1
|
Kim J, Oh CM, Kim H. The Interplay of Adipokines and Pancreatic Beta Cells in Metabolic Regulation and Diabetes. Biomedicines 2023; 11:2589. [PMID: 37761031 PMCID: PMC10526203 DOI: 10.3390/biomedicines11092589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The interplay between adipokines and pancreatic beta cells, often referred to as the adipo-insular axis, plays a crucial role in regulating metabolic homeostasis. Adipokines are signaling molecules secreted by adipocytes that have profound effects on several physiological processes. Adipokines such as adiponectin, leptin, resistin, and visfatin influence the function of pancreatic beta cells. The reciprocal communication between adipocytes and beta cells is remarkable. Insulin secreted by beta cells affects adipose tissue metabolism, influencing lipid storage and lipolysis. Conversely, adipokines released from adipocytes can influence beta cell function and survival. Chronic obesity and insulin resistance can lead to the release of excess fatty acids and inflammatory molecules from the adipose tissue, contributing to beta cell dysfunction and apoptosis, which are key factors in developing type 2 diabetes. Understanding the complex interplay of the adipo-insular axis provides insights into the mechanisms underlying metabolic regulation and pathogenesis of metabolic disorders. By elucidating the molecular mediators involved in this interaction, new therapeutic targets and strategies may emerge to reduce the risk and progression of diseases, such as type 2 diabetes and its associated complications. This review summarizes the interactions between adipokines and pancreatic beta cells, and their roles in the pathogenesis of diabetes and metabolic diseases.
Collapse
Affiliation(s)
- Joon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Hyeongseok Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35105, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35105, Republic of Korea
| |
Collapse
|
2
|
Oh SJ, Hwang Y, Hur KY, Lee MS. Lysosomal Ca 2+ as a mediator of palmitate-induced lipotoxicity. Cell Death Discov 2023; 9:100. [PMID: 36944629 PMCID: PMC10030853 DOI: 10.1038/s41420-023-01379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
While the mechanism of lipotoxicity by palmitic acid (PA), an effector of metabolic stress in vitro and in vivo, has been extensively investigated, molecular details of lipotoxicity are still not fully characterized. Since recent studies reported that PA can exert lysosomal stress in addition to well-known ER and mitochondrial stress, we studied the role of lysosomal events in lipotoxicity by PA, focusing on lysosomal Ca2+. We found that PA induced accumulation of mitochondrial ROS and that mitochondrial ROS induced release of lysosomal Ca2+ due to lysosomal Ca2+ exit channel activation. Lysosomal Ca2+ release led to increased cytosolic Ca2+ which induced mitochondrial permeability transition (mPT). Chelation of cytoplasmic Ca2+ or blockade of mPT with olesoxime or decylubiquinone (DUB) suppressed lipotoxicity. Lysosomal Ca2+ release led to reduced lysosomal Ca2+ content which was replenished by ER Ca2+, the largest intracellular Ca2+ reservoir (ER → lysosome Ca2+ refilling), which in turn activated store-operated Ca2+ entry (SOCE). Inhibition of ER → lysosome Ca2+ refilling by blockade of ER Ca2+ exit channel using dantrolene or inhibition of SOCE using BTP2 inhibited lipotoxicity in vitro. Dantrolene or DUB also inhibited lipotoxic death of hepatocytes in vivo induced by administration of ethyl palmitate together with LPS. These results suggest a novel pathway of lipotoxicity characterized by mPT due to lysosomal Ca2+ release which was supplemented by ER → lysosome Ca2+ refilling and subsequent SOCE, and also suggest the potential role of modulation of ER → lysosome Ca2+ refilling by dantrolene or other blockers of ER Ca2+ exit channels in disease conditions characterized by lipotoxicity such as metabolic syndrome, diabetes, cardiomyopathy or nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang Medical Center, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yeseong Hwang
- Severance Biomedical Science Institute, Graduate school of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyu Yeon Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang Medical Center, Soonchunhyang University College of Medicine, Cheonan, Korea.
- Severance Biomedical Science Institute, Graduate school of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
3
|
Protopanaxadiol ameliorates palmitate-induced lipotoxicity and pancreatic β-cell dysfunction in INS-1 cells. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
4
|
Jiménez-Cortegana C, Hontecillas-Prieto L, García-Domínguez DJ, Zapata F, Palazón-Carrión N, Sánchez-León ML, Tami M, Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and Risk for Lymphoma: Possible Role of Leptin. Int J Mol Sci 2022; 23:15530. [PMID: 36555171 PMCID: PMC9779026 DOI: 10.3390/ijms232415530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity, which is considered a pandemic due to its high prevalence, is a risk factor for many types of cancers, including lymphoma, through a variety of mechanisms by promoting an inflammatory state. Specifically, over the last few decades, obesity has been suggested not only to increase the risk of lymphoma but also to be associated with poor clinical outcomes and worse responses to different treatments for those diseases. Within the extensive range of proinflammatory mediators that adipose tissue releases, leptin has been demonstrated to be a key adipokine due to its pleotropic effects in many physiological systems and diseases. In this sense, different studies have analyzed leptin levels and leptin/leptin receptor expressions as a probable bridge between obesity and lymphomas. Since both obesity and lymphomas are prevalent pathophysiological conditions worldwide and their incidences have increased over the last few years, here we review the possible role of leptin as a promising proinflammatory mediator promoting lymphomas.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Fernando Zapata
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Natalia Palazón-Carrión
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - María L. Sánchez-León
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Malika Tami
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
5
|
Reiterer M, Gilani A, Lo JC. Pancreatic Islets as a Target of Adipokines. Compr Physiol 2022; 12:4039-4065. [PMID: 35950650 DOI: 10.1002/cphy.c210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rising rates of obesity are intricately tied to the type 2 diabetes epidemic. The adipose tissues can play a central role in protection against or triggering metabolic diseases through the secretion of adipokines. Many adipokines may improve peripheral insulin sensitivity through a variety of mechanisms, thereby indirectly reducing the strain on beta cells and thus improving their viability and functionality. Such effects will not be the focus of this article. Rather, we will focus on adipocyte-secreted molecules that have a direct effect on pancreatic islets. By their nature, adipokines represent potential druggable targets that can reach the islets and improve beta-cell function or preserve beta cells in the face of metabolic stress. © 2022 American Physiological Society. Compr Physiol 12:1-27, 2022.
Collapse
Affiliation(s)
- Moritz Reiterer
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - James C Lo
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Tanaka K, Kandori S, Sakka S, Nitta S, Tanuma K, Shiga M, Nagumo Y, Negoro H, Kojima T, Mathis BJ, Shimazui T, Watanabe M, Sato TA, Miyamoto T, Matsuzaka T, Shimano H, Nishiyama H. ELOVL2 promotes cancer progression by inhibiting cell apoptosis in renal cell carcinoma. Oncol Rep 2021; 47:23. [PMID: 34841437 PMCID: PMC8674704 DOI: 10.3892/or.2021.8234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Renal cell carcinoma (RCC) is an aggressive genitourinary malignancy which has been associated with a poor prognosis, particularly in patients with metastasis, its major subtypes being clear cell RCC (ccRCC), papillary PCC (pRCC) and chromophobe RCC (chRCC). The presence of intracellular lipid droplets (LDs) is considered to be a hallmark of ccRCC. The importance of an altered lipid metabolism in ccRCC has been widely recognized. The elongation of very-long-chain fatty acid (ELOVL) catalyzes the elongation of fatty acids (FAs), modulating lipid composition, and is required for normal bodily functions. However, the involvement of elongases in RCC remains unclear. In the present study, the expression of ELOVL2 in ccRCC was examined; in particular, high levels of seven ELOVL isozymes were observed in primary tumors. Of note, elevated ELOVL2 expression levels were observed in ccRCC, as well as in pRCC and chRCC. Furthermore, a higher level of ELOVL2 was significantly associated with the increased incidence of a poor prognosis of patients with ccRCC and pRCC. The CRISPR/Cas9-mediated knockdown of ELOVL2 resulted in the suppression of the elongation of long-chain polyunsaturated FAs and increased LD production in renal cancer cells. Moreover, ELOVL2 ablation resulted in the suppression of cellular proliferation via the induction of apoptosis in vitro and the attenuation of tumor growth in vivo. On the whole, the present study provides new insight into the tumor proliferation mechanisms involving lipid metabolism, and suggests that ELOVL2 may be an attractive novel target for RCC therapy.
Collapse
Affiliation(s)
- Ken Tanaka
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Shotaro Sakka
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Satoshi Nitta
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Kozaburo Tanuma
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Masanobu Shiga
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Takahiro Kojima
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Tsukuba, Ibaraki 305‑8576, Japan
| | - Toru Shimazui
- Department of Urology, Ibaraki Prefectural Central Hospital, Kasama, Ibaraki 309‑1793, Japan
| | - Makoto Watanabe
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto 604‑8511, Japan
| | - Taka-Aki Sato
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto 604‑8511, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| |
Collapse
|
7
|
Rahman MS, Hossain KS, Das S, Kundu S, Adegoke EO, Rahman MA, Hannan MA, Uddin MJ, Pang MG. Role of Insulin in Health and Disease: An Update. Int J Mol Sci 2021; 22:6403. [PMID: 34203830 PMCID: PMC8232639 DOI: 10.3390/ijms22126403] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin is a polypeptide hormone mainly secreted by β cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (M.S.R.); (E.O.A.)
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
| | - Khandkar Shaharina Hossain
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
| | - Sharnali Das
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
| | - Sushmita Kundu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (M.S.R.); (E.O.A.)
| | - Md. Ataur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (M.S.R.); (E.O.A.)
| |
Collapse
|
8
|
Abstract
Leptin is a pluripotent peptide hormone produced mainly by adipocytes, as well as by other tissues such as the stomach. Leptin primarily acts on the central nervous system, particularly the hypothalamus, where this hormone regulates energy homeostasis and neuroendocrine function. Owing to this, disruption of leptin signaling has been linked with numerous pathological conditions. Recent studies have also highlighted the diverse roles of leptin in the digestive system including immune regulation, cell proliferation, tissue healing, and glucose metabolism. Of note, leptin acts differently under physiological and pathological conditions. Here, we review the current knowledge on the functions of leptin and its downstream signaling in the gastrointestinal tract and accessory digestive organs, with an emphasis on its physiological and pathological implications. We also discuss the current therapeutic uses of recombinant leptin, as well as its limitations.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
9
|
Adipokines as key players in β cell function and failure. Clin Sci (Lond) 2020; 133:2317-2327. [PMID: 31769478 DOI: 10.1042/cs20190523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic β cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic β cell function and their impact on pancreatic β cell survival in disease contexts such as diabetes. Initially, the "classic" adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose-pancreatic β cell axis.
Collapse
|
10
|
High-Fat Diet Affects Ceramide Content, Disturbs Mitochondrial Redox Balance, and Induces Apoptosis in the Submandibular Glands of Mice. Biomolecules 2019; 9:biom9120877. [PMID: 31847462 PMCID: PMC6995631 DOI: 10.3390/biom9120877] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
This is the first study to investigate the relationship between ceramides, the mitochondrial respiratory system, oxidative stress, inflammation, and apoptosis in the submandibular gland mitochondria of mice with insulin resistance (IR). The experiment was conducted on 20 male C57BL/6 mice divided into two equal groups: animals fed a high-fat diet (HFD; 60 kcal% fat) and animals fed a standard diet (10 kcal% fat). We have shown that feeding mice HFD induces systemic IR. We noticed that HFD feeding was accompanied by a significant increase in ceramide production (C18 1Cer, C18 Cer, C22 Cer, C24 1Cer, C24 Cer), higher activity of pro-oxidant enzymes (NADPH oxidase and xanthine oxidase), and weakened functioning of mitochondrial complexes in the submandibular glands of IR mice. In this group, we also observed a decrease in catalase and peroxidase activities, glutathione concentration, redox status, increased concentration of protein (advanced glycation end products, advanced oxidation protein products) and lipid (malondialdehyde, lipid hydroperoxide) peroxidation products, and enhanced production of tumor necrosis factor alpha (TNFα) and interleukin 2 (IL-2) as well as pro-apoptotic Bax in the submandibular gland mitochondria. In summary, HFD impairs salivary redox homeostasis and is responsible for enhanced oxidative damage and apoptosis in the submandibular gland mitochondria. The accumulation of some ceramides could boost free radical formation by affecting pro-oxidant enzymes and the mitochondrial respiratory chain.
Collapse
|
11
|
Rovadoscki GA, Pertile SFN, Alvarenga AB, Cesar ASM, Pértille F, Petrini J, Franzo V, Soares WVB, Morota G, Spangler ML, Pinto LFB, Carvalho GGP, Lanna DPD, Coutinho LL, Mourão GB. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep. BMC Genomics 2018; 19:375. [PMID: 29783944 PMCID: PMC5963081 DOI: 10.1186/s12864-018-4777-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 05/10/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite the health concerns and nutritional importance of fatty acids, there is a relative paucity of studies in the literature that report genetic or genomic parameters, especially in the case of sheep populations. To investigate the genetic architecture of fatty acid composition of sheep, we conducted genome-wide association studies (GWAS) and estimated genomic heritabilities for fatty acid profile in Longissimus dorsi muscle of 216 male sheep. RESULTS Genomic heritability estimates for fatty acid content ranged from 0.25 to 0.46, indicating that substantial genetic variation exists for the evaluated traits. Therefore, it is possible to alter fatty acid profiles through selection. Twenty-seven genomic regions of 10 adjacent SNPs associated with fatty acids composition were identified on chromosomes 1, 2, 3, 5, 8, 12, 14, 15, 16, 17, and 18, each explaining ≥0.30% of the additive genetic variance. Twenty-three genes supporting the understanding of genetic mechanisms of fat composition in sheep were identified in these regions, such as DGAT2, TRHDE, TPH2, ME1, C6, C7, UBE3D, PARP14, and MRPS30. CONCLUSIONS Estimates of genomic heritabilities and elucidating important genomic regions can contribute to a better understanding of the genetic control of fatty acid deposition and improve the selection strategies to enhance meat quality and health attributes.
Collapse
Affiliation(s)
- G A Rovadoscki
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - S F N Pertile
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - A B Alvarenga
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - A S M Cesar
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - F Pértille
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - J Petrini
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - V Franzo
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - W V B Soares
- Institute of Zootechny (IZ), Nova Odessa, SP, Brazil
| | - G Morota
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - M L Spangler
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - L F B Pinto
- Department of Animal Science, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - G G P Carvalho
- Department of Animal Science, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - D P D Lanna
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - L L Coutinho
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - G B Mourão
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
12
|
Zhu L, Huang Q, Xie Z, Kang M, Ding H, Chen B, Chen Y, Liu C, Wang Y, Tang W. PPARGC1A rs3736265 G>A polymorphism is associated with decreased risk of type 2 diabetes mellitus and fasting plasma glucose level. Oncotarget 2018; 8:37308-37320. [PMID: 28418876 PMCID: PMC5514910 DOI: 10.18632/oncotarget.16307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022] Open
Abstract
It has been reported that peroxisome proliferator-activated receptor gamma (PPARG) and peroxisome proliferator-activated receptor gamma co-activator 1 (PPARGC1) family (e.g. PPARGC1A and PPARGC1B) are key agents in the development and pathophysiology of type 2 diabetes mellitus (T2DM). In this study, we designed a case-control study and selected PPARG rs1801282 C>G, PPARG rs3856806 C>T, PPARGC1A rs8192678 C>T, PPARGC1A rs2970847 C>T, PPARGC1A rs3736265 G>A, PPARGC1B rs7732671 G>C and PPARGC1B rs17572019 G>A polymorphisms to assess the relationship between these polymorphisms and T2DM using the SNPscan method. A total of 502 T2DM patients and 784 non-diabetic controls were enrolled. We found that PPARGC1A rs3736265 G>A polymorphism was correlated with a borderline decreased susceptibility of T2DM. In a subgroup analysis by age, sex, alcohol use, smoking status and body mass index, a significantly decreased risk of T2DM in <65 years and female groups was found. Haplotype comparison analysis indicated that CTTCGGG and CTCTGGG haplotypes with the order of PPARG rs1801282 C>G, PPARG rs3856806 C>T, PPARGC1A rs8192678 C>T, PPARGC1A rs2970847 C>T, PPARGC1A rs3736265 G>A, PPARGC1B rs7732671 G>C and PPARGC1B rs17572019 G>A polymorphisms in gene position significantly increased the risk of T2DM. However, CCCCACA haplotype conferred a decreased risk to T2DM. We also found that PPARGC1A rs3736265 A allele decreased the level of fasting plasma glucose (FPG), while increased the level of Triglyceride. In conclusion, Our findings suggest that variants of PPARGC1A rs3736265 G>A polymorphism decrease the level of FPG, improving the expectation of study in individual's prevention strategies to T2DM.
Collapse
Affiliation(s)
- Li Zhu
- Department of Nephrology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Qiuyu Huang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Zhiqiang Xie
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Boyang Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yafeng Wang
- Department of Cardiology, The People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province, China
| | - Weifeng Tang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
13
|
Xu S, Dai W, Li J, Li Y. Synergistic effect of estradiol and testosterone protects against IL-6-inducedcardiomyocyte apoptosismediated by TGF-β1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:10-26. [PMID: 31938083 PMCID: PMC6957934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Basic studies have verified that estradiol or androgen is influential on cardioprotection, howeversynergistic effects of estradiol and testosterone on heart failure (HF) are still unknown. This study aimed to evaluate the association among sex hormones and heart failure risk factors. METHODS 142 controls and 196 patients with HF were selected for this study. Serum levels of estradiol, testosterone, Brain natriuretic peptide precursor, transforming growth factor-β1, β2 and β3, lipid-lipoprotein profile, glucose, high-sensitivity C-reactive protein, serum creatinine, microglobulin, uric acid, alanine aminotransferase, aspartate aminotransferase were determined. H9c2 cardiac myocytes were used to investigate the effect of estradiol and testosterone on cardiomyocytes apoptotic involved in TGF-β1. Signaling pathway of caspase 3, Bax, Bcl-2, caspase 8 and TGF-β was determined during the IL-6 induced apoptotic. RESULTS First, our results showed that compared with the control, the E2/T ratio decreased from 6.32±9.89 to 3.43±3.16 (P <0.001) in female, from 4.00±8.14 to 7.80±11.35 (P<0.001) in male with heart failure, and the level of TGF-β1 increased. What's more, these changes were favorably associated with the cardiac function classification. Univariate and multivariate logistic regression analysis showed that serum E2/T ratio, TGF-β1 and NT-proBNP were independent risk factor in heart failure patients. Second, we found that TGF-β1 was upregulated in rat H9c2 cardiomyocyte induced by IL-6, and TGF-β1 regulates the apoptosis of rat H9c2 cardiomyocyte. Furthermore, we verified the beneficial effects of the defined appropriate E2/T ratio on cardiomyocyte apoptotic mediated by TGF-β1. CONCLUSION The balance of the serum E2/T ratio was broken in patients with heart failure, and an imbalanced E2/T ratio showed a strong association with heart failure risk factors, and E2 combined with T play a synergistic effect on anti-apoptosis involved in TGF-β1.
Collapse
Affiliation(s)
- Shuwen Xu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Wen Dai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Jiqiang Li
- Department of Neurosurgery, The First Hospital of WuhanWuhan, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan UniversityWuhan, China
| |
Collapse
|
14
|
Manna P, Jain SK. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab Syndr Relat Disord 2016; 13:423-44. [PMID: 26569333 DOI: 10.1089/met.2015.0095] [Citation(s) in RCA: 677] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity is gaining acceptance as a serious primary health burden that impairs the quality of life because of its associated complications, including diabetes, cardiovascular diseases, cancer, asthma, sleep disorders, hepatic dysfunction, renal dysfunction, and infertility. It is a complex metabolic disorder with a multifactorial origin. Growing evidence suggests that oxidative stress plays a role as the critical factor linking obesity with its associated complications. Obesity per se can induce systemic oxidative stress through various biochemical mechanisms, such as superoxide generation from NADPH oxidases, oxidative phosphorylation, glyceraldehyde auto-oxidation, protein kinase C activation, and polyol and hexosamine pathways. Other factors that also contribute to oxidative stress in obesity include hyperleptinemia, low antioxidant defense, chronic inflammation, and postprandial reactive oxygen species generation. In addition, recent studies suggest that adipose tissue plays a critical role in regulating the pathophysiological mechanisms of obesity and its related co-morbidities. To establish an adequate platform for the prevention of obesity and its associated health risks, understanding the factors that contribute to the cause of obesity is necessary. The most current list of obesity determinants includes genetic factors, dietary intake, physical activity, environmental and socioeconomic factors, eating disorders, and societal influences. On the basis of the currently identified predominant determinants of obesity, a broad range of strategies have been recommended to reduce the prevalence of obesity, such as regular physical activity, ad libitum food intake limiting to certain micronutrients, increased dietary intake of fruits and vegetables, and meal replacements. This review aims to highlight recent findings regarding the role of oxidative stress in the pathogenesis of obesity and its associated risk factors, the role of dysfunctional adipose tissue in development of these risk factors, and potential strategies to regulate body weight loss/gain for better health benefits.
Collapse
Affiliation(s)
- Prasenjit Manna
- Department of Pediatrics, LSU Health Sciences Center , Shreveport, Louisiana
| | - Sushil K Jain
- Department of Pediatrics, LSU Health Sciences Center , Shreveport, Louisiana
| |
Collapse
|
15
|
Huang ZM, Du SH, Huang LG, Li JH, Xiao L, Tong P. Leptin promotes apoptosis and inhibits autophagy of chondrocytes through upregulating lysyl oxidase-like 3 during osteoarthritis pathogenesis. Osteoarthritis Cartilage 2016; 24:1246-53. [PMID: 26947886 DOI: 10.1016/j.joca.2016.02.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Leptin has been found highly expressed in human osteoarthritis. We aimed to explore the possible effects and mechanisms of leptin on the apoptosis and autophagy of chondrocytes during osteoarthritis pathogenesis. METHODS Gene expression profile from osteoarthritis affected and preserved cartilage were downloaded from NCBI's Gene Expression Omnibus database (GSE57218). Lysyl oxidase-like 3 (LOXL3) mRNA expression in cartilage tissues and leptin concentration in joint synovial fluid (SF) was measured in samples from 45 osteoarthritis patients and 25 healthy donors by real-time PCR and radioimmunoassay, respectively. Rat osteoarthritis model was induced by anterior cruciate ligament transection (ACLT). The expression of apoptosis regulators and autophagy markers were detected by Western blot. Cell survival and cell apoptosis were identified by CCK-8 and flow cytometry, respectively. RESULTS Re-analysis on GSE57218 indicated that LOXL3 mRNA was upregulated in osteoarthritis affected cartilage. LOXL3 mRNA was upregulated in osteoarthritis patients, which was positively correlated with SF leptin concentration. Similar results were obtained in rat osteoarthritis model. Moreover, ACLT surgery led to a significant increase in the protein levels of cleaved caspase 3, and a notable decrease in the protein levels of Bcl-2, LC3 II/LC3 I and Beclin1. Silencing of LOXL3 in ACLT and leptin treated primary chondrocytes significantly inhibited cell apoptosis, and promoted cell proliferation and autophagy. Moreover, overexpression of LOXL3 remarkably inhibited autophagy of chondrocytes via activating mTORC1. CONCLUSIONS LOXL3, a downstream of leptin, stimulated the apoptosis, but inhibited the autophagy of chondrocytes. LOXL3 is a potential therapy target for osteoarthritis.
Collapse
Affiliation(s)
- Z M Huang
- Department of Orthopaedic Surgery, Xiaoshan Chinese Medical Hospital, China; Department of Orthopaedic Surgery, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, China; Zhejiang Chinese Medical University, China; Institute of Orthopaedics and Traumatology of Zhejiang Province, China
| | - S H Du
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - L G Huang
- Zhejiang Chinese Medical University, China
| | - J H Li
- Department of Orthopaedic Surgery, Xiaoshan Chinese Medical Hospital, China
| | - L Xiao
- Zhejiang Chinese Medical University, China; Institute of Orthopaedics and Traumatology of Zhejiang Province, China; Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - P Tong
- Zhejiang Chinese Medical University, China; Institute of Orthopaedics and Traumatology of Zhejiang Province, China; Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, China.
| |
Collapse
|
16
|
Liao PA, Lin G, Tsai SY, Wang CH, Juan YH, Lin YC, Wu MT, Yang LY, Liu MH, Chang TC, Lin YC, Huang YC, Huang PC, Wang JJ, Ng SH, Ng KK. Myocardial triglyceride content at 3 T cardiovascular magnetic resonance and left ventricular systolic function: a cross-sectional study in patients hospitalized with acute heart failure. J Cardiovasc Magn Reson 2016; 18:9. [PMID: 26850626 PMCID: PMC4744377 DOI: 10.1186/s12968-016-0228-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increased myocardial triglyceride (TG) content has been recognized as a risk factor for cardiovascular disease. However, its relation with cardiac function in patients on recovery from acute heart failure (HF) remains unclear. In this cross-sectional study, we sought to investigate the association between myocardial TG content measured on magnetic resonance spectroscopy ((1)H-MRS) and left ventricular (LV) function assessed on cardiovascular magnetic resonance (CMR) in patients who were hospitalized with HF. METHODS A total of 50 patients who were discharged after hospitalization for acute HF and 21 age- and sex-matched controls were included in the study. Myocardial TG content and LV parameters (function and mass) were measured on a 3.0 T MR scanner. Fatty acid (FA) and unsaturated fatty acid (UFA) content was normalized against water (W) using the LC-Model algorithm. The patient population was dichotomized according to the left ventricular ejection fraction (LVEF, <50% or ≥ 50%). RESULTS H-MRS data were available for 48 patients and 21 controls. Of the 48 patients, 25 had a LVEF <50% (mean, 31.2%), whereas the remaining 23 had a normal LVEF (mean, 60.2%). Myocardial UFA/W ratio was found to differ significantly in patients with low LVEF, normal LVEF, and controls (0.79% vs. 0.21% vs. 0.14%, respectively, p = 0.02). The myocardial UFA/TG ratio was associated with LV mass (r = 0.39, p < 0.001) and modestly related to LV end-diastolic volume (LVEDV; r = 0.24, p = 0.039). We also identified negative correlations of the myocardial FA/TG ratio with both LV mass (r = -0.39, p < 0.001) and LVEDV (r = -0.24, p = 0.039). CONCLUSIONS As compared with controls, patients who were discharged after hospitalization for acute HF had increased myocardial UFA content; furthermore, UFA was inversely related with LVEF, LV mass and, to a lesser extent, LVEDV. Our study may stimulate further research on the measure of myocardial UFA content by (1)H-MRS for outcome prediction. TRIAL REGISTRATION ClinicalTrial.gov: NCT02378402 . Registered 27/02/2015.
Collapse
Affiliation(s)
- Pen-An Liao
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University, 5 Fuhsing Street, Gueishan, Taoyuan, 333, Taiwan.
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University, 5 Fuhsing Street, Gueishan, Taoyuan, 333, Taiwan.
- Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan.
| | - Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan.
| | - Chao-Hung Wang
- Department of Cardiology and Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Yu-Hsiang Juan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University, 5 Fuhsing Street, Gueishan, Taoyuan, 333, Taiwan.
| | - Yu-Ching Lin
- Department of Radiology, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan.
| | - Ming-Ting Wu
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Lan-Yan Yang
- Clinical Trial Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Min-Hui Liu
- Department of Cardiology and Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Tsun-Ching Chang
- Department of Radiology, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan.
| | - Yu-Chun Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University, 5 Fuhsing Street, Gueishan, Taoyuan, 333, Taiwan.
| | - Yu-Chieh Huang
- Department of Radiology, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan.
| | - Pei-Ching Huang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University, 5 Fuhsing Street, Gueishan, Taoyuan, 333, Taiwan.
| | - Jiun-Jie Wang
- Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan.
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University, 5 Fuhsing Street, Gueishan, Taoyuan, 333, Taiwan.
| | - Koon-Kwan Ng
- Department of Radiology, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan.
| |
Collapse
|
17
|
Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes 2015; 6:598-612. [PMID: 25987957 PMCID: PMC4434080 DOI: 10.4239/wjd.v6.i4.598] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/14/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is increasing at an alarming rate and has become a global challenge. Insulin resistance in target tissues and a relative deficiency of insulin secretion from pancreatic β-cells are the major features of type 2 diabetes (T2D). Chronic low-grade inflammation in T2D has given an impetus to the field of immuno-metabolism linking inflammation to insulin resistance and β-cell dysfunction. Many factors advocate a causal link between metabolic stress and inflammation. Numerous cellular factors trigger inflammatory signalling cascades, and as a result T2D is at the moment considered an inflammatory disorder triggered by disordered metabolism. Cellular mechanisms like activation of Toll-like receptors, Endoplasmic Reticulum stress, and inflammasome activation are related to the nutrient excess linking pathogenesis and progression of T2D with inflammation. This paper aims to systematically review the metabolic profile and role of various inflammatory pathways in T2D by capturing relevant evidence from various sources. The perspectives include suggestions for the development of therapies involving the shift from metabolic stress to homeostasis that would favour insulin sensitivity and survival of pancreatic β-cells in T2D.
Collapse
|
18
|
Yang T, Householder LA, Lubbers ER, List EO, Troike K, Vesel C, Duran-Ortiz S, Kopchick JJ, Berryman DE. Growth hormone receptor antagonist transgenic mice are protected from hyperinsulinemia and glucose intolerance despite obesity when placed on a HF diet. Endocrinology 2015; 156:555-64. [PMID: 25406017 PMCID: PMC4298328 DOI: 10.1210/en.2014-1617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduced GH levels have been associated with improved glucose metabolism and increased longevity despite obesity in multiple mouse lines. However, one mouse line, the GH receptor antagonist (GHA) transgenic mouse, defies this trend because it has reduced GH action and increased adiposity, but glucose metabolism and life span are similar to controls. Slight differences in glucose metabolism and adiposity profiles can become exaggerated on a high-fat (HF) diet. Thus, in this study, male and female GHA and wild-type (WT) mice in a C57BL/6 background were placed on HF and low-fat (LF) diets for 11 weeks, starting at 10 weeks of age, to assess how GHA mice respond to additional metabolic stress of HF feeding. On a HF diet, all mice showed significant weight gain, although GHA gained weight more dramatically than WT mice, with males gaining more than females. Most of this weight gain was due to an increase in fat mass with WT mice increasing primarily in the white adipose tissue perigonadal depots, whereas GHA mice gained in both the sc and perigonadal white adipose tissue regions. Notably, GHA mice were somewhat protected from detrimental glucose metabolism changes on a HF diet because they had only modest increases in serum glucose levels, remained glucose tolerant, and did not develop hyperinsulinemia. Sex differences were observed in many measures with males reacting more dramatically to both a reduction in GH action and HF diet. In conclusion, our findings show that GHA mice, which are already obese, are susceptible to further adipose tissue expansion with HF feeding while remaining resilient to alterations in glucose homeostasis.
Collapse
Affiliation(s)
- Tianxu Yang
- Edison Biotechnology Institute (T.Y., L.A.H., E.R.L., E.O.L., K.T., C.V., S.D.-O., J.J.K., D.E.B.), School of Applied Health Sciences and Wellness, College of Health Sciences and Professions (T.Y., L.A.H., K.T., S.D.-O., D.E.B.), and Department of Biomedical Sciences (J.K., D.E.B.), Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Arnaboldi L, Corsini A. Could changes in adiponectin drive the effect of statins on the risk of new-onset diabetes? The case of pitavastatin. ATHEROSCLEROSIS SUPP 2015; 16:1-27. [DOI: 10.1016/s1567-5688(14)70002-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Davis C, Mudd J, Hawkins M. Neuroprotective effects of leptin in the context of obesity and metabolic disorders. Neurobiol Dis 2014; 72 Pt A:61-71. [DOI: 10.1016/j.nbd.2014.04.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/09/2014] [Accepted: 04/21/2014] [Indexed: 12/16/2022] Open
|
21
|
Unger RH, Scherer PE, Holland WL. Dichotomous roles of leptin and adiponectin as enforcers against lipotoxicity during feast and famine. Mol Biol Cell 2014; 24:3011-5. [PMID: 24072813 PMCID: PMC3784375 DOI: 10.1091/mbc.e12-10-0774] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Science is marked by the death of dogmas; the discovery that adipocytes are more than just lipid-storing cells but rather produce potent hormones is one such example that caught physiologists by surprise and reshaped our views of metabolism. While we once considered the adipocyte as a passive storage organ for efficient storage of long-term energy reserves in the form of triglyceride, we now appreciate the general idea (once a radical one) that adipocytes are sophisticated enough to have potent endocrine functions. Over the past two decades, the discoveries of these adipose-derived factors ("adipokines") and their mechanistic actions have left us marveling at and struggling to understand the role these factors serve in physiology and the pathophysiology of obesity and diabetes. These hormones may serve an integral role in protecting nonadipose tissues from lipid-induced damage during nutrient-deprived or replete states. As such, adipocytes deliver not only potentially cytotoxic free fatty acids but, along with these lipids, antilipotoxic adipokines such as leptin, adiponectin, and fibroblast growth factor 21 that potently eliminate excessive local accumulation of these lipids or their conversion to unfavorable sphingolipid intermediates.
Collapse
Affiliation(s)
- Roger H Unger
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549 Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549
| | | | | |
Collapse
|
22
|
Kim SY, Kim H, Cho JY, Lim S, Cha K, Lee KH, Kim YH, Kim JH, Yoon YS, Han HS, Kang HS. Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology 2014; 271:104-12. [PMID: 24475851 DOI: 10.1148/radiol.13122883] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To assess the relationship between computed tomographic (CT) indexes and histologically measured pancreatic fat in surgical specimens and to evaluate patients with impaired glucose metabolism in a clinical setting. MATERIALS AND METHODS This retrospective study was institutional review board approved and informed consent was waived. The hospital database was searched for records from November 2008 to April 2009, and 62 patients (42 men and 20 women; mean age, 61.4 years; age range, 21-81 years) who underwent CT within 1 month before pancreatectomy were identified. The histologic pancreatic fat fraction (area ratio of fat to total tissue times 100%) was measured in nontumorous pancreatic tissue. Attenuation was measured in three regions of interest in the pancreas and the spleen on nonenhanced CT images. The difference between pancreatic and splenic attenuation and the pancreas-to-spleen attenuation ratio were calculated. Visceral fat area at the level of the umbilicus was measured on the CT images. Spearman correlation coefficients (ρ) were calculated to examine the correlation between the CT indexes or visceral fat area and the histologic pancreatic fat fraction. A multivariate logistic regression model was used to determine whether CT attenuation indexes and patient age, sex, and visceral fat correlated with impaired glucose metabolism (ie, impaired glucose tolerance, impaired fasting glucose, or presence of diabetes). RESULTS The histologic pancreatic fat fraction ranged from 0% to 65.3% and was significantly correlated with the difference between pancreatic and splenic attenuation (ρ = -0.622, P < .01) and the pancreas-to-spleen attenuation ratio (ρ = -0.616, P < .01). The visceral fat area was not correlated with the histologic pancreatic fat fraction (ρ = 0.09, P = .50). The CT attenuation indexes were significant and independent variables predictive of impaired glucose metabolism after adjusting for age, sex, and visceral fat. CONCLUSION Pancreatic fat can be quantified by using CT, and CT attenuation indexes that are applied to the quantification of pancreatic fat are significantly associated with clinical assessment of impaired glucose metabolism.
Collapse
Affiliation(s)
- So Yeon Kim
- From the Departments of Radiology (S.Y.K., K.H.L., Y.H.K., H.S.K.), Pathology (H.K.), Surgery (J.Y.C., J.H.K., Y.S.Y., H.S.H.), and Internal Medicine (S.L.), Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea; and Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pa (K.C.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lin X, Guan H, Huang Z, Liu J, Li H, Wei G, Cao X, Li Y. Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. J Diabetes Res 2014; 2014:258695. [PMID: 24829923 PMCID: PMC4009326 DOI: 10.1155/2014/258695] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/23/2014] [Accepted: 03/11/2014] [Indexed: 12/17/2022] Open
Abstract
Recent studies have demonstrated that the expression of miR-34a is significantly upregulated and associated with cell apoptosis in pancreatic β -cell treated with palmitate. Nevertheless, the underlying detailed mechanism is largely unknown. Here, we showed that miR-34a was significantly induced in Min6 pancreatic β -cell upon palmitate treatment. Elevated miR-34a promoted Min6 cell apoptosis. Intriguingly, ectopic expression of miR-34a lowered the expression of Bcl-2, an antiapoptotic protein. Luciferase reporter assay indicated the direct interaction of miR-34a with the Bcl-2 3'-UTR. Moreover, downregulated expression of Bcl-2 induced by palmitate could be restored by inhibition of miR-34a. We conclude that direct suppression of Bcl-2 by miR-34a accounts for palmitate-induced increased apoptosis rate in pancreatic β -cell.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Zhimin Huang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Juan Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Guohong Wei
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Xiaopei Cao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
- *Yanbing Li:
| |
Collapse
|
24
|
Tao C, Sifuentes A, Holland WL. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic β cells and adipocytes. Best Pract Res Clin Endocrinol Metab 2014; 28:43-58. [PMID: 24417945 PMCID: PMC4455885 DOI: 10.1016/j.beem.2013.11.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adiponectin has received considerable attention for its potential anti-diabetic actions. The adipokine exerts control of glucose and lipid homeostasis via critical effects within the liver, adipose, and pancreas. By stimulating adipogenesis, opposing inflammation, and influencing rates of lipid oxidation and lipolysis, adiponectin critically governs lipid spillover into non-adipose tissues. Ceramide, a cytotoxic and insulin desensitizing lipid metabolite formed when peripheral tissues are exposed to excessive lipid deposition, is potently opposed by adiponectin. Via adiponectin receptors, AdipoR1 and AdipoR2, adiponectin stimulates the deacylation of ceramide- yielding sphingosine for conversion to sphingosine 1-phosphate (S1P) by sphingosine kinase. The resulting conversion from ceramide to S1P promotes survival of functional beta cell mass, allowing for insulin production to meet insulin demands. Alleviation of ceramide burden on the liver allows for improvements in hepatic insulin action. Here, we summarize how adiponectin-induced changes in these tissues lead to improvements in glucose metabolism, highlighting the sphingolipid signaling mechanisms linking adiponectin to each action. ONE SENTENCE SUMMARY: We review the anti-diabetic actions of adiponectin.
Collapse
Affiliation(s)
- Caroline Tao
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Angelica Sifuentes
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
25
|
Park SH, Ho WK, Jeon JH. AMPK regulates K(ATP) channel trafficking via PTEN inhibition in leptin-treated pancreatic β-cells. Biochem Biophys Res Commun 2013; 440:539-44. [PMID: 24103758 DOI: 10.1016/j.bbrc.2013.09.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 02/08/2023]
Abstract
Leptin regulates pancreatic β-cell excitability through AMP-activated protein kinase (AMPK)-mediated ATP-sensitive potassium (KATP) channel trafficking. However, the signaling components connecting AMPK to KATP channel trafficking are not identified. In this study, we discovered that AMPK inhibits phosphatase and tensin homologue (PTEN) via glycogen synthase kinase 3β (GSK3β) and this signaling pathway is crucial for KATP channel trafficking in leptin-treated pancreatic β-cells. Pharmacologic or genetic inhibition of AMPK or GSK3β, but not casein kinase 2 (CK2), impaired leptin-induced PTEN inactivation and thereby KATP channel trafficking. The PTEN mutant lacking both protein and lipid phosphatase activity is sufficient to induce KATP channel trafficking without leptin. These results present a novel signaling mechanism that underlies leptin regulation of KATP channel trafficking in pancreatic β-cells. Our findings assist in gaining a broader perspective on the peripheral action of leptin on pancreatic β-cell physiology and glucose homeostasis.
Collapse
Affiliation(s)
- Sun-Hyun Park
- Cell Physiology Laboratory and Biomembrane Plasticity Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea
| | | | | |
Collapse
|
26
|
Quan W, Jo EK, Lee MS. Role of pancreatic β-cell death and inflammation in diabetes. Diabetes Obes Metab 2013; 15 Suppl 3:141-51. [PMID: 24003931 DOI: 10.1111/dom.12153] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/16/2013] [Indexed: 02/06/2023]
Abstract
Apoptosis of pancreatic β-cells is the final step in the development of type 1 diabetes (T1D), leading to critically diminished β-cell mass and contributing to the onset of hyperglycaemia. The spontaneous apoptosis of pancreatic β-cells during pancreas ontogeny also induces cell death-associated inflammation, stimulates antigen-presenting cells and sensitizes naïve diabetogenic T cells. The role of pancreatic β-cell death in type 2 diabetes (T2D) is less clear. In the preclinical period of T2D, hyperinsulinaemia and β-cell hyperplasia develop to compensate for insulin resistance, which is clearly seen in animal models of T2D. For the development of overt T2D, relative insulin deficiency is critical in addition to insulin resistance. Insulin deficiency could be due to β-cell dysfunction and/or decreased β-cell mass. Pancreatic β-cell apoptosis due to lipid injury (lipoapoptosis), endoplasmic reticulum (ER) stress or JNK activation could contribute to the decreased β-cell mass in T2D. Activation of inflammasomes by lipid injury, ER stress, human islet amyloid polypeptide, hyperglycaemia or autophagy insufficiency could also lead to β-cell death or dysfunction. Thus, β-cell death and cell death-associated inflammation through innate immune receptors could be important in both T1D and T2D.
Collapse
Affiliation(s)
- W Quan
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
27
|
Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 2013; 12:98. [PMID: 23835113 PMCID: PMC3716967 DOI: 10.1186/1476-511x-12-98] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with multiple complications that causes serious diseases over the years. The condition leads to severe economic consequences and is reaching pandemic level globally. Much research is being carried out to address this disease and its underlying molecular mechanism. This review focuses on the diverse role and mechanism of ceramide, a prime sphingolipid signaling molecule, in the pathogenesis of type 1 and type 2 diabetes and its complications. Studies using cultured cells, animal models, and human subjects demonstrate that ceramide is a key player in the induction of β-cell apoptosis, insulin resistance, and reduction of insulin gene expression. Ceramide induces β-cell apoptosis by multiple mechanisms namely; activation of extrinsic apoptotic pathway, increasing cytochrome c release, free radical generation, induction of endoplasmic reticulum stress and inhibition of Akt. Ceramide also modulates many of the insulin signaling intermediates such as insulin receptor substrate, Akt, Glut-4, and it causes insulin resistance. Ceramide reduces the synthesis of insulin hormone by attenuation of insulin gene expression. Better understanding of this area will increase our understanding of the contribution of ceramide to the pathogenesis of diabetes, and further help in identifying potential therapeutic targets for the management of diabetes mellitus and its complications.
Collapse
|
28
|
Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, Paruthi J, Mantzoros CS. Leptin's role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev 2013; 34:377-412. [PMID: 23475416 PMCID: PMC3660716 DOI: 10.1210/er.2012-1053] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leptin is an adipocyte-secreted hormone that has been proposed to regulate energy homeostasis as well as metabolic, reproductive, neuroendocrine, and immune functions. In the context of open-label uncontrolled studies, leptin administration has demonstrated insulin-sensitizing effects in patients with congenital lipodystrophy associated with relative leptin deficiency. Leptin administration has also been shown to decrease central fat mass and improve insulin sensitivity and fasting insulin and glucose levels in HIV-infected patients with highly active antiretroviral therapy (HAART)-induced lipodystrophy, insulin resistance, and leptin deficiency. On the contrary, the effects of leptin treatment in leptin-replete or hyperleptinemic obese individuals with glucose intolerance and diabetes mellitus have been minimal or null, presumably due to leptin tolerance or resistance that impairs leptin action. Similarly, experimental evidence suggests a null or a possibly adverse role of leptin treatment in nonlipodystrophic patients with nonalcoholic fatty liver disease. In this review, we present a description of leptin biology and signaling; we summarize leptin's contribution to glucose metabolism in animals and humans in vitro, ex vivo, and in vivo; and we provide insights into the emerging clinical applications and therapeutic uses of leptin in humans with lipodystrophy and/or diabetes.
Collapse
Affiliation(s)
- Hyun-Seuk Moon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao Y, Wang L, Qiu J, Zha D, Sun Q, Chen C. Linoleic acid stimulates [Ca2+]i increase in rat pancreatic beta-cells through both membrane receptor- and intracellular metabolite-mediated pathways. PLoS One 2013; 8:e60255. [PMID: 23565210 PMCID: PMC3614997 DOI: 10.1371/journal.pone.0060255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/24/2013] [Indexed: 01/08/2023] Open
Abstract
The role of the free fatty acid (FFA) receptor and the intracellular metabolites of linoleic acid (LA) in LA-stimulated increase in cytosolic free calcium concentration ([Ca2+]i) was investigated. [Ca2+]i was measured using Fura-2 as indicator in rat pancreatic β-cells in primary culture. LA (20 µM for 2 min) stimulated a transient peak increase followed by a minor plateau increase in [Ca2+]i. Elongation of LA stimulation up to 10 min induced a strong and long-lasting elevation in [Ca2+]i. Activation of FFA receptors by the non-metabolic agonist GW9508 (40 µM for 10 min) resulted in an increase in [Ca2+]i similar to that of 2-min LA treatment. Inhibition of acyl-CoA synthetases by Triacsin C suppressed the strong and long-lasting increase in [Ca2+]i. The increase in [Ca2+]i induced by 2 min LA or GW9508 were fully eliminated by exhaustion of endoplasmic reticulum (ER) Ca2+ stores or by inhibition of phospholipase C (PLC). Removal of extracellular Ca2+ did not influence the transient peak increase in [Ca2+]i stimulated by 2 min LA or GW9508. The strong and long-lasting increase in [Ca2+]i induced by 10 min LA was only partially suppressed by extracellular Ca2+ removal or thapsigargin pretreatment, whereas remaining elevation in [Ca2+]i was eliminated after exhaustion of mitochondrial Ca2+ using triphenyltin. In conclusion, LA stimulates Ca2+ release from ER through activation of the FFA receptor coupled to PLC and mobilizes mitochondrial Ca2+ by intracellular metabolites in β-cells.
Collapse
Affiliation(s)
- Yufeng Zhao
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (CC); (YZ)
| | - Li Wang
- The Second Affiliated Hospital of Medical School, Xi’an Jiao Tong University, Xi’an, China
| | - Jianhua Qiu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qiang Sun
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (CC); (YZ)
| |
Collapse
|
30
|
Tinahones FJ, Coín Aragüez L, Murri M, Oliva Olivera W, Mayas Torres MD, Barbarroja N, Gomez Huelgas R, Malagón MM, El Bekay R. Caspase induction and BCL2 inhibition in human adipose tissue: a potential relationship with insulin signaling alteration. Diabetes Care 2013; 36. [PMID: 23193206 PMCID: PMC3579349 DOI: 10.2337/dc12-0194] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2-expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α- or IL-6-treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α- or IL-6-treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance.
Collapse
Affiliation(s)
- Francisco José Tinahones
- CIBER in Physiopathology of Obesity and Nutrition (CB06/03), Instituto de Salud Carlos III, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Toledo-Corral CM, Alderete TL, Hu HH, Nayak K, Esplana S, Liu T, Goran MI, Weigensberg MJ. Ectopic fat deposition in prediabetic overweight and obese minority adolescents. J Clin Endocrinol Metab 2013; 98:1115-21. [PMID: 23386647 PMCID: PMC3590481 DOI: 10.1210/jc.2012-3806] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Optimizing effective prevention and treatment of type 2 diabetes in youth is limited by incomplete understanding of its pathophysiology and how this varies across ethnicities with high risk. OBJECTIVE The aim of this study was to examine the contribution of visceral adipose tissue (VAT), hepatic fat fraction (HFF), and pancreatic fat fraction (PFF) to prediabetes in overweight/obese African American (AA) and Latino youth. DESIGN AND SETTING We conducted a cross-sectional study in an academic pediatric care facility. SUBJECTS A total of 148 healthy, overweight/obese adolescents (56 AA, 92 Latino; 72 males, 76 females; age, 15.5 ± 1.2 y; BMI z-score, 2.1 ± 0.5) participated in the study. They were normal glucose tolerant (n = 106) and prediabetic (n = 42), based on fasting glucose of 100-125 mg/dL and/or 2-hour glucose of 140-199 mg/dL, and/or hemoglobin A1C 6.0-6.4%. MAIN OUTCOME MEASURES We measured sc abdominal adipose tissue, VAT, HFF, and PFF by 3-Tesla magnetic resonance imaging and measured total body fat by dual-energy x-ray absorptiometry. RESULTS Adolescents with prediabetes had 30% higher HFF (P = .001) and 31% higher PFF (P = .042), compared to those with normal glucose tolerance after controlling for age, sex, pubertal stage, ethnicity, total percentage body fat, and VAT. Logistic regression showed that PFF predicted prediabetes in AAs and HFF predicted prediabetes in Latinos, with the odds of having prediabetes increased by 66% for every 1% increase in PFF in African Americans, and increased by 22% for every 1% increase in HFF in Latinos. CONCLUSION These data demonstrate that ectopic fat phenotypes associated with prediabetes are established by adolescence. Ethnic differences in the deposition of ectopic fat in adolescents with prediabetes may differ, with pancreatic fat in AAs, vs hepatic fat in Latino adolescents, being associated with diabetes risk.
Collapse
Affiliation(s)
- Claudia M Toledo-Corral
- Department of Preventive Medicine, University of Southern California, 2250 Alcazar Street, CSC 200, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ahn JH, Kim MH, Kwon HJ, Choi SY, Kwon HY. Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:43-50. [PMID: 23440052 PMCID: PMC3579104 DOI: 10.4196/kjpp.2013.17.1.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/11/2012] [Accepted: 12/21/2012] [Indexed: 12/15/2022]
Abstract
Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial β-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apoptotic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM.
Collapse
Affiliation(s)
- Joung Hoon Ahn
- Department of Physiology, College of Medicine, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | | | | | | | | |
Collapse
|
33
|
Wei CD, Li Y, Zheng HY, Tong YQ, Dai W. Palmitate induces H9c2 cell apoptosis by increasing reactive oxygen species generation and activation of the ERK1/2 signaling pathway. Mol Med Rep 2013; 7:855-61. [PMID: 23338747 DOI: 10.3892/mmr.2013.1276] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/03/2013] [Indexed: 11/06/2022] Open
Abstract
Cardiac myocytes undergo apoptosis under conditions of high free fatty acid concentrations, including palmitate, which is implicated in lipotoxic cardiomyopathy. However, the underlying mechanisms remain unknown. The aim of the present study was to understand the role of reactive oxygen species (ROS) production and the extracellular signal‑regulated kinase 1/2 (ERK1/2) signaling pathway in palmitate‑induced apoptosis in H9c2 cells. H9c2 cells were exposed to palmitate for 12 h. The effect on the cell viability of H9c2 cells was evaluated using the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay and cell apoptosis was determined by Hoechst 33342 staining. Levels of intracellular ROS were determined using a peroxide‑sensitive fluorescent probe, 2',7'‑dichlorofluorescein diacetate. Protein expression was measured by western blot analysis. Following treatment with palmitate for 12 h, H9c2 cells apoptosis was demonstrated as increased brightly condensed chromatin or unclear fragments by staining with Hoechst 33342, which was associated with increasing levels of active caspase‑3 and cleaved poly (ADP-ribose) polymerase (PARP). In this model of treatment with palmitate, H9c2 cell apoptosis correlated with increased levels of p53 and Bax expression and reduced levels of Bcl-2 expression. Palmitate‑induced apoptosis was observed to increase levels of intracellular ROS production and p‑ERK1/2 and decrease p‑Akt significantly. Consistent with these results, palmitate‑induced apoptosis was attenuated by the ERK1/2 inhibitor, U0126, through partial reduction of intracellular ROS generation. Collectively, these results indicate that palmitate‑induced apoptosis in H9c2 cells is mediated by activation of the ERK1/2 signaling pathway and increased ROS generation.
Collapse
Affiliation(s)
- Chuan-Dong Wei
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Hubai 430060, PR China
| | | | | | | | | |
Collapse
|
34
|
Luciani DS, White SA, Widenmaier SB, Saran VV, Taghizadeh F, Hu X, Allard MF, Johnson JD. Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic β-cells. Diabetes 2013; 62:170-82. [PMID: 22933114 PMCID: PMC3526034 DOI: 10.2337/db11-1464] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 2 (Bcl-2) family proteins are established regulators of cell survival, but their involvement in the normal function of primary cells has only recently begun to receive attention. In this study, we demonstrate that chemical and genetic loss-of-function of antiapoptotic Bcl-2 and Bcl-x(L) significantly augments glucose-dependent metabolic and Ca(2+) signals in primary pancreatic β-cells. Antagonism of Bcl-2/Bcl-x(L) by two distinct small-molecule compounds rapidly hyperpolarized β-cell mitochondria, increased cytosolic Ca(2+), and stimulated insulin release via the ATP-dependent pathway in β-cell under substimulatory glucose conditions. Experiments with single and double Bax-Bak knockout β-cells established that this occurred independently of these proapoptotic binding partners. Pancreatic β-cells from Bcl-2(-/-) mice responded to glucose with significantly increased NAD(P)H levels and cytosolic Ca(2+) signals, as well as significantly augmented insulin secretion. Inducible deletion of Bcl-x(L) in adult mouse β-cells also increased glucose-stimulated NAD(P)H and Ca(2+) responses and resulted in an improvement of in vivo glucose tolerance in the conditional Bcl-x(L) knockout animals. Our work suggests that prosurvival Bcl proteins normally dampen the β-cell response to glucose and thus reveals these core apoptosis proteins as integrators of cell death and physiology in pancreatic β-cells.
Collapse
Affiliation(s)
- Dan S. Luciani
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
- Corresponding authors: James D. Johnson, , and Dan S. Luciani,
| | - Sarah A. White
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Scott B. Widenmaier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Varun V. Saran
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada the
- University of British Columbia James Hogg Research Centre, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Farnaz Taghizadeh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael F. Allard
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada the
- University of British Columbia James Hogg Research Centre, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding authors: James D. Johnson, , and Dan S. Luciani,
| |
Collapse
|
35
|
Stojanovic I, Saksida T, Timotijevic G, Sandler S, Stosic-Grujicic S. Macrophage migration inhibitory factor (MIF) enhances palmitic acid- and glucose-induced murine beta cell dysfunction and destruction in vitro. Growth Factors 2012; 30:385-93. [PMID: 23137174 DOI: 10.3109/08977194.2012.734506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although several reports suggest a potentially deleterious role of macrophage migration inhibitory factor (MIF) in type 2 diabetes (T2D) pathology, it is still unclear how this pro-inflammatory cytokine acts on pancreatic beta cells. The aim of the present study was to evaluate MIF effects on murine beta cells in the in vitro settings mimicking T2D-associated conditions. Results indicate that recombinant MIF further increased apoptosis of pancreatic islets or MIN6 cells upon exposure to palmitic acid or glucose. This was accompanied by upregulation of several pro-apoptotic molecules. Furthermore, MIF potentiated nutrient-induced islet cell dysfunction, as revealed by lower glucose oxidation rate, ATP content, and depolarized mitochondrial membrane. The final outcome was potentiation of mitochondrial apoptotic pathway. The observed upregulation of nutrient-induced islet cell dysfunction and apoptosis by MIF implicates that silencing MIF may be beneficial for maintaining integrity of endocrine pancreas in obesity-associated T2D.
Collapse
Affiliation(s)
- Ivana Stojanovic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
36
|
Misiak B, Leszek J, Kiejna A. Metabolic syndrome, mild cognitive impairment and Alzheimer's disease--the emerging role of systemic low-grade inflammation and adiposity. Brain Res Bull 2012; 89:144-9. [PMID: 22921944 DOI: 10.1016/j.brainresbull.2012.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 07/22/2012] [Accepted: 08/08/2012] [Indexed: 01/16/2023]
Abstract
The past decade has shed new light on the etiology of Alzheimer's disease (AD), which is the consequence of interactions between numerous lesions. There is a growing body of evidence that the most beneficial effects of treatment might only be achieved in the preclinical stage of dementia, prior to the immense hallmarks of neurodegeneration. In view of this, several studies have focused on mild cognitive impairment (MCI) as a state, which represents a less severe form of the neuropathological process. However, early treatment interventions initiated in MCI have failed to slow down progression of the disease. Thus, great effort has been made to indicate modifiable risk factors for MCI. Consistent with the role of vascular malfunction in AD, this approach has shown the predictive value of the metabolic syndrome (MetS), which is a multidimensional entity and includes visceral obesity, dyslipidemia, hyperglycemia and hypertension. Despite the positive results of several epidemiological studies, the exact mechanisms underlying the connection between MetS and AD remain uncertain and various theories are being assessed. MetS, similarly to AD, has been attributed to a low-grade chronic inflammation. There is a general consensus that the aberrant inflammatory response underlying MetS may arise from a deregulation of the endocrine homeostasis of adipose tissue. Hence, it might be assumed that the subclinical inflammation of adipose tissue may interact with the impaired central inflammatory response, leading to neurodegeneration. This article reviews the role of low-grade inflammation of adipose tissue in the pathophysiology of cognitive impairment and translates several considerable and unexplored findings from studies focused on subjects with MetS and animal models mimicking the phenotype of MetS into the etiology of AD.
Collapse
Affiliation(s)
- Blazej Misiak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland.
| | | | | |
Collapse
|
37
|
Marroquí L, Gonzalez A, Ñeco P, Caballero-Garrido E, Vieira E, Ripoll C, Nadal A, Quesada I. Role of leptin in the pancreatic β-cell: effects and signaling pathways. J Mol Endocrinol 2012; 49:R9-17. [PMID: 22448029 DOI: 10.1530/jme-12-0025] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leptin plays an important role in the control of food intake, energy expenditure, metabolism, and body weight. This hormone also has a key function in the regulation of glucose homeostasis. Although leptin acts through central and peripheral mechanisms to modulate glucose metabolism, the pancreatic β-cell of the endocrine pancreas is a critical target of leptin actions. Leptin receptors are present in the β-cell, and their activation directly inhibits insulin secretion from these endocrine cells. The effects of leptin on insulin occur also in the long term, since this hormone inhibits insulin gene expression as well. Additionally, β-cell mass can be affected by leptin through changes in proliferation, apoptosis, or cell size. All these different functions in the β-cell are triggered by leptin as a result of the large diversity of signaling pathways that this hormone is able to activate in the endocrine pancreas. Therefore, leptin can participate in glucose homeostasis owing to different levels of modulation of the pancreatic β-cell population. Furthermore, it has been proposed that alterations in this level of regulation could contribute to the impairment of β-cell function in obesity states. In the present review, we will discuss all these issues with special emphasis on the effects and pathways of leptin signaling in the pancreatic β-cell.
Collapse
Affiliation(s)
- Laura Marroquí
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Elche, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bellia A, Rizza S, Lombardo MF, Donadel G, Fabiano R, Andreadi K, Quon MJ, Sbraccia P, Federici M, Tesauro M, Cardillo C, Lauro D. Deterioration of glucose homeostasis in type 2 diabetic patients one year after beginning of statins therapy. Atherosclerosis 2012; 223:197-203. [DOI: 10.1016/j.atherosclerosis.2012.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/23/2012] [Accepted: 04/15/2012] [Indexed: 12/16/2022]
|
39
|
Abstract
Recent technical advances have re-invigorated the study of sphingolipid metabolism in general, and helped to highlight the varied and important roles that sphingolipids play in pancreatic β-cells. Sphingolipid metabolites such as ceramide, glycosphingolipids, sphingosine 1-phosphate and gangliosides modulate many β-cell signaling pathways and processes implicated in β-cell diabetic disease such as apoptosis, β-cell cytokine secretion, ER-to-golgi vesicular trafficking, islet autoimmunity and insulin gene expression. They are particularly relevant to lipotoxicity. Moreover, the de novo synthesis of sphingolipids occurs on many subcellular membranes, in parallel to secretory vesicle formation, traffic and granule maturation events. Indeed, the composition of the plasma membrane, determined by the activity of neutral sphingomyelinases, affects β-cell excitability and potentially insulin exocytosis while another glycosphingolipid, sulfatide, determines the stability of insulin crystals in granules. Most importantly, sphingolipid metabolism on internal membranes is also strongly implicated in regulating β-cell apoptosis.
Collapse
Affiliation(s)
- Ebru Boslem
- Diabetes and Obesity Program; Garvan Institute of Medical Research; Darlinghurst, NSW Australia
- St Vincent’s Clinical School; Faculty of Medicine; University of New South Wales; Sydney, NSW Australia
| | - Peter J. Meikle
- Baker IDI Heart and Diabetes Institute; Melbourne, VIC Australia
| | - Trevor J. Biden
- Diabetes and Obesity Program; Garvan Institute of Medical Research; Darlinghurst, NSW Australia
- St Vincent’s Clinical School; Faculty of Medicine; University of New South Wales; Sydney, NSW Australia
- Correspondence to: Trevor J. Biden,
| |
Collapse
|
40
|
Johnson JD, Bround MJ, White SA, Luciani DS. Nanospaces between endoplasmic reticulum and mitochondria as control centres of pancreatic β-cell metabolism and survival. PROTOPLASMA 2012; 249 Suppl 1:S49-S58. [PMID: 22105567 DOI: 10.1007/s00709-011-0349-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
Nanometre-scale spaces between organelles represent focused nodes for signal transduction and the control of cellular decisions. The endoplasmic reticulum (ER) and the mitochondria form dynamic quasi-synaptic interaction nanodomains in all cell types examined, but the functional role of these junctions in cellular metabolism and cell survival remains to be fully understood. In this paper, we review recent evidence that ER Ca(2+) channels, such as the RyR and IP(3)R, can signal specifically across this nanodomain to the adjacent mitochondria to pace basal metabolism, with focus on the pancreatic β-cell. Blocking these signals in the basal state leads to a form of programmed cell death associated with reduced ATP and the induction of calpain-10 and hypoxia-inducible factors. On the other hand, the hyperactivity of this signalling domain plays a deleterious role during classical forms of apoptosis. Thus, the nanospace between ER and mitochondria represents a critical rheostat controlling both metabolism and programmed cell death. Many aspects of the mechanisms underlying this control system remain to be uncovered, and new nanotechnologies are required understand these domains at a molecular level.
Collapse
Affiliation(s)
- James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
41
|
Tarabra E, Pelengaris S, Khan M. A simple matter of life and death-the trials of postnatal Beta-cell mass regulation. Int J Endocrinol 2012; 2012:516718. [PMID: 22577380 PMCID: PMC3346985 DOI: 10.1155/2012/516718] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/31/2011] [Indexed: 12/17/2022] Open
Abstract
Pancreatic beta-cells, which secrete the hormone insulin, are the key arbiters of glucose homeostasis. Defective beta-cell numbers and/or function underlie essentially all major forms of diabetes and must be restored if diabetes is to be cured. Thus, the identification of the molecular regulators of beta-cell mass and a better understanding of the processes of beta-cell differentiation and proliferation may provide further insight for the development of new therapeutic targets for diabetes. This review will focus on the principal hormones and nutrients, as well as downstream signalling pathways regulating beta-cell mass in the adult. Furthermore, we will also address more recently appreciated regulators of beta-cell mass, such as microRNAs.
Collapse
Affiliation(s)
- Elena Tarabra
- School of Life Sciences, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
- *Elena Tarabra:
| | - Stella Pelengaris
- School of Life Sciences, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Michael Khan
- School of Life Sciences, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
42
|
Lee YH, Magkos F, Mantzoros CS, Kang ES. Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism 2011; 60:1664-72. [PMID: 21632069 DOI: 10.1016/j.metabol.2011.04.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/24/2011] [Accepted: 04/18/2011] [Indexed: 02/09/2023]
Abstract
Leptin and adiponectin are hormones secreted from adipocytes that have important roles in metabolism and energy homeostasis. This review evaluates the effects of leptin and adiponectin on β-cell function by analyzing and compiling results from human clinical trials and epidemiologic studies as well as in vitro and in vivo experiments. Leptin has been shown to inhibit ectopic fat accumulation and thereby prevent β-cell dysfunction and protect the β-cell from cytokine- and fatty acid-induced apoptosis. However, leptin suppresses insulin gene expression and secretion as well as glucose transport into the β-cell. Adiponectin stimulates insulin secretion by enhancing exocytosis of insulin granules and upregulating the expression of the insulin gene; however, this effect depends on the prevailing glucose concentration and status of insulin resistance. In addition, adiponectin has antiapoptotic properties in β-cells. Available evidence concerning the role of these adipokines on insulin secretion, insulin gene expression, and apoptosis is not always entirely consistent; and many fundamental questions remain to be answered by future studies.
Collapse
Affiliation(s)
- Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
43
|
Yokokawa H, Kinoshita I, Hashiguchi T, Kako M, Sasaki K, Tamura A, Kintaka Y, Suzuki Y, Ishizuka N, Arai K, Kasahara Y, Kishi M, Kobayashi Y, Takahashi T, Shimizu H, Inoue S. Enhanced exercise-induced muscle damage and muscle protein degradation in streptozotocin-induced type 2 diabetic rats. J Diabetes Investig 2011; 2:423-8. [PMID: 24843525 PMCID: PMC4014900 DOI: 10.1111/j.2040-1124.2011.00130.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
UNLABELLED Aims/Introduction: The effects of 5-day voluntary exercise on muscle damage and muscle protein degradation were investigated in a streptozotocin-induced rat model of moderately glycemic, uncontrolled, type 2 diabetes. MATERIALS AND METHODS In the preliminary experiment, an oral glucose tolerance (1.0 g/kg) test was carried out to confirm the development of diabetes 3 days after streptozotocin treatment (30 mg/kg). In the genuine experiment, rats were divided into four groups: (i) non-diabetic rats without exercise (controls); (ii) non-diabetic rats with exercise; (iii) diabetic rats without exercise; and (iv) diabetic rats with exercise. After 5 days of voluntary wheel running exercise, blood and 24-h urine were collected, and levels of serum creatine kinase, a marker of muscle damage, and 24-h urinary excretion of muscle degradation products were determined. RESULTS Type 2 diabetic rats with insulin deficiency that exercised had higher serum creatine kinase and greater urinary excretions of creatinine, urea nitrogen and 3-methylhistidine compared with both type 2 diabetic rats with insulin deficiency and non-diabetic rats that did not exercise. However, there were no differences in serum creatine kinase and urinary excretions of creatinine, urea nitrogen and 3-methylhistidine between non-diabetic rats that did and did not exercise. CONCLUSIONS These findings suggest that muscle damage is induced and muscle protein degradation are enhanced by chronic moderate exercise in moderately glycemic uncontrolled type 2 diabetic rats with insulin deficiency at an intensity level of exercise that does not affect muscle damage and muscle protein degradation in non-diabetic rats. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2011.00130.x, 2011).
Collapse
Affiliation(s)
- Hirohide Yokokawa
- Department of General Medicine, Juntendo University School of Medicine
| | - Ikiko Kinoshita
- Department of Nutrition, Faculty of Home Economics, Kyoritsu Women’s University, Tokyo
| | - Takeo Hashiguchi
- Department of Nutrition, Faculty of Home Economics, Kyoritsu Women’s University, Tokyo
| | - Masako Kako
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| | - Kahoru Sasaki
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| | - Akira Tamura
- Department of Nutrition, Faculty of Health Science, Chukyo Women’s University, Nagoya
| | - Yuri Kintaka
- Department of Food Science, Faculty of Dairy Science, Rakuno Gakuen University, Ebetsu, Japan
| | - Yoko Suzuki
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| | - Noriko Ishizuka
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| | - Katsumi Arai
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| | - Yoshiko Kasahara
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| | - Mikiko Kishi
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| | - Yoko Kobayashi
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| | - Tosei Takahashi
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| | - Hiroyuki Shimizu
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| | - Shuji Inoue
- Department of Nursing and Department of Nutrition, Faculty of Health Care, Kiryu University, Midori
| |
Collapse
|
44
|
Guards and culprits in the endoplasmic reticulum: glucolipotoxicity and β-cell failure in type II diabetes. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:639762. [PMID: 21977023 PMCID: PMC3184438 DOI: 10.1155/2012/639762] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. The ER participates in all branches of metabolism, linking nutrient sensing to cellular signaling. Many pathological and physiological factors perturb ER function and induce ER stress. ER stress triggers an adaptive signaling cascade, called the unfolded protein response (UPR), to relieve the stress. The failure of the UPR to resolve ER stress leads to pathological conditions such as β-cell dysfunction and death, and type II diabetes. However, much less is known about the fine details of the control and regulation of the ER response to hyperglycemia (glucotoxicity), hyperlipidemia (lipotoxicity), and the combination of both (glucolipotoxicity). This paper considers recent insights into how the response is regulated, which may provide clues into the mechanism of ER stress-mediated β-cell dysfunction and death during the progression of glucolipotoxicity-induced type II diabetes.
Collapse
|
45
|
Verkest KR, Fleeman LM, Morton JM, Ishioka K, Rand JS. Compensation for obesity-induced insulin resistance in dogs: assessment of the effects of leptin, adiponectin, and glucagon-like peptide-1 using path analysis. Domest Anim Endocrinol 2011; 41:24-34. [PMID: 21474268 DOI: 10.1016/j.domaniend.2011.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/06/2011] [Accepted: 02/11/2011] [Indexed: 01/25/2023]
Abstract
The hormonal mediators of obesity-induced insulin resistance and compensatory hyperinsulinemia in dogs have not been identified. Plasma samples were obtained after a 24-h fast from 104 client-owned lean, overweight, and obese dogs. Plasma glucose and insulin concentrations were used to calculate insulin sensitivity and β-cell function with the use of the homeostasis model assessment (HOMA(insulin sensitivity) and HOMA(β-cell function), respectively). Path analysis with multivariable linear regression was used to identify whether fasting plasma leptin, adiponectin, or glucagon-like peptide-1 concentrations were associated with adiposity, insulin sensitivity, and basal insulin secretion. None of the dogs were hyperglycemic. In the final path model, adiposity was positively associated with leptin (P < 0.01) and glucagon-like peptide-1 (P = 0.04) concentrations. No significant total effect of adiposity on adiponectin in dogs (P = 0.24) was observed. If there is a direct effect of leptin on adiponectin, then our results indicate that this is a positive relationship, which at least partly counters a negative direct relationship between adiposity and adiponectin. Fasting plasma leptin concentration was directly negatively associated with fasting insulin sensitivity (P = 0.01) and positively associated with β-cell function (P < 0.01), but no direct association was observed between adiponectin concentration and either insulin sensitivity or β-cell function (P = 0.42 and 0.11, respectively). We conclude that dogs compensate effectively for obesity-induced insulin resistance. Fasting plasma leptin concentrations appear to be associated with obesity-associated changes in insulin sensitivity and compensatory hyperinsulinemia in naturally occurring obese dogs. Adiponectin does not appear to be involved in the pathophysiology of obesity-associated changes in insulin sensitivity.
Collapse
Affiliation(s)
- K R Verkest
- Centre for Companion Animal Health, School of Veterinary Science, The University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
46
|
Ting TC, Miyazaki-Anzai S, Masuda M, Levi M, Demer LL, Tintut Y, Miyazaki M. Increased lipogenesis and stearate accelerate vascular calcification in calcifying vascular cells. J Biol Chem 2011; 286:23938-49. [PMID: 21596756 DOI: 10.1074/jbc.m111.237065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vascular calcification is recognized as an independent predictor of cardiovascular mortality, particularly in subjects with chronic kidney disease. However, the pathways by which dysregulation of lipid and mineral metabolism simultaneously occur in this particular population remain unclear. We have shown that activation of the farnesoid X receptor (FXR) blocks mineralization of bovine calcifying vascular cells (CVCs) and in ApoE knock-out mice with 5/6 nephrectomy. In contrast to FXR, this study showed that liver X receptor (LXR) activation by LXR agonists and adenovirus-mediated LXR overexpression by VP16-LXRα and VP16-LXRβ accelerated mineralization of CVCs. Conversely, LXR inhibition by dominant negative (DN) forms of LXRα and LXRβ reduced calcium content in CVCs. The regulation of mineralization by FXR and LXR agonists was highly correlated with changes in lipid accumulation, fatty acid synthesis, and the expression of sterol regulatory element binding protein-1 (SREBP-1). The rate of lipogenesis in CVCs through the SREBP-1c dependent pathway was reduced by FXR activation, but increased by LXR activation. SREBP-1c overexpression augmented mineralization in CVCs, whereas SREBP-1c DN inhibited alkaline phosphatase activity and mineralization induced by LXR agonists. LXR and SREBP-1c activations increased, whereas FXR activation decreased, saturated and monounsaturated fatty acids derived from lipogenesis. In addition, we found that stearate markedly promoted mineralization of CVCs as compared with other fatty acids. Furthermore, inhibition of either acetyl-CoA carboxylase or acyl-CoA synthetase reduced mineralization of CVCs, whereas inhibition of stearoyl-CoA desaturase induced mineralization. Therefore, a stearate metabolite derived from lipogenesis might be a risk factor for the development of vascular calcification.
Collapse
Affiliation(s)
- Tabitha C Ting
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver VA Medical Center and University of Colorado, Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comp Immunol Microbiol Infect Dis 2011; 34:281-9. [DOI: 10.1016/j.cimid.2011.01.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/01/2011] [Accepted: 01/14/2011] [Indexed: 12/21/2022]
|
48
|
Verkest KR, Fleeman LM, Rand JS, Morton JM. Evaluation of beta-cell sensitivity to glucose and first-phase insulin secretion in obese dogs. Am J Vet Res 2011; 72:357-66. [PMID: 21355739 DOI: 10.2460/ajvr.72.3.357] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare beta-cell sensitivity to glucose, first-phase insulin secretion, and glucose tolerance between dogs with naturally occurring obesity of > 2 years' duration and lean dogs. ANIMALS 17 client-owned obese or lean dogs. PROCEDURES Frequently sampled IV glucose tolerance tests were performed with minimal model analysis on 6 obese dogs and matched controls. Glucagon stimulation tests were performed on 5 obese dogs and matched controls. RESULTS Obese dogs were half as sensitive to the effects of insulin as lean dogs. Plasma glucose concentrations after food withholding did not differ significantly between groups; plasma insulin concentrations were 3 to 4 times as great in obese as in lean dogs. Obese dogs had plasma insulin concentrations twice those of lean dogs after administration of glucose and 4 times as great after administration of glucagon. First-phase insulin secretion was greater in obese dogs. CONCLUSIONS AND CLINICAL RELEVANCE Obese dogs compensated for obesity-induced insulin resistance by secreting more insulin. First-phase insulin secretion and beta-cell glucose sensitivity were not lost despite years of obesity-induced insulin resistance and compensatory hyperinsulinemia. These findings help explain why dogs, unlike cats and humans, have not been documented to develop type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Kurt R Verkest
- Centre for Companion Animal Health, School of Veterinary Science, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | | | |
Collapse
|
49
|
Han MS, Lim YM, Quan W, Kim JR, Chung KW, Kang M, Kim S, Park SY, Han JS, Park SY, Cheon HG, Dal Rhee S, Park TS, Lee MS. Lysophosphatidylcholine as an effector of fatty acid-induced insulin resistance. J Lipid Res 2011; 52:1234-1246. [PMID: 21447485 DOI: 10.1194/jlr.m014787] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mechanism of FFA-induced insulin resistance is not fully understood. We have searched for effector molecules(s) in FFA-induced insulin resistance. Palmitic acid (PA) but not oleic acid (OA) induced insulin resistance in L6 myotubes through C-Jun N-terminal kinase (JNK) and insulin receptor substrate 1 (IRS-1) Ser307 phosphorylation. Inhibitors of ceramide synthesis did not block insulin resistance by PA. However, inhibition of the conversion of PA to lysophosphatidylcholine (LPC) by calcium-independent phospholipase A₂ (iPLA₂) inhibitors, such as bromoenol lactone (BEL) or palmitoyl trifluoromethyl ketone (PACOCF₃), prevented insulin resistance by PA. iPLA₂ inhibitors or iPLA₂ small interfering RNA (siRNA) attenuated JNK or IRS-1 Ser307 phosphorylation by PA. PA treatment increased LPC content, which was reversed by iPLA₂ inhibitors or iPLA₂ siRNA. The intracellular DAG level was increased by iPLA₂ inhibitors, despite ameliorated insulin resistance. Pertussis toxin (PTX), which inhibits LPC action through the G-protein coupled receptor (GPCR)/Gα(i), reversed insulin resistance by PA. BEL administration ameliorated insulin resistance and diabetes in db/db mice. JNK and IRS-1Ser307 phosphorylation in the liver and muscle of db/db mice was attenuated by BEL. LPC content was increased in the liver and muscle of db/db mice, which was suppressed by BEL. These findings implicate LPC as an important lipid intermediate that links saturated fatty acids to insulin resistance.
Collapse
Affiliation(s)
- Myoung Sook Han
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Yu-Mi Lim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Wenying Quan
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Jung Ran Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Inchon 406-840, Korea
| | - Kun Wook Chung
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Mira Kang
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Sunshin Kim
- Carcinogenesis Branch, Korean National Cancer Center, Goyang 410-769, Korea
| | - Sun Young Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Joong-Soo Han
- Institute of Biomedical Science, College of Medicine, Hanyang University, Seoul 133-791, Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | - Shin-Young Park
- Institute of Biomedical Science, College of Medicine, Hanyang University, Seoul 133-791, Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | - Hyae Gyeong Cheon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Inchon 406-840, Korea
| | - Sang Dal Rhee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Daejon 305-343, Korea
| | - Tae-Sik Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Inchon 406-840, Korea.
| | - Myung-Shik Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea.
| |
Collapse
|
50
|
Sphingolipid metabolism and analysis in metabolic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 721:1-17. [PMID: 21910079 DOI: 10.1007/978-1-4614-0650-1_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Sphingolipids are an important class of structural and signaling molecules within the cell. As sphingolipids have been implicated in the development and pathogenesis of insulin resistance and the metabolic syndrome, it is important to understand their regulation and metabolism. Although these lipids are initially produced through a common pathway, there is no "generic" sphingolipid. Indeed, the biophysical and signaling properties of lipids may be manipulated by the subunit composition or isoform of their synthetic enzymes, via regulation of substrate integration. Functionally distinct pools of chemically-equivalent lipids may also be generated by de novo synthesis and recycling of existing complex sphingolipids. The highly integrated metabolism of the many bioactive sphingolipids means that manipulation of one enzyme or metabolite can result in a ripple effect, causing unforeseen changes in metabolite levels, enzyme activities, and cellular programmes. Fortunately, a suite of techniques, ranging from thin-layer chromatography to liquid chromatography-mass spectrometry approaches, allows investigators to undertake a functional characterization of all or part of the sphingolipidome in their systems of interest.
Collapse
|