1
|
Cable JM, Wongwiwat W, Grabowski JC, White RE, Luftig MA. Sp140L Is a Novel Herpesvirus Restriction Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628399. [PMID: 39713285 PMCID: PMC11661405 DOI: 10.1101/2024.12.13.628399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Herpesviruses, including the oncogenic Epstein-Barr Virus (EBV), must bypass host DNA sensing mechanisms to establish infection. The first viral latency protein expressed, EBNA-LP, is essential for transformation of naïve B cells, yet its role in evading host defenses remains unclear. Using single-cell RNA sequencing of EBNA-LP-Knockout (LPKO)-infected B cells, we reveal an antiviral response landscape implicating the 'speckled proteins' as key restriction factors countered by EBNA-LP. Specifically, loss of SP100 or the primate-specific SP140L reverses the restriction of LPKO, suppresses a subset of canonically interferon-stimulated genes, and restores viral gene transcription and cellular proliferation. Notably, we also identify Sp140L as a restriction target of the herpesvirus saimiri ORF3 protein, implying a role in immunity to other DNA viruses. This study reveals Sp140L as a restriction factor that we propose links sensing and transcriptional suppression of viral DNA to an IFN-independent innate immune response, likely relevant to all nuclear DNA viruses.
Collapse
Affiliation(s)
- Jana M. Cable
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Duke Center for Virology, Durham, NC, USA
| | - Wiyada Wongwiwat
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jenna C. Grabowski
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Duke Center for Virology, Durham, NC, USA
| | - Robert E. White
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Micah A. Luftig
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Duke Center for Virology, Durham, NC, USA
| |
Collapse
|
2
|
Nakao M, Sato Y, Aizawa A, Kimura H. Mode of SUV420H2 heterochromatin localization through multiple HP1 binding motifs in the heterochromatic targeting module. Genes Cells 2024; 29:361-379. [PMID: 38403935 PMCID: PMC11163940 DOI: 10.1111/gtc.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Constitutive heterochromatin is transcriptionally repressed and densely packed chromatin, typically harboring histone H3 Lys9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1). SUV420H2, a histone H4 Lys20 methyltransferase, is recruited to heterochromatin by binding to HP1 through its Heterochromatic Targeting Module (HTM). Here, we have identified three HP1 binding motifs within the HTM. Both the full-length HTM and its N-terminal region (HTM-N), which contains the first and second motifs, stabilized HP1 on heterochromatin. The intervening region between the first and second HP1 binding motifs in HTM-N was also crucial for HP1 binding. In contrast, the C-terminal region of HTM (HTM-C), containing the third motif, destabilized HP1 on chromatin. An HTM V374D mutant, featuring a Val374 to Asp substitution in the second HP1 binding motif, localizes to heterochromatin without affecting HP1 stability. These data suggest that the second HP1 binding motif in the SUV420H2 HTM is critical for locking HP1 on H3K9me3-enriched heterochromatin. HTM V374D, tagged with a fluorescent protein, can serve as a live-cell probe to visualize HP1-bound heterochromatin.
Collapse
Affiliation(s)
- Masaru Nakao
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yuko Sato
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Arisa Aizawa
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Hiroshi Kimura
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
3
|
Casale AM, Cappucci U, Piacentini L. Unravelling HP1 functions: post-transcriptional regulation of stem cell fate. Chromosoma 2021; 130:103-111. [PMID: 34128099 PMCID: PMC8426308 DOI: 10.1007/s00412-021-00760-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Heterochromatin protein 1 (HP1) is a non-histone chromosomal protein first identified in Drosophila as a major component of constitutive heterochromatin, required for stable epigenetic gene silencing in many species including humans. Over the years, several studies have highlighted additional roles of HP1 in different cellular processes including telomere maintenance, DNA replication and repair, chromosome segregation and, surprisingly, positive regulation of gene expression. In this review, we briefly summarize past research and recent results supporting the unexpected and emerging role of HP1 in activating gene expression. In particular, we discuss the role of HP1 in post-transcriptional regulation of mRNA processing because it has proved decisive in the control of germline stem cells homeostasis in Drosophila and has certainly added a new dimension to our understanding on HP1 targeting and functions in epigenetic regulation of stem cell behaviour.
Collapse
Affiliation(s)
- Assunta Maria Casale
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| | - Ugo Cappucci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Lucia Piacentini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Collados Rodríguez M. The Fate of Speckled Protein 100 (Sp100) During Herpesviruses Infection. Front Cell Infect Microbiol 2021; 10:607526. [PMID: 33598438 PMCID: PMC7882683 DOI: 10.3389/fcimb.2020.607526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
The constitutive expression of Speckled-100 (Sp100) is known to restrict the replication of many clinically important DNA viruses. This pre-existing (intrinsic) immune defense to virus infection can be further upregulated upon interferon (IFN) stimulation as a component of the innate immune response. In humans, Sp100 is encoded by a single gene locus, which can produce alternatively spliced isoforms. The widely studied Sp100A, Sp100B, Sp100C and Sp100HMG have functions associated with the transcriptional regulation of viral and cellular chromatin, either directly through their characteristic DNA-binding domains, or indirectly through post-translational modification (PTM) and associated protein interaction networks. Sp100 isoforms are resident component proteins of promyelocytic leukemia-nuclear bodies (PML-NBs), dynamic nuclear sub-structures which regulate host immune defenses against many pathogens. In the case of human herpesviruses, multiple protein antagonists are expressed to relieve viral DNA genome transcriptional silencing imposed by PML-NB and Sp100-derived proteinaceous structures, thereby stimulating viral propagation, pathogenesis, and transmission to new hosts. This review details how different Sp100 isoforms are manipulated during herpesviruses HSV1, VZV, HCMV, EBV, and KSHV infection, identifying gaps in our current knowledge, and highlighting future areas of research.
Collapse
|
5
|
Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res 2020; 295:198280. [PMID: 33370557 DOI: 10.1016/j.virusres.2020.198280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
PML nuclear bodies are matrix-bound nuclear structures with a variety of functions in human cells. These nuclear domains are interferon regulated and play an essential role during virus infections involving accumulation of SUMO-dependent host and viral factors. PML-NBs are targeted and subsequently manipulated by adenoviral regulatory proteins, illustrating their crucial role during productive infection and virus-mediated oncogenic transformation. PML-NBs have a longstanding antiviral reputation; however, the genomes of Human Adenoviruses and initial sites of viral transcription/replication are found juxtaposed to these domains, resulting in a double-edged capacity of these nuclear multiprotein/multifunctional complexes. This enigma provides evidence that Human Adenoviruses selectively counteract antiviral responses, and simultaneously benefit from or even depend on proviral PML-NB associated components by active recruitment to PML track-like structures, that are induced during infection. Thereby, a positive microenvironment for adenoviral transcription and replication is created at these nuclear subdomains. Based on the available data, this review aims to provide a detailed overview of the current knowledge of Human Adenovirus crosstalk with nuclear PML body compartments as sites of SUMOylation processes in the host cells, evaluating the currently known principles and molecular mechanisms.
Collapse
|
6
|
Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res 2020; 48:11890-11912. [PMID: 33068409 PMCID: PMC7708061 DOI: 10.1093/nar/gkaa828] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic cells compartmentalize their internal milieu in order to achieve specific reactions in time and space. This organization in distinct compartments is essential to allow subcellular processing of regulatory signals and generate specific cellular responses. In the nucleus, genetic information is packaged in the form of chromatin, an organized and repeated nucleoprotein structure that is a source of epigenetic information. In addition, cells organize the distribution of macromolecules via various membrane-less nuclear organelles, which have gathered considerable attention in the last few years. The macromolecular multiprotein complexes known as Promyelocytic Leukemia Nuclear Bodies (PML NBs) are an archetype for nuclear membrane-less organelles. Chromatin interactions with nuclear bodies are important to regulate genome function. In this review, we will focus on the dynamic interplay between PML NBs and chromatin. We report how the structure and formation of PML NBs, which may involve phase separation mechanisms, might impact their functions in the regulation of chromatin dynamics. In particular, we will discuss how PML NBs participate in the chromatinization of viral genomes, as well as in the control of specific cellular chromatin assembly pathways which govern physiological mechanisms such as senescence or telomere maintenance.
Collapse
Affiliation(s)
- Armelle Corpet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Constance Kleijwegt
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Simon Roubille
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Franceline Juillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Karine Jacquet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Pascale Texier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| |
Collapse
|
7
|
Viral DNA Binding Protein SUMOylation Promotes PML Nuclear Body Localization Next to Viral Replication Centers. mBio 2020; 11:mBio.00049-20. [PMID: 32184235 PMCID: PMC7078464 DOI: 10.1128/mbio.00049-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human adenoviruses (HAdVs) have developed mechanisms to manipulate cellular antiviral measures to ensure proper DNA replication, with detailed processes far from being understood. Host cells repress incoming viral genomes through a network of transcriptional regulators that normally control cellular homeostasis. The nuclear domains involved are promyelocytic leukemia protein nuclear bodies (PML-NBs), interferon-inducible, dot-like nuclear structures and hot spots of SUMO posttranslational modification (PTM). In HAdV-infected cells, such SUMO factories are found in close proximity to newly established viral replication centers (RCs) marked by the adenoviral DNA binding protein (DBP) E2A. Here, we show that E2A is a novel target of host SUMOylation, leading to PTMs supporting E2A function in promoting productive infection. Our data show that SUMOylated E2A interacts with PML. Decreasing SUMO-E2A protein levels by generating HAdV variants mutated in the three main SUMO conjugation motifs (SCMs) led to lower numbers of viral RCs and PML-NBs, and these two structures were no longer next to each other. Our data further indicate that SUMOylated E2A binds the host transcription factor Sp100A, promoting HAdV gene expression, and represents the molecular bridge between PML tracks and adjacent viral RCs. Consequently, E2A SCM mutations repressed late viral gene expression and progeny production. These data highlight a novel mechanism used by the virus to benefit from host antiviral responses by exploiting the cellular SUMO conjugation machinery.IMPORTANCE PML nuclear bodies (PML-NBs) are implicated in general antiviral defense based on recruiting host restriction factors; however, it is not understood so far why viruses would establish viral replication centers (RCs) juxtaposed to such "antiviral" compartments. To understand this enigma, we investigate the cross talk between PML-NB components and viral RCs to find the missing link connecting both compartments to promote efficient viral replication and gene expression. Taken together, the current concept is more intricate than originally believed, since viruses apparently take advantage of several specific PML-NB-associated proteins to promote productive infection. Simultaneously, they efficiently inhibit antiviral measures to maintain the viral infectious program. Our data provide evidence that SUMOylation of the viral RC marker protein E2A represents the basis of this virus-host interface and regulates various downstream events to support HAdV productive infection. These results are the basis of our current attempts to generate and screen for specific E2A SUMOylation inhibitors to constitute novel therapeutic approaches to limit and prevent HAdV-mediated diseases and mortality of immunosuppressed patients.
Collapse
|
8
|
Wang L, Gao Y, Zheng X, Liu C, Dong S, Li R, Zhang G, Wei Y, Qu H, Li Y, Allis CD, Li G, Li H, Li P. Histone Modifications Regulate Chromatin Compartmentalization by Contributing to a Phase Separation Mechanism. Mol Cell 2019; 76:646-659.e6. [PMID: 31543422 DOI: 10.1016/j.molcel.2019.08.019] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023]
Abstract
Eukaryotic chromosomes contain compartments of various functions, which are marked by and enriched with specific histone modifications. However, the molecular mechanisms by which these histone marks function in chromosome compartmentalization are poorly understood. Constitutive heterochromatin is a largely silent chromosome compartment characterized in part by H3K9me2 and 3. Here, we show that heterochromatin protein 1 (HP1), an H3K9me2 and 3 "reader," interacts with SUV39H1, an H3K9me2 and 3 "writer," and with TRIM28, an abundant HP1 scaffolding protein, to form complexes with increased multivalent engagement of H3K9me2 and 3-modified chromatin. H3K9me2 and 3-marked nucleosomal arrays and associated complexes undergo phase separation to form macromolecule-enriched liquid droplets. The droplets are reminiscent of heterochromatin as they are highly dense chromatin-containing structures that are resistant to DNase and exclude the general transcription factor TFIIB. Our data suggest a general mechanism by which histone marks regulate chromosome compartmentalization by promoting phase separation.
Collapse
Affiliation(s)
- Liang Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yifei Gao
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangdong Zheng
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuangshuang Dong
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ru Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanwei Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixuan Wei
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongyuan Qu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhan Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, NY 10065, USA
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
9
|
Ashley CL, Glass MS, Abendroth A, McSharry BP, Slobedman B. Nuclear domain 10 components upregulated via interferon during human cytomegalovirus infection potently regulate viral infection. J Gen Virol 2017; 98:1795-1805. [PMID: 28745271 DOI: 10.1099/jgv.0.000858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that causes life-threatening disease in immunocompromised and immunonaïve individuals. Type I interferons (IFNs) are crucial molecules in the innate immune response to HCMV and are also known to upregulate several components of the interchromosomal multiprotein aggregates collectively referred to as nuclear domain 10 (ND10). In the context of herpesvirus infection, ND10 components are known to restrict gene expression. This raises the question as to whether key ND10 components (PML, Sp100 and hDaxx) act as anti-viral IFN-stimulated genes (ISGs) during HCMV infection. In this study, analysis of ND10 component transcription during HCMV infection demonstrated that PML and Sp100 were significantly upregulated whilst hDaxx expression remained unchanged. In cells engineered to block the production of, or response to, type I IFNs, upregulation of PML and Sp100 was not detected during HCMV infection. Furthermore, pre-treatment with an IFN-β neutralizing antibody inhibited upregulation of PML and Sp100 during both infection and treatment with HCMV-infected cell supernatant. The significance of ND10 components functioning as anti-viral ISGs during HCMV infection was determined through knockdown of PML, Sp100 and hDaxx. ND10 knockdown cells were significantly more permissive to HCMV infection, as previously described but, in contrast to control cells, could support HCMV plaque formation following IFN-β pre-treatment. This ability of HCMV to overcome the potently anti-viral effects of IFN-β in ND10 expression deficient cells provides evidence that ND10 component upregulation is a key mediator of the anti-viral activity of IFN-β.
Collapse
Affiliation(s)
- Caroline L Ashley
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Mandy S Glass
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Garscube Campus, Glasgow, Scotland, UK
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, High Street, Paisley, Scotland, UK
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Brian P McSharry
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
10
|
Monte E, Rosa-Garrido M, Karbassi E, Chen H, Lopez R, Rau CD, Wang J, Nelson SF, Wu Y, Stefani E, Lusis AJ, Wang Y, Kurdistani SK, Franklin S, Vondriska TM. Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf: IMPLICATIONS FOR TRANSCRIPTIONAL REGULATION. J Biol Chem 2016; 291:15428-46. [PMID: 27226577 DOI: 10.1074/jbc.m116.719633] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 02/05/2023] Open
Abstract
Transcriptome remodeling in heart disease occurs through the coordinated actions of transcription factors, histone modifications, and other chromatin features at pathology-associated genes. The extent to which genome-wide chromatin reorganization also contributes to the resultant changes in gene expression remains unknown. We examined the roles of two chromatin structural proteins, Ctcf (CCCTC-binding factor) and Hmgb2 (high mobility group protein B2), in regulating pathologic transcription and chromatin remodeling. Our data demonstrate a reciprocal relationship between Hmgb2 and Ctcf in controlling aspects of chromatin structure and gene expression. Both proteins regulate each others' expression as well as transcription in cardiac myocytes; however, only Hmgb2 does so in a manner that involves global reprogramming of chromatin accessibility. We demonstrate that the actions of Hmgb2 on local chromatin accessibility are conserved across genomic loci, whereas the effects on transcription are loci-dependent and emerge in concert with histone modification and other chromatin features. Finally, although both proteins share gene targets, Hmgb2 and Ctcf, neither binds these genes simultaneously nor do they physically colocalize in myocyte nuclei. Our study uncovers a previously unknown relationship between these two ubiquitous chromatin proteins and provides a mechanistic explanation for how Hmgb2 regulates gene expression and cellular phenotype. Furthermore, we provide direct evidence for structural remodeling of chromatin on a genome-wide scale in the setting of cardiac disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Wu
- From the Departments of Anesthesiology
| | | | - Aldons J Lusis
- Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, and
| | - Yibin Wang
- From the Departments of Anesthesiology, Medicine, Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| | | | - Sarah Franklin
- the Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112
| | - Thomas M Vondriska
- From the Departments of Anesthesiology, Medicine, Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| |
Collapse
|
11
|
Abstract
According to the standard model of G protein-coupled receptor (GPCR) signaling, GPCRs are localized to the cell membrane where they respond to extracellular signals. Stimulation of GPCRs leads to the activation of heterotrimeric G proteins and their intracellular signaling pathways. However, this model fails to accommodate GPCRs, G proteins, and their downstream effectors that are found on the nuclear membrane or in the nucleus. Evidence from isolated nuclei indicates the presence of GPCRs on the nuclear membrane that can activate similar G protein-dependent signaling pathways in the nucleus as at the cell surface. These pathways also include activation of cyclic adenosine monophosphate, calcium and nitric oxide synthase signaling in cardiomyocytes. In addition, a number of distinct heterotrimeric and monomeric G proteins have been found in the nucleus of various cell types. This review will focus on understanding the function of nuclear G proteins with a focus on cardiac signaling where applicable.
Collapse
|
12
|
SP140L, an Evolutionarily Recent Member of the SP100 Family, Is an Autoantigen in Primary Biliary Cirrhosis. J Immunol Res 2015; 2015:526518. [PMID: 26347895 PMCID: PMC4548144 DOI: 10.1155/2015/526518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
Abstract
The SP100 family members comprise a set of closely related genes on chromosome 2q37.1. The widely expressed SP100 and the leukocyte-specific proteins SP110 and SP140 have been associated with transcriptional regulation and various human diseases. Here, we have characterized the SP100 family member SP140L. The genome sequence analysis showed the formation of SP140L gene through rearrangements of the two neighboring genes, SP100 and SP140, during the evolution of higher primates. The SP140L expression is interferon-inducible with high transcript levels in B cells and other peripheral blood mononuclear cells. Subcellularly, SP140L colocalizes with SP100 and SP140 in nuclear structures that are devoid of SP110, PML, or p300 proteins. Similarly to SP100 and SP140 protein, we detected serum autoantibodies to SP140L in patients with primary biliary cirrhosis using luciferase immunoprecipitation system and immunoblotting assays. In conclusion, our results show that SP140L is phylogenetically recent member of SP100 proteins and acts as an autoantigen in primary biliary cirrhosis patients.
Collapse
|
13
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
14
|
Berscheminski J, Wimmer P, Brun J, Ip WH, Groitl P, Horlacher T, Jaffray E, Hay RT, Dobner T, Schreiner S. Sp100 isoform-specific regulation of human adenovirus 5 gene expression. J Virol 2014; 88:6076-92. [PMID: 24623443 PMCID: PMC4093896 DOI: 10.1128/jvi.00469-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/10/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Promyelocytic leukemia nuclear bodies (PML-NBs) are nuclear structures that accumulate intrinsic host factors to restrict viral infections. To ensure viral replication, these must be limited by expression of viral early regulatory proteins that functionally inhibit PML-NB-associated antiviral effects. To benefit from the activating capabilities of Sp100A and simultaneously limit repression by Sp100B, -C, and -HMG, adenoviruses (Ads) employ several features to selectively and individually target these isoforms. Ads induce relocalization of Sp100B, -C, and -HMG from PML-NBs prior to association with viral replication centers. In contrast, Sp100A is kept at the PML tracks that surround the newly formed viral replication centers as designated sites of active transcription. We concluded that the host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression. Ad-dependent loss of Sp100 SUMOylation is another crucial part of the virus repertoire to counteract intrinsic immunity by circumventing Sp100 association with HP1, therefore limiting chromatin condensation. We provide evidence that Ad selectively counteracts antiviral responses and, at the same time, benefits from PML-NB-associated components which support viral gene expression by actively recruiting them to PML track-like structures. Our findings provide insights into novel strategies for manipulating transcriptional regulation to either inactivate or amplify viral gene expression. IMPORTANCE We describe an adenoviral evasion strategy that involves isoform-specific and active manipulation of the PML-associated restriction factor Sp100. Recently, we reported that the adenoviral transactivator E1A targets PML-II to efficiently activate viral transcription. In contrast, the PML-associated proteins Daxx and ATRX are inhibited by early viral factors. We show that this concept is more intricate and significant than originally believed, since adenoviruses apparently take advantage of specific PML-NB-associated proteins and simultaneously inhibit antiviral measures to maintain the viral infectious program. Specifically, we observed Ad-induced relocalization of the Sp100 isoforms B, C, and HMG from PML-NBs juxtaposed with viral replication centers. In contrast, Sp100A is retained at Ad-induced PML tracks that surround the newly formed viral replication centers, acting as designated sites of active transcription. The host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression.
Collapse
Affiliation(s)
- Julia Berscheminski
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Wimmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Juliane Brun
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tim Horlacher
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ellis Jaffray
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ron T. Hay
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
15
|
Khaiboullina SF, Morzunov SP, Boichuk SV, Palotás A, St Jeor S, Lombardi VC, Rizvanov AA. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors. Virology 2013; 443:338-48. [PMID: 23830076 DOI: 10.1016/j.virol.2013.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirus triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.
Collapse
|
16
|
Rowell JP, Simpson KL, Stott K, Watson M, Thomas JO. HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Structure 2012; 20:2014-24. [PMID: 23063560 DOI: 10.1016/j.str.2012.09.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 09/07/2012] [Indexed: 01/13/2023]
Abstract
Facilitated binding of p53 to DNA by high mobility group B1 (HMGB1) may involve interaction between the N-terminal region of p53 and the high mobility group (HMG) boxes, as well as HMG-induced bending of the DNA. Intramolecular shielding of the boxes by the HMGB1 acidic tail results in an unstable complex with p53 until the tail is truncated to half its length, at which point the A box, proposed to be the preferred binding site for p53(1-93), is exposed, leaving the B box to bind and bend DNA. The A box interacts with residues 38-61 (TAD2) of the p53 transactivation domain. Residues 19-26 (TAD1) bind weakly, but only in the context of p53(1-93) and not as a free TAD1 peptide. We have solved the structure of the A-box/p53(1-93) complex by nuclear magnetic resonance spectroscopy. The incipient amphipathic helix in TAD2 recognizes the concave DNA-binding face of the A box and may be acting as a single-stranded DNA mimic.
Collapse
Affiliation(s)
- John P Rowell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
17
|
Ribeiro FS, de Abreu da Silva IC, Carneiro VC, Belgrano FDS, Mohana-Borges R, de Andrade Rosa I, Benchimol M, Souza NRQ, Mesquita RD, Sorgine MHF, Gazos-Lopes F, Vicentino ARR, Wu W, de Moraes Maciel R, da Silva-Neto MAC, Fantappié MR. The dengue vector Aedes aegypti contains a functional high mobility group box 1 (HMGB1) protein with a unique regulatory C-terminus. PLoS One 2012; 7:e40192. [PMID: 22802955 PMCID: PMC3388995 DOI: 10.1371/journal.pone.0040192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/02/2012] [Indexed: 12/20/2022] Open
Abstract
The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB) proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1). The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich) C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus.
Collapse
Affiliation(s)
- Fabio Schneider Ribeiro
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isabel Caetano de Abreu da Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Vitor Coutinho Carneiro
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ivone de Andrade Rosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Universidade Santa Úrsula, Rio de Janeiro, Brasil
| | | | - Nathalia Rocha Quintino Souza
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcos Henrique Ferreira Sorgine
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Felipe Gazos-Lopes
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amanda Roberta Revoredo Vicentino
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Wenjie Wu
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Renata de Moraes Maciel
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mario Alberto Cardoso da Silva-Neto
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo Rosado Fantappié
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
18
|
Abstract
The sperm/oocyte decision in the hermaphrodite germline of Caenorhabditis elegans provides a powerful model for the characterization of stem cell fate specification and differentiation. The germline sex determination program that governs gamete fate has been well studied, but direct mediators of cell-type-specific transcription are largely unknown. We report the identification of spe-44 as a critical regulator of sperm gene expression. Deletion of spe-44 causes sperm-specific defects in cytokinesis, cell cycle progression, and organelle assembly resulting in sterility. Expression of spe-44 correlates precisely with spermatogenesis and is regulated by the germline sex determination pathway. spe-44 is required for the appropriate expression of several hundred sperm-enriched genes. The SPE-44 protein is restricted to the sperm-producing germline, where it localizes to the autosomes (which contain sperm genes) but is excluded from the transcriptionally silent X chromosome (which does not). The orthologous gene in other Caenorhabditis species is similarly expressed in a sex-biased manner, and the protein likewise exhibits autosome-specific localization in developing sperm, strongly suggestive of an evolutionarily conserved role in sperm gene expression. Our analysis represents the first identification of a transcriptional regulator whose primary function is the control of gamete-type-specific transcription in this system. Stem cells give rise to the variety of specialized cell types within an organism. The decision to adopt a particular cell fate, a process known as specification or determination, requires the coordinated expression of all of the genes needed for that specialized cell to develop and function properly. Understanding the mechanisms that govern these patterns of gene expression is critical to our understanding of stem cell fate specification. We study this process in a nematode species that makes both sperm and eggs from the same stem cell population. We have identified a gene, named spe-44, that is required for the proper expression of sperm genes (but not egg genes). Mutation in spe-44 produces sterile sperm with developmental defects. spe-44 is controlled by factors that govern the sperm/egg decision, and its function in controlling sperm gene expression appears to be conserved in other nematode species.
Collapse
|
19
|
Wang R, Li KM, Zhou CH, Xue JL, Ji CN, Chen JZ. Cdc20 mediates D-box-dependent degradation of Sp100. Biochem Biophys Res Commun 2011; 415:702-6. [PMID: 22086178 DOI: 10.1016/j.bbrc.2011.10.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 10/29/2011] [Indexed: 11/23/2022]
Abstract
Cdc20 is a co-activator of the anaphase-promoting complex/cyclosome (APC/C complex), which recruits substrates at particular phases of the cell cycle and mediates their degradation. Sp100 is a PML-NB scaffold protein, which localizes to nuclear particles during interphase and disperses from them during mitosis, participates in viral resistance, transcriptional regulation, and apoptosis. However, its metabolism during the cell cycle has not yet been fully characterized. We found a putative D-box in Sp100 using the Eukaryotic Linear Motif (ELM) predictor database. The putative D-box of Sp100 was verified by mutational analysis. Overexpression of Cdc20 resulted in decreased levels of both endogenous Sp100 protein and overexpressed Sp100 mRNA in HEK 293 cells. Only an overexpressed D-box deletion mutant of Sp100 accumulated in HEK293 cells that also overexpressed Cdc20. Cdc20 knockdown by cdc20 specific siRNA resulted in increased Sp100 protein levels in cells. Furthermore, we discovered that the Cdc20 mediated degradation of Sp100 is diminished by the proteasome inhibitor MG132, which suggests that the ubiquitination pathway is involved in this process. However, unlike the other Cdc20 substrates, which display oscillating protein levels, the level of Sp100 protein remains constant throughout the cell cycle. Additionally, both overexpression and knockdown of endogenous Sp100 had no effect on the cell cycle. Our results suggested that sp100 is a novel substrate of Cdc20 and it is degraded by the ubiquitination pathway. The intact D-box of Sp100 was necessary for this process. These findings expand our knowledge of both Sp100 and Cdc20 as well as their role in ubiquitination.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
20
|
Decreased proliferation kinetics of mouse myoblasts overexpressing FRG1. PLoS One 2011; 6:e19780. [PMID: 21603621 PMCID: PMC3095625 DOI: 10.1371/journal.pone.0019780] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/04/2011] [Indexed: 11/24/2022] Open
Abstract
Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD.
Collapse
|
21
|
Negorev DG, Vladimirova OV, Kossenkov AV, Nikonova EV, Demarest RM, Capobianco AJ, Showe MK, Rauscher FJ, Showe LC, Maul GG. Sp100 as a potent tumor suppressor: accelerated senescence and rapid malignant transformation of human fibroblasts through modulation of an embryonic stem cell program. Cancer Res 2010; 70:9991-10001. [PMID: 21118961 PMCID: PMC3059726 DOI: 10.1158/0008-5472.can-10-1483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identifying the functions of proteins, which associate with specific subnuclear structures, is critical to understanding eukaryotic nuclear dynamics. Sp100 is a prototypical protein of ND10/PML nuclear bodies, which colocalizes with Daxx and the proto-oncogenic PML. Sp100 isoforms contain SAND, PHD, Bromo, and HMG domains and are highly sumoylated, all characteristics suggestive of a role in chromatin-mediated gene regulation. A role for Sp100 in oncogenesis has not been defined previously. Using selective Sp100 isoform-knockdown approaches, we show that normal human diploid fibroblasts with reduced Sp100 levels rapidly senesce. Subsequently, small rapidly dividing Sp100 minus cells emerge from the senescing fibroblasts and are found to be highly tumorigenic in nude mice. The derivation of these tumorigenic cells from the parental fibroblasts is confirmed by microsatellite analysis. The small rapidly dividing Sp100 minus cells now also lack ND10/PML bodies, and exhibit genomic instability and p53 cytoplasmic sequestration. They have also activated MYC, RAS, and TERT pathways and express mesenchymal to epithelial transdifferentiation (MET) markers. Reintroduction of expression of only the Sp100A isoform is sufficient to maintain senescence and to inhibit emergence of the highly tumorigenic cells. Global transcriptome studies, quantitative PCR, and protein studies, as well as immunolocalization studies during the course of the transformation, reveal that a transient expression of stem cell markers precedes the malignant transformation. These results identify a role for Sp100 as a tumor suppressor in addition to its role in maintaining ND10/PML bodies and in the epigenetic regulation of gene expression.
Collapse
MESH Headings
- Animals
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Autoantigens/genetics
- Autoantigens/metabolism
- Blotting, Western
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Cellular Senescence/genetics
- Embryonic Stem Cells/metabolism
- Epithelial-Mesenchymal Transition/genetics
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Profiling
- HEK293 Cells
- Humans
- Male
- Mice
- Mice, Nude
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Nuclear Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Promyelocytic Leukemia Protein
- Proto-Oncogene Proteins c-myc/metabolism
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/metabolism
- Transplantation, Heterologous
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- ras Proteins/metabolism
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael K. Showe
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104
| | | | - Louise C. Showe
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104
| | - Gerd G. Maul
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104
| |
Collapse
|
22
|
Khan M. Interplay of protein misfolding pathway and unfolded-protein response in acute promyelocytic leukemia. Expert Rev Proteomics 2010; 7:591-600. [PMID: 20653512 DOI: 10.1586/epr.10.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein misfolding has traditionally been linked to the pathogenesis of various neurodegenerative diseases. However, emerging evidence from various laboratories, including ours, suggests that protein misfolding may also play a fundamental role in some malignancies, particularly those caused by fusion oncoprotein generated from chromosomal translocation. Promyelocytic leukemia (PML) fused to the retinoic acid receptor (RAR) is a fusion oncoprotein linked to the transformation of acute promyelocytic leukemia (APL), and is not only a misfolded protein itself, but also promotes misfolding of nuclear receptor corepressor (N-CoR) protein, a corepressor essential for the growth-suppressive function of several tumor-suppressor proteins. PML-RAR promotes misfolding of N-CoR by inducing aberrant post-translational modification, which destabilizes its core and promotes instability. Misfolded N-CoR, thus, contributes to differentiation arrest and survival of APL cells through loss-of-function and aberrant gain-of-function properties. Therapeutic restoration of N-CoR conformation and function with conformation-modifying agents not only releases this differentiation arrest but also sensitizes APL cells to programmed cell death. These findings illustrate the potential of the misfolded N-CoR protein as a conformation-based drugable molecular target for APL, and highlights the promise of various conformation-modifying agents as novel therapeutics for APL. Protein conformational rearrangement, resulting from an inherited or acquired genetic alteration, could be a common pathological phenomenon contributing to transformation in different types of leukemias and solid tumors and, therefore, could serve as a common ground for designing a unifying diagnostic as well as therapeutic approach for a widely diverse disease such as cancer. To that end, APL could serve as a model for the development of a novel conformation-based therapeutic approach for other malignant diseases.
Collapse
Affiliation(s)
- Matiullah Khan
- Cancer Science Institute of Singapore (CSI) and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Center for Life Sciences, Block MD11, Singapore.
| |
Collapse
|
23
|
The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 2010; 11:1005-13. [PMID: 20871604 PMCID: PMC2958248 DOI: 10.1038/ni.1941] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/27/2010] [Indexed: 12/27/2022]
Abstract
Viral infection triggers innate immune sensors to produce type I interferons (IFN). However, HIV infection of T cells and macrophages does not trip these alarms. How HIV avoids activating nucleic acid sensors is unknown. The cytosolic exonuclease TREX1 suppressed IFN triggered by HIV. In Trex1−/− mouse cells and human CD4+ T cells and macrophages in which TREX1 was inhibited by RNA interference, cytosolic HIV DNA accumulated, and HIV infection induced type I IFN that inhibited HIV replication and spreading. TREX1 bound to cytosolic HIV DNA and digested excess HIV DNA that would otherwise activate IFN expression via a TBK1, STING and IRF3 dependent pathway. HIV-stimulated IFN production in cells deficient in TREX1 did not involve known nucleic acid sensors.
Collapse
|
24
|
Lavigne M, Eskeland R, Azebi S, Saint-André V, Jang SM, Batsché E, Fan HY, Kingston RE, Imhof A, Muchardt C. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet 2009; 5:e1000769. [PMID: 20011120 PMCID: PMC2782133 DOI: 10.1371/journal.pgen.1000769] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/12/2009] [Indexed: 01/06/2023] Open
Abstract
The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling. HP1 proteins are transcriptional regulators frequently associated with gene silencing, a phenomenon involving masking of promoter DNA by dense chromatin. Owing to their chromo-domain, these proteins can read and bind an epigenetic mark that on many non-expressed genes is present on histone H3 at the surface of the nucleosome (the fundamental packing unit of chromatin). However, the binding to this mark does not explain the repressing activity of HP1 proteins. Here, we show that these proteins can establish a second contact with histone H3, independently of the epigenetic mark. This second contact site is located inside the nucleosome, in a position likely to be inaccessible. Interestingly, this site is also contacted by a subunit of the SWI/SNF complex and this contact is required for the ATP-dependent chromatin remodeling catalyzed by SWI/SNF. We provide evidence suggesting that HP1 proteins use the SWI/SNF chromatin remodeling to gain access to the contact site inside the nucleosome and to prevent further remodeling by competing with SWI/SNF for binding at this position. These observations lead us to suggest that HP1 proteins function as gatekeepers on promoters, detecting and stopping unwanted exposure of internal nucleosomal sites.
Collapse
Affiliation(s)
- Marc Lavigne
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Ragnhild Eskeland
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Saliha Azebi
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Violaine Saint-André
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Suk Min Jang
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Eric Batsché
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Hua-Ying Fan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Axel Imhof
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Christian Muchardt
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
- * E-mail:
| |
Collapse
|
25
|
Tavalai N, Stamminger T. Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies. Viruses 2009; 1:1240-64. [PMID: 21994592 PMCID: PMC3185544 DOI: 10.3390/v1031240] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 12/17/2022] Open
Abstract
In recent studies we and others have identified the cellular proteins PML, hDaxx, and Sp100, which form a subnuclear structure known as nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs), as host restriction factors that counteract herpesviral infections by inhibiting viral replication at different stages. The antiviral function of ND10, however, is antagonized by viral regulatory proteins (e.g., ICP0 of herpes simplex virus; IE1 of human cytomegalovirus) which induce either a modification or disruption of ND10. This review will summarize the current knowledge on how viral replication is inhibited by ND10 proteins. Furthermore, herpesviral strategies to defeat this host defense mechanism are discussed.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| |
Collapse
|
26
|
Epigenetic modulation of gene expression from quiescent herpes simplex virus genomes. J Virol 2009; 83:8514-24. [PMID: 19535445 DOI: 10.1128/jvi.00785-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ability of herpes simplex virus to persist in cells depends on the extent of viral-gene expression, which may be controlled by epigenetic mechanisms. We used quiescent infection with the viral mutants d109 and d106 to explore the effects of cell type and the presence of the viral protein ICP0 on the expression and chromatin structure of the human cytomegalovirus (HCMV) tk and gC promoters on the viral genome. Expression from the HCMV promoter on the d109 genome decreased with time and was considerably less in HEL cells than in Vero cells. Expression from the HCMV promoter in d106 was considerably more abundant than in d109, and this increased with time in both cell types. The same pattern of expression was seen on the tk and gC genes on the viral genomes, although the levels of tk and gC RNA were approximately 10(2)- and 10(5)-fold lower than those of wild-type virus in d106 and d109, respectively. In micrococcal-nuclease digestion experiments, nucleosomes were evident on the d109 genome, and the amount of total H3 as determined by chromatin immunoprecipitation was considerably greater on d109 than d106 genomes. The acetylation of histone H3 on the d106 genomes was evident at early and late times postinfection in Vero cells, but only at late times in HEL cells. The same pattern was observed for H3 acetylated on lysine 9. Trimethylation of H3K9 on d109 genomes was evident only at late times postinfection in Vero cells, while it was observed both early and late in HEL cells. Heterochromatin protein 1gamma (HP1gamma) was generally present only on d109 genomes at late times postinfection of HEL cells. The observations of chromatin structure correlate with the expression patterns of the three analyzed genes on the quiescent genomes. Therefore, several mechanisms generally affect the expression and contribute to the silencing of persisting genomes. These are the abundance of nucleosomes, the acetylation state of the histones, and heterochromatin. The extents to which these different mechanisms contribute to repression vary in different cell types and are counteracted by the presence of ICP0.
Collapse
|
27
|
Identification of protein cofactors necessary for sequence-specific plasmid DNA nuclear import. Mol Ther 2009; 17:1897-903. [PMID: 19532138 DOI: 10.1038/mt.2009.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although transfections are routinely used in the laboratory, the mechanism(s) by which exogenous DNA is transported into the nucleus is poorly understood. By improving our understanding of how vectors circumvent the numerous cellular barriers to gene transfer, more efficient gene delivery methods can be devised. We have begun to design plasmid constructs that enter the nucleus of specific cell types in the absence of cell division, thereby enhancing levels of expression. We have shown that inclusion of specific DNA sequences in plasmid constructs mediates nuclear import both in vitro and in vivo. Here, we use plasmid affinity chromatography, mass spectrometry (MS), and live-cell pulldowns of transfected plasmid constructs to identify protein cofactors that interact in a sequence-specific manner with these DNA nuclear targeting sequences (DTSs). Importin beta(1), importin 7, and the small guanosine triphosphatase Ran all demonstrate DTS-specific interaction in both MS and pull-down assays, consistent with our model of plasmid nuclear import. In addition, knockdown of importin beta(1) with small interfering RNA (siRNA) abrogates plasmid nuclear import, indicating that it is a necessary cofactor. Our discovery that specific karyopherins mediate plasmid nuclear import can be used to design more effective vectors for gene delivery.
Collapse
|
28
|
Busche A, Marquardt A, Bleich A, Ghazal P, Angulo A, Messerle M. The mouse cytomegalovirus immediate-early 1 gene is not required for establishment of latency or for reactivation in the lungs. J Virol 2009; 83:4030-8. [PMID: 19211741 PMCID: PMC2668463 DOI: 10.1128/jvi.02520-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/03/2009] [Indexed: 01/01/2023] Open
Abstract
The immediate-early protein IE1 of human and mouse cytomegalovirus (MCMV) is one of the first proteins expressed during the productive infection cycle and upon reactivation from latency. The CMV IE1 proteins have been found to inhibit histone deacetylases, suggesting a role in the epigenetic regulation of viral gene expression. Consequently, the IE1 protein is considered to have a profound effect on reactivation, because small amounts of IE1 may be decisive for the switch to lytic replication. Here we asked if an MCMV Deltaie1 mutant is able both to establish latency and to reactivate from the lungs of latently infected mice. Since the Deltaie1 mutant was known to be attenuated during acute infection, we first defined conditions that led to comparable levels of viral genomes during latent infection with mutant and wild-type (wt) MCMV. Viral genome copy numbers dropped considerably at the onset of the latent infection but then remained steady for both viruses even after several months. Reactivation of the Deltaie1 mutant and of wt MCMV from latency occurred with similar incidences in lung explant cultures at 4, 7, and 12 months postinfection. The increase in the frequency of a subset of MCMV-specific memory T cells, a possible indicator of frequent transcriptional reactivation events during latency, was in a comparable range for both viruses. Recurrence of the Deltaie1 virus infection in vivo could also be induced by hematoablative treatment of latently infected mice. We conclude that the ie1 gene is not essential for the establishment of latency or for the reactivation of MCMV.
Collapse
Affiliation(s)
- Andreas Busche
- Department of Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Negorev DG, Vladimirova OV, Maul GG. Differential functions of interferon-upregulated Sp100 isoforms: herpes simplex virus type 1 promoter-based immediate-early gene suppression and PML protection from ICP0-mediated degradation. J Virol 2009; 83:5168-80. [PMID: 19279115 PMCID: PMC2682089 DOI: 10.1128/jvi.02083-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 02/27/2009] [Indexed: 12/26/2022] Open
Abstract
Cells have intrinsic defenses against virus infection, acting before the innate or the adaptive immune response. Preexisting antiviral proteins such as PML, Daxx, and Sp100 are stored in specific nuclear domains (ND10). In herpes simplex virus type 1 (HSV-1), the immediate-early protein ICP0 serves as a counterdefense through degradation of the detrimental protein PML. We asked whether interferon (IFN)-upregulated Sp100 is similarly antagonized by ICP0 in normal human fibroblasts by using a selective-knockdown approach. We find that of the four Sp100 isoforms, the three containing a SAND domain block the transcription of HSV-1 proteins ICP0 and ICP4 at the promoter level and that IFN changes the differential splicing of the Sp100 transcript in favor of the inhibitor Sp100C. At the protein level, ICP0 activity does not lead to the hydrolysis of any of the Sp100 isoforms. The SAND domain-containing isoforms are not general inhibitors of viral promoters, as the activity of the major immediate-early cytomegalovirus promoter is not diminished, whereas the long terminal repeat of a retrovirus, like the ICP0 promoter, is strongly inhibited. Since we could not find a specific promoter region in the ICP0 gene that responds to the SAND domain-containing isoforms, we questioned whether Sp100 could act through other antiviral proteins such as PML. We find that all four Sp100 isoforms stabilize ND10 and protect PML from ICP0-based hydrolysis. Loss of either all PML isoforms or all Sp100 isoforms reduces the opposite constituent ND10 protein, suggesting that various interdependent mechanisms of ND10-based proteins inhibit virus infection at the immediate-early level.
Collapse
Affiliation(s)
- Dmitri G Negorev
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
30
|
Ida H, Suzusho N, Suyari O, Yoshida H, Ohno K, Hirose F, Itoh M, Yamaguchi M. Genetic screening for modifiers of the DREF pathway in Drosophila melanogaster: identification and characterization of HP6 as a novel target of DREF. Nucleic Acids Res 2009; 37:1423-37. [PMID: 19136464 PMCID: PMC2655671 DOI: 10.1093/nar/gkn1068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. By genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express DREF in the eye discs, we identified 24 genes that suppressed and 12 genes that enhanced the rough eye phenotype when heterozygous for mutations. Five genes, HP6, pigeon, lace, X box binding protein 1 and guftagu were found to carry replication-related element (DRE) sequences in their 5′-flanking regions. Of these, the HP6 gene carries two sequences that match seven out of eight nucleotides of DRE and two additional sequences that match six out of eight nucleotides of DRE in the 5′-flanking region. Band mobility shift assays using Drosophila Kc cell nuclear extracts demonstrated DREF binding to two of these sites and chromatin immunoprecipitation using anti-DREF antibodies confirmed that this occurs in vivo. Knockdown of DREF in Drosophila S2 cells decreased the HP6 mRNA level. The results, taken together, indicate that DREF directly regulates expression of the HP6 gene. HP6 mRNA was detected throughout development by RT-PCR with highest levels in adult males. In addition, immunostaining analyses revealed colocalization of HP6 and DREF in nuclei at the apical tips in the testes.
Collapse
Affiliation(s)
- Hiroyuki Ida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Malyavantham KS, Bhattacharya S, Barbeitos M, Mukherjee L, Xu J, Fackelmayer FO, Berezney R. Identifying functional neighborhoods within the cell nucleus: proximity analysis of early S-phase replicating chromatin domains to sites of transcription, RNA polymerase II, HP1gamma, matrin 3 and SAF-A. J Cell Biochem 2009; 105:391-403. [PMID: 18618731 DOI: 10.1002/jcb.21834] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Higher order chromatin organization in concert with epigenetic regulation is a key process that determines gene expression at the global level. The organization of dynamic chromatin domains and their associated protein factors is intertwined with nuclear function to create higher levels of functional zones within the cell nucleus. As a step towards elucidating the organization and dynamics of these functional zones, we have investigated the spatial proximities among a constellation of functionally related sites that are found within euchromatic regions of the cell nucleus including: HP1gamma, nascent transcript sites (TS), active DNA replicating sites in early S-phase (PCNA) and RNA polymerase II sites. We report close associations among these different sites with proximity values specific for each combination. Analysis of matrin 3 and SAF-A sites demonstrates that these nuclear matrix proteins are highly proximal with the functionally related sites as well as to each other and display closely aligned and overlapping regions following application of the minimal spanning tree (MST) algorithm to visualize higher order network-like patterns. Our findings suggest that multiple factors within the nuclear microenvironment collectively form higher order combinatorial arrays of function. We propose a model for the organization of these functional neighborhoods which takes into account the proximity values of the individual sites and their spatial organization within the nuclear architecture.
Collapse
|
32
|
de Greef JC, Frants RR, van der Maarel SM. Epigenetic mechanisms of facioscapulohumeral muscular dystrophy. Mutat Res 2008; 647:94-102. [PMID: 18723032 PMCID: PMC2650037 DOI: 10.1016/j.mrfmmm.2008.07.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/18/2008] [Accepted: 07/23/2008] [Indexed: 04/08/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) seems to be caused by a complex epigenetic disease mechanism as a result of contraction of the polymorphic macrosatellite repeat D4Z4 on chromosome 4qter. Currently, the exact mechanism causing the FSHD phenotype is still not elucidated. In this review, we discuss the genetic and epigenetic changes observed in patients with FSHD and the possible disease mechanisms that may be associated with FSHD pathogenesis.
Collapse
Affiliation(s)
- Jessica C. de Greef
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Rune R. Frants
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Silvère M. van der Maarel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Address correspondence and reprint requests to: Dr. S.M. van der Maarel, Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Bldg. 2, room S-03-042, Postal zone S-4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
33
|
Dialynas GK, Vitalini MW, Wallrath LL. Linking Heterochromatin Protein 1 (HP1) to cancer progression. Mutat Res 2008; 647:13-20. [PMID: 18926834 DOI: 10.1016/j.mrfmmm.2008.09.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
All cells of a given organism contain nearly identical genetic information, yet tissues display unique gene expression profiles. This specificity is in part due to transcriptional control by epigenetic mechanisms that involve post-translational modifications of histones. These modifications affect the folding of the chromatin fiber and serve as binding sites for non-histone chromosomal proteins. Here we discuss functions of the Heterochromatin Protein 1 (HP1) family of proteins that recognize H3K9me, an epigenetic mark generated by the histone methyltransferases SU(VAR)3-9 and orthologues. Loss of HP1 proteins causes chromosome segregation defects and lethality in some organisms; a reduction in levels of HP1 family members is associated with cancer progression in humans. These consequences are likely due to the role of HP1 in centromere stability, telomere capping and the regulation of euchromatic and heterochromatic gene expression.
Collapse
Affiliation(s)
- George K Dialynas
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
34
|
Tavalai N, Stamminger T. New insights into the role of the subnuclear structure ND10 for viral infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2207-21. [PMID: 18775455 DOI: 10.1016/j.bbamcr.2008.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 12/12/2022]
Abstract
Nuclear domains 10 (ND10), alternatively termed PML nuclear bodies (PML-NBs) or PML oncogenic domains (PODs), have been discovered approximately 15 years ago as a nuclear substructure that is targeted by a variety of viruses belonging to different viral families. This review will summarize the most important structural and functional characteristics of ND10 and its major protein constituents followed by a discussion of the current view regarding the role of this subnuclear structure for various DNA and RNA viruses with an emphasis on herpesviruses. It is concluded that accumulating evidence argues for an involvement of ND10 in host antiviral defenses either via mediating an intrinsic immune response against specific viruses or via acting as a component of the cellular interferon pathway.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | |
Collapse
|
35
|
Kim LK, Choi UY, Cho HS, Lee JS, Lee WB, Kim J, Jeong K, Shim J, Kim-Ha J, Kim YJ. Down-regulation of NF-kappaB target genes by the AP-1 and STAT complex during the innate immune response in Drosophila. PLoS Biol 2007; 5:e238. [PMID: 17803358 PMCID: PMC1964775 DOI: 10.1371/journal.pbio.0050238] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 07/06/2007] [Indexed: 12/31/2022] Open
Abstract
The activation of several transcription factors is required for the elimination of infectious pathogens via the innate immune response. The transcription factors NF-κB, AP-1, and STAT play major roles in the synthesis of immune effector molecules during innate immune responses. However, the fact that these immune responses can have cytotoxic effects requires their tight regulation to achieve restricted and transient activation, and mis-regulation of the damping process has pathological consequences. Here we show that AP-1 and STAT are themselves the major inhibitors responsible for damping NF-κB–mediated transcriptional activation during the innate immune response in Drosophila. As the levels of dAP-1 and Stat92E increase due to continuous immune signaling, they play a repressive role by forming a repressosome complex with the Drosophila HMG protein, Dsp1. The dAP-1–, Stat92E-, and Dsp1-containing complexes replace Relish at the promoters of diverse immune effector genes by binding to evolutionarily conserved cis-elements, and they recruit histone deacetylase to inhibit transcription. Reduction by mutation of dAP-1, Stat92E, or Dsp1 results in hyperactivation of Relish target genes and reduces the viability of bacterially infected flies despite more efficient pathogen clearance. These defects are rescued by reducing the Relish copy number, thus confirming that mis-regulation of Relish, not inadequate activation of dAP-1, Stat92E, or Dsp1 target genes, is responsible for the reduced survival of the mutants. We conclude that an inhibitory effect of AP-1 and STAT on NF-κB is required for properly balanced immune responses and appears to be evolutionarily conserved. The immune response is designed to target foreign infectious elements, not self, but it can become destructive when it fails to discriminate self from nonself. Therefore, it is important to restrain the magnitude and duration of the immune response by several mechanisms including receptor down-regulation and inhibitor synthesis. Here, focusing on the immune system of Drosophila, we present a mechanism of control that relies on the transcription factors AP-1 and STAT to prevent the excessive activation of the NF-κB–mediated immune response. Thus, AP-1 and STAT, renowned for their role in activating the NF-κB–mediated immune response, appear also to participate in its attenuation. In their role as negative regulators, AP-1 and STAT form a complex with HMG protein and HDAC. This complex is then recruited to the promoter regions of NF-κB target genes, causing the chromatin structure near the NF-κB target genes to contract and the expression of NF-κB target genes to shut down. Mis-regulation of this negative-feedback process, we found, increased the lethality of bacterial infection in Drosophila. A similar scenario has been noted in mammals with over-activated NF-κB–mediated immune responses, which has been implicated in autoimmune disease. Thus, feedback inhibition of NF-κB appears to be evolutionarily conserved to maintain properly balanced immune responses. After a role in initiating an NF-κB-mediated innate immune response to microbial challenge, AP-1 and STAT act to form part of a repressosome to down-regulate the transcription of antimicrobial peptides and thus to resolve the immune response.
Collapse
Affiliation(s)
- Lark Kyun Kim
- Department of Biochemistry, National Creative Research Initiative Center for Genome Regulation, Yonsei University, Seoul, Korea
| | - Un Yung Choi
- Department of Biochemistry, National Creative Research Initiative Center for Genome Regulation, Yonsei University, Seoul, Korea
| | - Hwan Sung Cho
- Department of Biochemistry, National Creative Research Initiative Center for Genome Regulation, Yonsei University, Seoul, Korea
| | - Jung Seon Lee
- Department of Biochemistry, National Creative Research Initiative Center for Genome Regulation, Yonsei University, Seoul, Korea
| | - Wook-bin Lee
- Department of Biochemistry, National Creative Research Initiative Center for Genome Regulation, Yonsei University, Seoul, Korea
| | - Jihyun Kim
- Department of Molecular Biology, Sejong University, Seoul, Korea
| | - Kyoungsuk Jeong
- Department of Molecular Biology, Sejong University, Seoul, Korea
| | - Jaewon Shim
- Department of Biochemistry, National Creative Research Initiative Center for Genome Regulation, Yonsei University, Seoul, Korea
| | - Jeongsil Kim-Ha
- Department of Molecular Biology, Sejong University, Seoul, Korea
| | - Young-Joon Kim
- Department of Biochemistry, National Creative Research Initiative Center for Genome Regulation, Yonsei University, Seoul, Korea
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Manuel Lucena J, Montes Cano M, Luis Caro J, Respaldiza N, Alvarez A, Sánchez-Román J, Núñez-Roldán A, Wichmann I. Comparison of two ELISA assays for anti-Sp100 determination. Ann N Y Acad Sci 2007; 1109:203-11. [PMID: 17785307 DOI: 10.1196/annals.1398.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antibodies to Sp100 have been described not only in primary biliary cirrhosis (PBC), but also in other diseases. Two assays for detection of Sp100 levels by enzyme-linked immunosorbent assay (ELISA) have been compared in a cohort of patients from our area: (a) Sp100 kit produced by IMTEC, Immunodiagnostica GmbH, and (b) Quanta Lite Sp100 kit produced by INOVA Diagnostics. We analyze here the correlation between the two assays and compare their efficiency in diagnosing PBC. We also comment on the exceptions derived from reactivity with other diseases. We studied 78 sera by IIF with the typical multiple nuclear dots (MND) pattern from patients who suffered from PBC, hepatopathies different from PBC, systemic lupus erythematosus (SLE), other connective tissue diseases (CTD), skeletal diseases, lung diseases, hematological disorders, a miscellaneous group, and a healthy IIF negative control group. The tests work equally well despite their different quantification system: (a) it is based on a standard curve; and (b) it is based on a single-point antigen-specific calibration. Some discrepancies could be explained by differences in the immunodominant epitope used in the ELISA. The main finding of this study is that the presence of MND/Sp100-positive antibodies were detected not only in hepatic diseases, mainly PBC, but also in other clinical conditions, confirmed by both tests. Diagnosis of PBC must be established in the right clinical context, because other diseases recognizing the same epitope, mainly SLE, may also show high Sp100 levels. Sera from PBC patients with antimitochondrial antibodies (AMA) showed higher anti-Sp100 than the AMA-negative group.
Collapse
Affiliation(s)
- José Manuel Lucena
- Department of Immunology, Hospitales Universitarios Virgen del Rocío, Sevilla, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Isaac A, Wilcox KW, Taylor JL. SP100B, a repressor of gene expression preferentially binds to DNA with unmethylated CpGs. J Cell Biochem 2006; 98:1106-22. [PMID: 16775843 DOI: 10.1002/jcb.20841] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SP100A and SP100B are mammalian nuclear proteins encoded by alternatively-spliced transcripts from the SP100 gene. The N-terminal portion of SP100B (aa 1-476) is identical to SP100A and contains an HP1 interaction domain. The C-terminal portion of SP100B (aa 477-688) contains an HMG2 interaction domain and a SAND domain. The SAND domain is a DNA-binding domain identified in several nuclear proteins involved in transcriptional regulation. We have previously reported that SP100B represses expression of genes present on transfected DNA in a SAND domain-dependent manner. The goal of the present study was to characterize the DNA binding properties of full-length SP100B expressed in mammalian cells. SP100B associated with DNA whereas SP100A did not. The SP100B SAND domain was essential for DNA binding. Deletion of the HP1- or HMG2-binding domain had no effect on DNA binding. SP100B preferentially associated with sequences containing CpG dinucleotides. Our results did not reveal any preference of SP100B for bases flanking CpG dinucleotides. The number of CpGs in a DNA sequence and spacing between CpGs influenced SP100B binding, suggesting that multimers of SP100B bind DNA in a cooperative manner. Binding of SP100B was abrogated by methylation of the cytosine residue within the context of the CpG dinucleotide. We propose that the preference of SP100B for non-methylated CpGs provides a mechanism to target SP100B to foreign DNA, including plasmid DNA or viral DNA genomes, most of which are hypomethylated.
Collapse
Affiliation(s)
- Anne Isaac
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
38
|
Hay RT. Role of ubiquitin-like proteins in transcriptional regulation. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:173-92. [PMID: 16568955 DOI: 10.1007/3-540-37633-x_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conjugation of ubiquitin-like proteins (Ubls) to components of the transcriptional machinery represents an important mechanism to allow switching between different activity states. While ubiquitin modification of transcription factors is associated with transcriptional activation, SUMO modification of transcription factors is most often associated with transcriptional repression. Recent experiments indicate that another Ubl, NEDD8, can also influence transcription. One of the characteristics of Ubl modification is that the biological consequences of conjugation do not appear proportionate to the small fraction of substrate that is modified. The low steady state levels of Ubl-modified substrates can be attributed to a highly dynamic situation in which proteins are conjugated to a particular Ubl only for the modification to be removed by Ubl-specific proteases. It therefore appears that an unmodified protein with a history of Ubl modification may have different properties from a protein that never has been modified. Here the diverse effects of Ubl modification are discussed and models proposed to explain Ubl actions.
Collapse
Affiliation(s)
- R T Hay
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, Fife, Scotland, UK.
| |
Collapse
|
39
|
Tavalai N, Papior P, Rechter S, Leis M, Stamminger T. Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol 2006; 80:8006-18. [PMID: 16873257 PMCID: PMC1563799 DOI: 10.1128/jvi.00743-06] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 05/30/2006] [Indexed: 12/26/2022] Open
Abstract
Several viruses, including human cytomegalovirus (HCMV), encode proteins that colocalize with a cellular subnuclear structure known as ND10. Since only viral DNA deposited at ND10 initiates transcription, ND10 structures were hypothesized to be essential for viral replication. On the other hand, interferon treatment induces an up-regulation of ND10 structures and viruses have evolved polypeptides that disperse the dot-like accumulation of ND10 proteins, suggesting that ND10 could also be part of an intrinsic defense mechanism. In order to obtain evidence for either a proviral or an antiviral function of ND10, we generated primary human fibroblasts with a stable, short interfering RNA-mediated knockdown (kd) of PML. In these cells, other ND10-associated proteins like hDaxx showed a diffuse nuclear distribution. Interestingly, we observed that HCMV infection induced the de novo formation of ND10-like hDaxx and Sp100 accumulations that colocalized with IE2 and were disrupted, in the apparent absence of PML, in an IE1-dependent manner during the first hours after infection. Furthermore, infection of PML-kd cells with wild-type HCMV at a low multiplicity of infection resulted in enhanced replication. In particular, a significantly increased plaque formation was detected, suggesting that more cells are able to support initiation of replication in the absence of PML. While there was no difference in viral DNA uptake between PML-kd and control cells, we observed a considerable increase in the number of immediate-early (IE) protein-positive cells, indicating that the depletion of PML augments the initiation of viral IE gene expression. These results strongly suggest that PML functions as part of an intrinsic immune mechanism against cytomegalovirus infections.
Collapse
Affiliation(s)
- Nina Tavalai
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
40
|
Abstract
ND10 are small nuclear substructures that are defined by the presence the promyelocytic leukaemia protein PML. Many other proteins have been detected within ND10, a complexity that is reflected in reports of their involvement in multiple cellular pathways that include the regulation of gene expression, chromatin dynamics, protein modification, apoptosis, p53 function, senescence, DNA repair, the interferon response and viral infection. This review summarizes recent evidence of similarities between the behaviour of ND10 components and DNA repair pathway proteins in response to viral infection and DNA damage. ND10 structures become associated with the parental genomes and early replication compartments of many DNA viruses, and DNA repair pathway proteins are also recruited to these sites. Similarly, PML and DNA repair proteins are recruited to sites of DNA damage. The mechanisms by which these events might occur, and the implications for ND10 function in DNA virus infection and chromatin metabolism, are discussed.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, UK.
| |
Collapse
|
41
|
Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 2005; 19:381-91. [PMID: 16061184 DOI: 10.1016/j.molcel.2005.06.011] [Citation(s) in RCA: 549] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/19/2005] [Accepted: 06/10/2005] [Indexed: 11/17/2022]
Abstract
Methylation of histones modulates chromatin structure and function. Whereas methylation of histone H3 on lysines 4, 36, and 79 has been linked with gene activation, methylation of H3 on lysines 9 and 27 and histone H4 on lysine 20 is associated with heterochromatin and some repressed genes within euchromatin. Here, we show that H3K9 di- and trimethylation occur in the transcribed region of active genes in mammalian chromatin. This modification is dynamic, as it increases during activation of transcription and is rapidly removed upon gene repression. Heterochromatin Protein 1gamma (HP1gamma), a protein containing a chromo-domain that recognizes H3K9 methylation, is also present in the transcribed region of all active genes examined. Both the presence of HP1gamma and H3K9 methylation are dependent upon elongation by RNA polymerase II. These findings demonstrate novel roles for H3K9 methylation and HP1gamma in transcription activation.
Collapse
Affiliation(s)
- Christopher R Vakoc
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
42
|
Müller D, Kugler SJ, Preiss A, Maier D, Nagel AC. Genetic modifier screens on Hairless gain-of-function phenotypes reveal genes involved in cell differentiation, cell growth and apoptosis in Drosophila melanogaster. Genetics 2005; 171:1137-52. [PMID: 16118195 PMCID: PMC1456817 DOI: 10.1534/genetics.105.044453] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/29/2005] [Indexed: 11/18/2022] Open
Abstract
Overexpression of Hairless (H) causes a remarkable degree of tissue loss and apoptosis during imaginal development. H functions as antagonist in the Notch-signaling pathway in Drosophila, and the link to growth and apoptosis is poorly understood. To further our insight into H-mediated apoptosis, we performed two large-scale screens for modifiers of a small rough eye phenotype caused by H overexpression. Both loss- and gain-of-function screens revealed known and new genetic interactors representing diverse cellular functions. Many of them did not cause eye phenotypes on their own, emphasizing a specific genetic interaction with H. As expected, we also identified components of different signaling pathways supposed to be involved in the regulation of cell growth and cell death. Accordingly, some of them also acted as modifiers of proapoptotic genes, suggesting a more general involvement in the regulation of apoptosis. Overall, these screens highlight the importance of H and the Notch pathway in mediating cell death in response to developmental and environmental cues and emphasize their role in maintaining developmental cellular homeostasis.
Collapse
Affiliation(s)
- Dominik Müller
- University of Hohenheim, Institute of Genetics (240), 70599 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
43
|
Ling PD, Peng RS, Nakajima A, Yu JH, Tan J, Moses SM, Yang WH, Zhao B, Kieff E, Bloch KD, Bloch DB. Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J 2005; 24:3565-75. [PMID: 16177824 PMCID: PMC1276704 DOI: 10.1038/sj.emboj.7600820] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 08/25/2005] [Indexed: 12/15/2022] Open
Abstract
The Epstein-Barr virus (EBV) EBNA-LP protein is important for EBV-mediated B-cell immortalization and is a potent gene-specific coactivator of the viral transcriptional activator, EBNA2. The mechanism(s) by which EBNA-LP functions as a coactivator remains an important question in the biology of EBV-induced B-cell immortalization. In this study, we found that EBNA-LP interacts with the promyelocytic leukemia nuclear body (PML NB)-associated protein Sp100 and displaces Sp100 and heterochromatin protein 1alpha (HP1alpha) from PML NBs. Interaction between EBNA-LP and Sp100 was mediated through conserved region 3 in EBNA-LP and the PML NB targeting domain in Sp100. Overexpression of Sp100 lacking the N-terminal PML NB targeting domain, but not a mutant form of Sp100 lacking the HP1alpha interaction domain, was sufficient to coactivate EBNA2 in a gene-specific manner independent of EBNA-LP. These findings suggest that Sp100 is a major mediator of EBNA-LP coactivation. These studies indicate that modulation of PML NB-associated proteins may be important for establishment of latent viral infections, and also identify a convenient model system to investigate the functions of Sp100.
Collapse
Affiliation(s)
- Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Rong Sheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ayako Nakajima
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Jiang H Yu
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie M Moses
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Wei-Hong Yang
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Bo Zhao
- Departments of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elliott Kieff
- Departments of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kenneth D Bloch
- Department of Medicine, Harvard Medical School and Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Donald B Bloch
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
44
|
Sloots A, Wels WS. Recombinant derivatives of the human high-mobility group protein HMGB2 mediate efficient nonviral gene delivery. FEBS J 2005; 272:4221-36. [PMID: 16098203 DOI: 10.1111/j.1742-4658.2005.04834.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Certain natural peptides and proteins of mammalian origin are able to bind and condense plasmid DNA, a prerequisite for the formation of transfection-competent complexes that facilitate nonviral gene delivery. Here we have generated recombinant derivatives of the human high-mobility group (HMG) protein HMGB2 and investigated their potential as novel protein-based transfection reagents. A truncated form of HMGB2 encompassing amino acids 1-186 of the molecule was expressed in Escherichia coli at high yield. This HMGB2186 protein purified from bacterial lysates was able to condense plasmid DNA in a concentration-dependent manner, and mediated gene delivery into different established tumor cell lines more efficiently than poly(l-lysine). By attaching, via gene fusion, additional functional domains such as the HIV-1 TAT protein transduction domain (TAT(PTD)-HMGB2186), the nuclear localization sequence of the simian virus 40 (SV40) large T-antigen (SV40(NLS)-HMGB2186), or the importin-beta-binding domain (IBB) of human importin-alpha (IBB-HMGB2186), chimeric fusion proteins were produced which displayed markedly improved transfection efficiency. Addition of chloroquine strongly enhanced gene transfer by all four HMGB2186 derivatives studied, indicating cellular uptake of protein-DNA complexes via endocytosis. The IBB-HMGB2186 molecule in the presence of the endosomolytic reagent was the most effective. Our results show that recombinant derivatives of human HMGB2 facilitate efficient nonviral gene delivery and may become useful reagents for applications in gene therapy.
Collapse
Affiliation(s)
- Arjen Sloots
- Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | | |
Collapse
|
45
|
Lechner MS, Schultz DC, Negorev D, Maul GG, Rauscher FJ. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem Biophys Res Commun 2005; 331:929-37. [PMID: 15882967 DOI: 10.1016/j.bbrc.2005.04.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Indexed: 01/08/2023]
Abstract
The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization.
Collapse
Affiliation(s)
- Mark S Lechner
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Mammalian cell nuclei exhibit discrete sites where specific proteins characteristically localize. PML nuclear bodies (PML NBs) (nuclear domain 10s (ND10s)) are the primary localization site for the promyelocytic leukemia (PML) protein and the SP100 autoantigen. The observations that some PML and SP100 isoforms can function as transcriptional regulators, that both the size and number of PML bodies increase in response to interferon treatment, and that many mammalian viruses encode proteins that mediate disruption of PML bodies suggest that these sites suppress viral infection, perhaps by repressing viral gene expression. We hypothesized that a component of PML NBs functions as a repressor of gene expression. To test this hypothesis, we characterized the effect of PML or SP100 isoforms on expression of transfected reporter genes. PML-I, PML-VI, and SP100A did not repress reporter gene expression. In contrast, SP100B repressed reporter gene expression, especially under conditions in which the reporter gene expression was elevated by a viral transactivator or addition of trichostatin A to the culture medium. The SP100B DNA binding domain was required for repression. SP100B had no detectable effect on the amount, methylation pattern, or topological form of plasmid DNA in the nuclei of transfected cells. The demonstrated repressive activity of SP100B supports the hypothesis that SP100B is a component of an innate immune response that represses expression of ectopic DNA.
Collapse
Affiliation(s)
- Kent W Wilcox
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The small ubiquitin-like modifier (SUMO) is covalently linked to a variety of proteins and is deconjugated by SUMO-specific proteases. A characteristic of SUMO modification is that the biological consequences of conjugation do not appear proportionate to the small fraction of substrate that is modified. SUMO conjugation appears to alter the long-term fate of the modified protein even though the SUMO may be rapidly deconjugated. Thus an unmodified protein with a history of SUMO modification may have different properties from a protein that never has been modified. Here, the diverse effects of SUMO modification are discussed and models proposed to explain SUMO actions.
Collapse
Affiliation(s)
- Ronald T Hay
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St. Andrews KY16 9ST, Scotland.
| |
Collapse
|
48
|
Jiang WQ, Zhong ZH, Henson JD, Neumann AA, Chang ACM, Reddel RR. Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex. Mol Cell Biol 2005; 25:2708-21. [PMID: 15767676 PMCID: PMC1061646 DOI: 10.1128/mcb.25.7.2708-2721.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Approximately 10% of cancers overall use alternative lengthening of telomeres (ALT) instead of telomerase to prevent telomere shortening, and ALT is especially common in astrocytomas and various types of sarcomas. The hallmarks of ALT in telomerase-negative cancer cells include a unique pattern of telomere length heterogeneity, rapid changes in individual telomere lengths, and the presence of ALT-associated promyelocytic leukemia bodies (APBs) containing telomeric DNA and proteins involved in telomere binding, DNA replication, and recombination. The ALT mechanism appears to involve recombination-mediated DNA replication, but the molecular details are largely unknown. In telomerase-null Saccharomyces cerevisiae, an analogous survivor mechanism is dependent on the RAD50 gene. We demonstrate here that overexpression of Sp100, a constituent of promyelocytic leukemia nuclear bodies, sequestered the MRE11, RAD50, and NBS1 recombination proteins away from APBs. This resulted in repression of the ALT mechanism, as evidenced by progressive telomere shortening at 121 bp per population doubling, a rate within the range found in telomerase-negative normal cells, suppression of rapid telomere length changes, and suppression of APB formation. Spontaneously generated C-terminally truncated Sp100 that did not sequester the MRE11, RAD50, and NBS1 proteins failed to inhibit ALT. These findings identify for the first time proteins that are required for the ALT mechanism.
Collapse
Affiliation(s)
- Wei-Qin Jiang
- Children's Medical Research Institute, 214 Hawkesbury Rd., Westmead, NSW 2145, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The small ubiquitin-like modifier (SUMO) is covalently attached to lysine residues in target proteins and in doing so changes the properties of the modified protein. Here we examine the role of SUMO modification in transcriptional regulation. SUMO addition to components of the transcriptional apparatus does not have a common consequence as it can both activate and repress transcription. In most cases, however, SUMO modification of transcription factors leads to repression and various models to explain this, ranging from retention in nuclear bodies to recruitment of histone deacetylases are discussed.
Collapse
Affiliation(s)
- David W H Girdwood
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, North Haugh, St Andrews KY16 9ST, UK
| | | | | |
Collapse
|
50
|
Yordy JS, Li R, Sementchenko VI, Pei H, Muise-Helmericks RC, Watson DK. SP100 expression modulates ETS1 transcriptional activity and inhibits cell invasion. Oncogene 2004; 23:6654-65. [PMID: 15247905 DOI: 10.1038/sj.onc.1207891] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 05/03/2004] [Accepted: 05/11/2004] [Indexed: 01/15/2023]
Abstract
The ETS1 transcription factor is a member of the Ets family of conserved sequence-specific DNA-binding proteins. ETS1 has been shown to play important roles in various cellular processes such as proliferation, differentiation, lymphoid development, motility, invasion and angiogenesis. These diverse roles of ETS1 are likely to be dependent on specific protein interactions. To identify proteins that interact with ETS1, a yeast two-hybrid screen was conducted. Here, we describe the functional interaction between SP100 and ETS1. SP100 protein interacts with ETS1 both in vitro and in vivo. SP100 is localized to nuclear bodies and ETS1 expression alters the nuclear body morphology in living cells. SP100 negatively modulates ETS1 transcriptional activation of the MMP1 and uPA promoters in a dose-dependent manner, decreases the expression of these endogenous genes, and reduces ETS1 DNA binding. Expression of SP100 inhibits the invasion of breast cancer cells and is induced by Interferon-alpha, which has been shown to inhibit the invasion of cancer cells. These data demonstrate that SP100 modulates ETS1-dependent biological processes.
Collapse
Affiliation(s)
- John S Yordy
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|