focuses on the pathogenic effects of reactive astrocytes, little is known about how they limit inflammation and contribute to tissue regeneration. However, these protective astrocyte pathways might be of relevance for the understanding of the underlying pathology in disease and may lead to novel targeted approaches to treat autoimmune inflammatory and degenerative disorders of the central nervous system. In this review article, we have revisited the emerging concept of protective astrocyte functions and discuss their role in the recovery from inflammatory and ischemic disease as well as their role in degenerative disorders. Focusing on soluble astrocyte derived mediators, we aggregate the existing knowledge on astrocyte functions in the maintenance of homeostasis as well as their reparative and tissue-protective function after acute lesions and in neurodegenerative disorders. Finally, we give an outlook of how these mediators may guide future therapeutic strategies to tackle yet untreatable disorders of the central nervous system.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Ledonne A, Mercuri NB. On the Modulatory Roles of Neuregulins/ErbB Signaling on Synaptic Plasticity. Int J Mol Sci 2019; 21:ijms21010275. [PMID: 31906113 PMCID: PMC6981567 DOI: 10.3390/ijms21010275] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Neuregulins (NRGs) are a family of epidermal growth factor-related proteins, acting on tyrosine kinase receptors of the ErbB family. NRGs play an essential role in the development of the nervous system, since they orchestrate vital functions such as cell differentiation, axonal growth, myelination, and synapse formation. They are also crucially involved in the functioning of adult brain, by directly modulating neuronal excitability, neurotransmission, and synaptic plasticity. Here, we provide a review of the literature documenting the roles of NRGs/ErbB signaling in the modulation of synaptic plasticity, focusing on evidence reported in the hippocampus and midbrain dopamine (DA) nuclei. The emerging picture shows multifaceted roles of NRGs/ErbB receptors, which critically modulate different forms of synaptic plasticity (LTP, LTD, and depotentiation) affecting glutamatergic, GABAergic, and DAergic synapses, by various mechanisms. Further, we discuss the relevance of NRGs/ErbB-dependent synaptic plasticity in the control of brain processes, like learning and memory and the known involvement of NRGs/ErbB signaling in the modulation of synaptic plasticity in brain’s pathological conditions. Current evidence points to a central role of NRGs/ErbB receptors in controlling glutamatergic LTP/LTD and GABAergic LTD at hippocampal CA3–CA1 synapses, as well as glutamatergic LTD in midbrain DA neurons, thus supporting that NRGs/ErbB signaling is essential for proper brain functions, cognitive processes, and complex behaviors. This suggests that dysregulated NRGs/ErbB-dependent synaptic plasticity might contribute to mechanisms underlying different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Correspondence: ; Tel.: +3906-501703160; Fax: +3906-501703307
| | - Nicola B. Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier no 1, 00133 Rome, Italy
| |
Collapse
|
7
|
Wang SE, Lin RJ. MicroRNA and HER2-overexpressing cancer. Microrna 2018; 2:137-47. [PMID: 25070783 PMCID: PMC4120065 DOI: 10.2174/22115366113029990011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/26/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
Abstract
The discovery of microRNAs (miRNAs) has opened up new avenues for studying cancer at the molecular level, featuring a post-genomic era of biomedical research. These non-coding regulatory RNA molecules of ~22 nucleotides have emerged as important cancer biomarkers, effectors, and targets. In this review, we focus on the dysregulated biogenesis and function of miRNAs in cancers with an overexpression of the proto-oncogene HER2. Many of the studies reviewed here were carried out in breast cancer, where HER2 overexpression has been extensively studied and HER2-targeted therapy practiced for more than a decade. MiRNA signatures that can be used to classify tumors with different HER2 status have been reported but little consensus can be established among various studies, emphasizing the needs for additional well-controlled profiling approaches and meta-analyses in large and well-balanced patient cohorts. We further discuss three aspects of microRNA dysregulation in or contribution to HER2-associated malignancies or therapies: (a) miRNAs that are up- or down-regulated by HER2 and mediate the downstream signaling of HER2; (b) miRNAs that suppress the expression of HER2 or a factor in HER2 receptor complexes, such as HER3; and (c) miRNAs that affect responses to anti-HER2 therapies. The regulatory mechanisms are elaborated using mainly examples of miR-205, miR-125, and miR-21. Understanding the regulation and function of miRNAs in HER2-overexpressing tumors shall shed new light on the pathogenic mechanisms of microRNAs and the HER2 proto-oncogene in cancer, as well as on individualized or combinatorial anti-HER2 therapies.
Collapse
Affiliation(s)
| | - Ren-Jang Lin
- Department of Cancer Biology, Beckman Research Institute of City of Hope, KCRB2007, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
8
|
Ledonne A, Mango D, Latagliata EC, Chiacchierini G, Nobili A, Nisticò R, D'Amelio M, Puglisi-Allegra S, Mercuri NB. Neuregulin 1/ErbB signalling modulates hippocampal mGluRI-dependent LTD and object recognition memory. Pharmacol Res 2018; 130:12-24. [PMID: 29427771 DOI: 10.1016/j.phrs.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 01/05/2023]
Abstract
The neurotrophic factors neuregulins (NRGs) and their receptors, ErbB tyrosine kinases, regulate neurotransmission, synaptic plasticity and cognitive functions and their alterations have been associated to different neuropsychiatric disorders. Group 1 metabotropic glutamate receptors (mGluRI)-dependent mechanisms are also altered in animal models of neuropsychiatric diseases, especially mGluRI-induced glutamatergic long-term depression (mGluRI-LTD), a form of synaptic plasticity critically involved in learning and memory. Despite this evidence, a potential link between NRGs/ErbB signalling and mGluRI-LTD has never been considered. Here, we aimed to test the hypothesis that NRGs/ErbB signalling regulates mGluRI functions in the hippocampus, thus controlling CA1 pyramidal neurons excitability and synaptic plasticity as well as mGluRI-dependent behaviors. We investigated the functional interaction between NRG1/ErbB signalling and mGluRI in hippocampal CA1 pyramidal neurons, by analyzing the effect of a pharmacological modulation of NRG1/ErbB signalling on the excitation of pyramidal neurons and on the LTD at CA3-CA1 synapses induced by an mGluRI agonist. Furthermore, we verified the involvement of ErbB signalling in mGluRI-dependent learning processes, by evaluating the consequence of an intrahippocampal in vivo injection of a pan-ErbB inhibitor in the object recognition test in mice, a learning task dependent on hippocampal mGluRI. We found that NRG1 potentiates mGluRI-dependent functions on pyramidal neurons excitability and synaptic plasticity at CA3-CA1 synapses. Further, endogenous ErbB signalling per se regulates, through mGluRI, neuronal excitability and LTD in CA1 pyramidal neurons, since ErbB inhibition reduces mGluRI-induced neuronal excitation and mGluRI-LTD. In vivo intrahippocampal injection of the ErbB inhibitor, PD158780, impairs mGluRI-LTD at CA3-CA1 synapses and affects the exploratory behavior in the object recognition test. Thus, our results identify a key role for NRG1/ErbB signalling in the regulation of hippocampal mGluRI-dependent synaptic and cognitive functions, whose alteration might contribute to the pathogenesis of different brain diseases.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy.
| | - Dalila Mango
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, Rome, Italy
| | | | - Giulia Chiacchierini
- Department of Psychology and "Daniel Bovet" Center, University "La Sapienza", Rome, Italy
| | - Annalisa Nobili
- Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy; Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Robert Nisticò
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy; Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Stefano Puglisi-Allegra
- Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy; Department of Psychology and "Daniel Bovet" Center, University "La Sapienza", Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
9
|
Plakophilin-2 promotes tumor development by enhancing ligand-dependent and -independent epidermal growth factor receptor dimerization and activation. Mol Cell Biol 2014; 34:3843-54. [PMID: 25113560 DOI: 10.1128/mcb.00758-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epidermal growth factor (EGF) receptor (EGFR) has been implicated in tumor development and invasion. Dimerization and autophosphorylation of EGFR are the critical events for EGFR activation. However, the regulation of EGF-dependent and EGF-independent dimerization and phosphorylation of EGFR has not been fully understood. Here, we report that cytoplasmic protein plakophilin-2 (PKP2) is a novel positive regulator of EGFR signaling. PKP2 specifically interacts with EGFR via its N-terminal head domain. Increased PKP2 expression enhances EGF-dependent and EGF-independent EGFR dimerization and phosphorylation. Moreover, PKP2 knockdown reduces EGFR phosphorylation and attenuates EGFR-mediated signal activation, resulting in a significant decrease in proliferation and migration of cancer cells and tumor development. Our results indicate that PKP2 is a novel activator of the EGFR signaling pathway and a potential new drug target for inhibiting tumor growth.
Collapse
|
10
|
Ng YK, Lee JY, Supko KM, Khan A, Torres SM, Berwick M, Ho J, Kirkwood JM, Siegfried JM, Stabile LP. Pan-erbB inhibition potentiates BRAF inhibitors for melanoma treatment. Melanoma Res 2014; 24:207-18. [PMID: 24709886 PMCID: PMC4394744 DOI: 10.1097/cmr.0000000000000060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The BRAF inhibitor vemurafenib is currently used for treating patients with BRAF V600E mutant melanoma. However, the responses to vemurafenib are generally partial and of relatively short duration. Recent evidence suggests that activation of the epidermal growth factor receptor (EGFR)/erbB signaling pathway may be responsible for the development of BRAF inhibitor resistance in melanoma patients. In this study, we characterized the erbB family of receptors and ligands in melanoma cell lines and examined whether targeting both BRAF and erbB provided enhanced antitumor activity in BRAF mutant melanoma. Variable levels of erbB2, erbB3, and truncated erbB4 were expressed in both BRAF wildtype and mutant melanoma cells with no significant differences between wildtype and mutant lines. EGFR was rarely expressed. Neuregulin 3 and neuregulin 4 were the major erbB ligands released by melanoma cells. Multi-erbB targeting with the irreversible tyrosine kinase inhibitor canertinib exerted a more effective growth inhibitory effect in both BRAF wildtype and mutant melanoma cells compared with the single-erbB or dual-erbB targeting inhibitors, gefitinib, erlotinib, and lapatinib. Canertinib inhibited both EGF-induced and neuregulin 1-induced erbB downstream signaling in both mutant and wildtype cell lines. However, canertinib induced apoptosis and sub-G1 arrest only in mutant cells. Canertinib statistically increased the antiproliferative effects of vemurafenib in the BRAF mutant melanoma cell lines while little or no enhanced effect was observed with the combination treatment in the wildtype cell lines. A combined inhibition strategy targeting BRAF together with multiple erbB family kinases is potentially beneficial for treating BRAF V600E mutant melanoma. Wildtype BRAF melanoma may also benefit from a multi-erbB kinase inhibitor.
Collapse
Affiliation(s)
- Yuen-Keng Ng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Jia-Ying Lee
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kathryn M. Supko
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Ayesha Khan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Salina M. Torres
- Department of Internal Medicine, Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, New Mexico
| | - Marianne Berwick
- Department of Internal Medicine, Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, New Mexico
| | - Jonhan Ho
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John M. Kirkwood
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jill M. Siegfried
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura P. Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
A potential peptide therapeutic derived from the juxtamembrane domain of the epidermal growth factor receptor. PLoS One 2012; 7:e49702. [PMID: 23166750 PMCID: PMC3499488 DOI: 10.1371/journal.pone.0049702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/12/2012] [Indexed: 12/31/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is involved in many cancers and EGFR has been heavily pursued as a drug target. Drugs targeting EGFR have shown promising clinical results for several cancer types. However, resistance to EGFR inhibitors often occurs, such as with KRAS mutant cancers, therefore new methods of targeting EGFR are needed. The juxtamembrane (JXM) domain of EGFR is critical for receptor activation and targeting this region could potentially be a new method of inhibiting EGFR. We hypothesized that the structural role of the JXM region could be mimicked by peptides encoding a JXM amino acid sequence, which could interfere with EGFR signaling and consequently could have anti-cancer activity. A peptide encoding EGFR 645-662 conjugated to the Tat sequence (TE-64562) displayed anti-cancer activity in multiple human cancer cell types with diminished activity in non-EGFR expressing cells and non-cancerous cells. In nude mice, TE-64562 delayed MDA-MB-231 tumor growth and prolonged survival, without inducing toxicity. TE-64562 induced non-apoptotic cell death after several hours and caspase-3-mediated apoptotic cell death with longer treatment. Mechanistically, TE-64562 bound to EGFR, inhibited its dimerization and caused its down-regulation. TE-64562 reduced phosphorylated and total EGFR levels but did not inhibit kinase activity and instead prolonged it. Our analysis of patient data from The Cancer Genome Atlas supported the hypothesis that down-regulation of EGFR is a potential therapeutic strategy, since phospho- and total-EGFR levels were strongly correlated in a large majority of patient tumor samples, indicating that lower EGFR levels are associated with lower phospho-EGFR levels and presumably less proliferative signals in breast cancer. Akt and Erk were inhibited by TE-64562 and this inhibition was observed in vivo in tumor tissue upon treatment with TE-64562. These results are the first to indicate that the JXM domain of EGFR is a viable drug target for several cancer types.
Collapse
|
12
|
Mill CP, Zordan MD, Rothenberg SM, Settleman J, Leary JF, Riese DJ. ErbB2 Is Necessary for ErbB4 Ligands to Stimulate Oncogenic Activities in Models of Human Breast Cancer. Genes Cancer 2012; 2:792-804. [PMID: 22393464 DOI: 10.1177/1947601911431080] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 11/04/2011] [Indexed: 01/04/2023] Open
Abstract
ErbB4 is a member of the ErbB family of receptor tyrosine kinases. This family includes ErbB2 (HER2/Neu), a validated therapeutic target in breast cancer. Several studies indicate that ErbB4 functions as a tumor suppressor in breast cancer, whereas others indicate that ErbB4 functions as an oncogene. Here the authors explore the context in which ErbB4 functions as an oncogene. Silencing expression of either ErbB2 or ErbB4 in breast tumor cell lines results in reduced stimulation of anchorage independence and cell motility by the ErbB4 agonist neuregulin 2β. ErbB2 tyrosine kinase activity, but not ErbB4 tyrosine kinase activity, is required for neuregulin 2β to stimulate cell proliferation. Moreover, sites of ErbB4 tyrosine phosphorylation, but not sites of ErbB2 tyrosine phosphorylation, are required for neuregulin 2β to couple to cell proliferation. These data suggest that targeting ErbB2 expression or tyrosine kinase activity may be effective in treating ErbB4-dependent breast tumors, even those tumors that lack ErbB2 overexpression.
Collapse
|
13
|
Davies DM, Foster J, van der Stegen SJC, Parente-Pereira AC, Chiapero-Stanke L, Delinassios GJ, Burbridge SE, Kao V, Liu Z, Bosshard-Carter L, van Schalkwyk MCI, Box C, Eccles SA, Mather SJ, Wilkie S, Maher J. Flexible targeting of ErbB dimers that drive tumorigenesis by using genetically engineered T cells. Mol Med 2012; 18:565-76. [PMID: 22354215 PMCID: PMC3388141 DOI: 10.2119/molmed.2011.00493] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/16/2012] [Indexed: 11/06/2022] Open
Abstract
Pharmacological targeting of individual ErbB receptors elicits antitumor activity, but is frequently compromised by resistance leading to therapeutic failure. Here, we describe an immunotherapeutic approach that exploits prevalent and fundamental mechanisms by which aberrant upregulation of the ErbB network drives tumorigenesis. A chimeric antigen receptor named T1E28z was engineered, in which the promiscuous ErbB ligand, T1E, is fused to a CD28 + CD3ζ endodomain. Using a panel of ErbB-engineered 32D hematopoietic cells, we found that human T1E28z⁺ T cells are selectively activated by all ErbB1-based homodimers and heterodimers and by the potently mitogenic ErbB2/3 heterodimer. Owing to this flexible targeting capability, recognition and destruction of several tumor cell lines was achieved by T1E28⁺ T cells in vitro, comprising a wide diversity of ErbB receptor profiles and tumor origins. Furthermore, compelling antitumor activity was observed in mice bearing established xenografts, characterized either by ErbB1/2 or ErbB2/3 overexpression and representative of insidious or rapidly progressive tumor types. Together, these findings support the clinical development of a broadly applicable immunotherapeutic approach in which the propensity of solid tumors to dysregulate the extended ErbB network is targeted for therapeutic gain.
Collapse
Affiliation(s)
- David M Davies
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - Julie Foster
- Centre for Molecular Oncology and Imaging, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sjoukje J C van der Stegen
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - Ana C Parente-Pereira
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - Laura Chiapero-Stanke
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - George J Delinassios
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - Sophie E Burbridge
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - Vincent Kao
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - Zhe Liu
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - Leticia Bosshard-Carter
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - May C I van Schalkwyk
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - Carol Box
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Suzanne A Eccles
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Stephen J Mather
- Centre for Molecular Oncology and Imaging, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Scott Wilkie
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
| | - John Maher
- King’s College London, King’s Health Partners Integrated Cancer Center, Department of Research Oncology, Guy’s Hospital Campus, London, UK
- Department of Immunology, Barnet and Chase Farm National Health Service (NHS) Trust, Barnet, Hertfordshire, UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| |
Collapse
|
14
|
Trastuzumab and lapatinib modulation of HER2 tyrosine/threonine phosphorylation and cell signaling. Med Oncol 2011; 29:1486-94. [DOI: 10.1007/s12032-011-0025-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 06/30/2011] [Indexed: 01/26/2023]
|
15
|
Chow A, Arteaga CL, Wang SE. When tumor suppressor TGFβ meets the HER2 (ERBB2) oncogene. J Mammary Gland Biol Neoplasia 2011; 16:81-8. [PMID: 21590373 PMCID: PMC3398103 DOI: 10.1007/s10911-011-9206-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 12/28/2022] Open
Abstract
Despite its tumor suppressive role in normal mammary epithelial cells, TGFβ has been reported to promote the migration, invasion and survival in breast cancer cells overexpressing the HER2 (ERBB2; neu) oncogene, and to accelerate the metastasis of neu-induced mammary tumors in mice. A clearer understanding of the molecular mechanisms underlying the crosstalk between TGFβ and HER2 has started to emerge. In recent studies reviewed here, the synergistic effect of TGFβ and HER2 on tumor progression has been shown to likely be a combined result of two distinct features: (1) loss of TGFβ's tumor suppressive effect through functional alterations in the anti-mitogenic effect of Smad-mediated transcription, and (2) gain of pro-survival and pro-migratory function through HER2-dependent mechanisms. In HER2-overexpressing breast cancer, this crosstalk results in increased cancer cell proliferation, survival and invasion, accelerated metastasis in animal models, and resistance to chemotherapy and HER2-targeted therapy. Thus, the transformed cellular context imparted by constitutively active HER2 signaling, as a consequence of HER2 gene amplification or overexpression, aborts the tumor suppressive role of TGFβ and facilitated the oncogenic role of this pathway. In turn, TGFβ potentiates oncogenic HER2 signaling by inducing shedding of the ERBB ligands and clustering of HER2 with integrins. Here we discuss recent studies examining Smad-dependent and -independent mechanisms of crosstalk between TGFβ and HER2. Therefore, blockade of TGFβ:HER2 crosstalk may suppress breast cancer progression and metastasis, and enhance the efficiency of conventional therapies in patients with HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Amy Chow
- Division of Tumor Cell Biology, Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
16
|
Garrett JT, Arteaga CL. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: mechanisms and clinical implications. Cancer Biol Ther 2011; 11:793-800. [PMID: 21307659 PMCID: PMC3230295 DOI: 10.4161/cbt.11.9.15045] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 01/15/2023] Open
Abstract
The antibody trastuzumab and the tyrosine kinase inhibitor lapatinib are approved by the FDA for the treatment of HER2-overexpressing breast cancer. These anti-HER2 drugs are changing the natural history of HER2-overexpressing breast cancer. However, therapeutic resistance to trastuzumab or lapatinib, as either single-agents or in combination with chemotherapy in the metastatic setting, typically occurs within months of starting therapy. Several mechanisms of trastuzumab-resistance have been reported that include signaling from other HER receptors, signaling from receptor tyrosine kinases (RTKs) outside of the HER (ErbB) family, increased phosphatidylinositol 3-kinase signaling, and the presence of truncated forms of HER2. Mechanisms of resistance to lapatinib also point to increased phosphatidylinositol 3-kinase signaling as well as derepression/activation of compensatory survival pathways. In this review, we discuss how these models and mechanisms enhance our understanding of the clinical resistance to HER2-directed therapies.
Collapse
Affiliation(s)
- Joan T Garrett
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
17
|
The Functional Crosstalk between HER2 Tyrosine Kinase and TGF-β Signaling in Breast Cancer Malignancy. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:804236. [PMID: 21637380 PMCID: PMC3101605 DOI: 10.1155/2011/804236] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/13/2011] [Indexed: 12/04/2022]
Abstract
Accumulating evidence indicates a functional crosstalk between the HER2 (ErbB2) tyrosine kinase and the TGF-β signaling mediated by its serine/threonine kinase receptors. In HER2-overexpressing breast cancer, this crosstalk results in increased cancer cell proliferation, survival and invasion, accelerated cancer progression and metastasis in animal models, and resistance to chemotherapy and HER2-targeted therapy. The transformed cellular context with constitutively active HER2 signaling, as a consequence of HER2 gene amplification or overexpression, converts TGF-β from a tumor suppressor to a malignancy-promoting factor. TGF-β, in turn, potentiates oncogenic HER2 signaling by inducing shedding of the ErbB ligands and clustering of HER2 with integrins. In addition, TGF-β is associated with resistance to trastuzumab, an anti-HER2 therapeutic antibody. Recent mechanistic studies indicate that TGF-β and HER2 cooperate through both Smad-dependent and independent mechanisms. Blockade of HER2:TGF-β crosstalk may significantly enhance the efficiency of conventional therapies in breast cancer patients with HER2 overexpression.
Collapse
|
18
|
Wang SE, Yu Y, Criswell TL, DeBusk LM, Lin PC, Zent R, Johnson DH, Ren X, Arteaga CL. Oncogenic mutations regulate tumor microenvironment through induction of growth factors and angiogenic mediators. Oncogene 2010; 29:3335-48. [PMID: 20383197 PMCID: PMC2883631 DOI: 10.1038/onc.2010.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/04/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
Activating mutations in the tyrosine kinase domain of HER2 (ErbB2) have been identified in human cancers. Compared with wild-type HER2, mutant HER2 shows constitutively activate kinase activity and increased oncogenicity. Cells transformed by mutant HER2 are resistant to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and exhibit an attenuated response to the HER2 antibody trastuzumab. We investigated herein pathways through which mutant HER2 alters the extracellular environment, potentially leading to drug resistance and the effect of simultaneously targeting HER2 and the tumor cell microenvironment with a therapeutic intent. Expression of mutant HER2 in mammary epithelial cells activated autocrine transforming growth factor (TGF) beta1 signaling through a mechanism involving Rac1 and c-Jun N-terminal kinase-activating protein 1-dependent transcription. Cells transformed by an activating mutant of H-Ras (G12V) also expressed higher TGF-beta1 level through Rac1 activation. In addition, mutant HER2 induced the EGFR ligands TGF-alpha and amphiregulin at the mRNA and protein levels. Vascular endothelial growth factor, a target of the TGF-beta-Smad transcriptional regulation, was also induced as a result of expression of mutant HER2. Inhibition of TGF-beta signaling with the Alk5 small molecule inhibitor LY2109761 reduced growth and invasiveness of cells expressing mutant HER2. Combined inhibition of intracellular and paracrine effects of mutant HER2 by trastuzumab and the EGFR antibody cetuximab were more efficient than single-agent therapies. These data suggest that mutations in oncogenes such as HER2 and Ras not only alter intracellular signaling but also influence on other components of the tumor microenvironment by inducing several pro-invasive growth factors. In turn, these serve as extracellular targets of novel therapeutic strategies directed at both cancer-driving oncogenes and the modified tumor microenvironment.
Collapse
Affiliation(s)
- Shizhen Emily Wang
- Division of Tumor Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010
| | - Yang Yu
- Department of Immunology & Biotherapy, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China, 300060
| | - Tracy L. Criswell
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Laura M. DeBusk
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - P. Charles Lin
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Roy Zent
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - David H. Johnson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Xiubao Ren
- Department of Immunology & Biotherapy, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China, 300060
| | - Carlos L. Arteaga
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center; Vanderbilt University School of Medicine, Nashville, TN, 37232
| |
Collapse
|
19
|
Abe Y, Namba H, Zheng Y, Nawa H. In situ hybridization reveals developmental regulation of ErbB1-4 mRNA expression in mouse midbrain: implication of ErbB receptors for dopaminergic neurons. Neuroscience 2009; 161:95-110. [PMID: 19298847 DOI: 10.1016/j.neuroscience.2009.03.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Although epidermal growth factor (EGF) and neuregulin-1 are neurotrophic factors for mesencephalic dopaminergic neurons and implicated in schizophrenia, the cellular localization and developmental regulation of their receptors (ErbB1-4) remain to be characterized. Here we investigated the distributions of mRNA for ErbB1-4 in the midbrain of the developing mouse with in situ hybridization and immunohistochemistry. The expression of ErbB1 and ErbB2 mRNAs was relatively high at the perinatal stage and frequently colocalized with mRNA for S100beta and Olig2, markers for immature astrocytes or oligodendrocyte precursors. Modest signal for ErbB1 mRNA was also detected in a subset of dopaminergic neurons. ErbB3 mRNA was detectable at postnatal day 10, peaked at postnatal day 18, and colocalized with 2',3'-cyclic nucleotide 3'-phosphodiesterase, a marker for oligodendrocytes. In contrast, ErbB4 mRNA was exclusively localized in neurons throughout development. Almost all of ErbB4 mRNA-expressing cells (94%-96%) were positive for tyrosine hydroxylase in the substantia nigra pars compacta but 66%-78% in the ventral tegmental area and substantia nigra pars lateralis. Conversely, 92%-99% of tyrosine hydroxylase-positive cells expressed ErbB4 mRNA. The robust and restricted expression of ErbB4 mRNA in the midbrain dopaminergic neurons suggests that ErbB4 ligands, neuregulin-1 and other EGF-related molecules, contribute to development or maintenance of this neuronal population.
Collapse
Affiliation(s)
- Y Abe
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8585, Japan
| | | | | | | |
Collapse
|
20
|
Giordano C, Cui Y, Barone I, Ando S, Mancini MA, Berno V, Fuqua SAW. Growth factor-induced resistance to tamoxifen is associated with a mutation of estrogen receptor alpha and its phosphorylation at serine 305. Breast Cancer Res Treat 2009; 119:71-85. [PMID: 19205871 DOI: 10.1007/s10549-009-0334-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 01/30/2009] [Indexed: 02/06/2023]
Abstract
Estrogens play a crucial role in breast tumor growth, which is the rationale for the use of antiestrogens, such as tamoxifen, in women with estrogen receptor (ER)-alpha-positive breast cancer. However, hormone resistance is a major clinical problem. Altered growth factor signaling to the ERalpha pathway has been shown to be associated with the development of clinical resistance. We previously have identified a mutation that replaces arginine for lysine at residue 303 (K303R) of ERalpha, which confers hypersensitive growth in low levels of estrogen. To determine if the K303R mutation could participate in the evolution of hormone resistance, we generated MCF-7 breast cancer cells stably transfected with either wild-type (WT) or K303R ERalpha. We found that the mutation confers decreased sensitivity to tamoxifen in the presence of the growth factor heregulin, using anchorage-independent growth assays. K303R ERalpha-expressing cells were hypersensitive to growth factor signals. Our data suggest that phosphorylation of serine 305 within the hinge domain of ERalpha might play a key role in increasing ligand-independent activity of the mutant receptor. We hypothesize that the mutation adapts the receptor for enhanced bidirectional cross-talk with the HER2 growth factor receptor pathway, which then impacts on responsiveness to tamoxifen.
Collapse
Affiliation(s)
- Cinzia Giordano
- Department of Pharmaco-Biology, University of Calabria, Rende, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Arteaga CL, O'Neill A, Moulder SL, Pins M, Sparano JA, Sledge GW, Davidson NE. A phase I-II study of combined blockade of the ErbB receptor network with trastuzumab and gefitinib in patients with HER2 (ErbB2)-overexpressing metastatic breast cancer. Clin Cancer Res 2008; 14:6277-83. [PMID: 18829509 PMCID: PMC2925197 DOI: 10.1158/1078-0432.ccr-08-0482] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE To determine the safety, and efficacy of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib in combination with trastuzumab in patients with metastatic HER2-positive metastatic breast cancer. EXPERIMENTAL DESIGN Patients with HER2-overexpressing breast cancer were treated with trastuzumab 2 mg/kg/week and gefitinib 250 to 500 mg/day. The primary end point of the study was to increase the proportion progression-free from 50% to 65% at 6 months in chemotherapy-naive patients and from 50% to 70% at 3 months in patients previously treated with chemotherapy in the metastatic setting. RESULTS In the phase I study, all patients treated with gefitinib 500 mg/day developed grade 3 diarrhea. The phase II study was conducted using trastuzumab and gefitinib 250 mg/day. One patient achieved a complete response, 2 had a partial response, and 6 had stable disease for an overall response rate of 9% and a clinical benefit rate of 28% (9 of 32). Median time to progression (TTP) was 3 months (95% confidence interval, 2.3-4.1) in patients with no prior systemic therapy in the metastatic setting (n = 23). In patients treated with prior systemic therapy (n = 9), the median TTP of 5.3 months (95% confidence interval, 2.8-8.1). Overall median survival was 27 months. TTP was similar in EGFR-positive compared with EGFR-negative patients. CONCLUSIONS Gefitinib 250 mg/day was the maximal dose that can be safely administered with weekly trastuzumab. Interim analysis of the efficacy suggested that the combination was unlikely to result in clinical benefit compared with trastuzumab alone. These results do not support the use of this combination in patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Carlos L Arteaga
- Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA, Arteaga CL. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 2007; 13:4909-19. [PMID: 17699871 DOI: 10.1158/1078-0432.ccr-07-0701] [Citation(s) in RCA: 403] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE We have investigated mechanisms of acquired resistance to the HER2 antibody trastuzumab in BT-474 human breast cancer cells. EXPERIMENTAL DESIGN BT-474 xenografts established in athymic nude mice were eliminated by trastuzumab. Continuous cell lines (HR for Herceptin resistant) were generated from tumors that recurred in the presence of continuous antibody therapy. RESULTS The isolated cells behaved resistant to trastuzumab in culture as well as when reinjected into nude mice. They retained HER2 gene amplification and trastuzumab binding and were exquisitely sensitive to peripheral blood mononuclear cells ex vivo in the presence of the antibody. The HR cells exhibited higher levels of phosphorylated epidermal growth factor receptor (EGFR) and EGFR/HER2 heterodimers. Phosphorylation of HER2 in HR cells was inhibited by the EGFR tyrosine kinase inhibitors erlotinib and gefitinib. Gefitinib also inhibited the basal association of p85 with phosphorylated HER3 in HR cells. Both inhibitors as well as the dual EGFR/HER2 inhibitor, lapatinib, induced apoptosis of the HR cells in culture. Growth of established HR5 xenografts was inhibited by erlotinib in vivo. In addition, the HR cells overexpressed EGFR, transforming growth factor alpha, heparin-binding EGF, and heregulin RNAs compared with the parental trastuzumab-sensitive cells. CONCLUSIONS These results are consistent with the inability of trastuzumab to block the heterodimerization of HER2 and suggest that amplification of ligand-induced activation of ErbB receptors is a plausible mechanism of acquired resistance to trastuzumab that should be investigated in primary mammary cancers.
Collapse
Affiliation(s)
- Christoph A Ritter
- Institute of Pharmacology, University of Greifswald, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Panchal H, Wansbury O, Parry S, Ashworth A, Howard B. Neuregulin3 alters cell fate in the epidermis and mammary gland. BMC DEVELOPMENTAL BIOLOGY 2007; 7:105. [PMID: 17880691 PMCID: PMC2110892 DOI: 10.1186/1471-213x-7-105] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 09/19/2007] [Indexed: 01/22/2023]
Abstract
BACKGROUND The Neuregulin family of ligands and their receptors, the Erbb tyrosine kinases, have important roles in epidermal and mammary gland development as well as during carcinogenesis. Previously, we demonstrated that Neuregulin3 (Nrg3) is a specification signal for mammary placode formation in mice. Nrg3 is a growth factor, which binds and activates Erbb4, a receptor tyrosine kinase that regulates cell proliferation and differentiation. To understand the role of Neuregulin3 in epidermal morphogenesis, we have developed a transgenic mouse model that expresses Nrg3 throughout the basal layer (progenitor/stem cell compartment) of mouse epidermis and the outer root sheath of developing hair follicles. RESULTS Transgenic females formed supernumerary nipples and mammary glands along and adjacent to the mammary line providing strong evidence that Nrg3 has a role in the initiation of mammary placodes along the body axis. In addition, alterations in morphogenesis and differentiation of other epidermal appendages were observed, including the hair follicles. The transgenic epidermis is hyperplastic with excessive sebaceous differentiation and shows striking similarities to mouse models in which c-Myc is activated in the basal layer including decreased expression levels of the adhesion receptors, alpha6-integrin and beta1-integrin. CONCLUSION These results indicate that the epidermis is sensitive to Nrg3 signaling, and that this growth factor can regulate cell fate of pluripotent epidermal cell populations including that of the mammary gland. Nrg3 appears to act, in part, by inducing c-Myc, altering the proliferation and adhesion properties of the basal epidermis, and may promote exit from the stem cell compartment. The results we describe provide significant insight into how growth factors, such as Nrg3, regulate epidermal homeostasis by influencing the balance between stem cell renewal, lineage selection and differentiation.
Collapse
Affiliation(s)
- Heena Panchal
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Olivia Wansbury
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Suzanne Parry
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Beatrice Howard
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
24
|
Ben-Yosef R, Starr A, Karaush V, Loew V, Lev-Ari S, Barnea I, Lidawi G, Shtabsky A, Greif Y, Yarden Y, Vexler A. ErbB-4 may control behavior of prostate cancer cells and serve as a target for molecular therapy. Prostate 2007; 67:871-80. [PMID: 17440944 DOI: 10.1002/pros.20555] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE To assess ErbB-4 expression in advanced human prostate cancer (PC) cell lines, the role of ErbB-4 in motility, migration, and proliferative/tumorigenic potential of PC cells, and efficacy of anti-ErbB-4 monoclonal antibody (Mab) treatment on PC cells in vitro and tumor growth in vivo. MATERIALS AND METHODS Established advanced human PC cell lines (PC-3, Cl-1, and Du-145) were evaluated for ErbB-4 expression. Several Cl-1 cell line clones expressing various levels of ErbB-4 were isolated, their motility, migration capacity, and in vitro proliferation as well as survival following Mab treatment were evaluated. Tumorigenicity and proliferation capacity of these clones in vivo and efficacy of Mab treatment on tumor growth were estimated by measurements of subcutaneous tumors developed in nude mice. RESULTS PC cell lines studied express ErbB-4. Both PC-3 and Du-145 cell lines express high ErbB-4 levels; only 50% of Cl-1 cells express ErbB-4 with large heterogeneity. Cl-1 sub-clones highly expressing ErbB-4 showed increased cell motility, migration, and proliferation rate in vitro and enhanced growth in vivo, compared to clones with low ErbB-4 expression. Mab treatment inhibited the growth of cells expressing high but not low ErbB-4 levels in vitro and decreased the growth of subcutaneous tumors in nude mice generated by ErbB-4 highly expressing cells. CONCLUSIONS High expression of ErbB-4 in prostate cancer Cl-1 cell clones correlated with high proliferative and migration capacity and high tumorigenic potential. The inhibitory effect of Mab on cell proliferation and on subcutaneous tumor growth suggests ErbB-4's potential as a target for molecular anticancer therapy.
Collapse
Affiliation(s)
- Rami Ben-Yosef
- Department of Oncology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bianco R, Gelardi T, Damiano V, Ciardiello F, Tortora G. Rational bases for the development of EGFR inhibitors for cancer treatment. Int J Biochem Cell Biol 2007; 39:1416-31. [PMID: 17596994 DOI: 10.1016/j.biocel.2007.05.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 02/08/2023]
Abstract
Growth factor receptors and their ligands not only regulate normal cell processes but have been also identified as key regulators of human cancer formation. The epidermal growth factor receptor (EGFR/ErbB1/HER1) belongs to the ErbB/HER-family of tyrosine kinase receptors (RTKs). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. Several evidences suggest that cooperation of multiple ErbB receptors and ligands is required for the induction of cell transformation. In this respect, EGFR, upon activation, sustains a complex and redundant network of signal transduction pathways with the contribution of other trans-membrane receptors. EGFR has been found to be expressed and altered in a variety of malignancies and clearly it plays a significant role in tumor development and progression, including cell proliferation, regulation of apoptotic cell death, angiogenesis and metastatic spread. Moreover, amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain have been recently reported in human carcinomas. As a result, investigators have developed approaches to inhibit the effects of EGFR activation, with the aim of blocking tumor growth and invasion. A number of agents targeting EGFR, including specific antibodies directed against its ligand-binding domain and small molecules inhibiting its tyrosine kinase activity are either in clinical trials or are already approved for clinical treatment. This article reviews the EGFR role in carcinogenesis and tumor progression as rational bases for the development of specific therapeutic inhibitors.
Collapse
Affiliation(s)
- Roberto Bianco
- Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Universitá di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | | | | | | | | |
Collapse
|
26
|
Perez-Torres M, Guix M, Gonzalez A, Arteaga CL. Epidermal Growth Factor Receptor (EGFR) Antibody Down-regulates Mutant Receptors and Inhibits Tumors Expressing EGFR Mutations. J Biol Chem 2006; 281:40183-92. [PMID: 17082181 DOI: 10.1074/jbc.m607958200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activating mutations in the kinase domain of the EGF receptor have been reported in non-small cell lung cancer. The majority of tumors expressing these mutants are sensitive to ATP mimetics that inhibit the EGFR tyrosine kinase. The effect of antibodies that bind to the ectodomain of the receptor is less clear. We report herein the effects and mechanisms of action of the antibody cetuximab in lung cancer cells that naturally express receptor mutations and in ErbB-null 32D hematopoietic cells transfected with mutant EGFR. Treatment with cetuximab down-regulated EGFR levels and inhibited cell growth both in vitro and in vivo. This was associated with inhibition of ligand-independent EGFR signaling. These effects were seen in 32D cells arguing the growth inhibitory action was not because of the blockade of autocrine ligand action. Both antibody-induced EGFR down-regulation and inhibition of growth required receptor dimerization as monovalent Fab fragments only eliminated receptor levels or reduced cell proliferation in the presence of antihuman IgG. Finally, cetuximab inhibited growth of H1975 lung cancer cells and xenografts, which expressed L858R/T790M EGFR and were resistant to EGFR tyrosine kinase inhibitors. These data suggest that cetuximab is an effective therapy against mutant EGFR-expressing cancer cells and thus can be considered in combination with other anti-EGFR molecules.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/metabolism
- Antibodies, Blocking/physiology
- Antibodies, Monoclonal/physiology
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Binding Sites, Antibody/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/prevention & control
- Cell Line, Tumor
- Cell Survival/genetics
- Cell Survival/immunology
- Cetuximab
- Down-Regulation/genetics
- Down-Regulation/immunology
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Female
- Growth Inhibitors/physiology
- Humans
- Ligands
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/prevention & control
- Mice
- Mice, Nude
- Mutagenesis
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Marianela Perez-Torres
- Department of Cancer Biology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
27
|
Arteaga CL. Can trastuzumab be effective against tumors with low HER2/Neu (ErbB2) receptors? J Clin Oncol 2006; 24:3722-5. [PMID: 16847283 DOI: 10.1200/jco.2006.06.5268] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
28
|
Wang SE, Narasanna A, Perez-Torres M, Xiang B, Wu FY, Yang S, Carpenter G, Gazdar AF, Muthuswamy SK, Arteaga CL. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 2006; 10:25-38. [PMID: 16843263 DOI: 10.1016/j.ccr.2006.05.023] [Citation(s) in RCA: 370] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 05/13/2006] [Accepted: 05/31/2006] [Indexed: 12/25/2022]
Abstract
HER2/Neu gene mutations have been identified in lung cancer. Expression of a HER2 mutant containing a G776(YVMA) insertion in exon 20 was more potent than wild-type HER2 in associating with and activating signal transducers, phosphorylating EGFR, and inducing survival, invasiveness, and tumorigenicity. HER2(YVMA) transphosphorylated kinase-dead EGFR(K721R) and EGFR(WT) in the presence of EGFR tyrosine kinase inhibitors (TKIs). Knockdown of mutant HER2 in H1781 lung cancer cells increased apoptosis and restored sensitivity to EGFR TKIs. The HER2 inhibitors lapatinib, trastuzumab, and CI-1033 inhibited growth of H1781 cells and cells expressing exogenous HER2(YVMA). These data suggest that (1) HER2(YVMA) activates cellular substrates more potently than HER2(WT); and (2) cancer cells expressing this mutation remain sensitive to HER2-targeted therapies but insensitive to EGFR TKIs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/genetics
- Epidermal Growth Factor/pharmacology
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Erlotinib Hydrochloride
- Female
- Gefitinib
- Humans
- Mice
- Mice, Nude
- Models, Biological
- Morpholines/pharmacology
- Mutation/genetics
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Quinazolines/pharmacology
- RNA, Small Interfering/genetics
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Transforming Growth Factor alpha/pharmacology
- Trastuzumab
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shizhen Emily Wang
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta Rev Cancer 2006; 1766:120-39. [PMID: 16889899 DOI: 10.1016/j.bbcan.2006.06.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/08/2006] [Accepted: 06/15/2006] [Indexed: 12/22/2022]
Abstract
The epidermal growth factor receptor (ErbB1 or EGFR) has been found to be altered in a variety of human cancers. A number of agents targeting these receptors, including specific antibodies directed against the ligand-binding domain of the receptor and small molecules that inhibit kinase activity are either in clinical trials or are already approved for clinical treatment. However, identifying patients that are likely to respond to such treatments has been challenging. As a consequence, it still remains important to identify additional alterations of the tumor cell that contribute to the response to EGFR-targeted agents. While EGFR-mediated signalling pathways have been well established, there is still a rather limited understanding of how intracellular protein-protein interactions, ubiquitination, endocytosis and subsequent degradation of EGFR contribute to the determination of sensitivity to EGFR targeting agents and are emerging areas of investigation. This review primarily focuses on the basic signal transduction pathways mediated through activated membrane bound and/or endosomal EGFR and emphasizes the need to co-target additional proteins that function either upstream or downstream of EGFR to improve cancer therapy.
Collapse
Affiliation(s)
- Sinto Sebastian
- Clinical Experimental Oncology Laboratory, National Cancer Institute, Via Amendola, 209, 70126, Bari, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Gierdalski M, Sardi SP, Corfas G, Juliano SL. Endogenous neuregulin restores radial glia in a (ferret) model of cortical dysplasia. J Neurosci 2006; 25:8498-504. [PMID: 16162931 PMCID: PMC6725662 DOI: 10.1523/jneurosci.1476-05.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Radial glia are integral components of the developing neocortex. During corticogenesis, they form an important scaffold for neurons migrating into the cortical plate. Recent attention has focused on neuregulin (NRG1), acting through erbB receptors, in maintaining their morphology. We developed a model of developmental radial glial disruption by delivering an antimitotic [methylazoxy methanol (MAM)] to pregnant ferrets on embryonic day 24 (E24). We previously found that normal ferret cortex contains a soluble factor capable of realigning the disorganized radial glia back toward their normal morphology. Characterization of the reorganizing activity in normal cortex demonstrated that the probable factor mediating these responses was a 30-50 kDa protein. To test whether this endogenous soluble factor was NRG1, we used organotypic cultures of E24 MAM-treated ferret neocortex supplemented with the endogenous factor obtained from normal cortical implants, exogenous NRG1beta, antibodies that either blocked or stimulated erbB receptors, or a soluble erbB subtype that binds to available NRG1. We report that exogenous NRG1 or antibodies that stimulate erbB receptors dramatically improve the morphology of disrupted radial glia, whereas blockade of NRG1-erbB signaling prevents the radial glial repair. Our results suggest that NRG1 is an endogenous factor in ferret neocortex capable of repairing damaged radial glia and that it acts via one or more erbB receptors.
Collapse
Affiliation(s)
- Marcin Gierdalski
- Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | |
Collapse
|
31
|
Mahtouk K, Hose D, Rème T, De Vos J, Jourdan M, Moreaux J, Fiol G, Raab M, Jourdan E, Grau V, Moos M, Goldschmidt H, Baudard M, Rossi JF, Cremer FW, Klein B. Expression of EGF-family receptors and amphiregulin in multiple myeloma. Amphiregulin is a growth factor for myeloma cells. Oncogene 2005; 24:3512-24. [PMID: 15735670 PMCID: PMC2408676 DOI: 10.1038/sj.onc.1208536] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 01/10/2005] [Accepted: 01/12/2005] [Indexed: 11/09/2022]
Abstract
A hallmark of plasma cells is the expression of syndecan-1, which has major functions in epithelial cells, in particular as the coreceptor of heparin-binding growth factors. We previously found that heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a growth factor for malignant plasma cells. As amphiregulin (AREG) is another heparin-binding factor of the EGF family, we investigated its role in multiple myeloma (MM). Using Affymetrix DNA microarrays, we show here that the AREG gene was expressed by purified primary myeloma cells from 65 patients and that the expression was higher than in normal bone marrow (BM) plasma cells or plasmablastic cells. AREG stimulated IL-6 production and growth of BM stromal cells. Using real-time reverse transcriptase-polymerase chain reaction, we found that MM cells expressed ErbB receptors and that AREG promoted their growth. Furthermore, PD169540 (a pan-ErbB inhibitor) and IRESSA (an ErbB1-specific inhibitor) induced apoptosis of primary myeloma cells from 10/14 and 4/14 patients, respectively, and there was a synergistic effect with dexamethasone. Altogether, our data provide strong evidence that AREG plays an important role in the biology of MM and emphasize the advantages of using ErbB inhibitors, which might target myeloma cells as well as the tumor environment.
Collapse
Affiliation(s)
- Karène Mahtouk
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Dirk Hose
- Medizinische Klinik und Poliklinik V
Universitätsklinikum HeidelbergUniversitätsklinikum Heidelberg
INF410
69115 Heidelberg,DE
| | - Thierry Rème
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - John De Vos
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Michel Jourdan
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Jérôme Moreaux
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Geneviève Fiol
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Marc Raab
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Eric Jourdan
- Service de médecine interne B
CHU Nîmes30900 Nîmes,FR
| | - Véronique Grau
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Marion Moos
- Medizinische Klinik und Poliklinik V
Universitätsklinikum HeidelbergUniversitätsklinikum Heidelberg
INF410
69115 Heidelberg,DE
| | - Hartmut Goldschmidt
- Medizinische Klinik und Poliklinik V
Universitätsklinikum HeidelbergUniversitätsklinikum Heidelberg
INF410
69115 Heidelberg,DE
| | - Marion Baudard
- Service d'hématologie et oncologie médicale
CHRU MontpellierHôpital LapeyronieUniversité Montpellier I34000 Montpellier,FR
| | - Jean François Rossi
- Service d'hématologie et oncologie médicale
CHRU MontpellierHôpital LapeyronieUniversité Montpellier I34000 Montpellier,FR
| | - Friedrich W. Cremer
- Medizinische Klinik und Poliklinik V
Universitätsklinikum HeidelbergUniversitätsklinikum Heidelberg
INF410
69115 Heidelberg,DE
- Institut für Humangenetik
Universitätsklinikum HeidelbergINF 366, 69120
Heidelberg,DE
| | - Bernard Klein
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| |
Collapse
|
32
|
Fox IJ, Kornblum HI. Developmental profile of ErbB receptors in murine central nervous system: Implications for functional interactions. J Neurosci Res 2005; 79:584-97. [PMID: 15682390 DOI: 10.1002/jnr.20381] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ErbB family, ErbB1 (also known as the epidermal growth factor receptor EGFR), ErbB2, ErbB3, and ErbB4 comprise a group of receptor tyrosine kinases that interact with ligands from the epidermal growth factor (EGF) superfamily, subsequently dimerize, catalytically activate each other by cross-phosphorylation, and then stimulate various signaling pathways. To gain a better understanding of in vivo functions of ErbB receptors in the central nervous system, the current study examined their mRNA expression throughout development in the mouse brain via in situ hybridization. EGFR, ErbB2, and ErbB4 exhibited distinct but sometimes overlapping distributions in multiple cell types within germinal zones, cortex, striatum, and hippocampus in prenatal and postnatal development. In addition, a subpopulation of cells positive for ErbB4 mRNA in postnatal cortex and striatum coexpressed mRNA for either EGFR or GAD67, a marker for gamma-aminobutyric acid (GABA)ergic interneurons, suggesting that both ErbB4 and EGFR are coexpressed in GABAergic interneurons. In contrast, ErbB3 mRNA was not detected within the brain during development and only appeared in white matter tracts in adulthood. Together, these findings suggest that ErbB receptors might mediate multiple functions in central nervous system development, some of which may be initiated by EGFR/ErbB4 heterodimers in vivo.
Collapse
Affiliation(s)
- Irina J Fox
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
33
|
Bianchi S, Palli D, Falchetti M, Saieva C, Masala G, Mancini B, Lupi R, Noviello C, Omerovic J, Paglierani M, Vezzosi V, Alimandi M, Mariani-Costantini R, Ottini L. ErbB-receptors expression and survival in breast carcinoma: A 15-year follow-up study. J Cell Physiol 2005; 206:702-8. [PMID: 16245316 DOI: 10.1002/jcp.20535] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aberrant expression of the epidermal growth factor receptor family has been implicated in the pathogenesis and progression of breast cancer and associated with poor prognosis. To evaluate the prognostic impact of the ErbB receptors expression profile, we analyzed a well-characterized series of 145 primary breast carcinomas for the simultaneous expression of epidermal growth factor receptor (EGFR/HER-1), ErbB-2 (HER-2), ErbB-3 (HER-3), and ErbB-4 (HER-4), using immunohistochemistry. Tumors were considered negative or positive for each marker when less than or more than 25% of the cancer cells were immunopositive. Expression of EGFR, ErbB-2, ErbB-3, and ErbB-4 was observed in 31 (21.4%), 65 (44.8%), 72 (49.7%), and 81 (55.9%) of the cases, respectively. There were significant associations between EGFR expression and pT status (P = 0.01), and between ErbB-3 expression and pN (P = 0.003), menopausal (P = 0.01) and PR (P < 0.001) status. The majority of the cases co-expressed two or more receptors. ErbB-3 resulted positive in 51/81 (63.0%) of the ErbB-4 positive cases and ErbB-3/ErbB-4 co-expression was statistically significant (P = 0.0003). As expected, ErbB-2 expression was associated with reduced overall survival at 15 years of follow-up (P = 0.04), even after adjusting for a series of other prognostic factors (P = 0.05). Moreover, cumulative analysis of ErbB-2/3/4 expression showed a strong positive association between higher total ErbB-2/3/4 expression score and worse prognosis (P = 0.002). The simultaneous expression in cancer cells of more than one ErbB receptor identifies a subset of breast cancer patients at high risk for poor survival.
Collapse
Affiliation(s)
- Simonetta Bianchi
- Department of Human Pathology and Oncology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Whitson KB, Beechem JM, Beth AH, Staros JV. Preparation and characterization of Alexa Fluor 594-labeled epidermal growth factor for fluorescence resonance energy transfer studies: application to the epidermal growth factor receptor. Anal Biochem 2004; 324:227-36. [PMID: 14690686 DOI: 10.1016/j.ab.2003.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have prepared and characterized a new fluorescent derivative of murine epidermal growth factor (EGF), Alexa Fluor 594-labeled EGF (A-EGF), for fluorescence studies of EGF-EGF receptor interactions. We describe the synthesis of this derivative and its physical and biological characterization. The significant overlap between the excitation and the emission spectra of A-EGF makes this probe well suited to fluorescence resonance energy homo-transfer. Using time-resolved fluorescence to examine the oligomeric state of the EGF receptor, we have observed resonance energy homo-transfer of A-EGF bound to EGF receptors in cells, but not of A-EGF bound to EGF receptors in membrane vesicles. Our results, interpreted in the context of recent crystallographic studies of the ligand-binding domains of EGF receptors, suggest that observed fluorescence resonance energy transfer does not result from transfer within receptor dimers, but rather results from transfer within higher-order oligomers. Furthermore, our results support a structural model for oligomerization of EGF receptors in which dimers are positioned head-to-head with respect to the ligand-binding site, consistent with the head-to-head interactions observed between adjacent receptor dimers by X-ray crystallography.
Collapse
Affiliation(s)
- Kristin B Whitson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
35
|
Golding M, Ruhrberg C, Sandle J, Gullick WJ. Mapping nucleolar and spliceosome localization sequences of neuregulin1-β3. Exp Cell Res 2004; 299:110-8. [PMID: 15302578 DOI: 10.1016/j.yexcr.2004.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 05/25/2004] [Indexed: 01/09/2023]
Abstract
Mitogenic growth factors are generally cell surface associated or secreted proteins, which produce effects by binding to cell surface receptor tyrosine kinases. More recently, it has become clear that some of these proteins can accumulate in the nucleus, where they are proposed to have transcriptional activity. We show here that neuregulin1 (NRG1-beta), an EGF-like growth factor, localizes to the cell nuclei of a human breast cancer. We also show that a nonsecreted isoform of this family of ligands, neuregulin1-beta3, localizes to two distinct compartments within the nucleus, nucleoli, and SC35-positive speckles. Importantly, localization of NRG-beta3 to either structure is receptor-independent, as it occurs in cells lacking its cognate receptors, erbB-3 and erbB-4, and is unaffected by removal of the receptor-binding domain. A panel of deletion mutants was used to demonstrate that the first 21 amino acids of the N-terminus are essential for nucleolar localization, while targeting to nuclear speckles requires residues 49-79 of the 241 amino acid protein. These observations support the idea that secretion and subsequent cell surface receptor binding of mitogenic growth factors are not a prerequisite for nuclear localization and that nonsecreted ligands may have highly specific functions in defined nuclear compartments.
Collapse
Affiliation(s)
- Matthew Golding
- Receptor Biology Laboratory, Imperial Cancer Research Fund Laboratories, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
36
|
Hatakeyama M, Yumoto N, Yu X, Shirouzu M, Yokoyama S, Konagaya A. Transformation potency of ErbB heterodimer signaling is determined by B-Raf kinase. Oncogene 2004; 23:5023-31. [PMID: 15064721 DOI: 10.1038/sj.onc.1207664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular transformation occurs only in cells that express both ErbB1 and ErbB4 receptors, but not in cells expressing only one or the other of these receptors. However, when both receptors are coexpressed and ligand-stimulated, they interact with virtually the same adaptor/effector proteins as when expressed singly. To reveal the underlying regulatory mechanism of the kinase/phosphatase network in ErbB homo- and heterodimer receptor signaling, extracellular signal-regulated kinase (ERK) and Akt activities were evaluated in the presence of several enzyme inhibitors in ligand-induced cells expressing ErbB1 (E1), ErbB4 (E4), and ErbB1/ErbB4 (E1/4) receptor. The PP2A inhibitor okadaic acid showed receptor-specific inhibitory profiles for ERK and Akt activities. Moreover, B-Raf isolated only from E1/4 cells could induce in vitro phosphorylation for MEK; this B-Raf kinase activity was abolished by pretreatment of the cells with okadaic acid. Our study further showed that the E1/4 cell-specific B-Raf activity was stimulated by PLC gamma and subsequent Rap1 activation. The present study suggests that B-Raf kinase, which was specifically activated in the cells coexpressing ErbB1 and ErbB4 receptors, elevates total ERK activity within the cell and, therefore, can induce cellular transformation.
Collapse
Affiliation(s)
- M Hatakeyama
- Bioinformatics Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Tovey SM, Witton CJ, Bartlett JMS, Stanton PD, Reeves JR, Cooke TG. Outcome and human epidermal growth factor receptor (HER) 1-4 status in invasive breast carcinomas with proliferation indices evaluated by bromodeoxyuridine labelling. Breast Cancer Res 2004; 6:R246-51. [PMID: 15084248 PMCID: PMC400680 DOI: 10.1186/bcr783] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 02/20/2004] [Accepted: 03/04/2004] [Indexed: 12/03/2022] Open
Abstract
Background We have shown previously that whereas overexpression of human epidermal growth factor receptor (HER)1, HER2 and HER3 is associated with poor prognosis in breast cancer, HER4 is associated with a good prognosis. Cell proliferation is a key component of aggressive cancers and is driven by growth factors. In this study, bromodeoxyuridine (BrdU)-derived proliferation indices are correlated with clinical outcome and HER1–4 status for further clarification of the differing roles for the HER family at a biological level. Methods Seventy-eight invasive breast cancers had BrdU labelling in vivo to determine the BrdU labelling index (BLI) and the potential tumour doubling time (Tpot). Long-term clinical follow-up was available for these patients. We used immunohistochemistry to establish the HER1–4 status in 55 patients from the BrdU cohort. Results We demonstrate a significant correlation between high BLI values and breast cancer-specific death (P = 0.0174). Low Tpot times were also significantly correlated with breast cancer-specific death (P = 0.0258). However, BLI did not independently predict survival in Cox's multiple regression analysis when combined with other prognostic factors such as size, grade and nodal status. Tumours found to be positive for HER1, HER2 or HER3 had significantly (P = 0.041) higher labelling indices, with HER1 also showing significantly higher indices when considered independently (P = 0.024). Conversely, HER4 positivity was significantly correlated (P = 0.013) with low BLI values, in line with previous data associating this receptor with good prognosis tumours. Conclusions These results support the hypothesis that HER1–3 are associated with driving tumour proliferation, whereas HER4 is involved in a non-proliferative or even protective role.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Agents, Hormonal/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Breast Neoplasms/chemistry
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/chemistry
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Cell Division
- Cohort Studies
- Combined Modality Therapy
- ErbB Receptors/analysis
- ErbB Receptors/physiology
- Female
- Follow-Up Studies
- Humans
- Life Tables
- Lymphatic Metastasis
- Mastectomy
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Proteins/analysis
- Neoplasm Proteins/physiology
- Prognosis
- Proportional Hazards Models
- Receptor, ErbB-2/analysis
- Receptor, ErbB-3/analysis
- Receptor, ErbB-4
- Survival Analysis
- Tamoxifen/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Sian M Tovey
- Endocrine Cancer Group, Division of Cancer Sciences and Molecular Biology, University Department of Surgery, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Caroline J Witton
- Endocrine Cancer Group, Division of Cancer Sciences and Molecular Biology, University Department of Surgery, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - John MS Bartlett
- Endocrine Cancer Group, Division of Cancer Sciences and Molecular Biology, University Department of Surgery, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Peter D Stanton
- Endocrine Cancer Group, Division of Cancer Sciences and Molecular Biology, University Department of Surgery, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Jonathan R Reeves
- Endocrine Cancer Group, Division of Cancer Sciences and Molecular Biology, University Department of Surgery, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Timothy G Cooke
- Endocrine Cancer Group, Division of Cancer Sciences and Molecular Biology, University Department of Surgery, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| |
Collapse
|
38
|
Hudelist G, Singer CF, Manavi M, Pischinger K, Kubista E, Czerwenka K. Co-expression of ErbB-family members in human breast cancer: Her-2/neu is the preferred dimerization candidate in nodal-positive tumors. Breast Cancer Res Treat 2004; 80:353-61. [PMID: 14503808 DOI: 10.1023/a:1024929522376] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Over-expression of members of the ErbB-receptor family has been associated with malignant transformation. The amplification of Her-2/neu in tumor tissue is now an established prognostic factor in breast cancer. In order to initiate signal transduction, ErbB-receptor monomers need to form homo- or heterodimers. The composition of these dimers is thought to influence both quality and quantity of downstream signaling pathways, and to determine the biological response. We have investigated the protein expression pattern of the four ErbB-receptors EGFR, Her-2/neu, Her-3 and Her-4, and correlated it with their putative ligands EGF, TGF-alpha and HRG in 74 women with invasive breast cancer. Using western blot-analysis on cell membrane isolates, we detected the co-expression of all four ErbB-family members in 79.7% of cases, and of all of the three investigated ligands in 82.4%. We did not observe a correlation between EGFR and Her-2/neu or Her-4 protein expression, EGFR and Her-3 (p = 0.005), and Her-3 and Her-4 (p = 0.05) were clearly co-expressed. The strongest overall correlation, was found between Her-2/neu and Her-3 (p < 0.001) and between Her-2/neu and Her-4 (p = 0.001). This was particularly true in nodal-positive tumors (p < 0.001 and p = 0.002) whereas in nodal-negative tumors the co-expression was either less significant (Her-2/neu and Her-3; p = 0.01) or not significant (Her-2/neu and Her-4). The co-expression of EGFR/Her-3 was associated with the expression of all ligands, whereas the Her-2/neu/Her-3 was correlated with HRG (p = 0.002), thereby indicating a functional relation between specific receptor-dimer combinations and putative ligands. Taken together, we have performed the first comprehensive survey of ErbB-system expression in breast cancer, and have demonstrated the presence of a co-regulated receptor/ligand system in vivo. We have further shown that Her-2/neu is the preferred co-expression partner in nodal-positive tumors and thus the most likely dimerization candidate in malignant breast tumors.
Collapse
Affiliation(s)
- G Hudelist
- Department of Obstetrics and Gynecology, Division of Special Gynecology and Ludwig Boltzmann Institute for Clinical Experimental Oncology, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The c-erbB-4 receptor has ligand stimulated tyrosine kinase activity but reports differ as to whether it induces cell division or differentiation. There is also controversy regarding its role in breast cancer, with some reports associating overexpression with short survival and others with longer life.
Collapse
Affiliation(s)
- William J Gullick
- Cancer Biology Laboratory, Research School of Biosciences, University of Kent at Canterbury, Canterbury, UK.
| |
Collapse
|
40
|
Stortelers C, van der Woning SP, Jacobs-Oomen S, Wingens M, van Zoelen EJJ. Selective formation of ErbB-2/ErbB-3 heterodimers depends on the ErbB-3 affinity of epidermal growth factor-like ligands. J Biol Chem 2003; 278:12055-63. [PMID: 12556529 DOI: 10.1074/jbc.m211948200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EGF-like growth factors activate their ErbB receptors by promoting receptor-mediated homodimerization or, alternatively, by the formation of heterodimers with the orphan ErbB-2 through an as yet unknown mechanism. To investigate the selectivity in dimer formation by ligands, we have applied the phage display approach to obtain ligands with modified C-terminal residues that discriminate between ErbB-2 and ErbB-3 as dimerization partners. We used the epidermal growth factor/transforming growth factor alpha chimera T1E as the template molecule because it binds to ErbB-3 homodimers with low affinity and to ErbB-2/ErbB-3 heterodimers with high affinity. Many phage variants were selected with enhanced binding affinity for ErbB-3 homodimers, indicating that C-terminal residues contribute to the interaction with ErbB-3. These variants were also potent ligands for ErbB-2/ErbB-3 heterodimers despite negative selection for such heterodimers. In contrast, phage variants positively selected for binding to ErbB-2/ErbB-3 heterodimers but negatively selected for binding to ErbB-3 homodimers can be considered as "second best" ErbB-3 binders, which require ErbB-2 heterodimerization for stable complex formation. Our findings imply that epidermal growth factor-like ligands bind ErbB-3 through a multi-domain interaction involving at least both linear endings of the ligand. Apparently the ErbB-3 affinity of a ligand determines whether it can form only ErbB-2/ErbB-3 complexes or also ErbB-3 homodimers. Because no separate binding domain for ErbB-2 could be identified, our data support a model in which ErbB heterodimerization occurs through a receptor-mediated mechanism and not through bivalent ligands.
Collapse
Affiliation(s)
- Catelijne Stortelers
- University of Nijmegen, Department of Cell Biology, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Michaelis UR, Fisslthaler B, Medhora M, Harder D, Fleming I, Busse R. Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). FASEB J 2003; 17:770-2. [PMID: 12586744 DOI: 10.1096/fj.02-0640fje] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenase products, such as 11,12-epoxyeicosatrienoic acid (EET), stimulate endothelial cell proliferation. We set out to identify the signal transduction cascade linking EET generation to enhanced proliferation and angiogenesis. In human endothelial cells overexpressing CYP 2C9, cell number was increased compared with control cells and was inhibited by the CYP 2C9 inhibitor, sulfaphenazole. CYP 2C9 overexpression was associated with the activation of Akt and an increase in cyclin D1 expression, effects that were abolished by the epidermal growth factor (EGF) receptor inhibitor, AG1478, which also prevented the CYP 2C9-induced increase in cell proliferation. Stimulation of EGF receptor overexpressing cells with 11,12-EET or transfection of these cells with CYP 2C9 enhanced the tyrosine phosphorylation of the EGF receptor. Endothelial tube formation in a fibrin gel was significantly enhanced (6-fold) in CYP 2C9 overexpressing cells and was comparable with the tube formation induced by EGF. In the chick chorioallantoic membrane, 11,12-EET stimulated vessel formation (3.5-fold) and induced vessel convergence, an effect that was abolished by cotreatment with either an EGF receptor-neutralizing antibody or AG1478. These results indicate that CYP 2C9-derived EETs stimulate angiogenesis by a mechanism involving the activation of the EGF receptor.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Allantois/blood supply
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Cell Division/physiology
- Cell Line
- Chick Embryo
- Chorion/blood supply
- Cyclin D1/metabolism
- Cytochrome P-450 CYP2C9
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- ErbB Receptors/physiology
- Humans
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/physiology
- Phosphorylation/drug effects
- Protein Serine-Threonine Kinases
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Quinazolines
- Receptor Cross-Talk/physiology
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- U Ruth Michaelis
- Institut für Kardiovaskuläre Physiologie, Klinikum der J.W.G.-Universität, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Kim HS, Shin HS, Kwak HJ, Cho CH, Lee CO, Koh GY. Betacellulin induces angiogenesis through activation of mitogen-activated protein kinase and phosphatidylinositol 3'-kinase in endothelial cell. FASEB J 2003; 17:318-20. [PMID: 12475887 DOI: 10.1096/fj.02-0570fje] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Betacellulin (BTC) is a member of the epidermal growth factor (EGF) family, and it acts through EGF receptors. We asked whether BTC could be an angiogenic factor. Using human umbilical vein endothelial cells (HUVECs), we examined the effect of BTC on kinases and angiogenic processes. BTC induced ERK1/2 and Akt phosphorylation in a dose- and time-dependent manner. BTC induced phosphorylation of all three EGF receptors present on HUVECs: ErbB2, ErbB3, and ErbB4. Pretreatment with effective concentrations of ErbB1 inhibitor did not suppress BTC-induced kinase phosphorylation. BTC, EGF, VEGF (all at 10 ng/ml) produced similar increases in DNA synthesis. BTC, EGF, and VEGF all significantly increased endothelial cell migration. In addition, BTC promoted survival in a dose-dependent manner, and its effect was inhibited by pretreatment with PtdIns 3'-kinase inhibitor wortmannin or MEK1/2 inhibitor PD98059. Both BTC and EGF produced similar increases in tube formation in collagen gels. BTC-induced tube formation was suppressed by PD98059, wortmannin, and LY294002. In the mouse Matrigel plug assay, BTC (100 ng/ml) promoted neovessel formation, and its effect was suppressed by a combination of wortmannin and PD98059. Taken together, these data show that BTC exerts potent angiogenic activity through activation of EGF receptors, mitogen-activated protein kinase, and PtdIns 3'-kinase/Akt in endothelial cells.
Collapse
Affiliation(s)
- Hoe Suk Kim
- National Creative Research Initiatives Center for Endothelial Cells and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Berezov A, Chen J, Liu Q, Zhang HT, Greene MI, Murali R. Disabling receptor ensembles with rationally designed interface peptidomimetics. J Biol Chem 2002; 277:28330-9. [PMID: 12011054 DOI: 10.1074/jbc.m202880200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the erbB family receptor tyrosine kinases (erbB1, erbB2, erbB3, and erbB4) are overexpressed in a variety of human cancers and represent important targets for the structure-based drug design. Homo- and heterodimerization (oligomerization) of the erbB receptors are known to be critical events for receptor signaling. To block receptor self-associations, we have designed a series of peptides derived from potential dimerization surfaces in the extracellular subdomain IV of the erbB receptors (erbB peptides). In surface plasmon resonance (BIAcore) studies, the designed peptides have been shown to selectively bind to the erbB receptor ectodomains and isolated subdomain IV of erbB2 with submicromolar affinities and to inhibit heregulin-induced interactions of erbB3 with different erbB receptors. A dose-dependent inhibition of native erbB receptor dimerization by the erbB peptides has been observed in 32D cell lines transfected with different combinations of erbB receptors. The peptides effectively inhibited growth of two types of transformed cells overexpressing different erbB receptors, T6-17 and 32D, in standard MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and cell viability assays. The study identifies distinct loops within the membrane-proximal part of the subdomain IV as potential receptor-receptor interaction sites for the erbB receptors and demonstrates the possibility of disabling receptor activity by structure-based targeting of the dimerization interfaces. Molecular models for possible arrangement of the erbB1.EGF complex, consistent with the involvement of subdomain IV in inter-receptor interactions, are proposed. Small dimerization inhibitors described herein can be useful as probes to elucidate different erbB signaling pathways and may be developed as therapeutic agents.
Collapse
Affiliation(s)
- Alan Berezov
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine and the Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
ErbB-4 is a receptor tyrosine kinase that is activated by the binding of specific growth factors to its ectodomain. In addition to the initiation of signal transduction pathways that direct cell responses, such as proliferation or differentiation, this receptor is subject to ligand-dependent trafficking events. The signal transduction events are controlled by ligand-dependent activation of the receptor tyrosine kinase activity, which results in receptor autophosphorylation and the tyrosine phosphorylation of other cellular proteins. The trafficking events include migration into and out of membrane microdomains, entry into internalization pathways and endocytosis, plus proteolytic fragmentation.
Collapse
Affiliation(s)
- W Zhou
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
45
|
Wilkinson JC, Beechem JM, Staros JV. A stopped-flow fluorescence anisotropy method for measuring hormone binding and dissociation kinetics with cell-surface receptors in living cells. J Recept Signal Transduct Res 2002; 22:357-71. [PMID: 12503627 DOI: 10.1081/rrs-120014607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have developed a system for extending stopped-flow analysis to the kinetics of ligand capture and release by cell surface receptors in living cells. While most mammalian cell lines cannot survive the shear forces associated with turbulent, stopped-flow mixing, we determined that 32D cells, murine hematopoietic precursor cells, can survive rapid mixing, even at the high flow rates necessary to achieve dwell times as short as 10 msec. In addition, 32D cells do not express any member of the ErbB family of receptors, providing a null background for studying this receptor family. We have established a series of stable, monoclonal 32D-derived cell lines that express the epidermal growth factor (EGF) receptor, ErbB2, or a combination of both at different ratios. Using these cell lines and a homogeneous fluorescent derivative of H22Y-mEGF modified with fluorescein at the amino terminus (F-EGF), we have measured association and dissociation of F-EGF with its receptor. Association was measured by following the time-dependent changes in fluorescence anisotropy after rapidly mixing cells at various cell densities with F-EGF at 1-15nM. Dissociation was measured both by chase experiments in which unlabeled EGF was mixed with cells pre-equilibrated with F-EGF or by dilution of cells equilibrated with F-EGF. Comparison of these dissociation experiments demonstrated that little or no ligand-induced dissociation occurs in the chase dissociation experiments. For each cell line, data from a series of association experiments and dilution dissociation experiments were subjected to global analysis using a two independent receptor-class model. Our analysis is consistent with the presence of two distinct receptor populations, even in cells bearing only the EGF receptor. Increasing the relative expression of ErbB2 leads to an increase in the fraction of high affinity class receptors observed, without altering the total number of EGF binding sites.
Collapse
Affiliation(s)
- John C Wilkinson
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| | | | | |
Collapse
|
46
|
Itoh T, Kondo M, Tanaka Y, Kobayashi M, Sasada R, Igarashi K, Suenaga M, Koyama N, Nishimura O, Fujino M. Novel betacellulin derivatives. Separation of the differentiation activity from the mitogenic activity. J Biol Chem 2001; 276:40698-703. [PMID: 11522793 DOI: 10.1074/jbc.m106603200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Betacellulin (BTC) is a member of the epidermal growth factor family. It has two biological activities: mitogenic activity in fibroblasts and vascular smooth muscle cells, and differentiation activity for the differentiation of pancreatic acinar AR42J cells into insulin-secreting cells. The previous finding that recombinant BTC promotes the neogenesis of beta-cells in a mouse model supports the possibility that BTC is a therapeutic protein. However, the mitogenic activity of BTC may not be needed for differentiation into beta-cells and may cause a side effect in clinical use. We prepared several derivatives of BTC to segregate the two activities, to decrease the mitogenic activity, and to maintain the differentiation activity. We succeeded in obtaining BTC derivatives segregated by the two biological activities by preparing truncated-type derivatives. A derivative of BTC, BTC24-76, with a truncated N-terminal 23 amino acids and C-terminal 4 amino acids, was 2.5-fold more active in differentiation and had one-tenth of the mitogenic activity. The derivatives described in the present study should be helpful in future applications as therapeutic proteins and in basic research for discovery of a BTC-specific receptor.
Collapse
Affiliation(s)
- T Itoh
- Pharmaceutical Research Division, Takeda Chemical Industries, Ltd., Wadai-10, Tsukuba, Ibaraki 300-4293, Japan. ,jp
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Park SK, Miller R, Krane I, Vartanian T. The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes. J Cell Biol 2001; 154:1245-58. [PMID: 11564761 PMCID: PMC2150828 DOI: 10.1083/jcb.200104025] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development of oligodendrocytes and the generation of myelin internodes within the spinal cord depends on regional signals derived from the notochord and axonally derived signals. Neuregulin 1 (NRG)-1, localized in the floor plate as well as in motor and sensory neurons, is necessary for normal oligodendrocyte development. Oligodendrocytes respond to NRGs by activating members of the erbB receptor tyrosine kinase family. Here, we show that erbB2 is not necessary for the early stages of oligodendrocyte precursor development, but is essential for proligodendroblasts to differentiate into galactosylcerebroside-positive (GalC+) oligodendrocytes. In the presence of erbB2, oligodendrocyte development is normal. In the absence of erbB2 (erbB2-/-), however, oligodendrocyte development is halted at the proligodendroblast stage with a >10-fold reduction in the number of GalC+ oligodendrocytes. ErbB2 appears to function in the transition of proligodendroblast to oligodendrocyte by transducing a terminal differentiation signal, since there is no evidence of increased oligodendrocyte death in the absence of erbB2. Furthermore, known survival signals for oligodendrocytes increase oligodendrocyte numbers in the presence of erbB2, but fail to do so in the absence of erbB2. Of the erbB2-/- oligodendrocytes that do differentiate, all fail to ensheath neurites. These data suggest that erbB2 is required for the terminal differentiation of oligodendrocytes and for development of myelin.
Collapse
Affiliation(s)
- S K Park
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
48
|
Florian JA, Dorrance A, Webb RC, Watts SW. Mineralocorticoids upregulate arterial contraction to epidermal growth factor. Am J Physiol Regul Integr Comp Physiol 2001; 281:R878-86. [PMID: 11507004 DOI: 10.1152/ajpregu.2001.281.3.r878] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present studies test the hypothesis that contraction to EGF is dependent on mineralocorticoids and/or an elevation in systolic blood pressure (SBP). Endothelium-denuded thoracic aortas from sham normotensive, N(omega)-nitro-L-arginine (L-NNA) hypertensive, Wistar-Kyoto (WKY), and spontaneously hypertensive rats (SHR) were used in isolated tissue-bath experiments. Maximal contraction to epidermal growth factor [EGF; percentage of phenylephrine (PE; 10 umol/l)-induced contraction] was greater in strips from L-NNA (32 +/- 5%) and SHR (53 +/- 8%) rats compared with sham and WKY rats (17 +/- 1 and 12 +/- 4%, respectively). Wistar-Furth rats became only mildly hypertensive when given DOCA salt (134 +/- 6 mmHg) compared with Wistar rats (176 +/- 9 mmHg), but aortas from both strains had a similarly enhanced contraction to EGF (approximately 9 times the maximal contraction of sham aorta). Furthermore, in vitro incubation of aortas from Wistar and Wistar-Furth rats with aldosterone (10 nmol/l) increased EGF-receptor mRNA expression by >50%. These data indicate that arterial contraction to EGF may occur independent of hypertension and be stimulated by mineralocorticoids.
Collapse
Affiliation(s)
- J A Florian
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | | | | | | |
Collapse
|
49
|
Sartor CI, Zhou H, Kozlowska E, Guttridge K, Kawata E, Caskey L, Harrelson J, Hynes N, Ethier S, Calvo B, Earp HS. Her4 mediates ligand-dependent antiproliferative and differentiation responses in human breast cancer cells. Mol Cell Biol 2001; 21:4265-75. [PMID: 11390655 PMCID: PMC87087 DOI: 10.1128/mcb.21.13.4265-4275.2001] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The function of the epidermal growth factor receptor (EGFR) family member HER4 remains unclear because its activating ligand, heregulin, results in either proliferation or differentiation. This variable response may stem from the range of signals generated by HER4 homodimers versus heterodimeric complexes with other EGFR family members. The ratio of homo- and heterodimeric complexes may be influenced both by a cell's EGFR family member expression profile and by the ligand or even ligand isoform used. To define the role of HER4 in mediating antiproliferative and differentiation responses, human breast cancer cell lines were screened for responses to heregulin. Only cells that expressed HER4 exhibited heregulin-dependent antiproliferative responses. In-depth studies of one line, SUM44, demonstrated that the antiproliferative and differentiation responses correlated with HER4 activation and were abolished by stable expression of a kinase-inactive HER4. HB-EGF, a HER4-specific ligand in this EGFR-negative cell line, also induced an antiproliferative response. Moreover, introduction and stable expression of HER4 in HER4-negative SUM102 cells resulted in the acquisition of a heregulin-dependent antiproliferative response, associated with increases in markers of differentiation. The role of HER2 in these heregulin-dependent responses was examined through elimination of cell surface HER2 signaling by stable expression of a single-chain anti-HER2 antibody that sequestered HER2 in the endoplasmic reticulum. In the cell lines with either endogenously (SUM44) or exogenously (SUM102) expressed HER4, elimination of HER2 did not alter HER4-dependent decreases in cell growth. These results suggest that HER4 is both necessary and sufficient to trigger an antiproliferative response in human breast cancer cells.
Collapse
Affiliation(s)
- C I Sartor
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599-7512, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Barnard J. Epidermal growth factor receptor blockade: an emerging therapeutic modality in gastroenterology. Gastroenterology 2001; 120:1872-4. [PMID: 11375969 DOI: 10.1053/gast.2001.25297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|